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ABSTRACT

Scattering and inverse scattering theory plays a central role in mathematical
physics. For example, through the use of acoustic or electromagnetic waves, one can
detect and identify objects that are hard to or cannot directly be observed as well as
obtain information about the material properties of objects of interest.

However, in practical applications, the presence of complex background media in
which the problems are considered restricts us from applying directly the existing the-
oretical results and numerical methods. This constraint requires delicate modification
of well-established theory and development of alternate computational approaches.

In this thesis, we investigate the applicability of qualitative methods in inverse
scattering theory for obtaining material properties and recovering shapes of unknown
objects by using time-harmonic electromagnetic waves under different geometrical con-
figurations. In particular, we first consider a 2D model where a bounded dielectric scat-
terer sits on an infinite metallic substrate. This is a model problem for non-destructive
testing of aircraft coatings. We validate the application of the Linear Sampling Method
(LSM) for detecting special frequencies called transmission eigenvalues for both isotrop-
ic and anisotropic media. Then we move to a 3D model where a bounded perfectly
electric conducting object is located inside an infinite long perfectly electric conducting
waveguide and justify the application of the LSM for reconstructing the shape of the
object.

For both cases, we show that additional work needs to be done in order to recast
standard results from scattering and inverse scattering theory to the model problems
we consider. Also, this work gives an idea of the effort needed to adapt academic

research to industrial applications.

Xlil



Chapter 1

INTRODUCTION

1.1 Historical Review

Scattering and inverse scattering problems arise in various areas of mathematics
and physics and have a long history. Examples include the non-destructive testing
of materials [31, 45|, medical imaging [46, 50], remote sensing [28, 56] and seismic
exploration [34, 47]. As an important and attractive field, the mathematical theory
of shape identification and the determination of material properties has progressed
rapidly over the last few decades.

This thesis focuses on the use of electromagnetic waves governed by Maxwell’s
equations to probe remote objects. In order to better understand the inverse problem,
it is worth mentioning that the corresponding forward problem is to find the total
field and scattered field due to a known incident field when we know the material
parameter(s) describing the scattering object together with its shape. In our case this
forward problem is linear and well posed. The inverse problems we shall study uses
measurements of the scattered field resulting from the interaction of a known incident
field with an unknown scatterer in order to probe this object. From this data we are
to recover the shape of the scattering object as well, possibly, as parameters pertinent
to the scatterer such as its relative permittivity and permeability. The inverse problem
is generally ill-posed and non-linear.

In developing inversion algorithms for target identification, the first techniques
to emerge were based on the weak scattering approximation and in particular using
the popular Born approximation [5, 27]. This is computationally efficient and often

very successful. However, if the weak scattering approximation does not hold, the



resulting inversion schemes may be inaccurate and result in poor reconstructions [60].
As a common alternative, constrained optimization methods (see, e.g., [6, 30]) are
well developed and usually require an iterative approach together with solution of the
forward problem at least once during each iteration. This approach can deal with a
variety of constraints and is applicable with reduced measurement data, such as only
one incident wave. But it is computationally expensive and so may be very slow and
may also stop at local minima. Moreover, this method requires a priori information
that may not be available such as the number of connected components of the scattering
object and the type of boundary condition on the object.

More recently, a new class of approaches which avoid possibly incorrect lineariza-
tion but which seek only partial information about the scattering object (optimization
approaches try to recover a complete description of the scatterer) have been developed.
These are now referred to as “qualitative methods” and usually need very limited a
priori data. They are relatively faster than optimization approaches but require sub-
stantially more input data (that is, more measured data). Examples of such methods
include, for instance, the Linear Sampling Method (LSM) [20, 25], the Factorization
Method [40, 41], and the Method of Singular Sources [53, 54]. This thesis will focus on
the LSM, and we shall give more background on the LSM later in thesis introduction.

1.2 Time Harmonic Electromagnetic Waves

For the model problems we shall consider in the sequel, the fields (incident,
scattering and total fields) are time-harmonic electromagnetic waves and thus governed
by Maxwell’s equations. Depending on the application, these fields will satisfy different
versions of Maxwell’s equations depending on the assumption on the application. To
connect the various models, we start with the full time dependent Maxwell’s system
in R3. In the time domain, the space and time dependent quantities D, H, B, € and J
and p satisfy

oD
o ~VxH = -7 (1.1)



oB

= — 1.2
at—l—VxE 0, (1.2)
V-B = 0, (1.3)
V-D = j (1.4)

where D is the electric displacement, H is the magnetic field, J is the current density;
B is the magnetic induction, & is the electric field and p is the charge density. Here
equations (1.3) and (1.4) are consequences of equations (1.1) and (1.2) provided initial
and boundary conditions are consistent with them.

Furthermore, we assume the following linear constitutive relations:

D = &£ where € is permittivity, (1.5)
B = [gH where [i is permeability, (1.6)
= ¢& where ¢ is conductivity (Ohm’s law), (1.7)

and £, it and & are given functions of position describing the electromagnetic properties
of the medium.

Plugging (1.5) and (1.7) into (1.1) and (1.6) into (1.2), we obtain

é% +0E -V xH = 0, (1.8)
oH
i = 0. 1.
ey +Vx€& 0 (1.9)

Now let F[-] denote the Fourier transform in time, that is,

Flfl= /_ h exp(iwt) f(t) dt.

Applying the Fourier transform in time to (1.8) - (1.9), and recalling the assumption

that €, 6 and [ are independent of time, we obtain

—iWEF[E] + GF[E] -V x FIH] = 0,
—iwiF[H] +V x FIE] = o,



We denote by €, 1o the positive and constant electromagnetic coefficients for
free space. Setting E = /€y F[£], H = /1o F[H], then substituting for F[£] and F[H]

above gives
(. O 1
—w | e+i— | Ve —E—-VXH = 0,
W €0
1
—iwpi/eopo —H +V XE = 0.
Ho

Let k denote the wave number for the background medium given by k = w./€gfio-

B -
Then defining the relative quantities ¢ = (— + ii) and p = s (soe=land p=1
€0 ) Ho

in the background), we end up with the time harmonic system of Maxwell equations

as follows: the unknown spatially dependent complex valued vector fields E and H

satisfy
—ikeE-V xH = 0, (1.10)
—tkpH+V xE = 0. (1.11)
Generally, in R?, we have
El(l',y,Z) Hl($7yaz)
Ex) = [ By(2,y,2) [\ H(x) = | Hy(2,y,2) |
ES(nyvz> H3<l’,y,Z>

and ¢ is a matrix function of position.
Using (1.11) to replace H in (1.10), we can eliminate H and the time harmonic

Maxwell’s system can be reduced to the following second order system of equations:
V x (1 'V x E) — k*E = 0. (1.12)

In certain geometric settings, equation (1.12) can be further simplified. Suppose
that the coefficients ¢ and p are independent of z (that is, the medium is translation

invariant) and that we only seek solutions E and H propagating on the (z,y) plane and



individually independent of z. We also assume that 4 = 1 (no magnetic components

are present) and the medium is orthotropic so that

en(z,y) ew(z,y) 0
€ = |ew(lr,y) exn(zy) 0

0 0 533(513,y)

In this case the vector Maxwell’s equation (1.12) can be decomposed into two scalar
equations in R% The two models are referred to as Transverse Electric (TE) mode
scattering and Transverse Magnetic (TM) mode scattering respectively in electrical
engineering.

Using all these assumptions, for the TE case, the magnetic field is given by

Hl (JI, y)
H=H(z,y) = | Hy(z,y) |,
0
and the electric field is given by
0
E = E(z,y) = 0 ,
EB(:E7 y)
1 8H2(I,y) aHl(‘ray)
here E = — — )
where Ey(z, y) ikess ( ox dy

Direct calculation then shows that Fs(x,y) satisfies
AEg + k2€33E3 =0.

For the TM case, the electric field is given by

El(xny)
E:E(;U,y) = Eg(l',y) ’
0



and the magnetic field is given by

0
H=H(z,y) = 0 :

Hs(z,y)
1 (aEg(x,y)_9E1<“”y)). y

here H. = —
where Hs(z,y) T e 2y
Again direct calculation shows that Hj(x,y) satisfies

V : (AVHg) + k2H3 - O,
where A is a 2 X 2 matrix obtained from ¢ given by

1 €11 €12
= € where €=
det(e)

A
€12 €22
1.3 Review of Qualitative Methods for Inverse Scattering Problems
Before presenting the details of our work, we shall first review the general his-
torical background of qualitative methods using a simple model problem in standard
settings.
As an illustration, consider the following forward scattering problem for a simply
connected bounded domain D (for the TE case in 2D where, following Colton and Kress

[19], we use the notation n(x) = £33): find v and u*® such that

(

Au+En(x)u=0 in D,
Av® +k*u® =0 in R2\D,

) ua: u'+u® on oD, (1.13>
a—:j = %(uZ +u®) on 0D,
VT (aﬁir - ik:us) —0 as r:=|x| — oo,
\

where v’ is the incident field assumed to satisfy the 2D Helmholtz equation Au’+k*u’ =
0 except possibly for isolated point(s) outside D. A typical incoming wave is the plane
wave

u' = exp(ikx - d), (1.14)



where d (|d| = 1) is the direction of propagation of the wave.

If there exists a frequency k and incident field u® (not necessarily a plane wave)
such that the scattering field u* is zero, then w := u|p and v := u'|p satisfy the
following homogeneous problem
[ Aw+ En(x)w=0 in D,

Av+k*v=0 in D,

(1.15)
w—v=0 on 0dD,
Jw Ov
L %—%—O on E)D

This problem is referred to as the Interior Transmission Eigenvalue problem for the
Helmholtz equation and any value k such that this homogeneous problem has nontrivial
solutions is then referred to as a Transmission Eigenvalue.

The interior transmission problem was first discussed by Colton and Monk
21, 22] and Kirsch [39] in the mid 1980s in connection with inverse scattering for
acoustic waves in an inhomogeneous medium. For almost two decades after this, most
results on the interior transmission problem were concerned with well-posedness of the
non-homogeneous interior transmission problem. Concerning transmission eigenvalues
themselves, by an application of the analytic Fredholm theory, one can often show
that the transmission eigenvalues form at most a discrete set with infinity as the on-
ly possible accumulation point [19, 24]. Relatively recently, Paivérinta and Sylvester
[52] showed that, in the case of scalar isotropic media a finite number of transmis-
sion eigenvalues exist provided the index of refraction is large enough. Kirsch then
extended this existence result to the case of anisotropic media for both the scalar case
and Maxwell’s equations [42]. Subsequently, Cakoni and Haddar presented a general
proof for the existence of transmission eigenvalues for a wide class of scattering prob-
lems [17]. Meanwhile, Cakoni, Colton and Haddar investigated the difficult case of a
medium with cavities, i.e. regions with zero contrast [12]. Soon, Cakoni and Gintides
refined this proof by removing the assumption on the size of the index of refraction
[15]. Together with Haddar, they proved the existence of an infinite discrete set of

transmission eigenvalues and provided new results on monotonicity properties of the



eigenvalues [16]. This latter paper opened the way to determine properties of the index
of refraction from transmission eigenvalues.

To obtain partial information on the material properties of the scattering object,
one can try to use measurements of the interior transmission eigenvalues. This problem
arises in inverse scattering theory for inhomogeneous media [21]. Of particular interest
is the spectrum associated with the interior transmission eigenvalue problem, more
specifically the existence of eigenvalues and their dependence on the material properties
of the scatterer. On the one hand, it is important to know that transmission eigenvalues
form a discrete set because one needs to avoid those frequencies that correspond to
transmission eigenvalues in, for example, standard sampling methods for reconstructing
the support of the scatterer. On the other hand, it is important to know whether
the eigenvalues exist and to understand their connection with the index of refraction
because one can then try to use the transmission eigenvalues to obtain information
about physical properties of the scatterer [11]. Either way, the spectral properties of
the interior transmission problem have become an interesting and current question in
inverse scattering theory [18].

To recover the support of the scattering object, the Linear Sampling Method
(LSM) turns out to be an efficient approach. To describe the rationale behind this
method, we recall that the last condition in (1.13) (also called the Sommerfeld radiation
condition) is imposed on the scattered field. This implies an asymptotic expansion of

the scattered field u* (given u' the plane wave (1.14)) as follows:

1
{uoo(ﬁ,d)—l—(’)(—)} as r:=|x| = oo and x = x
T

x|

r

Here u.,(x,d) is called the Far Field Pattern (FFP) of the scattered wave.
The classical LSM is then based on the following Far Field Equation (FFE):
find a function g, € L*(S) such that

(Fg,)(%) = /S oo (%, d) g (d) ds(d) = B (%,2) for all X € S, (1.16)

where S is the unit circle and @, (x,2z) is the Far Field Pattern (FFP) of the field due

to a point source located at the auxiliary point (sampling point) z.



In 2D, for instance, the field due to a point source in vacuum is given by
the radiating fundamental solution to the Helmholtz equation defined by ®(x,z) :=
iHél)(k]x — z|),x # z where Hél) is the zeroth order Hankel function of the first
kind. Denoting the direction of the incident plane wave by d = (cos(¢),sin(¢)) and

the observation direction x = (cos(f), sin(6)), the FFE becomes

/27r Uso (0, 0)g-(0) dp = v exp(—ikr, cos(6 — 6,)) for 6 € [0,27),
0

exp(im/4)

V8rk

Using the Far Field Equation (FFE), the reconstruction of the shape of D and

where v = and (r4,0,) are the polar coordinates of sampling point z.

its transmission eigenvalues can be extracted from the function g,.

To present the theoretical underpinning for this statement, we first need some
more assumptions on the function n(x). Following [10], let n(x) € C(D) (note this can
be generalized to n(x) > ¢ > 0 a.e. in D such that n(x) € L>(D) and 1/|n(x) — 1] €
L>(D), see [16]). In addition, let

n, = inf n(x) > 0, n* :=supn(x) < oco.

xeD xeD

Further assume that
Jm(n(x)) =0 and either 0<n*<1 or n,>1. (1.17)
Also define the Herglotz wave function corresponding to g, € L?[0, 27| by

wg, (x) = /0 ﬂexp(z’kx -d)g,(¢) dp where d = (cos(¢),sin(¢)).

Then we have the following theorems:

Theorem 1.3.1 (TFE case of Theorem 6.50 in [10]) Assume that D is a bounded do-
main having a C%-boundary OD such that R?\D is connected, and n satisfies assump-
tion (1.17). Furthermore, assume that k is not a transmission eigenvalue corresponding

to the homogeneous interior transmission problem (1.15). Then we have that



e Forz € D and a given € > 0, there exists a function g € L*[0,2x] such that

HFg; - q)00<'7Z)HL2[0,27T] <€,

and the Herglotz wave function wg (x) with kernel g5 converges in H'(D) to a
function v € H' (D) as € — 0, where (w, v) is the unique solution of the following
interior transmission problem

Aw +En(x)w=0 in D,
Av+kv=0 in D,
w—v==%(,2z) on 90D,
(-
ow v 0%(-,z) on 9D,

o ov v

e Forz & D and a given € > 0, every function g5 € L*[0,2n] that satisfies
| Fgg — (I)OO('7Z)||L2[O,27T] <e€

1s such that

i [wge|| m1(p) = 00,

where again wye s the Herglotz wave function with kernel g.
Theorem 1.3.2 (TFE case of Theorem 6.51 in [10]) Assume that n satisfies assumption

(1.17). Let k be a transmission eigenvalue corresponding to the homogeneous interior

transmission problem (1.15) and g satisfy

| F'gq — (I)OO('7Z)HL2[O,271'] <€

Then for every z € D, except possibly for a nowhere dense set, ||wg | m1(p)y cannot be

bounded as € — 0. Here wy: is the Herglotz wave function with kernel gy,

From Theorem 1.3.1, we see that the shape of D can be determined by the norm
of g¢ as it will be unbounded if the sampling point z ¢ D and bounded for z € D as
e — 0. Together with Theorem 1.3.2, Theorem 1.3.1 also suggests that for almost every
z € D, wy behaves differently if k is a transmission eigenvalue where the norm of g;
will be unbounded and if £ is not a transmission eigenvalue where the norm of g; will
be bounded.

The Linear Sampling Method (LSM) described above was first introduced by
Colton and Kirsch [20]. Its origin traces back to the Dual Space Method developed
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by Colton and Monk during the late 80’s. This qualitative method drew considerable
attention as a novel approach to inverse scattering theory due to its many advantages
such as the requirement of no priori assumptions about the material or the geometry
of the scattering object. Also, the numerical implementation of the LSM is very simple
and fast since as seen from (1.16), sampling is done by solving an ill-posed linear integral
equation for each sampling point z. Many books (see, e.g., [10, 13, 19, 43, 48]) have
included this approach as a way of determining the shape of an unknown object. Later
on, the LSM extended to a broad range of applications. For instance, using limited
aperture data on a subset of S in (1.16) [10] or using near field data excited by point
sources [55]. The employment of the LSM under different geometric settings is also
investigated such as inside an acoustic waveguide [49] (for inverse source problem, see
[8]). Particularly, the waveguide effect arises due to the presence of the boundary of the
waveguide which separates the wave into propagating modes and evanescent modes.
Since only a finite number of propagating modes can be captured at long distance while
all the other evanescent modes decay exponentially, it increases the ill-posedness of the

reconstruction of the scatterer.

1.4 Framework of the Thesis

In this thesis, we shall investigate two model inverse scattering problems. The
first concerns the determination of transmission eigenvalues in non-destructive testing
and the second seeks to justify the LSM for reconstructing an unknown scattering object
in a waveguide. Both involve scattering in non-constant or “complex” background
media.

In Chapter 2, we consider an interior transmission problem arising in a non-
destructive testing application. Specifically, it corresponds to inverse scattering for a
bounded isotropic dielectric medium lying on an infinite perfectly conducting surface.
The novelty here is that a mixed boundary condition appears due to the presence of
the perfect electric conducting surface. This configuration has also been considered for

the modeling of near field optical microscopes [29] and the simulation of the radiation
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of an antenna situated on a large metallic structure [4]. In particular, we investigate
the 2D scalar case of this problem where, in the corresponding scattering problem, the
dielectric medium is illuminated by time harmonic TE or TM polarized electromagnetic
waves respectively. In both cases we formulate the interior transmission problem for
the appropriate Helmholtz equation and show that the transmission eigenvalues form
an infinite discrete set. We also derive an analogue of the Faber-Krahn inequality by
converting the problem to a fourth order elliptic equation. We also show the existence
of these eigenvalues by adapting the proof in [16] with necessary modifications. Lastly,
we conduct various numerical experiments related to finding the first real transmission
eigenvalue for both TE and TM scattering. We show that real transmission eigenvalues
can be found from near field data, although in some cases the accuracy requirements
on the data is very stringent.

In Chapter 3, we are concerned with applying the LSM in a 3D electromagnetic
waveguide with bounded cross-section. This is motivated by practical applications,
for example, the detection of clogs or defects in petroleum pipes buried under the
sea floor. Analogous to the analysis for a 2D acoustic waveguide by Bourgeois and
Lunéville [9], the aim is to understand how the LSM must be modified in the case of
a 3D electromagnetic waveguide. This generalization is far from trivial in a number of
places. To name a few, in the direct problem, the Rellich’s Lemma (see Lemma 2.12
in [19]) for proving the uniqueness of the solution to the forward problem does not
hold in a waveguide due to the fact that the information carried by the exponentially
decaying modes cannot be captured in the far field. Also the problem requires a
good understanding of the background dyadic Green’s function and an elaboration of
procedures for factorizing the near field operator where the near field data is collected
on a cross section of the waveguide far away from the scattering object.

We start by justifying the forward problem. Importantly, we show the well-
posedness of the forward problem because standard results for free space don’t apply
here. Then we move to the corresponding inverse problem to show how to adapt the

LSM to the inverse electromagnetic waveguide problem. In particular, we analyze the

12



background dyadic Green’s function of the waveguide, its decomposition in the vicinity
of singularity (point source), the representation formula of the scattered field as well as
the reciprocity property to prove a uniqueness theorem for determining the unknown
scatterer. Then we employ a factorization of the near field operator to justify the
LSM for the waveguide. Finally, we describe a numerical approach we use to produce
synthetic scattering data and numerical results for the reconstruction of an unknown
scatterer.

In the final chapter of the thesis, we end up with some open problems and
potential future work as well as mentioning other inverse problems that may be of

interest.
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Chapter 2

DIELECTRIC SCATTERER ON A CONDUCTING PLANE

2.1 Interior Transmission Problem
2.1.1 Configuration of the Problem

We consider a Perfect Electric Conductor (PEC) backed dielectric scattering
object illuminated by point source(s). Let D C R? be a bounded open set having
a piecewise smooth Lipschitz boundary I' = I', U I'),, such that I', is the interface
between the background dielectric medium D, and the domain D and I, the interface
between the infinite perfect electric conducting substrate D,, and D (see Figure 2.1).
We assume that D, = {(z,y)|y < 0}. The unit normal vector to 9D directed into the
exterior of D is denoted by v.

Y

-,

LV

Figure 2.1: Configuration of plane supported domain.
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If D is illuminated by time harmonic Transverse-Electric (TE) polarized elec-
tromagnetic waves, the corresponding scattering problem is for an isotropic inhomo-
geneous media. The scattering problem for inhomogeneous media illuminated by time
harmonic Transverse-Magnetic (TM) polarized electromagnetic waves can give rise to
an anisotropic problem. We will discuss these case by case in Section 2.1.4 and Sec-

tion 2.1.5, respectively.

Remark 2.1.1 Our proofs of the discreteness and existence of transmission eigenval-
ues in the following sections do not require Iy, to be a segment of the x-axis. For
example, T',, could be the finite union of smooth arcs. However, we impose the assump-
tion that 'y, is a segment of the x-azis because we use this fact in some later proofs (see
Corollary 2.1.2 for TE case and Corollary 2.1.4 for TM case) and for the numerical
results (see Section 2.2).

2.1.2 Function Spaces and Preliminary Results

Concerning the spaces we will be using, first for u,v € L*(D), let

(u,v)D:/uvdx and (u,v>p:/uvds
D r

where the overbar denotes complex conjugate and denote I' = I'y U T',. Next, we

introduce the usual energy spaces

HY(D) := {ueL*D)|Vue (L*D))*,
Hy(D) = {ue H' (D) |u=0onT}.

For the scalar isotropic case, we have the following Sobolev spaces

H(div,D) = {ue€ (L*(D))?*|V-uec L*D)},

Hy(div,D) := {ue€ H(div,D) |v-u=0onT},
Hoy,(div,D) = {u€ H(div,D) | v-u=0onT,},
and
H(D) = {ue HY(D)| Vu e H(div, D)}
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= {ue L*D),Vue (L*(D))* V- (Vu) = Au € L*(D)},
Ho(D) = {uec Hy(D) | Vu € Hy(div, D)}
= {ue L*D),Vue (L*(D))?* V - (Vu) = Au € L*(D),
u=0onT,v-Vu=0onT},
Hoa(D) = {u€ Hy(D) | Vu € Hy,(div, D)}
= {ue L*D),Vue (L*(D))* V- (Vu) = Au € L*(D),
u=0onIT,v-Vu=0onT,},
equipped with the inner product

(u? U)H(D) = (u7 U)D + (VU, VU)D + (AU, ArU)D-

Here H(D), Ho(D) and Ho, (D) are all Hilbert spaces, and Ho(D) is equivalent to the
classical Sobolev space HZ(D) (see, e.g., [16]).

For the scalar anisotropic case, for u,v € (L*(D))?, let
(u,v)p :/ u-vdr and (u,v)r= /u'vds.
D r
And we introduce the following Sobolev spaces
H),(D):={u€c HY(D)|u=0onT,},
and

G(D) := {u€ H(div,D)|V-ue H'(D)}
= {ue (L*D)*V-ue L*D),V(V-u) € (L*(D))*},
Goo(D) = {u€ Hy(div,D) | V-u € Hy, (D)}
= {ue (L*(D))?* V-ue L*D),V(V-u) <€ (L*(D))?
v-u=0onI,V-u=0onTl,}

equipped with the inner product

(u7V)H(D) = (U,V)D+(V'U,V'V)D+(VV'U,VV'V)D.
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With these definitions, we can further define the following continuous sesquilin-

ear forms on Ho,(D) X Hoa(D) and Goo (D) X Goa(D), respectively:
C(u,§) = (Vu,VE&)p, (2.1)
N(un) = (V-u,V-n),. (2.2)
Let us denote by C' and N the bounded linear operators from Ho, (D) to Ho.(D) and

Goa(D) to Gou(D), respectively, defined using the Riesz representation theorem (see
Theorem C.0.1) by

(Ct, Opoup) = Cu,§) (2.3)

for all £ € Ho,(D) and
(Nll, U)goa(D) - N(uv 7])

for all n € Gou (D).

Then, we have the compactness of the following operators:
Lemma 2.1.1 C: Hoo(D) — Hoo(D) is a compact operator.

Proof: Let u, be a bounded sequence in Ho, (D). Hence there exists a subsequence,
denoted again by wu,, which converges weakly to u® in Ho,(D). Since Vu, is also
bounded in (H'(D))3, from the Rellich compactness theorem we have that a suitable

subsequence again denoted Vu, converges strongly to Vu® in (L*(D))3. But

I1C(wn = u)igupy = (Clun = u?), Clun = u"))pugu(m)

= Clu, —u’, C(u, —u"))

(V(un — "), VIC(un — u’))p

IV (un = w220 [ V[C (s — w”)] [l 22

IN

IN

IV (. = ) L2y € (1 = 1) 340 ()

which implies
I1C (un = u) Iru(my < IV (1t — 1)l L2().

This proves that Cu,, converges strongly to Cu® and therefore C' is compact. [
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Remark 2.1.2 As an alternate definition, one can also define the continuous sesquilin-

ear form on H'(D) x HY(D) such that
C(U, 5) = (VU, Vg)Da

then the corresponding bounded linear operator C' as in (2.3) will be from H' (D) to
HY(D) and is also compact. However, in order to facilitate the analysis in the sequel,

we shall use the definition given by (2.1).
Lemma 2.1.2 N : Goo(D) — Goa(D) is a compact operator.

Proof: The proof is similar to the proof of Lemma 3.2 in [11]. O

2.1.3 Poincaré Type Inequality
Before discussing transmission eigenvalue problem for the geometric setting in
Figure 2.1, we shall state the following Poincaré type inequalities which summarize the

essential differences with the standard transmission eigenvalue problem:

Lemma 2.1.3 For u € Ho,(D), we have that

IVullZ2p 1AUl72( ). (2.4)

1
<
oY)
where A(D) 1s the first eigenvalue of the buckled plate eigenvalue problem with Dirichlet

boundary condition on I', Neumann boundary condition on I', and Laplacian boundary

condition on I'y,. Specifically:

.
—A*v=\Av in D,
v = on T,
0
a—z =0 on I,
\ Av=0 on T,,.
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Proof: First, from the Riesz representation theorem (see Theorem C.0.1), we define

two operators as follows:

(4 - Hou(D) — Hoo(D) bounded linear operator such that

(Au, v) () = (Au, Av)p for u,v € Hoo(D),
B Hoo(D) — Hoo(D) bounded linear operator such that

(Bu, v)ypy = (Vu, Vv)p for u,v € Hoa(D).

\
Then we have that

e The operator A is self-adjoint, positive definite (using the Poincaré type inequal-
ity (2.4) in H}(D)).

e The operator B is self-adjoint, non-negative, compact (choosing B in place of C
in Lemma 2.1.1).

Next, consider the following eigenvalue problem: find A\ € R and non-trivial ¢ € Ho, (D)
such that

(A, At)p = A(Vo, Vib)p for any o € Hoa(D). (2.5)
Then, by using the definition of operators A and B above, we have
(Ag,p)n = A(Bo, 1)y if and only if Ap = AB¢ in Hoa (D).
Applying Theorem 2.1 and Theorem 2.2 in [17], we get

(A¢7 ¢>7—l _ (A(ba A¢)D > )\1

where (A;)r>1 (increasing sequence of positive real numbers) are the eigenvalues of

Apr = M\ B¢y, and ¢,’s are the corresponding eigenfunctions. Then

(Vo Vo)p < %(Aqb, Ad)p.

Thus we have the desired Poincaré Inequality.

To justify that A\ corresponds to the eigenvalues for the buckled plate eigenvalue
problem stated above, given ¢ € Ho,(D) smooth enough (for example, ¢ € H*(D) N
Hou(D)) that satisfies the variational form in (2.5), integration by parts gives

(A%0 + AAG,v) ) + <A¢, g—w> =0.
Vir
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Choosing ¢ € Ho(D) so that Vi € Hy(div, D) C Ho,(div, D), we have
(A0 4+ AA}, ) ) = 0 in Ho(D).
Since Ho(D) is dense in L?*(D), we have

A?¢p + A\A¢ = 0 in the L? sense.

o\
<A¢, E>F = 0.

Now, since ¢ € Ho,(D) is arbitrary, we have Ad|r,, = 0. The proof is done. [J

This leads to

Note 2.1.1 From Lemma 2.1.3 and the classical Poincaré inequality on Hj(D), we
can see that the norm ||ul| = ||Aul|r2(py is equivalent to the one we defined for Ho(D)

and Hoa (D).
Lemma 2.1.4 For V-u € Hy, (D), we have that

1
IV uH%Q(D) < m”vv : uH%Q(D)v

where (D) is the first eigenvalue of —A on D with Dirichlet boundary condition on

', and Neumann boundary condition on I',,. Specifically:

—Av=pv in D,

v=0 on I
0
a—z =0 on I,,.

Proof: First, from the Riesz representation theorem (see Theorem C.0.1), we define

two operators as follows:

(4 - H},(D) — H;,(D) bounded linear operator such that
(Au,v) grpy = (Vu, Vo)p for u,v € Hj,(D),
B :H,(D)— H}, (D) bounded linear operator such that
(Bu,v)g1(py = (u,v)p for u,v € Hy, (D).

\

Then we have that
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e The operator A is self-adjoint, positive definite (using the standard Poincaré
inequality in Hg,(D) since T, is assumed to have positive measure).

e The operator B is self-adjoint, non-negative, compact (choosing B in place of N
in Lemma 2.1.2).

Next, consider the following eigenvalue problem: find € R and non-trivial ¢ € H},(D)
such that

(Vo, Vib)p = pu(¢,4)p for any ¢ € Hy, (D). (2.6)

Then, by using the definition of operators A and B above, we have

(A¢, ) = (B, ) if and only if A¢ = pBg in Hj, (D).

Applying Theorem 2.1 and Theorem 2.2 in [17], we get
(A¢7 ¢)H1 (V¢7 V(b)D

Bo. w6 p M

where (pg)r>1 (increasing sequence of positive real numbers) are the eigenvalues of

Adr = urBoy and ¢y’s are the corresponding eigenfunctions. Then

(6, 8)p < —(Vé, Vo)p.
M1

Thus we have the desired Poincaré Inequality.
To justify that pp corresponds to the eigenvalues of —A stated above, given
¢ € H},(D) smooth enough (for example, ¢ € H?*(D) N H},(D)) that satisfies the

variational form in (2.6), integration by parts gives
99
“Ad — - = 0.
( (b M¢;¢)D+<aya¢>r 0
Choosing ¢ € Hy(D) C Hj, (D), we have
(~A6 — g ¥)p = 0 in HA(D).
Since Hy (D) is dense in L*(D), we have

—A¢ — ¢ = 0 in the L? sense.
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This leads to

¢ B
&¥), =0

0
Now, since ¢ € H}, (D) is arbitrary, we have 99

= 0. The proof is done. [J
ov

Im

2.1.4 Scalar Isotropic Media
2.1.4.1 Formulation of the Problem

The interior transmission eigenvalue problem corresponding to the scattering
problem for an isotropic inhomogeneous medium (TE mode electromagnetic scattering)
with configuration as in Section 2.1.1 in R? reads: find w and v in suitable function

spaces such that (here x = (z,y)):

Aw + k*n(x)w =0 in D, (2.7)
Av+ Kk =0 inD, (2.8)
w—v=0 onl,, (2.9)
ow Ov
—— — = r 2.1
ov v 0 onla, (2.10)
w=0,v=0 onl,,. (2.11)

Note that (2.7) to (2.10) arise in the standard interior transmission eigenvalue problem
when the domain D is immersed in a dielectric background. The boundary conditions
(2.11) are due to the presence of the conducting surface. Here we assume that for some
constant 7 the positive real-valued function n is such that n(x) > v > 0 a.e. in D,
n € L*(D) and 1/|n(x) — 1| € L*>°(D). Then, with the aid of function spaces defined
in Section 2.1.2, the interior transmission eigenvalue problem becomes the following:
Find w € L*(D) and v € L*(D) and k € R such that w — v € Ho,(D) satisfies (2.7),
(2.8) and (2.11), that is,

Aw+k*n(x)w=0 in D,
Av+Ekv=0 in D,

w=0,v=0 on I,
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where we still need to give a suitable meaning to the last boundary condition.
The real transmission eigenvalues are the values of k£ > 0 for which this interior
transmission problem has non-trivial solutions. The boundary conditions (2.9), (2.10)

are incorporated in the fact that w — v € Ho. (D).

2.1.4.2 Discreteness of Transmission Eigenvalues

Based on the analytic Fredholm theory, it is well known that, in the absence of
a conducting surface, the set of transmission eigenvalues is at most discrete with +oo
as the only possible accumulation point [19, 24, 58]. The goal here is to show that this
is also true when the conducting surface is present.

It is worth mentioning that when I, is a segment of the z-axis, we could prove
the discreteness of the transmission eigenvalues using an image principle. Instead we
use the analytic Fredholm theory because the results extend to more general I';, (see
Remark 2.1.1). Yet an alternative approach is to use the standard Fredholm theory
along the lines of [42].

First of all, following standard procedure [16], we write (2.7),(2.8) as an equiva-
lent quadratic eigenvalue problem for u = w—v € Ho, (D) for a fourth order differential

equation in the following standard way: (2.7) — (2.8) implies that
Au+ k*u = —k*(n — Dw in D. (2.12)

Dividing both sides of (2.12) by (n — 1) and applying the operator (A + k?n) gives

1

(A + k:Qn)n — (Au+ k*u) =0 in D. (2.13)
Also from (2.12) we have that
1 1
- Au + k).
w i 1( u+ k*u)

Then the boundary condition w = 0 in (2.11) implies that

(Au+ k*u) = 0 on T,

n—1
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which will turn out to be a natural boundary condition for w.

Note that in addition u = w — v € H,(D) implies that

u=0onT, @zoonfa.
ov

Thus if k is a transmission eigenvalue, then there is a non-trivial solution u € Ho, (D)

to the following problem:

(
(A + k*n)

1(Au—|—k2u):0 in D,
n_
u=0 on T,
0
a_Z:O on T,
—1(Au+k2u):0 on [',.
0 n—

To study this eigenvalue problem, we write it in variational form. To this end,
we multiply (2.13) by the complex conjugate of a test function ¢ € Ho,(D). Denote
1
by 8 = —1(Au + k*u), then integration by parts twice shows that
n J—

(AB + k2n67w)D - (67 Aw)D - <ﬁ7 g_qf>r + (anﬂ’w)D‘

Using all the boundary conditions, we get the variational form of the interior trans-
mission eigenvalue problem of finding a function v € Ho,(D),u # 0 and k& € R such

that

(5 (B B A0+ n0) =0 forall 6 € Ha (D)

D

Notice that (2.13) can be rewritten as

( ! (Au+k2u),mp+k2¢) +k (Au+ Ku, ), = 0.

n—1 D

By applying integration by parts again, we can finally reach the following equivalent

form of finding a function v € Ho,(D),u # 0 and k € R such that

By (u,v) — k*C(u, 1) = 0 for all ) € Hoa(D), (2.14)
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where
1

n—1

(Au + k*u), (A + k:%b)) + k*(u,¥)p,

D

Bk: (U, ¢) = (
and C is defined as in (2.1).
In a similar fashion, the transmission eigenvalue problem can also be written as

the problem of finding a non-trivial u € Ho,(D) and k such that

( (A+k2)1 (Au+Kk*nu) =0 in D,
—-n
u=0 on I
]
@:O on I,
1 v
1—(Au+k2nu):() on I,
3 —-n

where the natural boundary condition for u on I',, arises from the condition v = 0 in
(2.11).
In this way, the corresponding variational form is to find a function u € Ho, (D), u #

0 and k£ € R such that
B (u, ) — k*C(u,v) = 0 for all ¢ € Hoq(D), (2.15)

where

—n

(Au + k*nu), (Ay + anw)) + E*(nu,¥)p
D

Bi(u,¢) = <11

_ (1 D (Au+ k), (A + k%)) + (Au, A) p,

o 5
and C is the same as before.

Clearly, By(-,-) and By(-,-) are continuous sesquilinear forms on Hge(D) x
Hoo(D). Let us denote by B, and Bj, the bounded linear operators from Hoq(D)
to Hoa(D) defined using the Riesz representation theorem (see Theorem C.0.1) by

(BkU,'QD)HOa(D) = Bk‘(uaw); (216)
(Bkuaqu))ﬂoa(D) = Bk(u,w), (217)

for all ¥ € Hoa (D).

Now we can state and prove the following theorem:
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1
Theorem 2.1.1 (Discreteness) If Y — > a > 0 ae. in D for some constant
n(x) —

a >0, then

1. The set of transmission eigenvalues is at most discrete and does not accumulate
at 0.

A(D)
supp(n)
A(D) is the first eigenvalue of the buckled plate eigenvalue problem stated in
Lemma 2.1.5.

2. All real transmission eigenvalues, if they exist, are such that k* > where

Proof: To prove the first part of the theorem we consider the formulation (2.14).
Indeed, following the proof in [17], we have

By(u,u) = (ﬁ(Au + k*u), Au + k2u) + k*(u,u)p

D

v

ol Au A+ K ull3 2y + K[l )
2 2
a (|Aull 2oy — F*ull2(py)” + (K[l 2(p))

aX?—2aXY + (a+1)Y?,

v

where X = ||Aul|r2(py and Y = k?||u||12(py. Then we obtain

0[2

By (u,u) > E(Y—%X)Q—i- (a——) X’+(1+a—eY? (2.18)

€
for a < € < a+ 1. By setting € = o + 1/2, we have that

(67

B > X2 +Y?).
Also notice that, using Lemma 2.1.3,
|ullpy = (u,u)nmpy = (u,u)p + (Vu, Vu)p + (Au, Au)p
2

+ ||VUJH%2(D) +X°

+

A(D)

Y2 1
< (k—) L Aufz g + X?
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Then the above estimate yields the existence of a constant ¢; > 0 (independent of u

and «) such that

o 2
By, (u, u) > CkH—QQHUHH(Dy

Hence the sesquilinear form By(-, ) is coercive in Hoq(D) X Hoa(D) and consequently
the operator By : Hoa(D) — Hoa(D) is a bijection for fixed k.

To use the analytic Fredholm theory, we first have the following observations:

e The sesquilinear form By(-,-) is analytic in k.

e Denote by L(-,-) the set of all bounded linear operators from one Banach s-
pace to another. Define the operator valued function f : £k € C — B, €
L(Hoa(D), Hoa(D)) such that for each u € Ho,(D), the function f, : k € C —
Bru € Hoa(D) is weakly analytic. This is true since for each | € [Ho,(D)]* :=
L(Hoa(D),C) where * represents the dual space, we have that

I(fu(k)) = U(Bru) = (Bru, ¥)3o.(0) = Br(u, 1) € C for some 1) € Hoo(D)

is analytic in k. Then by Theorem C.0.2 and Theorem C.0.3, f is strongly
analytic.

e By the Lax-Milgram Lemma (Theorem C.0.4), there exists a bounded linear
inverse operator B,;l of By in a neighborhood of the positive real axis and in
particular, this inverse B, !'is also strongly analytic in k.

Then we show that the operator By, — k*C' : Hoo(D) — Hoa(D) is an isomor-
phism for £ > 0 small enough. From (2.18) and Lemma 2.1.3, we have for o < € < a+1,
2

2
Bufu) = () > oy = 5x)" (0= T ) K010 =Y KVl

2
> (a—%) X2—|—<1+OJ—G)Y2—]€2HVUH%2(D)

a’ k? Aull? 490,112
= |(a— __m | U”L2(D)+<1+0‘_€)k HU||L2(D)-

€

Therefore, if k? < (o —a?/e)A\(D) for every a < € < a+ 1, then By, — k?C' is invertible,
whence the analytic Fredholm theory (see Theorem 8.26 in [19]) implies that the set

of transmission eigenvalue is at most discrete.
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1
In particular, by choosing a = 1 where n* = suppn(x) and taking e

n* —
XD
—X(D) = _AD) then k is not a

arbitrarily close to a + 1 we have that if k? <
a+1 supp n(x)

transmission eigenvalue.
The second part of the theorem is a consequence of the proof of part 1. [

Alternatively, for 0 < n(x) < 1 we have,

(x)

Theorem 2.1.2 (Discreteness) If 1n—

n(x)

> a > 0 a.e. n D for some constant

a >0, then

1. The set of transmission eigenvalues is at most discrete and does not accumulate
at 0.

2. All transmission eigenvalues, if they exist, are such that k* > \(D) where \(D) is
the first eigenvalue of the buckled plate eigenvalue problem stated in Lemma 2.1.35.

Proof: The proof is similar to the proof of Theorem 2.1.1. Here we need to use the
sesquilinear form (2.15). Again, following the proof in [17], similar to the derivation in
Theorem 2.1.1, we have

Bi(u,u) > e(X—%Y)Q—i— (a—a;) Y24 (1+a—eX? (2.19)
for o < e < a+1, where X = ||Aul|z2(py and Y = E?||u|| 12(py).

Proceeding in the same way as in the first part of Theorem 2.1.1, we have again

Consequently, we can conclude again that

By (u, u) > ci

@ 2

where ¢, > 0 is a constant independent of u and a, whence By(-,-) is a coercive
sesquilinear form in Hoa (D) X Hoa(D).
Arguing exactly in the same way as in the first part of Theorem 2.1.1 we conclude

from analytic Fredholm theory that Blzl is strongly analytical in k. Finally, to show
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that By, — k*C' is invertible for k small enough, using (2.19) and Lemma 2.1.3 for

a < e < o+ 1 we have that

2 2
~ 9 « 4 2 k 2
Butu) — 120,10 > (= S ) il + (14— e 35 ) 18ulag,

Therefore, if k% < (41— €)A(D) for every o < € < a+ 1, then By — k*>C is invertible,
whence the analytic Fredholm theory implies that the set of transmission eigenvalue is
at most discrete.

In particular, by taking € > 0 arbitrarily close to a we have that k such that
k* < A(D) are not transmission eigenvalues.

The second part of the theorem is a consequence of the proof of part 1. [J

Next we want to provide bounds on transmission eigenvalues. Notice that from

the assumption of Theorem 2.1.1

Y > a > 0 which means n(x) > d, > 1

a.e. in D for some constant §, > 0.
Similarly, from the assumption of Theorem 2.1.2

n(x)
1 —n(x)

a.e. in D for some constant §* > 0.

> a > 0 which means n(x) < §* <1

Then, as a direct result of Theorem 2.1.1 and Theorem 2.1.2, we have the

following consequence:
Corollary 2.1.1 (Faber-Krahn inequality)

1. Assume that n(x) > 6 > 1 for all x € D and some constant §. Then, if k is a

transmission eigenvalue,
A(D)

supp n(x)

2. Assume that 0 < v < n(x) <0 <1 for all x € D and some constants vy and §.
Then, if k is a transmission eigenvalue,

k* > \(D).

k,2

v

Here N(D) s the first eigenvalue of the buckled plate eigenvalue problem stated in
Lemma 2.1.5.
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2.1.4.3 Existence of Transmission Eigenvalues
The next theorem confirms that transmission eigenvalue exists. It can be ex-
tended to more general I',,, (see Remark 2.1.1). The key result we use for the existence

is Lemma C.0.5.
Theorem 2.1.3 Let n € L>(D) satisfy either one of the following assumptions:
(1). 14+ a<n, <n(x)<n*<oo,

(2). 0 <n,<n(x)<n"<1-4,

for some constants a > 0 and 8 > 0. Then there exists an infinite set of transmission

eigenvalues with +00 as the only accumulation point.

Proof: First of all, the discreteness of the transmission eigenvalues is proved in the last
section by noticing that the first assumption satisfies the condition of Theorem 2.1.1
and the second assumption satisfies the condition of Theorem 2.1.2.

For existence, we adopt the proof of Theorem 2.5 in [16] with certain necessary

modifications. Suppose assumption (1) holds which implies that

0< 1 < 1 < ! <
n—1"n—-1"n,—1 oo

Then By and C' defined by (2.16) and (2.3) satisfy the requirements of Theorem C.0.5
with X = Hg, (D) and from the proof of Theorem 2.1.1 they also satisfy the assumption
(1) of Theorem C.0.5 with 75 := k* < A(D)/n*, that is, B,, — 7oC' (equivalent to
By, — k*C') is positive on X.

Next, let k1 ,,, be the first transmission eigenvalue for the disk S of radius R = 1
and n := n,. By a scaling argument, k. ,,. := ki, /€ is the first transmission eigenvalue
corresponding to the disk of radius € > 0 with n := n,. Take € > 0 small enough such
that D contains m := m(e) > 1 disjoint disks S}, 52, -+, S™ of radius €, then k., :=
k1. /€ is the first transmission eigenvalue for each of these disks with n := n, and let
uStne € HZ(S7),5 = 1,--- ,m be the corresponding eigenfunction. The extension by

zero @ of uS™ to the whole D is then in HZ(D) C Hoo(D). Furthermore, the vectors
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{a',@% ..., @™} are linearly independent and orthogonal in HZ(D) C Ho.(D) and we
have that

1 . . . .
0 = (paw k)00 4k,
Ny — 1 ’ D
1 » »
= AT + k?,n*u]HiQ(D) + kL,

2
€,Mx

W22y = K2, V@ |72

fory=1,...,m.
Denote by U the m-dimensional subspace of HZ(D) C Ho.(D) spanned by

{a',a* ...,a™}. Then we have that for 7y := k?,, and for every o € U

(Bnﬂ — 7'16'7], Q)HOG(D)

= (Bke,n*ﬁ - kin* Cﬁ? ﬂ’)HOa(D) = Bké,n* (iJ/? ﬁ) - k2 Cke,n* (ﬂ7 ﬂ’)

€,Mx

1
- (—n 1Aa + k2, 0, At + k:Qn&> + ki Nl ey — k2, IVEll72 )
N D
1
< —llAd+ k2 iill32py + Kb il dv — K2, | Vil[32 ) = 0.

This means that assumption (2) of Theorem C.0.5 is also satisfied and therefore we
can conclude that there are m(e) transmission eigenvalues (counting multiplicity) inside
[70,71) = [70,k2,,.]. Then by letting € — 0, we can show that there exists an infinite
countable set of transmission eigenvalues that accumulate at oo.

If assumption (2) of the theorem holds, we have that

*

Ty n n
0< < < < 0.
1—n, 1—n 1—n*

Then use By, and C' defined by (2.17) and (2.3), let X = Hoo(D), choose 75 := k? <

AD), 1 := kf}n*, proceed the similar argument, we can prove the same result. []
Note 2.1.2 The first transmission eigenvalue for the disk S we mentioned in the above
theorem is the first real non-zero eigenvalue of:

( Aw + E*ngw =0 in S,
Av+Ev=0 in S,

< w—v=0 on 05,
ow Ov
L 5—5—0 on aS,
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where ng > 0 is a constant and nyg # 1. It can be computed by separation of variables

and then finding the zeros of the appropriate determinant (see [16] for details).

Like Corollary 2.6 in [16], we can also obtain estimates for transmission eigen-
values by using Theorem 2.1.3. Our proof requires the flatness of boundary I',, as
mentioned in Remark 2.1.1.

We denote by S,, the largest disk of radius r; such that S,, C D and S”TQ the
smallest half disk of radius ry such that D C 3,,2. Denote k; ,,, the first transmission
eigenvalue corresponding to the disk S; of radius one with n := n, and ifl,n* the first
transmission eigenvalue corresponding to the half disk S; of radius one with n := n*.

We have seen that k; ,,, can be computed since S,, is not touching the boundary
of conducting surface. On the other hand, to find transmission eigenvalues for the half
disk S; with constant n := i (fg > 0,19 # 1), the corresponding interior transmission
problem is to find eigenvalues of:

[ Aw +E*how =0 in gl,
Av+kv=0 in S,

$ w—v=0 on 9S,,
0 0 A
a—qj - a—z =0 on 05,

w=0,v=0 on 8§1m,
where 8§1a is the interface of domain 5’1 and the background dielectric medium D, and
9S4,y is the interface of domain S; and the infinite perfect electric conducting substrate
D,,.

The idea here is to extend the half disk to a full disk S; so that the problem
becomes one for the full disk considered in Note 2.1.2. Solutions to the Helmholtz

equation for w and v are:

w Iy (ky/ner)cos(mf) and  Jp,(kv/ngr)sin(mf), m=0,1,...
v o Jp(kr)cos(m@) and Jp(kr)sin(mé), m=0,1,....

Then we drop the solutions that do not meet boundary condition on as}m, that is,

those depending on cos(mé) (even eigenfunctions) and make the remainder satisfy the
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boundary conditions on 9S4, Consequently, the transmission eigenvalues correspond-

ing to the half disk can be computed by finding the zeros of the following determinant:

T (k) I (k\/Dor)
—Jp(kr)  —v/nJ), (kv/nor)

Note that sin(m#f) = 0 when m = 0, so /Acmo is the first zero of

det

Ji(kR) J1(kv/hoR)
—J{(kR) —v/noJ}(kv/ToR)

where R = 1. Correspondingly, when n := n*, I%Ln* is the first zero of

J1<I€R) Jl(k\/ n*R)
~J{(kR) —+/n*J|(kv/n*R)
By a scaling argument, we have that I%E,n* = ]271,71* /€ is the first transmission eigenvalue
corresponding to half disk of radius ¢ > 0 with n := n™.
For a given 0 < € < 7y let m(e) € N be the number of disjoint balls S of radius

€ that are contained in D, we have the following corollary:
Corollary 2.1.2 Assume that n(x) € L>®(D), then
(1). If 14+ a <n, <n(x) <n* < oo, then

€

There are at least m(e) transmission eigenvalues in the interval [;—:, ﬂ]

(2). If 0 < n, <n(x) <n*<1-—0, then

ky -
0< < Fi1pnx) < Ao
T2 1
.y . . . k ki p*
There are at least m(e) transmission eigenvalues in the interval [lﬁr—;, IT”]

Proof: We first suppose that assumption (1) holds. Then, for any u € Ho,(D), we
have the following inequality for the Rayleigh quotient (Bru,u),,n)/(Cu,u)uq, (D),
that is,

(B, U) 34, (D) (B, U) 34, (D)
(Cu7u>7'l0a(D) n=n* N (CU, U)HOH.(D)

n=n
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Or equivalently,

—n*1_1 | Au + 7’“”%2@) + TQ”“H%’Z(D) < fD n(xl)fl |Au + 7'U|2 dr + TZH“H%?(D)

(2.20)
||VU||%2(D) ||Vu||%2(D) '

From formula (2.1) in [16], corresponding to our case,

Bru,
A= min ( max B Wreo)) (2.21)
Wcl; \ uew\{0} (CU,U)HOCL(D)

where U; denotes the set of all j dimensional subspaces W of Ho,(D) such that W N
ker(C) = {0}. We now argue that for an arbitrary 7 > 0,

~

A (T, Sp,,n") % (7, D,n") % (7, D, n(x)), (2.22)

where A\ (7, D,n*) and (7, D,n(x)) are the first eigenvalue of the auxiliary problem
for D and n*,n(x), respectively, whereas A;(7, S’rz,n*) is the first eigenvalue of the

auxiliary problem for §T2 and n*. The auxiliary eigenvalue problems are
Byu — A\(7)Cu = 0 where u € Hoo(D) if 1/(n—1) >~ >0,

and

Bru — M(7)Cu = 0 where u € Hoo(D) if n/(1 —n) >~ >0.

Clearly, from (2.21), inequality @ holds because of (2.20); inequality ® also holds
by noting that the extension by zero @ of u € Uy C Hoa(D) to the whole S,, is in
z//\{l C HOCL(S’,"Q)-

Thus, we have

e For 7y = (ki /r1)% S, C D, from the proof Theorem 2.1.3 we have that
Al(Tl,D,n(X)) — T S 0.

e For 75 := (kypn+/r3)%, D C S,,, we have A (70, Sy, n*) — 79 = 0 and hence from
(2.22) we see that A (79, D, n(x)) — 79 > 0.

Therefore, the first eigenvalue k1 p n(x) corresponding to D and n(x) is between

ffl,n* /r2 and ky,,/ri. Also there is no transmission eigenvalue for D and n(x) that

is less than ky,-/rs (see Corollary 2.6 in [16] for a similar argument). The case for

0 <n, <n(x) <n*<1-— [ can be proven in a similar way. [J

34



Remark 2.1.3 From the proof of Theorem 2.1.1, Theorem 2.1.2 and Corollary 2.1.2
we have that

1. If 14+ a <n, <n(x) <n* < oo, then

T9 n*

kae  [MD
kl,D,n(x) 2> max <1;7 g) .

2. If 0 < n, <n(x) <n*<1-—74, then

Fim
kl,D,n(x) > max < = -, A(D)) .

Here N(D) 1is the first eigenvalue of the buckled plate eigenvalue problem stated in
Lemma 2.1.5.

2.1.5 Scalar Anisotropic Media
2.1.5.1 Formulation of the Problem

The interior transmission eigenvalue problem corresponding to the scattering
problem for an anisotropic inhomogeneous medium (TM mode electromagnetic scat-
tering) with configuration as in Figure 2.1 in R? reads: find @ and 9 in suitable function

spaces such that

V- (A(x)V) +k* =0 in D, (2.23)
Ab+k*5=0 in D, (2.24)
W—0=0 on I, (2.25)
o 0b
—— _ 22 =) L., 2.26
5’1/,4 al/ on ( )
I, ol
U .Y r 2.2
s 0, 5 0 on I, (2.27)

A~

0
where —© = v(z) - A(z)Vw.

8I/A

Note that (2.23) to (2.26) arise in the standard interior transmission eigenvalue
problem when the domain D is immersed in a dielectric background. The boundary

conditions (2.27) are due to the presence of the conducting surface. Here we assume
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that A is a real valued 2 x 2 matrix-valued function whose entries are piecewise con-
tinuously differentiable functions in D with (possible) jumps along piecewise smooth
curves such that A is symmetric and & - AE > y[€]2, € - A7 > BI€]? for all € € C? and
x € D where v, 3 are positive constants.

Let w = A(z)Vw and v = V90, then following the derivation in [11], the
interior transmission eigenvalue problem for this case becomes the following: Find

w € (L*(D))*,v € (L*(D))? and k € R such that w — v € Gy, (D) and the functions

satisfy
V(V-w)+ kA 'w=0 in D, (2.28)
V(V-v)+k*>=0 in D, (2.29)
v-w=0v-v=0 on [,,. (2.30)

The boundary conditions (2.25), (2.26) are incorporated in the fact that w — v €
Goa(D). Thus we establish the follow result:

Lemma 2.1.5 Ifk is a transmission eigenvalue, that is, if there exists non-trivial func-
tions w € H'(D) and © € H'(D) that satisfie (2.23) to (2.27), then w = A(z)Vw €
(L*(D))?* and v = Vo € (L*(D))? satisfy w — v € Goo(D) and (2.28) to (2.30).

2.1.5.2 Discreteness of Transmission Eigenvalues

Similar to Section 2.1.4, the goal here is to show that the set of transmission
eigenvalues is at most discrete with 400 as the only possible accumulation point when
the conducting surface is present.

We can write (2.28),(2.29) as an equivalent eigenvalue problem for u =w —v €
Goa(D) for a fourth order differential equation in the following way: (2.28) — (2.29)

implies that

V(V-u)+k*u=—k*(A""~I)win D. (2.31)
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Multiplying both sides of (2.31) by (A™' — I)™! and applying the operator (VV -

+k?A71) gives

(VV - +k2A (A = )" (VV -u+ k%) = 0 in D.

Also from (2.31) we have that

1

~ (AT =D (VY ut Fu).

W =
Then the boundary condition v - w = 0 in (2.30) implies that
v- (AP = D)Y(VV - -u+k®u) =0on [,

Note that in addition u = w — v € Gy,(D) implies that

v-u=0onl, V-u=0onT,.

(2.32)

Thus if k£ is a transmission eigenvalue, then there is a non-trivial solution u € Gy, (D)

to the following problem:

;

(VV - +2A DA =D H(VV-u+ k) =0, in
v-u=0 on

V:-u=0 on

v (AP —=D)"Y(VV-u+k*u)=0 on

\

To study this eigenvalue problem, we write it in variational form.

T

Y

as

=5 =3 =

m-

To this end, we

multiply (2.32) by the complex conjugate of a test function 1) € Gy,(D), denote by

B=(A"1—1)"YVV - u+ k?u), then using the fact that A is symmetric, integration

by parts twice shows that

(VV-B+EAT L), =— (8- v,V )+ (B,V(V-¥))p + (B, kA7) .

Using all the boundary conditions, we get the variational problem of finding a function

u € Gou(D),u # 0 and k € R such that

(A = D)7H(VV  u+ k), VV g+ K2A ) |, = 0 for all ¢ € Gou(D). (2.33)
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Using the fact that A V(A — D' =[(A' -+ A - =T+ AT -1)7!,

(2.33) can be rewritten as
(A" =D)™HVV u+ku), VV -9+ k) + (VV - u+ E*u, k) ) = 0.

By applying integration by parts again, we can finally reach the following equivalent

form of finding a function u € Gp(D),u # 0 and k € R such that
My (u, ) — E*N(u,9) = 0 for all 1 € Goa(D),
where
My, 9) = (A7 = DNV ut Ku), VY -+ K2) ) + K (0, ),

and N is defined as in (2.2).

In a similar fashion, the transmission eigenvalue problem can also be written as

the problem of finding a non-trivial u € Go,(D) and k such that

(VV -+ - A" Y(VYV-u+k*Aa)=0 in D,
v-u=0 on I,
< V-u=0 on I,
v (I — AN (VV-u+k*Au)=0 on [,

\
where the natural boundary condition for u on I',, arises from the condition v -v =0
in (2.30).

In this way, the corresponding variational form is to find a function u € Gy, (D), u #

0 and k£ € R such that
Mi(u,9) — BN (u, 1) = 0 for all ¢ € Go(D),

where

Mi(u,y) == (I - A N(VV-u+ kA "), VV -y + A7)+ k' (A, 0)

and N is the same as before.
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The analysis now proceeds along similar lines to the analysis of the TE case.
Clearly, My(-,-) and My(-,-) are continuous sesquilinear forms in Go,(D) X Goa(D).
Let us denote by M; and M, the bounded linear operators from Gy, (D) to Gou(D)

defined using the Riesz representation theorem by

(Myu,¥)go, 0y = Mpi(u,v),
(Mkua¢)g0a(D) = Mk(ua¢)7

for all ¥ € Goo(D).

Now we can state the following theorems:

Theorem 2.1.4 (Discreteness) Assume that & - (A1 — 1) > alé|? in D and for all

¢ € C? where a > 0 is a constant. Then

1. The set of transmission eigenvalues is at most discrete and does not accumulate
at 0.

a
2. All transmission eigenvalues, if they exist, are such that k* > TM(D) where
!

(D) is the first eigenvalue of —A on D with boundary conditions stated in Lem-
ma 2.1.4.

Theorem 2.1.5 (Discreteness) Assume that - A7 (1 — A=)~ > al¢)? in D and for

all ¢ € C? where a > 0 is a constant. Then

1. The set of transmission eigenvalues is at most discrete and does not accumulate
at 0.

2. All transmission eigenvalues, if they exist, are such that k* > p(D) where (D) is
the first eigenvalue of —A on D with boundary conditions stated in Lemma 2.1.4.

The proof of these two theorems is similar to the proof of Theorem 3.1 and
Theorem 3.2 in [11] and it is worth pointing out that whenever the Poincaré inequality
is applied in the proof, it should be the one from Lemma 2.1.4 as using Lemma 2.1.3
in our proof of Theorem 2.1.1 and Theorem 2.1.2.

Next, we want to provide bounds on transmission eigenvalues and we have the

following corollary:
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Corollary 2.1.3 (Faber-Krahn inequality)

1. Assume that ||A7||y > 6 > 1 for all x € D and some constant 5. Then, if k is a
transmaission eigenvalue,

L. AD)
subp A1

2. Assume that 0 < 3 < ||[A7Y|s <6 < 1 for all x € D and some constants 3 and
0. Then, if k is a transmission eigenvalue,

k* > \(D).

Here N(D) is the first eigenvalue of —A on D with boundary conditions stated in
Lemma 2.1.4.

Proof: The proof is similar to the proof of Theorem 3.3 in [11]. O

2.1.5.3 Existence of Transmission Eigenvalues

The next result confirms that transmission eigenvalue exists:

Theorem 2.1.6 Given A defined in Section 2.1.5.1, let A= € L> (D,R**?) satisfy
either one of the following assumptions:

(1). 1+a<n, < (£ Ax)71¢) <n* < oo,

(2). 0<n. < (€ Al@)'e) <n* < 1-5,

for every & € C? such that ||€|| = 1 and some constants o > 0 and 3 > 0. Then there
exists an infinite set of transmission eigenvalues with +oo as the only accumulation

point.

Proof: This theorem can be proven in the same way as Theorem 2.1.3. In particular,
the proof is similar to the discussion of Problem 2 of Section 2.3 as well as Theorem
2.10 in [16] by noting that Hy(D) in that reference is a subspace of Gy, (D) here. [
In the same way as in our discussion in Note 2.1.2, we need the first transmission
eigenvalue corresponding to the disk of radius one as well as the half disk of radius one,

respectively.
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For the full unit disk S7, we need to consider the first real non-zero eigenvalue

of

.

Aw+Engw=0 in S,

Av+Ekv=0 in S5,

(2.34)
w—v=0 on 05,

————=0 on 05,

 nodv  Ov

where ng > 0 is a constant and ng # 1. This is standard and can be computed by
separation of variables and then finding the zeros of the appropriate determinant.

For the half unit disk S, we need to consider the first real non-zero eigenvalue

of )
Aw + E*how =0 in S,
Av+Ekv=0 in 31,
w—v=0 on 85, (2.35)
1 .
A_E)_w - @ =0 on 0S5,
. ng Ov gl/
w v .
\ %5—0,5—0 on 8Slm,

where ny > 0 is a constant and ny # 1. Similar to the argument before Corollary 2.1.2,
we can convert this to a standard problem by extending the half disk S, to a full disk
S1 and drop the solutions that do not meet the boundary conditions on 85’1m, that is,
odd eigenfunctions. Then the eigenvalues can be computed by finding the zeros of the
appropriate determinant.

Without confusion, we use the same notation as in Section 2.1.4.3 and denote
by ki, and lg;m* the first transmission eigenvalue of problem (2.34) with ng := n, and
problem (2.35) with ng := n*, respectively. With no surprises, we have results similar

to Corollary 2.1.2 and Remark 2.1.3:

Corollary 2.1.4 Assume that A™' € L™ (D,R*?), and let ki p -1 be the first
transmission eigenvalue for (2.28) to (2.30) with w — v € Goo(D). Then
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(1). If 1+ a <n, < (£-A(x)71) < n* < oo for every € € C? such that ||€|| = 1, and
some constant o > 0, then

]%1 kl
0< —"=<kipaip < —=
T2 1
There are at least m(e) transmission eigenvalues in the interval [ = ,I“T”]

(2). If 0 < n, < (€ A(x)7X) < n* <1 — 3 for every &€ € C? such that ||€]| = 1, and
some constant 5 > 0, then

kl,n*

ki px
< kipa-i@) < —

0< .
() 1

kl,n* kl,n*
ro :

There are at least m(e) transmission eigenvalues in the interval [ ;

Remark 2.1.4 From the proof of Theorem 2.1.4, Theorem 2.1.5 and Corollary 2.1.}

we have that

1 Ifl+a<n, < (£ Ax)71) <n* < oo, then

by MD))

k1,p,4-1(z) = max ( ;

T9 n*

2. If0 < n, < (- Ar)72) <n* < 1-—3, then
]%1 T
kl,D,A_l(x) Z max —7, )\(D) .

Here N(D) is the first eigenvalue of —A on D with boundary conditions stated in
Lemma 2.1.4.

2.2 Numerical examples

In this section we shall present some numerical investigations of the determi-
nation of transmission eigenvalues for both isotropic media ((2.7) to (2.11)) and or-
thotropic media ((2.23) to (2.27)) from scattering data. We shall restrict ourselves
to simple 2D cases with flat I',, (see Remark 2.1.1) in order to make a comparison
with the well-studied results for the cases where the conducting surface is absent. In

particular we assume:
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e Isotropic media: n(x) > 0 (n(x) # 1),

1
e Orthotropic media: A = —)I with n(x) > 0 (n(x) # 1),
n(x

where n(x) is a piecewise constant function and [ is 2 x 2 identity matrix.

2.2.1 Configuration
We consider scattering by a domain D illuminated by TE / TM polarized waves
due to point sources located along a line above D as shown in Figure 2.2 where D lies

on an infinite perfectly electrically conducting half plane {(z,v) | y < 0}. In Figure 2.2

ry
&

&
L

source
lo—0—0—0—0

w
—
=

Ln ©

Figure 2.2: Geometric notation for plane supported scattering problem.

and later in this section we use the following notation

D : The dielectric scatterer (not necessarily a half disk),

r : Radius of the scatterer when D is a half disk,

I'y : Interface between scatterer and air,

I',, : Interface between scatterer and metallic substrate,
H : Height of the line where point sources are located,
L : Length of the line where point sources are located,
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[ : Distance between neighboring point sources.

Here the receivers are at the same locations as the point sources.

2.2.2 Formulae and Methods
2.2.2.1 Image Theory and Green’s Function

The domain of the scattering problem is the upper half plane. In order to either
generate synthetic data from a forward solver or compute the inverse problem, we
shall need the Green’s function due to a point source located in the upper half plane.
To facilitate the computation, we use image theory to extend the domain to the entire
plane by putting a point sink at the mirrored position of each point source with respect
to the z-axis (see Figure 2.3). Then, without violating the boundary condition on T',,,
the Green’s function on the entire domain becomes the source-sink combination in

pairs, that is,

o TE case:
G(x,2) = Hi" (k|x — z*]) — HS" (k|x — 27 ), (2.36)

o TM case:
G(x,2) = H{" (k|x — z*]) + HS" (k]x — 27|), (2.37)

where H(gl) represents Hankel function of the first kind of order 0, and if z* = (21, 23), 20 >

0, then z~ = (21, —22).

Note 2.2.1 For TE case, the boundary condition on I',, can be satisfied when the
extension is an odd extension of the solution in the upper half plane and, for TM case,

when the extension is an even extension of the solution in the upper half plan.

2.2.2.2 Forward Problem
To generate the synthetic data for the forward problem, we compute the total
field inside and outside the scatterer (D U D’) illuminated by one pair of source-sink

combination given by (2.36) or (2.37). For example, in the TE case, we have
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Figure 2.3: Computational domain for the plane supported transmission eigenvalue
problem.

1. Series representation

For a disk, we have explicit formulas for the total field in polar coordinate:

Uiy = Z O Jm(ky/n(x)r)exp(imf) in DUD,
u= " (2.38)
Uout = Z B HW (kr) exp(imf) + u™™ in (DU D),

where J,,, represents Bessel function of order m, HT(,P represents Hankel function
of the first kind of order m, (r, ) represents the polar coordinates of x and a,
and [, are coefficients that can be determined by boundary conditions on the
interface |x| = r as follows:

{ Uin = Uoyy  (Continuity Condition),

auin o auout ce
5 — o (Flux Condition).

2. Coupling procedure

For a general domain, we employ the finite element method (using quadratic finite
elements) inside a circular artificial domain € (enclosing D U D" and excluding
the point sources and sinks) coupled with series representation outside 2. In this
way, the governing equations in each domain are:

o In
Au+ k*n(x)u = 0,
n(x)#1in DUD',
n(x)=1in (DUD")".
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e In Q¢
Au® + k=0,

u = us + uinc
u® satisfies the Sommerfeld radiation condition.

On 0f2, a coupling procedure is carried out by using the Neumann to Dirichlet
(NtD) mappings:

T:\— ul|gpg where Ou = A,
"loq
where A can be written as series expansion
A=) Anbm = > Amexp(imb), (2.39)

and T" diagonalizes in the Fourier space (see [35]).

2.2.2.3 Inverse Problem

For solving the inverse problem of determining the shape of D or computing the

transmission eigenvalues, we use the Linear Sampling Method (LSM) which is based

on the Near Field Equation (NFE): we seek g, € L?(X) such that

(Ng)(x) = / W, y)a(y) ds(y) = G(x,2),  VxeT (2.40)

where

u®(-,y) is the scattered field (in the presence of the scatterer) due to the incident
wave for the appropriate source at y. It is measured on ¥ and hence is referred
to as “Near Field Data” (NFD).

92(y) is the indicator function due to a source at z.

G(-,z) is the background Green’s function (in the absence of the scatterer) due
to a source at z. This is just the fundamental solution for a point source at z
given by (2.36) or (2.37) as appropriate.

3} is the curve on which the point sources lie. Integration is performed over this
curve. Specifically, after discretization, point sources are uniformly distributed
on a line of length L above the scatterer with height H (see Figure 2.2).

T is the curve on which the receivers are located. For simplicity, as is usual with
the LSM, they are on the same locations as the point sources. So T = ..
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Usually, the NFD is corrupted with random noise of size, for example, 1% in the
relative L? norm. Specifically, for a finite number of sources and receivers, the NFD
is represented by a matrix IV, then for each entry N, ;, the corresponding corrupted
data is N;; = N;;(1 + en) where € is the noise level (for example, 1%) and 1 € R is a
random number following uniform distribution on [—1,1]. It is worth mentioning that
for some scatterers with certain values of n(x), the transmission eigenvalues which can
be determined from the NFD are very sensitive to the noise level. Thus, we sometimes
assume less than 1% random relative noise on the data as noted in the upcoming
sections.

The integral equation (2.40) is discretized by using the Trapezoidal rule and
collocation at the integration points and then the discrete problem is solved using
techniques appropriate for ill-posed problems such as Tikhonov Regularization or the
Truncated Singular Value Decomposition (T'SVD) [33]. The choice of parameters for
these methods are based on either an empirical value or approaches such as the Gener-
alized Morozov Principle [13], the L-Curve Criterion or Generalized Cross-Validation
(GCV) [33].

In practice, for the reconstruction of the shape of D, we choose several sampling
points in the region we expect D to be found, compute the discrete [? norm of g,, and
make contour plot of the reciprocal of these values. We expect the shape of D are
indicated by contour lines of the reciprocal of the norm of g,. For the determination of
transmission eigenvalues, we choose several sampling points inside the original scatterer
D (assumed a priori known), average the discrete [ norm of g, at these points for
different wavenumbers, and plot these values against wavenumber. We expect that
transmission eigenvalues are indicated by peaks in the graph.

Note that in applications both procedures would be applied to measured data

directly with no need to solve any forward problem.

Remark 2.2.1 It is worth pointing out that, in this thesis, we have focused on the novel

problem of analyzing the interior transmission eigenvalue problem with mixed boundary
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data. With this well in hand and the discussion in Sections 4.5, 4.6, 6.5 and 6.6 of
[10], it should be possible to prove the analogue of Theorem 1.5.1 and Theorem 1.5.2

using the near field equation with limited aperture data.

2.2.3 Numerical Results
2.2.3.1 Forward Problem

To give some idea of the fields for the forward problem, we present results from
our forward solvers for the TE case described in Section 2.2.2.2. Specifically, we use
series representations (2.38) of the scattered field outside and the total field inside for
scattering from a half disk on a perfect conducting plane. And we use the coupling of
finite element solution and series representation for scattering from a half square on a

perfect conducting plane. The parameters are:

e Wavenumber: £ = 4.5

Relative permittivity of scatterer: n(x) =4

Location of point source in polar coordinates: z* = (p,¢) = (3,7/2) and thus

z-=(p,¢) = (3, —7/2)
For half disk (D)

1. Radius of half disk: r = 1/2

2. Terms kept in the series representation (2.38) of background Green’s func-
tion: from m = —14 to m = 14 so that all the modes of major impact are
included (see plot of coefficients in Figure 2.4).

For half square (Ds)
1. Size of half square: [—0.5,0.5] x [0,0.5]

2. Radius of circular artificial domain for finite element solver: 1.25

3. Terms kept in the series representation (2.39) for NtD mapping in coupling
procedure: from m = —30 to m = 30 so that all the coefficients A, of major
impact are included (see plot of coefficients in Figure 2.4).

A plot of the total field (real part, imaginary part and absolute value) due to a
half disk (D) and the coefficients a,,’s and (,,’s in the series expansions (see (2.38))

are given in Figure 2.4.
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Total field: Real part w/n=4 Total field: Imaginary part w/n =4
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Figure 2.4: Plot of total field in the presence of a half disk D; of radius 1/2 (white
curve) using image theory and coefficients for series expansions of the
total field inside D; and the scattered field outside Dy (see (2.38)).

A plot of the total field (real part, imaginary part and absolute value) due to a
half square (D) and the coefficients Ap,’s in the NtD mapping (see (2.39)) using the

coupling procedure is given in Figure 2.5.

2.2.3.2 Inverse Problem for Shape Reconstruction

To illustrate the reconstruction of the half disk D, and half square D, described
in Section 2.2.3.1, we put several point sources/receivers on a line above Dy and D,
respectively, as shown in Figure 2.2. For each point source, we compute the scattered
field using the forward solvers described in Section 2.2.3.1 for D; and Ds, respectively,

and collect the scattering data at all the receivers. Then we use Tikhonov regularization
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Coefficients &,'s in Neurnann to Dirichiet (ND) mappings

Total field: Absolute value w/n= 4 1

Figure 2.5: Plot of total field in the presence of a half square Dy of size [—0.5,0.5] x
[0,0.5] (white line) using image theory and coefficients A,,’s in series
expansion of NtD mappings (see (2.39)).

combined with the Generalized Morozov Principle to solve the NFE (2.40).

Other parameters are:

e Location of point sources/receivers: uniformly distributed along a line of height
y=H =2/3 between z = —L/2 = —3/2 and + = L/2 = 3/2, distance between
neighboring points is A\/10 where A = 27 /k is the wavelength.

e Level of random relative noise added on the scattering data: %1.

e Region of sampling points: a rectangle of size [—1, 1] x [0.05, 1].

The contour plot of the reconstruction of half disk D; is given in Figure 2.6 and

the contour plot of the reconstruction of half square D is given in Figure 2.7.
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Reconstruction of half disk w/n = 4

‘/\7

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 04 0.6 08 1

Figure 2.6: Contour plot of reconstruction of half disk D; of radius 1/2 (white curve)
with relative permittivity n(x) = 4 by LSM under wavenumber k = 4.5.

2.2.3.3 Computation of Transmission Eigenvalues

To validate the computation of transmission eigenvalues from near field data,
we shall present some numerical results for both TE and TM cases. Specifically, we
test the method on a half disk and a half square with a constant n(x), respectively. In
particular, let the radius of half disk be r = 1/2, the size of half square be [—0.5, 0.5] x
[0,0.5] as in Section 2.2.3.1 and n(x) = 4 or n(x) = 16. The other parameters are:

e Wavenumber k

k TE case TM case
n(x) =4 | from 4.5 to 8.5 with step size 0.02 | from 4.0 to 8.0 with step size 0.02
n(x) =16 | from 1.5 to 3.5 with step size 0.01 | from 1.5 to 3.5 with step size 0.01

Table 2.1: Range of wavenumber for computation of transmission eigenvalue

e Location of point sources: uniformly distributed along y = H = 3/2 between
r=—-L/2=-3/2and v = L/2 = 3/2, distance between neighboring points is
A/10 where A = 27 /k is the wave length.

e Sample points z = (21, 22) for computing average of ||g,|l2: points inside the
scatterer which are not close to the boundary. Specifically,
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Reconstruction of half square w/n =4

Figure 2.7: Contour plot of reconstruction of half square Dy of size [—0.5,0.5] X
[0,0.5] (white line) with relative permittivity n(x) = 4 by LSM under
wavenumber £ = 4.5.

— For half disk: points satisfying |z| < 0.45 and 2z, > 0.1.
— For half square: points satisfying |z < 0.45 and 0.1 < 2z < 0.45.

We concentrate on detecting the first transmission eigenvalue which is important
for non-destructive testing and then compare our results with well-studied transmission
eigenvalues for the full disk or the full square in the absence of a conducting surface.
In particular, for the half disk, we shall present results for both cases with n(x) = 4
and n(x) = 16. For the half square, since it is much harder to come up with an explicit
formula for transmission eigenvalues of a full square, we just present results for TE
case with n(x) = 16 and TM case with n(x) = 4 which can be immediately compared
with the published data [14, 23].

We also note that we use the coupling procedure (for the TE case, it is described
in Section 2.2.2.2) to generate the synthetic data both for the scattering of a half disk

and a half square.
1. TE case
First, we list the first few transmission eigenvalues for full disk and full square

in the absence of the conducting background (see Table 2.2). In Table 2.2, the
results for n(x) = 16 are from Table 1 and Table 3 in [23], respectively. The
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TE Full Disk Full Square
n(x) =4 | 5.8052, 6.7684, 6.8241, 7.9529 J/
n(x) =16 1.9880, 2.6129, 3.2240 ~ 1.89, ~ 2.46, ~ 2.47, ~ 2.89

Table 2.2: Standard transmission eigenvalue for disk of radius 1/2 and unit square
for the TE case.

result for n(x) = 4 for the full disk can be obtained by using the same argument
as in Section 3.1 of [23].

(a) Half Disk

i. n(x) =16
We apply Tikhonov Regularization combined with the Generalized Mo-
rozov Principle [13]. The NFD is corrupted with 1% random relative
noise. The result is shown in Figure 2.8. Vertical lines indicate trans-

TE:n=16

—e— half-disk
——1.988
——26129
601 ——3224

llg,ll;

0
101 q“i zx g
et | |

Figure 2.8: TE case, half disk, n(x) = 16.

mission eigenvalues of the full disk and peaks in the graph should give
eigenvalues of the half disk. The leftmost eigenvalue of the full disk is
not an eigenvalue of the conducting surface backed half disk since to
be an eigenfunction for the half disk, the eigenfunction of the full disk
would need to be an odd function, which is not the case. Thus the first
eigenvalue is different for the conducting surface backed scatterer and
is also well discriminated.

Actually, from the discussion before Corollary 2.1.2; the first transmis-
sion eigenvalue due to the above set up can be computed explicitly
(=~ 2.61). In comparison with Table 2.2 and the corresponding deriva-
tion in Section 3.1 of [23], the first real transmission eigenvalue in our
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case should be the second real transmission eigenvalue for a full disk in
the absence of conducting surface. We indeed observe good agreement
from Figure 2.8.

ii. n(x)=4
We use exactly the same approach with the same noise level as for
n(x) = 16. The result is shown in Figure 2.9. Note that in this plot we

TE:n=4

—=— half-disk
——5.8052
——6.7684
——6.8241
160[] —— 7.9520

180

140

120

ligl;

Figure 2.9: TE case, half disk, n(x) = 4.

detect the first transmission eigenvalue of the full disk. This is consistent
with the fact that this transmission eigenvalue actually corresponds
to an odd eigenfunction for the full disk. Also, we do not detect the
second transmission eigenvalue for a full disk because that one indeed

corresponds to an even eigenfunction, and hence is not an eigenvalue of
the half disk.

(b) Half Square with n(x) = 16

It turns out that for this case, the result (see Figure 2.10) is not as promising
as for the previous examples when using the same approach and noise level
as before. The peaks of ||g,||2 do not align with any eigenvalues for the full
square. Practically, the norm of g, is sensitive to the choice of regularization
parameter A as well as the size of the random relative noise. However,
we can still obtain the desired result with proper control of the random
noise level and parameter A\. As an illustration, the result for Tikhonov
Regularization with an empirical choice for A = 107!2 and 1073% random
relative noise on the NFD is shown in Figure 2.11. It is worth pointing
out that the possible reason for issues with detecting the first transmission
eigenvalue (for example, in Figure 2.10, there are two peaks fairly close to
the desired location of transmission eigenvalues) is that the second and third
transmission eigenvalues for the full square are very close to each other.
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Figure 2.10: TE case, half square, n(x) = 16.
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Figure 2.11: TE case, half square, n(x) = 16, 1073% random relative noise, regular-
ization parameter A = 10712,

2. TM Case
First, we list the first few eigenvalues for full disk and full square (see Table 2.3).
The result for the full square is from Table 1 in [14]. The results for the full disk
can be obtained by mimicking the discussion of Section 3.1 in [23], the difference
is that instead of having problem as in Note 2.1.2, we have problem (2.34).

(a) Half Disk

i. n(x) =16
We use Tikhonov Regularization combined with the Generalized Moro-
zov Principle. The NFD is corrupted with 1% random relative noise.
The result is shown in Figure 2.12. Here the first transmission eigen-
value detected is the same one for the full disk since the corresponding
eigenfunction is even.
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™ Full Disk Full Square
n(x) =4 | 5.8052, 6.8008, 7.5660, 7.6066 ~ 5.3
n(x) =16 | 2.0840, 2.6129, 2.6633, 3.2656 /

Table 2.3: Standard transmission Eigenvalue for disk of radius 1/2 and unit square
for the TM case.

TM:n=16

©— half-disk
——2084
——26129

—— 26633
———3.2656

100

lig |l

Figure 2.12: TM case, half disk, n(x) = 16.

. n(x) =4

We first use the same approach with the same noise level as for the

previous example. The result is shown in Figure 2.13. Clearly, this is

not a successful determination of the eigenvalues. Indeed, similar to

the half square with n(x) = 16 in the TE case, we have sensitivity

issues depending on the choice of the regularization parameter \ and

the random relative noise level.

It turns out that, with proper control of the random relative noise level,

the Tikhonov Regularization with an empirical choice for A can detect

the first eigenvalue. As an illustration, the results for Tikhonov Regu-

larization with parameter A = 107!? and 1072% random relative noise

on the NFD is shown in Figure 2.14.

Alternative Measurement Geometries

e [f we change the location of points sources by letting > in the NFE
(2.40) be an arc of radius 3/2 between angles 7/6 and 57/6, we
get better results (see Figure 2.15). As usual we use Tikhonov
Regularization combined with the Generalized Morozov Principle
and 1% random relative noise on the NFD.
e If we elongate 3 in the NFE (2.40) by letting the length of line be

L = 6 so that the point sources are uniformly distributed between
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Figure 2.13: TM case, half disk, n(x) = 4.
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Figure 2.14: TM case, half disk, n(x) = 4, 1072% random relative noise, regulariza-
tion parameter A = 1072,

r=—L/2=—-3and x = L/2 = 3, we can also get good results (see
Figure 2.16).

(b) Half Square with n(x) =4
First we present the result for Tikhonov Regularization combined with Gen-
eralized Morozov Principle (see Figure 2.17). The NFD is corrupted with
1% random relative noise. In the same way as for the half disk with n(x) = 4
above, the result is not accurate. However, with proper control of the regu-
larization parameter and noise level, we can observe good agreement between
the peaks and known eigenvalues. For instance, the result for Tikhonov Reg-
ularization with parameter A = 107!? and 1073% random relative noise on
the NFD is shown in Figure 2.18. Here the first transmission eigenvalue
detected should be the first one for the full square since the corresponding
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Figure 2.15: TM case, half disk, n(x) = 4, using curved measurement geometry.
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Figure 2.16: TM case, half disk, n(x) = 4, using elongated measurement geometry.

eigenfunction is even.

Alternative Measurement Geometries. Similar to the case of a half disk with
n(x) = 4, we can have good results by letting 3 be an arc or elongating the
length of 3 (see Figure 2.19 and Figure 2.20, respectively).

Remark 2.2.2 The numerical results above show that the determination of transmis-
siton eigenvalues for the TM case is more delicate than for the TE case. This is not
uncommon as, for instance, we note that numerical examples in Cossonniere’s thesis
[26] also suggest that determining TM mode transmission eigenvalues from far field

data is more difficult than for the TE mode (see Figure 6.13 of [26] where the LSM

predicts eigenvalues shifted from their true values).
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Figure 2.17: TM case, half square, n(x) = 4.
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Figure 2.18: TM case, half square, n(x) = 4, 1073% random relative noise, regular-
ization parameter \ = 10712,

In conclusion, we have shown that, for both TE and TM scattering, it is possible
to identify the first transmission eigenvalue from near field data with a standard regu-
larization approach (Tikhonov Regularization combined with the Generalized Morozov
Principle). Some problems show great sensitivity to noise (for example, the TM case
for half disk or half square with n(x) = 4), but even in these cases a proper choice of
regularization parameter and noise level will also give good results. Another option is
to change the geometry of the measurement line. However, its effectiveness is restrict-

ed. For instance, it turns out that when two transmission eigenvalues are close to each
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Figure 2.20: TM case, half square, n(x) = 4, using elongated measurement geometry.

other (TE case for the half square with n(x) = 16), the change to the measurement
array (curve or elongation) will not improve the results.
As a final remark, this chapter appeared in [63] and more discussion on finding

real transmission eigenvalues using other regularization techniques can also be found

in that paper.
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Chapter 3

PERFECTLY ELECTRIC CONDUCTING SCATTERER IN A
WAVEGUIDE

3.1 The Forward Problem
Note that the notation used for this chapter on the waveguide problem is rede-

fined compared to the previous chapter.

3.1.1 Configuration and Problem Description

We consider a waveguide occupying the domain W = ¥ x R in R?® where X
is a simply connected bounded convex and open domain in R?. The boundary of W
is piecewise smooth and denoted by I' with outward normal nr. A scatterer D with
smooth boundary is located inside the waveguide away from I' with outward normal
np (see Figure 3.1). We assume that the waveguide is filled with air (or vacuum) such
that g = g = 1 where €g and pg represent the background electric permittivity and

magnetic permeability, respectively. In the following, we will denote (x,y, z) a generic

point of W.
p r
w
y 3 D 7y
nr J

Figure 3.1: 2D view of generic configuration of waveguide in the presence of scatterer.

Note that the axis of the waveguide is parallel to the z-axis. We shall also denote

by X,y, 2z the standard unit vectors in R3.
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Let u’ denote an incident field excited by an electric point source at x, =
(x0, Yo, 20) located on a cross section ¥ x {zy} with polarization vector p (|p| = 1).
The incident field is assumed to satisfy the Maxwell system in the absence of the

scatterer D, that is

VxVxu—ku=F in W,

nrxu =0 on T,

where F' = pdy,. Here k = w,/€opg is the wavenumber where w is the angular frequency.
Furthermore, we assume that the scatterer D and the boundary of the waveg-
uide I' are perfect electric conductors (PEC), for example, made of metal. Then the

scattering problem we wish to solve is the model problem of finding the total field u

such that
VxVxu—k*u=F in W\D, (3.1)
npxu=0 on 0D, (3.2)
u=u'+u® in W\D, (3.3)
npxu=0 on I, (3.4)
u’® satisfies an appropriate radiation condition as z — %00, (3.5)

where the vector function u® represents the unknown scattered field. The radiation
condition here means that the scattered field u® should be an outgoing wave that can
be represented by modes, such that for each mode, it is either outward propagating or
decaying exponentially away from the scatterer. It will be given explicitly in Defini-
tion 3.1.1 after we have developed some more notation.

Correspondingly, the forward problem for the scattered field u® is:

(

VxVxu —ku =0 in W\D,
np xu'=-npxu on ID,

npr xu'=0 on T,

u’® satisfies an appropriate radiation condition as z — %oo.
\
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3.1.2 Modal Solutions to Maxwell’s Equation

To describe the radiation condition and also as a vital part of our inverse al-
gorithms, we need an expansion of the dyadic Green’s function (see Section 3.3.1) in
terms of waveguide modes. We start by developing the well known modal solution in

the waveguide.

3.1.2.1 Modal Solutions in the Waveguide
First, from Appendix A, we see that a mode U of the scattered field u® can be

represented by a combination of members of two families of solutions:

M =V x (uz) or N:%VXVX(@Z),

where the generating function @ can be written in the form (x,y, 2) = u(x,y)e* and

O(z,y,2) = v(z,y)e . The function u satisfies the 2D scalar Helmholtz equation on

2
Asu+&u=0 where =& +h*(h#0)

with an appropriate boundary condition on 0% = X N TI'. Similarly, v also satisfies the

2D scalar Helmholtz equation on .

Note 3.1.1 The constant in the definition of N is convenient for the following rela-
tions

N:%VXM and M:%VXN. (3.7)

Next we derive the boundary condition for u on 0% such that M and N satisfy
the PEC boundary condition on I' in (3.6).

e Consider the first family of solutions
M =V x (u(x,y)e"*z),
which satisfies the Maxwell’s equation in (3.6) as long as u satisfies

Asu+ Nu=0
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on ¥ and suitable boundary conditions on 0% = ¥ N T, and h is chosen so that
h? = k? — )2,

To investigate the PEC boundary conditions, we want

nr x M =nr x V x (u(z,y)e™2) = 0.

Since
du
_ thz g _ g ihz
M=V x (u(z,y)e™2) = [-54]e™,
0
if np = (ny,n9,0)7, we have
0
Al 8_§ ' 0 ‘
nr X M = N9 | X —8—2 elhz = — 0 GZhZ = O,
ou ou
0 O nla—x + nga—y

which implies that g—u =0 on 0.
n

e Consider the second family of solutions

1 A
N = EV x V x (v(z,y)e"*2),
which satisfies the Maxwell’s equation in (3.6) as long as v satisfies

Asv+p*v=0

on ¥ and appropriate boundary conditions on 0¥ = X NT, and h? = k? — p.

To investigate the PEC boundary conditions, we want
1 ,
nr X N = nr X E(V x V x (v(zx,y)e*2)) = 0.
Using relation (3.7), straightforward calculation gives

1
nrxN = npx(—VxM)

k
= |m| x|z goih | e
0 v
nav
1 —N1vU 2 ihz
= E 1 /’L e :O,

(nlg—z — TLQ%) ih

which implies that v = 0 on X..
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Therefore, in summary, we obtain

e The first family is given by

ou
: 8_5 .
M =V x (u(x,y)e*z) = —cu ethz,
0
where A is an eigenvalue and u is the corresponding non-trivial eigenfunction that

satisfies

Asu+Nu=0 in 3,

0
Z2_0 on On=xNT.
on
e The second family is given by
1 1 %ih
N = -V xV x (v(z,y)e"z) = — | §Lih | ",
k kE\%,
vp
where p is an eigenvalue and v is the corresponding non-trivial eigenfunction that

satisfies
Asv+p*v=0 in X,
v=0 on OXx=XNI.

Note 3.1.2 If alternatively the magnetic wall boundary condition nr x (V x U) =0

1s considered on ', then for the first family of solutions M, we have

ny %z’h Nou?
np X VXM = |[ny| X g_Z@'h e = —nju? ehe.
2 ou . du)
0 U\ (m oy — N2 890) ih

From this we see that w must satisfy the Dirichlet boundary condition u =0 on X.
On the other hand, for the second family of solutions N, using relation (3.7),

we have

HFXVXN:IIFX(]{?M>

v
nq oy 0
— Ny % | k| _ov ezhz S 0 ezhz )
oz
ou ou
0 0 nq 9z + nga—y

This means that v should satisfy the Neumann boundary condition - 0 on X.

on
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3.1.2.2 Eigenvalue Problem on the Cross Section of the Waveguide
To further investigate the modal solution, we are led to study the eigenvalue
problems of finding non-trivial solutions u and v together with corresponding eigen-

functions v and v such that

Au+XNu=0 in X, Av+pPv=0 in 3,
(E1) o and (E2)
I =0 on J0X. v=0 on O0X.

Both of these problems are standard eigenvalue problems for the Laplacian and we have
the following theorems (Theorems 8.5 and 8.6 in [59]) under the geometric assumptions

on ¥ in the introduction to this chapter (Section 3.1.1):

Theorem 3.1.1 Problem (E1) has a countable family of eigenpairs (u,,, \,) where
Um € HY(X),m = 0,1,... with u,, # 0 and \,, € R. We may choose \y = 0 and
Am = Am—1,m > 1. In addition, {u,}>_, may be chosen as an orthonormal basis in
L*(X). Moreover, the sequence {tm//Am + 1} m>0 constitutes an orthogonal basis in
HY(Y).

Theorem 3.1.2 Problem (E2) has a countable family of eigenpairs (Vp,, fy) where
v € HY(X),m = 1,2,... with v, # 0 and p, € R, p,, > 0. We may choose i, >
Um—1 for all m > 2. In addition, {v,}>_, may be chosen as an orthonormal basis

in L*(X). Moreover, the sequence {vy/\/tm tm>0 constitutes an orthogonal basis in

(D).

Remark 3.1.1 Since X is convez, we know that both w,, and v, are in H*(X) for each

m,n.

Now we can specify precisely the modal solutions corresponding to the PEC

boundary conditions on the waveguide wall. The two families are:

1. First family: A
M, =V X (upne™?z),m=1,2,...

B VE2 =2 if k2> N2
T iR, — k2 k2 < A2

where
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where we choose the positive square root. Note that the mode corresponding to
Ao = 0, hg = k has ug constant and so does not contribute to the solution.

2. Second family:

1 .
N, = EV X V X (ve9%z),m =1,2,...

where
VR e iR >l
Im =V iE — k2 i k2 < 2,

where again we choose the positive square root.

Here we see that it is possible that all the h,, and g,, are imaginary so that no traveling
waves OCCUr.

For the reminder of the thesis we assume that we avoid the cut-off frequencies
k such that A2, = k? and p2, = k?, that is, we assume h,, = M # 0 and
Jm = m # 0 for all m = 1,2,.... Then we will see in detail in the sequel that
there exists other possible exceptional frequencies which will impact our analysis and

should also be avoided.

3.1.3 Weak Formulation and Variational Formulation
3.1.3.1 Function Spaces

In order to further analyze the forward problem and its well-posedness, we shall

introduce all the function spaces to be considered in the later sections.

1. Spaces for the unbounded domain

For a general domain ® C R?, we define the usual energy space for electromag-
netic field as:

H(curl,®) = {u € (L*(D))* | V x u € (L*(D))%}
equipped with norm
1/
[l ey = (I1allZz) + 1V % ulfe)
In order to investigate the scattering problem in a weak sense, we consider the

waveguide in the presence of scatterer (see Figure 3.1) and define H,q,(curl, W\D)
the space of functions u € H(curl, W(_g g)\D) for any R sufficiently large where
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W(_r,r) is the segment of waveguide bounded by cross sections Xz and X_p and
containing D in its interior. We also denote by

Hy(curl, W\D) = {u € H(curl, W\D) | npxu=0on I and npxu = 0 on 9D},
and
Hypeo(curl, W\ D) = {u € Hy,e(curl, W\D) | npxu =0 on I and npxu = 0 on dD}.

. Spaces for bounded domains

For the variational formulation, we shall reduce the unbounded domain to a
bounded region containing D in its interior. A sketch of this is shown in Figure 3.2
where

ol

r
@ 1 {\} a=wu\D [ {\} QU

, 2 X18 “np B IT

Iéz’z nEsJCJ D t}j’nrzt

nr

Figure 3.2: Bounded sub-domain of waveguide in the presence of scatterer.

Wi : Sub-domain of waveguide bounded by cross sections ¥ x (s, t),
1 : Domain inside W, excluding the scatterer D,
2, : Unbounded domain on the left hand side of cross section X3 = 3 x {s},

Qg : Unbounded domain on the right hand side of cross section 3; = 3 x {t}.
Taking into account the boundary conditions in the waveguide, we define
X ={ue H(cur, Q) |np xu=0onTI" and np x u=0on dD}.

To state the corresponding trace space, note that the standard trace space for
H(curl, Q) is

H™Y2(div,0Q) = {f e (H%(09Q))? | there exists v € H(curl, Q)
such that ng x v]gq = £},

where ng = —np or nyg or ny, or np, 90 = DU X, UX, U,y and I'(syy =
0% X (s,t) is the boundary of segment of the waveguide bounded by ¥, and ¥;.
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Then, we define specifically the trace space on the cross sections:
HY?(div,%,) = {fe (H*(%,))? | there exists v € X

such that ny x v|y, = f}.

A similar definition holds H~"/ %(div, X;). Moreover, the dual space of all the
trace spaces above are denoted by

H=2(curl, 09), HV?(curl, ), H/?(curl, %3,),

respectively.

For the ease of analyzing the inverse problem, we also define the trace space on

0D:

H™Y%(div,0D) = {f e (HY%0D))? | there exists v e X
such that ngp x v|gp = f}.

Also, the dual space of this trace space is denoted by H~/?(curl, D).

3.1.3.2 Differential Operators on the Cross Section

With the eigenvalue problems (E1) and (F2) introduced in Section 3.1.2.2, we
shall also investigate the space of surface tangential vector fields on cross sections
given by

L3(X) ={w <€ (L*(X))® | ng - w =0 a.e. on X}

First of all, we recall several differential operators on a simply connected bound-
ed smooth surface S C R?. Let u be a differentiable scalar function and v a differen-
tiable tangent vector function defined on S, denote by Vgu, Vs -v,Vg X v, ﬁs X u the
surface gradient, surface divergence, surface curl and vectorial surface curl, respectively.

The scalar Laplace-Beltrami operator
Agu = Vg - (Vsu) = —Vg x (Vg x 1),
and the vector Laplace-Beltrami operator
Agv =Vg(Vg-v)— Vg x (Vg-V)

(see Section 6.3 in [19] or Section 3.4 in [48]). Relations among these operators are
given in Appendix B.3. Also note that these operators can be extended to a Lipschitz
domain (see Section 3.4 in [48]).
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Note 3.1.3 With operators defined above, for a differentiable scalar function ¢ =

o(x,y) defined on 2, we have, for example,

99 9¢

v _ Oz ﬁ « _ Oy
E¢ 96 y VY ¢ 99
oy ox

Then we have the following Stoke’s identity:

Lemma 3.1.1 Let {tm, A fm>0 and {vn, pin}n>1 be eigenpairs to problem (E1) and
(E2) defined in Theorem 3.1.1 and Theorem 5.1.2, respectively. Then the following
Stoke’s identity holds:
/ A2 gy U d = / (Vi) - (Vgo,) dz = / (Vs X ) - (Vs X vy)dz.  (3.8)
b ) b

This identity also holds when v, 1s replaced by w, or A\m, U, are replaced by fiy,, V.

Proof: Obviously,

/ )x%lum Uy, dT = —/ Ast,, v, do.
5 b

Using Stoke’s identities (B.16) and (B.17), we have

/x\fnumvndx = —/Vg'(VEUm>Und$
> >

= /(Vzum) - (Vsgv,) dx — / Vos + Vst Uy, dS,
5

o0x

and

/)\fnumvn dr = /Vg X (62 X Uy, ) Uy dT
2 2

= /(6gxum)~(ﬁngn)dl’+/ Tos - Vs X Up, Up ds.
2 ox

Note that vsy, - Vau, = 0 and the identity (B.21) (or because v, = 0 on 9%), we have
the desired identity (3.8). In a similar fashion, it is easy to see that the identity also
holds when v,, is replaced by u,, or A\, u,, are replaced by fi,, vy,. This completes the
proof. []

Also we have the following lemma:
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Lemma 3.1.2 For a simply connected bounded Lipschitz domain ¥ C R?, L2(X) ad-

mits an orthogonal basis given by {Vsty, }m>1 and {62 X Up tn>1 where u, and v, are

defined from Theorem 3.1.1 and Theorem 3.1.2.

Proof: For any w € L2(X), we have the following Helmholtz decomposition
w = Vsp + Vs X ¢,

where p € H'(X) and ¢ € H}(X) (see Theorem 3.3 in [32] and Theorem 3.8 in [62]).
From Theorem 3.1.1 and Theorem 3.1.2, p and ¢ can be written as series ex-

pansion in term of u,, and v,

) )
P = Z AUy, and q= Z/anm,
m=0 n=1

where u,, and v,, can be chosen such that Hum||%2(2) =1, anH%Q(E) = 1.

Thus, since Vyug = 0, w can be written as
W = Z U Vsl + Z ﬁnﬁﬁl X Up.-
m=1 n=1
Moreover, by Stokes identities (B.17) and (B.19),

/Z(VEum) (Vs xvp)de = /Z(Vz X (Vsty))v, de —/ (Tox - Vst )v, ds

ox

= —/ (Taz . Vzum)/l)n dS.
o)y

Since v, = 0 on 0%, we get
/(Vgum) (Vs X v,) dz = 0.
)

Thus {Vstm, tm>1 and {62 X U }n>1 form an orthogonal basis. [J

With the eigenpairs introduced in Section 3.1.2.2, we are able to redefine the
spaces on cross sections . From Theorem 3.1.1 and Theorem 3.1.2, we see that for
any function w € L*(X), it can be expanded using {u,, }m>0 Or {vm tm>o. Explicitly,

wo = Zw%)um, where wl) :/wumds,

m=0 %
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orw = wai)vm, where w? :/wvmds.
s

m=1

Then we can equivalently define the spaces H* and H{ such that
e = fu= St | SRl <o)
= m=0
Hy (%) = {w:Zw Z + 1)@ 2 <oo},
m=1 m=1

equipped with equivalent norms

[w][Frs sy = 2(1 + A2 fw),
m=0

sy = D (14 i) |wl) P,
m=1

respectively.

By Lemma 3.1.2, for any tangential vector field w on X, it can be written as
W = Z O Vs Uy, + Z B,V X Up, (3.9)
m=1 n=1

then L%(X) can be redefined as:

L3(%) = {w = Z Vit + Zﬂnﬁg X Uy Z A2 lam|® + Zui|ﬁn|2 < oo}
m=1 n=1 m=1 n=1

equipped with norm

IWlZ2 () ZA !am!2+2unlﬂn\2

We can also define H5.(X) as

Hi(o :{

equipped with norm

o0

3o+ 3 <0

m=

Wl sy = D A am* + > 208,
m=1 n=1
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Also notice that, by Lemma 3.1.1 and the Stokes identities (B.18),(B.19), the

expansion (3.9) yields

oo
2
Vs -w = g Qs Uy,
m=1

Ve Xw = ZﬁmH?nUM'
m=1

Thus, the trace spaces H~Y2(div, %) and H~'/2(curl, £) introduced in Section 3.1.3.1
(see also Section 3.5.3 in [48] and Section 5.4.1 in [51]) can be redefined as follows:

AP = {we () | Voowe HE) )

AV (cwl,y) = {w € Hy'2(%) | Vg x w e HV2(%) }

equipped with equivalent norms

0o 00
||W||§I*1/2(div,2) - Z Alaum[® + Zﬂn|5n|2a
m=1 n=1
0o 0o
HWH?J_lm(curl,E) = Z )\m‘am|2 + Zui‘ﬁnP
m=1 n=1

3.1.3.3 Radiation Condition

Now, we first state what we mean by the radiation condition.

Definition 3.1.1 For all |z| sufficiently large, a solution U of Mazwell’s equation

satisfies the outgoing radiation condition if U € Hy,.(curl, W\D) can be written as

U= i A M, + B, Ny,

m=1
with coefficients {Apn}, {Bm},m =1,2,... where

; 1 .
My =V X (ume™ ) and Ny = 2V XV x (ve),

e Modes for which h,, (or g ) are real are said to be traveling waves and traveling
modes satisfy a Sommerfeld type outgoing radiation condition along the axis of
the waveguide, for example, for z > 0,

oM,,
0z

— thy,M,, = 0.
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e Modes for which hy,,(or g,) are imaginary are said to be evanescent and decay
along the axis of the wavegquide. For example, for z > 0 and m large enough,

M, =V x (umeihm‘zl) =V x (ume’lhm‘z) — 0 as z — 0.

3.1.3.4 Blocked Waveguide Problem
Before analyzing the well-posedness of the forward problem and other results in
the subsequent sections, we first consider a blocked waveguide problem in the absence
of scatterer (for example, domain Qg or €, in Figure 3.2).
For simplicity, denote / f-gds = (f,g)s. The following lemma shows the
b

well-posedness of the blocked waveguide problem:

Lemma 3.1.3 Given Q € ﬁ[‘l/z(dw, %), there exists a unique solution U € Hjo.(curl, Wi o))

to the following blocked waveguide problem

(

VxVxU=-EU=0 in Wi,
np xU=0 on Iy,

ny x U=Q on X,

(3.10)

\ U satisfies the radiation condition as z — 400,

where T4 o) = 0¥ X (t,00) and ny, = 2.

Proof: From Section 3.1.2.1 and using the radiation condition in Definition 3.1.1, U
in W) can be written as a superposition of two families of modal functions which

satisfy both the Maxwell’s equation and the boundary conditions on I'(; ), that is

U = io: A M, + i B, N,.
m=1 n=1

Note that due to the radiation condition, we choose terms involving only ¢?** in (A.2)

(drop terms with e=%#). Then, the explicit form of U for z > ¢ can be written as

[%:ZMMﬁZ&M

; 1 4
= DAY X (€ 05) + 3D BV XV x (e 02)
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[ Oum v ;
oy 1 ox t9n
— Aum ihm(2—1) _ Ovn ; ign(z—t)
= ZAm ~ o (& +ZBnk 8_ng71 et
i 0 Un,un
= > An VX -
m 0
v 0
1 »Un
Bn_ ign(z—t) 2 'Lgn(z t)
+ ; 2 0 1gne +1 0 | upe
Up,
On ¥, we have
Vs X U,
ny x Uly, ZAm ny X >
v 0
Un\
—l—ZB ngx— ¥ ign+ | 0 | 12
0
Up
0 0
Using identities (B.11), (B.12) andngy x | 0 | =2x | 0 | =0,
Up, Up
Vstm, 62 X Up |\ |
Q =ny x U]y, ZAm Z B . ign| - (3.11)

To obtain the unknown coefficients A,, and B,, by Lemma 3.1.2 and Theorem 3.1.1,

we have

S)
3
|

Vs,
<Il2 X U|Et7 > >
0

= A\ HumHL?z = A,

)
VE X Up,
1’12 X U|E¢7

5

:<Q, Vi >
0

3t

:<Q7 62><Un >
0

¢



1Gn 1Gn
= —BnuianH%?(z,,)? = _Bnﬂi?‘

Then the coefficients in (3.11) are

m b, k
A, = i_fn and B, =

143, 19n
Thus the solution U in W, «)is given by
U “_;n Vs Xt gihm (1)
0
N _b_"il Vs, igne =0 1 | g e ign(2—t)
i tgn K 0
Un

(077 ; » X U ihm (2—t)
E — e

>\2
m m

0
n Z _b_n VEUn 6ign(z—t) . b'rL

) el o=t | (3.12)

Un

To show U € Hjp.(curl, W(t,oo)), consider a bounded segment of the waveguide

W) where t <[ < oco. First we compute the L? norm of U over W4,y which is given

by
IOl = el (5. ) it S (G + 5 ) e

where

r ) [ —t if A2 <K%
Liim :/ |€th(2_t)‘ dz =
t

1 ( 1 ) |
— (1 ———— ) if AZ >R
L 2[hun] 2 |(—0)

and

— if 2 < 12
B ! o ot) 2 l—t it pn < k2
Jtin = ’e | dz 1
t

1 . , )
( M(l_M) it ps >k
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To compute the L? norm of V x U over W), using relation (3.7), straightforward

calculation shows that

OUm, Ovn,
Smih, G
— OUm ; ihm (2—t) vy ign(2—t)
VxU = ZAm a_yth e —I—ZBnkz — S e
" U A2, " 0
- 0
ihp, U i (o
= Yan || ] o ] e
m m 0
Um
1 k‘z VZ X Up
+> b e’ (1), 3.13
Z Mn Zgn 0 ( )

Thus, we get

B 2 1
IV % Uliagr,, = o o (B S (7)) o

where Iy, and J;;,, are defined the same as before.

So the H(curl, W(;;)) norm of U is

HUH?‘I(CUI'LW@J)) = HUH%Z W(t l) + HV X UH%Q W(t,l))

= Z| rn,|2 <)\2 | | )[t,l,m
1k
+) |b, 2( + = )J n
Z‘ | Ig 2 k2lg2)

1+ |hm|* + 22,
= Z| m|2< | | )It,l,m
ol + pn + K
+3 b (|g ? 2 M|2 )Jt,l,n-

12| Gn

Breaking the terms into two parts where h,, and g, are real or imaginary, respectively

and noting that

, E2— 22 i A2 < k2 , B2 — 2 it 2 < k2
|hm| = I |gn| = )
A2 — k2 if A2 > k2 p— k2 i 2 > k2

7



we get

1+ k2
Vi = | X lanl? () =1

A2, <k?
1+ 2)\2 k2 > 1 ( 1 >
+ | 10—
Agg‘ | ( 2/A2, — k2 o2V A2~k (1)
K+ K
+ || <—> (1—1)
M;@ pin (k% — i)
2 ]{72 k4 1 1
' Z ool <2M§ ; J/;Q ) 7 _ 12 (1 N )
2 >k2 /j’n(:un - ) 2 Wy — k 62 u2 —k2(1-t)

Meanwhile, by Lemma 3.1.2, we have series expansion of Q on ¥; written as
Q = Zam (Vi) +Zﬁn (Vs X vp)
= Vgum )+ Z Vz X Up).
Then
HQ”z—lﬂ(div,zt) - Z Alam[® + Z in| Bl
- S+ S|
= Zm:Wm\QE + ;lanM_i

am

As m,n — oo, we have

(1+2A%n—k2> 1 (1_ 1 ) _ o(i)

a2, 202, — K2\ en-R-y An )

(548 s - ante) - o(3)
pE (2 —k2) ) 2\/u2 — k2 2V 12—k (1=1) Ty

Therefore, we can conclude that

10wy < CIQIE sz
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for some constant C' > 0 independent of m, n. Hence we can conclude U € H (curl, W, ;)
for any ¢t < [ < oo. Since [ is arbitrary, we can conclude that U € Hj,c(curl, W o).

Hence the proof for existence is done and it remains to show the uniqueness of
the solution, i.e. the solution to the problem with homogeneous boundary conditions
(Q = 0) is zero.

Since on any bounded segment of waveguide W(;; we have ||U||§-I(cur1,W(t,l)) <
CllQll g-1/2(div,5)- S0 U = 0 on Wy if Q = 0. By unique continuation principle for
the Maxwell’s equations (Theorem D.0.8), we have U = 0 in W, . Therefore, the

proof is done. [

3.1.3.5 The “Dirichlet to Neumann” Map
Now we shall define an important operator, the analogue of the Dirichlet to Neu-

mann (DtN) map, denoted T', for our upcoming analysis. Specifically, given tangential

field ny, X Uly on X, T is defined as
T(l’lg X U|Z) =Ny X (V X U)|2, (314)

where U satisfies (3.10). A similar operator can be defined by considering the analogue
of (3.10) on X x (—o0, s) for some fixed s. The analysis of the two operators is identical,
so we will only give details for 7" on ¥; and will find it useful to identify the operator
on specific cross section using subscript. For example, T;" on X; using 3 x (t,00), T
on Y, using ¥ x (—o0, s) and so on. For now, we take T' = T;".

To derive a series representation of 7' using modal solutions derived in Sec-
tion 3.1.2.1, consider Q in Figure 3.2 and choose ny = z. From (3.12) and (3.13)
in Lemma 3.1.3, the solution U to the Maxwell’s equation in 2z and V x U can be

written in explicit form for z > ¢ as

U = ZAmMm + ZBnNn

_ A | [ Ve X Um ) oy
m m 0
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0
+ _b_n VEU” eign(z—t) _ b_n 0 eign(Z—t)
w3 0 9n
Un
so that

VxU

m

D An(V X M) + Y Ba(V x N,)

0
Z a iy [ Vstim o || e
m m 0
U
1 ]{:2 ﬁg X Un .
Y By eionte~)
Xn: M% t9n

0 )
where as before

Vs,
m <n2 x Uls, . > = Am)‘%nHumH%%E) = AnAns
0 b
62 X Up, 1 n 1 n
bn <n2 >< U|Z, O > _BnILL?,LH/UnH%Q(Z)i = _BTL 2 g

K g
>
Thus, using identities (B.11), (B.12), we get

1 [ Vsun 1 (Vs xu,
ny X U|Zt = Zam)\_2 ( 0 +anu_2

and

ihy, Vs X U, 1 k* [ Vsv,
ny X (VxUlg, = — U —— + > —by—5—
RS S A >R
In summary, we have that on >,

1 ﬁgxum
U = Zamg O
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0
1 VEUn 1
+y —b, | = +—10]], 3.15
En: ra \ o ign (3.15)
Un,
v 0
R, U,
VxU = Zam 2—2 E + 0
U,
1 k‘2 VEX'Un
+ Bn T )
Z angn O
1 [ Vsup, 1 (Vv X Uy,
nexU = Y dnr . Zb . , (3.16)
m m n O

th VZ X U 1 k’z van
ng x (VxU) = Z—amg +Y) b i | g (3.17)

m n

By making a comparison of (3.16) and (3.17), together with identity (3.8), we have the

following series representation of operator T' given by

Vzum th 62 X U,
T(ny x Ulg) = Z <n2 x Uly, 0 > <—/\—2>
b

m

Vs X U, 1 k? Vsu,
+Z<nZ xUls, [ 7 > (--2.—) 7 (3.18)
. 0
by

To facilitate the analysis later on, we shall now derive some properties of the

operator T
Lemma 3.1.4 T is a bounded operator from H=Y/2(div, %) to H-Y/2(div, ).

Proof: Let U € X with its trace ny x Uly € f[‘lﬁ(div, ¥)). Using the form of T" given
n (3.18), we have

v Um lhm 62 X U,
T(ny x Uly) = Z <n2 x Uly, - > (—/\—2>

m 0 m 0
2

81



Vs X 0, 1 k2\ [Vsun
+Z <1’12 x Uls, wry > <———) =
n 0

12 iGn 0
>

th 62 X U, 1 k’2 VEUn
= Zam (—)\—2> + an <——2—)

m m 0 n M tn 0

Then

T (ny XU|E)|@I—1/2(diV,2) = Z’amP)‘m

Meanwhile, from (3.16),

1
ny X U’E = Zam)\—2

with norm
112
p2

1 2
/\_2 + Z|bn|2,un

= Slanfy + Yl

Ins X Ulsl-@s = D laml*A),
m

As m,n — oo, we have
k2 — A2 | 1 k2|2 1
— 2 =0(— d ———=0(—+|.
X M)l =) T\

|7 (ng x U|E)||12Lrl/2(div,z) < Cllng x U’E’ﬁrm(div,z)

Therefore,

for some constant C' > 0 independent of m,n and this completes the proof. [

Lemma 3.1.5 Let k = k., > 0 be any positive real wavenumber such that hy,, g, # 0
for all m,n. Then there exists a neighborhood B of k. in which the operator T depends

analytically on the wavenumber k € 5.
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Proof: The proof is inspired from the proof of Lemma 2.4 in [2]. The numbers h,, =
\/m and g, = \/m can be defined using the analytic extension of the
square root to the complex plane with branch cuts {b} },,>0 and {b*},>¢ in a sub-
domain of complex plane {z € C,Rez > 0,IJmz < 0} which end at the points A, and

In, Tespectively. Explicitly, they are

D)= Ay A —i00) = {2z € C | Rez = A\, Jmz <0} form =0,1,...,
b = [fn, fn, — 100) = {2z € C | Rez = pp, Imz <0} forn=0,1,....

Then, h,, and g, depend analytically on k in region of the complex plane except for
these branch cuts.
By definition of k,, there exists an open ball 8 of radius r, centered at k, in

1 1
which h,, and ¢, depend analytically on k. Moreover, since h,, g, # 0, — and —

P In
also depend analytically on k in *B.

For U,V € X, using series expansions (3.16) on X, we have

1 VEum 1 62 X Up,
IIEXU’E = Zam)\—2 0 +an,u—2 0 s
1 Vzum 1 62 X Up,
2

H2XV|E = de)\_z 0 +Zgnlu_ 0

Denote by Vy = (ng x V|g) X ng. We show next that the boundary inte-
gral (T'(ny x Uly), Vr)y, converges absolutely and uniformly for k£ in 5. Using series

expansion (3.17), we have

<T(n2 X U‘E),VT>
’lhm 62 X U 1 ]{72 VEUTL
= <; _am)\_ + Z _bnﬂ_%zg_n s (IIZ X V‘E) X n2>

m 0 - 0
»

Using identities (B.2) and (B.11),(B.12), we have

(T(ng x Ulg), Vr)y
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. Vs X U, 1 k2 Vs
= < E —amZ— ny X > E b — | Ny X B , Ny X V|Z>
m 0

A 0 i 19
b
o Z—a Zh_m VEum +z_b 1 ]{52 o 62 X Up,
m " A?n 0 n p“n 1Gn 0 7
1 [ Vsuy, -1 (Vs xu,
~m_ bn_
zm:a A 0 +zn: a 0 >
b
ih ~ k2
- ms ~m -—= b’rubn .
Stom s (=52 ) + Elowbs ()
1 _ 1 1 o\ K2
- ; <a77‘)\1_n{2’am)\l_wp>E ( ) hun + Z< n 3/2’ nM3/2>2 <7> an’ (3.19)
Notice that
M| \/k‘Q A2 k:2 )\2
A |
k2, B
iGn k A

Since they are bounded for all m’s and n’s, we have

[(T'(ns x Uly), Vr)|

1 .1 ih,,
S {ongminsm) (-5) + 2

1 - 1 K2,
Hn Hn > tn

1 1 th,, 1 - 1 k2un
< Um 75 0m 75 -~ | T bn—375+bn ~
;< A )\%2>EH Am ;< ,ui/Q u3/2>2 t9n
1 1 1 - 1
< C <am)\1/2’am/\1/2> ‘+Z <b”’u3/2’b” 3/2> )
< C

@amv ¢z|am|2—+¢z|b oL @b oL )
<o ¢z|am|2—+z|b oL ¢z|am|2—+z|b oL )

for some constant C' > 0 depending on radius r, of 28 but independent of k € 8.
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On the other hand,

BE 2
1 1
= Zm]amyzm + Zn:|bn|2ﬂ_%7

_ 1 ~ 51
[y % V|Z||§{—1/2(div,2) = Z|am|2)\_ + Z|bn|QE

1
||H2><U|Z||12Lrl/2(div,2) = Z bn,u_z

Thus, we get
[(T'(ng x Ulg), V)| < Clng x Uls|lg-120iv,5)lns X V|l g-12(01,5)-

So the series for (I'(ny, x Uly), V1), in (3.19) converges absolutely and uniformly.
To show the analyticity of (T'(ny x Uly), Vr)y, for k in B. Note that —)\L and

% in (3.19) are independent of k and h,,, k—2 are analytic for k£ in 28. Thus, exploiting
the uniform convergence of (3.19), we can ggnclude that the series in (3.19) is analytic
for k in B (see Theorem 1 in Chapter 5 of [1]).

Therefore, operator T is weakly analytic for £ in 8. By the equivalence of weak
and strong analyticity of a bounded linear operator (see Theorem VI.4 in [57]), T is
strongly analytic for k£ in 8 and the statement of the lemma follows. [

With the definition of operator 7', as a corollary of Lemma 3.1.3, we have the

well-posedness of the bounded segment of waveguide in the absence of scatterer:

Corollary 3.1.1 For s < t and Q € ﬁ_l/Q(diV, Ys), the following problem has a
unique solution U € H (curl, W) such that

;

VxVxU=EU=0 in Wsy,
nr X U=0 on Iy,
ny xU=Q on X,
| Dz X (VxU)=Tng xU) on %,.

(3.20)

where I'(5y) = 03 X (s,t) and ny, = 2.

85



Proof: By Lemma 3.1.3, the blocked waveguide problem has a solution and its re-
striction to W,y solves (3.20). But by the definition of the DtN map the solution of
(3.20) can be extended to a solution of (3.10), so the problems are equivalent and this

completes the proof. [

3.1.3.6 Weak Formulation on an Unbounded Domain

To further analyze the problem, we shall investigate the problem on an un-
bounded waveguide where the scatterer D is illuminated by point sources (imagine a
point source located far to the left away from D in the waveguide W as in Figure 3.1)
and then reduce it to a bounded domain (the sub-domain 2 in Figure 3.2 where the
point source is located outside € in ).

First we consider solutions to the scattering problem (3.1) - (3.5) in a weak
sense. Formally multiplying (3.1) by the complex conjugate of a smooth test function
v and applying Green’s identity we have that

/ [(Vxu)-(Vxv)—ku-v] dx:/ F-vdz, (3.21)
W\D W\D
for all v € (Cg°(W\D))? where (C5°(W\D))? is the set of compactly supported smooth
vector functions in W\ D.

The difficulty in using (3.21) to state the weak formulation is the presence of the

singular source term corresponding to the point source at xq. To avoid this difficulty,

we introduce a cut-off scalar function y € C*°(W\D) such that

e x =1 in a neighborhood of 9D.

e x = 0 in a neighborhood of T' and for all z (v ¢ D) with |z| > L where L is
chosen so that x = 0 on ¥, and ;.

Then the (global) weak solution of the scattering problem reads as follows:

Definition 3.1.2 (Forward scattering problem) Given an incident field u’ due to a
point source at Xq, then u® is a weak solution to the waveguide problem if u®* = w — yu'

where

36



o w € Hyeo(curl, W\D) and for any v € (C5¢(W\D))3,
/W\D [(Vx W) (VxV)—k'w-v] de = F(v), (3:22)

where

F(v) = /W\D [(V x (xu)) - (V x v) — k*(xu') - v] da.

o The field w satisfies the radiation condition. This will guarantee the radiation
condition in Definition 3.1.1 on u®.

Note that F is a bounded antilinear functional on Hyoe(curl, W\ D).

3.1.3.7 Variational Formulation on a Bounded Domain

Now we derive the variational formulation on €2 = W(s,t)\D in Figure 3.2 where
the point source xq is excluded (for example, xo € €1). On cross sections ¥ and %;, we
prescribe boundary conditions that enforce the radiation conditions in Definition 3.1.1
using DtN mappings T (see (3.14)). Then the full statement of the forward problem
for the total field u in Q reads:

VxVxu—k*u=0 in €, (3.23)
npxu=0 on 9D, (3.24)

u=u+u’ in Q, (3.25)

npxu=0 on Iy, (3.26)

ny X (Vxu®) =Ty(ng xu’) on X (3.27)
ny x (Vxu®) =T (ny xu’) on X, (3.28)

where u' is the incident field due to point source xq outside €2 that satisfies (3.23) and

boundary condition (3.26) in €.
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Correspondingly, the forward problem for the scattered field u® in € is

(

VxVxu —ku'=0 in Q
np xu®=-npxu on 9D,
np xu’ =0 on [y,

ny X (V xu’) =T,(ng x u®) on X

| nz X% (V xu’)=Ti(ny xu’) on X
To construct the variational formulation of this problem, we take dot product
of (3.23) with the complex conjugate of a test function v € X and integrate over €.

Using integration by parts and the vector identity (B.2), we have

0 = /(VXVXu—k2u)-de
Q

= /Q(Vxu)-(VX\_f)dx—/mng-(VxVXu)ds—kQ/u-\_/dx

Q

_ /(V><u)~(V><v)dx—k2/u~vdx—/ (np x V x u) - ¥ds
Q Q oD

+/ (nprxu)-\‘/ds+Z/(nngxu)-\‘/ds.
L) Zj

j=s,t
Sincen x v =0 on ',y UOD, we get

/Q(qu)-(Vxx‘/)dx—k:Q/u-\‘/danZ/Ej(ng><V><u).‘—,d8:0_

Q Jj=s,t

Furthermore, because u® = u — u’, we see that

(ny X V xu)- vds

(nngx(u—ui))-vds—l—/ (ng x V xu')-vds

s s

T.(ng x (u—u")) ~\7ds+/ (ny x Vxu')-vds

s

Ts(ny X u) - vrds —l—/ [(ny x V x u') = Ty(ny, x u')] - v7ds,

s s

where vy = (ng X V) X ng. A similar formula holds on ¥; with operator T;. Thus we

have

/Q(VXu)-(va)dx—kz/u-vdx—i—Z/EjTj(ngXu)-VTds

Q j=s,t
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Z/ ngxu (nngxui)}-\’des.

j=s,t

Therefore, the (local) variational formulation of the scattering problem reads as

follows:

Definition 3.1.3 (Truncated Forward scattering problem) Given an incident field u*
satisfying (3.23) and (3.26), u € X is said to be a solution of the variational problem
in 2 if it satisfies

/Q(qu)-(VxV)dx - k‘Q/ll v dx
+ Z/ (ng, x u)-vpds = F(u',v), (3.29)

for all v.e X where

F(u',v) Z/ ngxu (nngxui)}-\’/Tds.

Jj=s,t
Before investigating the well-posedness of variational problem in Definition 3.1.3,
we want to point out the equivalence of weak formulation on unbounded domain and

variational formulation on bounded domain given by the following theorem:

Theorem 3.1.3 Suppose v’ is a weak solution of the (global) scattering problem in
the sense of Definition 3.1.2. Then u = w + (1 — x)u’ is a solution to the (local)
variational problem in Definition 3.1.3. Conversely, if u is a solution to the (local)
variational problem in Definition 3.1.3, setting w = u — (1 — x)u’, it can be extended
in a unique way to W\Q and so that u® as an extension of u —u’ satisfies the (global)

scattering problem in Definition 3.1.2.

Proof: First we prove that the restriction of a solution of the global scattering problem
is a solution of the local scattering problem. Suppose w is a solution to the problem

described in Definition 3.1.2. From equation (3.22), for v € (C¢(W\D))?, we have

Flv) = /W\D[(VXW).(va)—k?w.ﬂ da
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- /Q[(vxw)-(va)—kZW-v] dz

Denote W(f i) @ bounded segment of €2, where L> s, using integration by parts and

the vector identity (B.2), we have

/W [(V x W) (VxV)—kw-V] do

(~L,s)

- / (VXVxXxw)- vdx
W

(-L,s)

~|—/ (wa)-(nxv)ds—/ k*w - v dx
8W<7i’5) W(ff,,s)

= —/sx_%(nExVXW)ds—l—/E (Vxw)-(ng xv)ds

—L

— —/STS(ngxw)-\_fds+/E (Vxw)-(ng X Vv)ds.

-L

By Cauchy-Schwarz inequality,

/2 (VXxw):(ng xV)ds

-L

< H(V X W)T|E,LHH*l/Q(div,Z)HnE X ‘_’|E,L‘|H*1/2(div,2)'

Since w satisfies radiation condition and thus can be expanded as series of
outgoing and evanescent waves (bounded and convergent) for |z| > L, the series are
uniformly convergent for |z| > L > L. Together with v € (C3°(W\D))?, as L — oo,

we have that

S

/QL [(V xw) - (VxV)—k'w- V] dw:—/ Ty(ny x w) - ¥ ds.

Notice that the outward normal ny, = z is with respect to 2;. In view of the outward

normal to €2, it should be ny = —z and we get

/QL [(V xw) (VXxV)—kw-V] dx:/ Ty(ng X W) - Vds.

E]

Similar result holds for 2y.
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Hence, for any v € (C2(W\D))?, w € Hypeo(curl, W\ D) satisfies
F(v) = / (Vxw) (VxV)=kw-v] do
0

+ Z /E Tj(ny, X w) - vds. (3.30)

j=s,t

On the other hand, since x = 0 in Q7 U Qg, we have
F(v) = / [(V % () - (V x 9) — K2(xu’) - 9] de
WA\D

_ /Q (V x (yu')) - (V x 9) — K2(yw') - ¥] da. (3.31)

Defineu = w+(1—y)u’ in Q, then w = u— (1 —y)u’ = u—u'+yu’. Equating
(3.30),(3.31) and substituting w gives

17 (=) (7 9) = = w) ]

+Z/E.Tj(ng><(u—ui))-\7ds

Jj=s,t

+/Q [(V x (xu") - (V x v) — K*(xu') - v] dz

+ /2 Ti(ng x (xu'))-vds

= /Q [(V x (xyu')) - (V x v) — E*(yu") - ﬂ dx.
Since y = 0 on X, and X;, we get
/Q[(V x(u—u') (Vxv)—k(u—u') v| dz

+Z/E_Tj<nz><(u—ui>)-ws = 0. (3.32)

Jj=s,t
Thus, rearranging equation (3.32), using integration by parts and the vector identity
(B.2) again, we have

/Q[(qu)-(VX\_/)—k:Qu-\_/} d:E—I—Z

Jj=s,t

= Z/Z-Tj(nzxui)"’der/Q[(Vxlli)-(VXV)—]g?ui.V] .

Jj=s,t

/ Tj(ny x u) - vds
L;
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= Z/ (ny x u')-vds

{/(Vxqu' k2ui)-vdx+/89(vxui)-(nxv)ds
- Zt/ (0 X w) — (ny x (V x u'))] - vr ds.

Furthermore, note that

1. u € X because

e uc H(curl, Q) since w € Hypeo(curl, W\D) and x, & Q.
e nxu=0onI(,UAdD since

— x = 1l around 0D, then u =w and n Xx u =n X w = 0 on 9D since
W € Hipeo(curl, W\D).

— x=0around I', thenu=w+u' andnxu=nxw+nxu’'=0on I
since w € Hypeo(curl, W\ D) and boundary condition n x u* = 0 on I.

2. The space {V | v = v]|q for some v € (C5°(W\D))3} is dense in X (see Theorem
4.1 in [48] for a similar proof).

Therefore, u = w + (1 — x)u’ is a solution to the (local) variational problem in
Definition 3.1.3.

Now we prove that a solution to the (local) variational problem can be extended
to a solution to the global scattering problem. Suppose u € X is a solution of the
variational problem in Definition 3.1.3, which is equivalent to (3.32). Letting w =

— (1 — x)u’ = u—u’ + yu’ and reversing the steps starting from (3.32) we get the
form in (3.30). That is, for any v € X, w € X satisfies

/Q[(VXW)-(VXV) wvdm—i—Z/ (ny x W) -V = F(v),

j=s,t
where
Fiv) = [ 095 () - (V5 9) = ) -]
Obviously this is also true for any v € (Cg°(W\D))3.

Extend w to 0 by solving

VXVXWR—]{?2WR:O in QR,
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Ny X Wg =Ny X W in X,
ny X wg=0 on I\,

w g satisfies radiation condition as 2z — oo,

where ny, = z in view of the outward normal to 2. By Lemma 3.1.3, this extension
exists and is unique. A similar extension can be done for w, in .

Note that the extension
Wiy, n QL,
w=< w in Q,
Wpgr in QR.
belongs to space Hjo.o(curl, W\ D) because
e we X in €.
e wy € Hy(curl,Qp) and wr € Hy,.(curl, Qr) as shown in Lemma 3.1.3.

e The tangential fields are continuous across X5 and ;. Moreover, with definition
of operator T', we know

ny X (Vxw)="T(ng Xxw) =ng x (VX wg)

(the same result holds for wy, on ¥;) which makes the field W satisfy the Maxwell’s
equation and be in Hj,.(curl, W\ D) overall.

In addition, by definition of operator T; on ¥, such that
,Tt(ng X W) =Ny X (V X WR) on Et

(same result holds for T with w; on ;) together with the compact support of test
function v € (Cg°(W\D))3, we are able to reverse the derivation starting from (3.30)
back to
/ [(Vx W) (Vx V)= kWw-v] = F(v),
W\D

where
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which satisfies (3.22) in Definition 3.1.2.
Finally, from the construction of w, we have shown that w can be extended
uniquely to W\Q and satisfies radiation condition. So u® = w — yu'’ as an extension

of u — u’ also satisfies the radiation condition and this completes the proof. O

3.2 Well-Posedness of the Forward Scattering Problem
In this section, we shall prove the well-posedness of the forward scattering prob-

lem on a bounded domain stated in Definition 3.1.3 by showing

1. The variational problem in Definition 3.1.3 may be reduced to an operator equa-
tion

(I A=
on a suitable space XT.

2. The operator A is compact and analytic for k£ in a suitable sub-domain of the
complex plane.

3. For k = ic with ¢ > 0 small enough, the operator equation has at most one

solution.

Then the well-posedness of the problem can be proved by using the Fredholm Alter-
native, except for an at most countable set of real wave numbers.

For simplicity, let I' = I'(, ) and for f, g € X, denote

/fgd$:(f,g)ﬂ, / f'gdS:<f7g>Ej fOI‘j:S,t.
Q ¥

J

Then equation (3.29) can be written as, u € X satisfies

(Vxu,Vxv)g—kuv)e + (Ti(ngxu),vy)s,

+ (Ty(ng xu),vp)s, = F(u',v),  (3.33)

for all v e X.
To make further progress, we need to use a Helmholtz decomposition for func-

tions in X.
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3.2.1 Helmholtz Decomposition of the Function Space X
The function space X for the weak solution given in (3.33) is too large for the
direct analysis of (3.23) - (3.28). We need to factor out fields in the null space of the

curl operator. To this end, we define the following potential space S:
S:={pecH(Q)|p=00nTNQ,p=constant on D}.

First, we have V.S C X since (n x Vp) x n = (Vp)r = 0 on each piece of
boundary of (2.
To understand the construction of the function space X+, write u = u*™+Vp €

X for some u™ € X and p € S. Substituting into (3.33), we get

(V% (u"+Vp),Vxv)a = K((u"+Vp),v)a
+ Z(jjj(nE X (u+ + Vp)),VT>E]. = F(ui7v>.

Since V x Vp = 0, we have

(Vxu",Vxv)y — E((u"+Vp),v)
+ Y (Tj(ng x (u + Vp)),vr)y, = F(u',v).
Jj=s,t

Now choose v = Vq € VS to obtain

—k*((u 4+ Vp),Vq)a + Z (ny x (ut + Vp)), (Vo)r)s, = F(u', Vq).

Jj=s,t

After expansion, we get

—E( ng+z (ny x ut ), (Va)r)s,

Jj=s,t

—k*(Vp,Vq)a + Z (ns x Vp)), (Va)r)s, = F(u', V).

j=s,t

If we choose u* such that —k*(u™, Vq)q + Z (ny x u"), (Vg)r)s, = 0, then we
j=s,t
must choose p € S such that

~

— K (Vp,Vg)a+ Y _(Tj(ng x Vp), (Vq)r)s, = F(u',Vq) forall g€ 5. (3.34)

Jj=s,t
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This motivates the following definition for X+ C X:

Xt .= {W €eX ' —k*(w,Vq)q + Z(Tj(ng xw),(Vq)r)s; =0 for all ¢ € S} :

Jj=s,t

Next, we shall prove that equation (3.34) has unique solution.

Lemma 3.2.1 There exists a unique solution p € S such that
—E*(Vp,Vg)a+ Y _(Tj(ny x Vp), (Vq)r)s, = F(u',Vq) for all g € VS.
Jj=s,t
Proof: We shall prove the coercivity and boundedness of the following sesquilinear

form

B(p,q) = k¥ (Vp,Vg)o — > _(Tj(ng x Vp), (Vq)r)s,.

j=s.t
Then by the Lax-Milgram Lemma (Theorem C.0.4), the existence and uniqueness of
p € S such that B(p,q) = —F’(ui, Vq) for all ¢ € S holds and the proof is done.

To analyze (Ts(ng X Vp), (Vp)r)s,, using identity (B.11), we have ny x (Vp)|s =
—62 X p. By Lemma 3.1.2, —ﬁz X p can be written as series representation using
{ﬁg X v }i>1, that is

Vs X p= Zpl(l)ﬁg X V).
!

Applying the operator Ty, we get, on X

Ty(ny x Vp) = Ty(~Vs x p)

o Vst 10 \V/ X U,
(). () () (7
m l O )\ O

o Vs X v 1 k? Vsv
(1) P n >Un
—i—E E p, Vs X |, (———>
- << l Lo l> 0 > 12 ign 0

2 Vs,
= 0+ (pPud) (—ik—> 7

-y (- Pk [ Vsvn
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On the other hand, using identity (B.10), (Vp)r = Vsp. By Lemma 3.1.2 again,

it can be written as series representation using {Vsum, }m>1, that is
(Vp)r = Vsp = ZP(Q)VZUm
Since p = 0 on 0%, by Lemma 3.1.1, we have

(Ty(ny x Vp), (Vp)7)x,

_ <Z (_p%l)k@) Vs, Zp(Q) Vs, >

1Gn
n ZS
S Vs X vy, 1 k* [Vsv,
S 1k
s
Vzum 1 vZum
> (Vsp ’eh
m 0 m 0
Xs s

1 k* [ Vsv, Vsum,
Z - <_p7 Mivn>25 /?Zg Z <p7 um>25 )\2 >

o n 0
(

k2
> = (=pvn)s, T > (pyum)s, Afnum>
s

n
n m

s

n
n m

ik?
= - <Z <p7 vn>gs Ung_az<pa um)zs um)\72n> .
P

The same equality holds for T; on ;. Therefore,

B(p,p) = k(Vp,Vp)a— Y _(Ti(ng x Vp), (Vp)r)s,

j=s,t

ik?
= kz(Vp, Vp)Q + Z <Z <p7 vn>2j Ung_a Z <pv um>2j um)‘3n> :
Y

. n
]:Sat n m 5

Note that p|s € L?(2) and thus by Theorem 3.1.1 and Theorem 3.1.2, for j = s, ¢, it

has expansion

p‘E - Z <p7 Un)z Un O p|2 - Z <p7 um>g U -

n m
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Also there there exists a finite number n* such that g, is real for n < n* and imaginary

for n > n*. Thus, using the Poincaré inequality (notice p =0 on I' N Q), we have

Re(B(p,p))
=k (Vp, Vp)a = Cliplin o when n < n*
. 1
> K (Vp, Vp)a+ D Ipll72(m, k° AT inf {W} > Cllpll3n) when n>n,
j=s,t nlJ n>nx

for some constant C' > 0. So the sesquilinear form B(p, q) is coercive.

For the boundedness, we have

1B(p,q)] < [K*(Vp,Vq)a| +

> (Ty(ng x Vp), (Va)r)s,

j=s,t
< KIVpllllVallz + D 1 Tims x Vo) 1o (VO 7| -1z (cun )
Jj=s,t
< kQHVPHH(curl)HVQHH(curl) + Z [ns x VP|EJ"|H*1/2(div,2)H(Vq)THH*1/2(0ur1,2)
Jj=s,t
< kQ”vp”H(curl)HV(]HH(curl) + C”VpHH(curl)HVQHH(curl)

< C”VPHH(Curl)||VQ||H(Curl)a

for some constant C' > 0.

Thus, by the Lax-Milgram Lemma (Theorem C.0.4), there exists a unique solu-
tion p € S to B(p,q) = —F(ui, V¢) and this completes the proof. [

It is worth mentioning that this lemma asserts a unique solution p € S to
B(p,q) = l(v) where [ is any continuous linear functional of v = Vq € VS.

Now, similar to Lemma 10.3 in [48], we have the following Helmholtz decompo-

sition:

Lemma 3.2.2 (Helmholtz Decomposition) The space VS is a closed subspace of X,

and we may write the direct sum
X=VSapXt.

Proof: The space VS in closed in X since S is closed in H*(€2). To show the subspace

X7 is closed, we have for fixed ¢ € S, the linear functionals u — (u,Vq)o and u —
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(Tj(ng x u),(Vq)r)s,(j = s,t) are bounded on H (curl,2). Since for u € H(curl, ),
by Cauchy-Schwarz inequality, we have

|(11, VQ)Q| S ||u||H(curl)||VQHH(Curl) — ||u||H(curl)||van27 (335)
and for j = s,t,
[(Tj(ng x ), (Vg)r)s,| < [Ti(ns X w)l[g-12 5 ll(0s X V@) X 0l g-12(0um1 )
< Clng x u”H*l/Q(div,E)H(nE x Vq) x nEHH*l/Z(curl,Z)

S OHuHH(curl)||VQ||H(curl) = C(Hu”H(curl)HVQ||L27 (336)

for some constant C' > 0. Here we have used the boundedness of operator 7' (Lem-
ma 3.1.4), the boundedness of the trace operator from H(curl, Q) to H=Y/2(div, ) and
the boundedness of the trace operator from H(curl, Q) to H='/2(curl, ).

Consider a Cauchy sequence {u,} € X* that converges strongly to some func-

tion u € X, by definition of X, we see that

0 = —kQ(un,Vq Q + Z Ilz X un) (Vq)T>2j
= (—k?( —u,Vq)aq + Z (ng X (u, —u)), (VQ)T>2j>

( k2(u Vq Q+ Z 1’12 X Ll) (Vq)T>2j> .

j=s,t
Letting n — oo and using the fact that u, — u in X together with inequalities (3.35),
(3.36), we have
—k*(u, Vq)q + Z i(ng x u), (Vg)r)s, = 0.
Jj=s,t

Thus, u € X as well and the space X is closed.

To show that X = VS @ X, consider u € X. By Lemma 3.2.1, there exists a
unique p € S such that

_k2(vp7 V>Q + Z(Tj(nE X VP)7VT>EJ'

j=s,t
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= (VXUVXV)Q—kQ(UVQ+Z Ilz><11)VT>zj>

j=s,t
for all v=Vq e VS.

Define u™ = u—Vp, then u™ € X is seen directly from the variational equation
above.

Finally, we have to show that VS N X+ = 0. Suppose u = Vp € VSN X,

then for all ¢ € S, consider the variational form

0 = (VxuVxVqga-—k UVqQ—i-Z /(ny x u), VCDT)ZJ-

Jj=s,t

= —k*(Vp,Vq)a + Z (ng x Vp), (Va)r)s,-

j=s,t
Again, by Lemma 3.2.1, there exists a unique p € S that solves the above equation.

Since p = 0 is obviously a solution, it is the only one. This completes the proof. [

3.2.2 Variational Analysis of the Forward Scattering Problem
Given the Helmholtz decomposition (Lemma 3.2.2), every solution u € X of
equation (3.33) can be written as u = Vp + u™ where Vp € VS and u™ € X*.
Plugging the expansion for u in (3.33), we have
(Vxu",Vxv)g—E((ut+Vp),v)q + Z (ny X (u™ + Vp)),vr)s, = F(u',v).
j=s,t
Therefore, we get, for every v € X,

(VXU+ VXV)Q—k2<u A% Q+ Z 1’12 Xu+)7VT>Ej

j=s,t

= F(u’,v) +k(Vp,v)g — Z(Tj(ng x Vp),vr)s;.

j=s,t
Note that p can be determined by solving the variational equation in Lemma 3.2.1.
Thus we have derived a variational equation for u™ € X*. That is, the function
ut € X is such that for all v.€ X, it satisfies the variational problem

(Vxu",Vxv)y—E(u",v)g+ Z (ng x ut),vy)y, = G(u',v), (3.37)

j=s,t
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where

G(u',v) = F(u',v) + E*(Vp,v)a — > _(Tj(ny x Vp),vr)s,.
j=s,t
To continue, we shall now prove some useful lemmas:

Lemma 3.2.3 The function space X is compactly embedded in (L*(£2))3.

Proof: Consider the definition of a compact embedding, we shall show that for any
bounded sequence u, € X, there exists a subsequence again denoted by u, and
uy € X' such that u,, strongly converges to ug in (L?(Q2))3.
Since u,, € X, we have, for all ¢ € S
— K (u,, Vg)o + Y _(Tj(ns x u,), (Vg)r)s, = 0. (3.38)
Jj=s,t

By choosing ¢ € H}(Q) C S, then (Vq)r = Vg = 0. Applying integration by parts,
we get

_kQ(um VQ)Q - k2<v s Up, Q)Q = 0.

SoV-u, =0.

Now we extend u,, to 2z by solving

R_ 12 R_ .
VxVxu, —ku, =0 in Qp,
R _
ny X U, =Ny XU, On X,
np xuf=0 on T,

u’ satisfies radiation condition as z — oo,

where ny = Z in view of the outward normal to . Of course V - uf = 0 by taking the
divergence of the Maxwell’s equation above.

In a similar fashion, we can do the same thing in Qp to obtain uff and V-uff = 0
with matching tangential field on the interface ;.

Define u,, as

u, in Qp,
u, = u, in Q,

in QR.
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Similar to the reasoning in the proof of Theorem 3.1.3, we have @, € Hjo.(curl, W\ D).
Next, we show that the normal component on the cross sections >4 and »; also

matches. By applying integration by parts to (3.38), we get

_kQ (_(v : unaQ)Q + Z<n2 *Up, q ) + Z nz X lln v2q>2j =0.

j=s,t j=s,t

Using Stokes identity (B.16), note that ¢ = 0 on 9%, we have

—kQ Z<HZ . un,q>2j — Z<VZ . T(HE X un),q>gj =0.

Jj=s,t j=s,t

This implies, on ¥,
—k’ny -u, = Vy - T)(ny x u,).
Using definition of 7" obtained from (3.14), we get
—k’ny - u, = Vs - Ti(ng x uff) = Vs - (ng x (V x u))).

Using series representation given by (3.17) on X;, we have

Ry __ th VZ X U, 1 k’2 Vzvn
HZX(VXUH)—Z—CLmE Z b ,unzgn 0

m

By Stokes identity (B.18), we get

1
Vs - (ng x (V x uf)) =0+ Z —bnﬁ,—(—u Up) = an,—vn.

2 R
—k*ny - u,,

1 ﬁ X Uy,
= —k‘2n2' Zam— >

0

1 VEvn 1
+Z—bn—% L
U’n

102



Un
= Xn:ﬁn%vn
Thus, we obtain
—k’ny - u, = Vy - (ng x (V x uf)) = —k’ng - ul,

that is,

ng~un:ng~u§.

In a similar fashion, we can also conclude ny, - u,, = ny - uX on %;.
This means that the normal component also matches on the cross sections >, 33,

and consequently ,, € Hjo(div, W\D) and V -1, = 0. Hence, we can conclude that

U, € Yynp = {v € Hie(curl, W\D) N Hyoe(div, W\D) |
nrxv=0onT,npxv=00ndD,V-v=0in W\D}.
Now, choose a smooth cut-off scalar function x such that
1 in Q,
0 in W\D when |z] > > max{|s|, [t|}.

Consider the sequence {xu,} C XW(—I )\D- We have the following facts:

HXﬁn||L2(W(_lyl)\D) < OOJ
HV X (Xﬁn)HLQ(W(,L”\D) < 0,
||v ' (Xﬁn)||L2(W<,l,l>\D) < Oo’

nx (xu,) =0 on IW_;y\D.

Then by the standard compactness result of Hy(curl) N H(div®) in (L?)? (see Corollary
3.49 in [48]), there exists a subsequence again denoted by {xu,} that strongly conver-
gence to a function u € (L?(W(_;;)\D))?. With restriction to Q, we have (x,)|q = U,
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converges strongly to 11| in (L?(2))? and the proof of compactly embedding of X to
(L*(€Q))? is done. [

The next lemma gives a decomposition of the operator T':

Lemma 3.2.4 Operators T; for j = s,t in (3.37) can be written as T; = T]Q+Tf where

T]Q is positive and T5 is a compact perturbation.

Proof: Consider the operator T; on ¥,. We separate T; into two parts, using series

expansion of 7' from (3.18),

Ti(ny x utly,) = Ty(ng xu'ly,)+ Ty(ng x u'ly,)
Vstm 1h, 62 X U,
= Z (ng x utls,), (—)\—2)
™ 0 m 0
P
62 X Up, ( 1 kQ ) Vzvn
+ ny x utls,), -
; <( ¥ =) 0 > 1 iGn 0

We analyze each part individually. For operator T7,, first notice that there exists

a finite number m* such that h,, is real for m < m* and imaginary for m > m*. Let

- 0 it m<m*,
h

|hm| i m >m*.
Define operator 17, as follows:

- VEUm ilm 62 X U,
Tlt(nE X u+‘2t) = Z <(n2 X u+’2t)7 0 > ()\_2>

m s,

Then, we have

= < Vs, thy,
)3
Since T} : H™Y2(div, %) — H~Y/2(div,%,) is bounded (Lemma 3.1.4), so is Ty, — T4,

Also, Ty, — Ti, is linear and of finite rank, so Ti, — Th, is a compact operator (see

Theorem 8.1-4 in [44]).
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Next we show that operator Ty, is positive. Specifically, using identities (B.2)
and (B.12), we have

<T1t(n2 xu'ls,), (u+)T>

— <Z<(nz><u+|zt), Vzoum>>

) 0
Et Et
Vs, h,, Vs X Uy,
- Z<(n2xu+|gt), > = < ,(ny x utly,) ><n2>
m 0 m 0
Et 2t
Vst h,, Vs X U,
= Z <<1’l2 x utly,), > 2 <n2 X ,yy X u+|zt>
m 0 m 0
Zt Et
Vs, iLm Vi,
= Z <(n2 x utls,), > % < , Ny, X u+|2t>
m 0 m 0
Et Zt
2
VZ}um ]~I
= Z <(n2 xu'ls,), > 2
m Et m

For operator T5,, we shall show that it is already a compact operator. Consider

a bounded sequence {u;} C X, then for each u;, we have

Vs X oy 2\ (Vso,
To(ny x u)f) = Z<(ng><uj{|gt)7 =y > (_ik_> v 7

n 0 Mer 1n 0
P
and then
R 2
VE X Up, 1 ]{?2
ITou(ms % ) ey = S48 |{ (0 x s, (——2.—)
n 0 My, 2Gn
3t
2
1 Vs X Uy, k2
= > — (g xufls), - <——)
n n 0 10n
¢
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Meanwhile, since

S 0
1 VE X U, 1 VEUn 1
+ == —_— — — —
U,
we get
0
1
nz'u:Et = 0+Z—bn 0+Z,—HZ' 0
n vn
1
= _bn._vn
62 X Uy, 1
= Z ny X un|2t’ = | Un,
n 0 t9n
¢
and then
2
1 Vg X Up, 1
+112 +
. _ = _— X _
Ins il = 2 = <n2 e > < g)
3t
1 1 . .
Because ———= = O | — ) as n — oo and k is a constant, using the bound-
\/ 1+ M% Hn

edness of trace operator from H(div, Q) to H~'/2(X), we have that

IN

172, (s % urt)”?{—l/Q(div,E) Clng - um‘?{—l/z(z)

< COlluf la@ive) = C (lutllz@ + 1V - wtl2@)

C||u:||L2(Q),

for some constant C' > 0.

Therefore, there exists a strongly convergent sequence in HY 2(div, 3;). Since
X is compactly embedded in (L?(2))? (Lemma 3.2.3), Ty, is compact.

Overall, we see that

T, = Ty + Toy = Thy + (T — Tu) + 15y,

where T} = Ti; > 0 and Tf = (T, — flt) + T3, is compact. Similar result holds for T}

on Y, and the proof is done. [
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3.2.3 Existence and Uniqueness

With Lemma 3.2.4, we can rewrite (3.37) as finding u™ € X such that

G(u',v) = (Vxu",Vxv)g—k(u"v)g+ Y (Ti(ng xuh), vy,

j=s,t

= (Vxu", Vxv)g+ U, vio+ > (Ti;(ng xub),vr)y,

Jj=s,t

—(kK*+1)(u*, v)q

+ Z<(T1j - le)(nE X 11+),VT>zj + Z(TQj(HZ X u+),VT>2j7

j:Svt j:87t
forallve XT.

Define the following sesquilinear form:

a(ut,v)=(Vxu",Vxv)g+(ut,v)g+ Z(le(ng xu'),vr)s,.

Jj=s,t

Clearly a(ut,v) is coercive because T} is positive and we have, for all ut € X,
CL(LI+,11+) > (v X u+a V % u+)Q + (u+7u+)9 = ||u+||%{(curl)‘
Also, a(u™,v) is bounded because by Cauchy-Schwarz inequality

la(u®,v)] < [(Vxu®,V xv)o| +[(u”,v)al + ZKTIJ'(HE xu't), vr)s,|

j=s,t
< C|’u+HH(curl)HV”H(curl) + Z Hle(nE X u+)||H_1/2(div,2)||VT||H_1/2(curl,E)
j=s,t
< C|’u+HH(curl)HV”H(curl) + Z Hle(nE X u+)||H_1/2(div,2)||VT||H_1/2(curl,E)
j=s,t
< C'HUJFHH(curl)||V||H(curl) + Z |7 (ns % u+)||H_1/2(div,Z)||VT||H—1/2(cur1,E)
j=s,t
< C'HUJFHH(curl)||V||H(curl) + Z [ng x u+||H_1/2(div,E)||VT||H—1/2(curl,E)

Jj=s,t

= C|’u+HH(Cur1)HV”H(curl);

for some constant C' > 0.
Next we shall show the equivalence of (3.37) to an operator equation. First

define the operator A : X +— X such that for all f € Xt Af € X7 satisfies

a(Af,v) = —(K+1)(f,v)a+ > (Ty; — T1;)(ny x ), vy)y,

Jj=s,t
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+ Z (Ty;(ng x £),vy)s, forall v € Xt (3.39)

Jj=s,t

By the Lax-Milgram Lemma (Theorem C.0.4), this problem is well-posed and operator
A is well defined and bounded.

Similarly, we can define g € X+ such that
a(g,v) = G(u',v).

Thus, the variational form (3.37) can be rewritten as a problem of finding ut € X+
such that
a(ut + Aut —g,v)=0forallve X*.

This implies that
(I+Aut=gin X*. (3.40)
To further analyze this operator equation, we have the following lemma
Lemma 3.2.5 The map A: Xt — X is compact.

Proof: Let {u,}'} be a bounded sequence in X*. Hence there exists a subsequence,
denoted again by {u;}, which converges weakly to uy € X*. Then, by Cauchy-Schwarz

inequality, we have

AW, = o) ey < @ (A, — up), A, — )
— _(k2 + 1)(u, — ug, A(u, — up))q
30— T (1)) (A, — o)),
+ Z (Th;(ns x (u, —ug)), (A(u, — uo))T>2j
< (K 41)|(u, — ug, A(u, —up))]q

+ Z ‘«le - le)(nE x (u, —u)), (A(u, — 110))T>2j

Jj=s,t

+ 3 (T (ns % (= ), (A, — o)), |

j=s,t

108



< (B + DJw, — ugl| g2 [ A(uy, — ug) |2
+ 3 (T = Tiy) (s % (W = 10)) || =272 i, 1A = 0) || =172 et 3
Jj=s,t
+ Z HT2J(HE x (u, — uO))‘|H*1/2(div,Z)|’A(un - uO)HH*1/2(curl,E)
Jj=s,t
< Cllu, — upl|z2||A(u,, — uo)HH(curl)

+C Y (T = Tay) (s X (W = 0)) | r-1/2aiw, | A = 10) [ a1 cun

j=s,t

+C Z HTZJ'(HE x (u, — uO))HH*/?(div,E)HA<un — W) || mr(cur))

Jj=s,t
for some constant C > 0.

Thus, we have

”A(un_HO)HH(curl) < C'||un—u0||L2

+C Z I(Ty; — T1;)(ng x (u, — o)) || r-172aiv,m)

Jj=s,t

+O ) 1 Tos(ns % (= 10)) 5172w,

Jj=s,t
for some constant C' > 0.
Since X is compactly embedded in (L?(Q2))? (Lemma 3.2.3), and T, — T1; and

Ty,

; are compact operators for j = s,¢, we can conclude that Au, converges strongly

to Aug and therefore A is compact. [J

Moreover, we need the following uniqueness result:

Theorem 3.2.1 There exists at most one solution to the variational problem in Defi-

nition 3.1.3 for pure imaginary wavenumber k with Jm(k) > 0 being small.

Proof: We shall show that solution to (3.33) with incident field u’ = 0 is zero. By

choosing test function v = u, we have

(Vxu,Vxu)g—kE(ug+ Y (Ting xu),ur)s, = F(0,v) =0.

j=s,t

Since k is purely imaginary,

(Vxu,Vxu)g+kP(wu)e+ > (Tjng x u),ur)y, = 0.

j=s,t
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For the term involving operator T, using identities (B.2) and (B.11),(B.12), we

have

T'(ny x u),ur)s

(
= (T(ng X u), (ny X u) X ng)yx

m (0] e
+ <zn: <(nz x uls), (62; ”n> >E (_Mi%gn) (Vzvn) ) n2>2

(g (7)), C28) (e (2]
(e (7)), () (o (757) o),
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Choosing k such that 0 < |k|> < min{ {2, },.>1, {#2}n>1 }, we get

<T(n2 X u)vuT>E - Z <(ng X u|E), vz(:)um > <_ZZ— M)

2
m )\m

P
2

—|—Z ’ 6EXUTL 1 1{32
Il X u —_—
B 0 M i/ TR + i3
¥
2
vZum ]{?24‘)\3”
oy <<nzxu|2>, )\ [ ()

2
m /\m

2

2
VE X Un, ]. |]€|2
+ ny X Uu —_— > 0
Z < =X ulz) 0 >E (ui NAEEST

unless u = 0. Therefore, there exists at most one solution. [

Now, we shall prove the following existence result

Theorem 3.2.2 Consider the variational problem: find u € X* such that equation
(3.37) holds for all v.€ X*t. Then, for any real k except possibly for a discrete set of

real wavenumber kY such that kV) — oo as j — oo, this problem is uniquely solvable.

Proof: First, we have shown that the variational form (3.37) is equivalent to the op-
erator equation (3.40). Moreover, by Lemma 3.1.5 and variational form (3.39), the
compact operator A depends analytically on the wavenumber k in an open connected
sub-domain € of complex plane C except a series of branch cuts as described in Lem-
ma 3.1.5 for operator T'. Then, by Theorem C.0.6, except possibly for a countable set

of points, the operator equation
(I+Au' =

has the same number of linearly independent solutions in €.

Choose the wavenumber k£ = ic for some constant ¢ > 0 small enough such
that k£ € €. Note that the uniqueness result (Theorem 3.2.1) also holds for variational
problem (3.37) in X, thus there exists at most one solution to equation (I + A)u™ = 0

in €. Because the trivial function u™ = 0 solves this equation, it is the only one.
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Therefore, by Fredholm Alternative (Theorem C.0.7), the inhonmogeneous operator
equation (3.40) is uniquely solvable and so is equation (3.37).

Finally, wavenumbers excluded for the well-posedness of this problem are iso-
lated points from Theorem C.0.6 and \,,’s and pu,’s described in Lemma 3.1.5 such
that h,, = 0,9, = 0 which form a discrete set without accumulation points less than
infinity. [J

Together with Lemma 3.2.1, we have the following result as a corollary of The-

orem 3.2.2,

Corollary 3.2.1 The variational problem problem described in Definition 3.1.3 is u-
niquely solvable for any real k except possibly for a discrete set of real wavenumbers

kY9 such that kU) — 0o as j — oo.
Also, as a direct result of Theorem 3.1.3, we have

Corollary 3.2.2 The unique solution u given in Corollary 3.2.1, by setting w = u —
(1 — x)u’, can be extended in a unique way to W\Q and such that u® as an extension

of u —u'’ satisfies the (global) scattering problem in Definition 3.1.2.

3.3 Inverse Problem

In this section, we shall provide a theoretical basis for the inverse problem in the
waveguide geometry. The inverse problem we consider here is to identify the boundary
0D of scatterer D using the scattering data (near field data) from D illuminated by
point sources located far away from it. Specifically, there are two important results:
the uniqueness of the scatterer and the justification of the Linear Sampling Method

(LSM) to the reconstruction of the shape of scatterer.

3.3.1 Dyadic Green’s Function
To initiate the analysis, we need to understand the background Green’s function
due to the waveguide. From Chapter 4 in [61], for electromagnetic waves, the Green’s

functions are dyadic functions with appropriate boundary conditions on I'. In R3,
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a dyadic function is a second order tensor that can be written as a 3 x 3 matrix.
Specifically, there are electric and magnetic Green’s functions with each satisfying
PEC condition and magnetic wall condition, respectively, on the boundary I' of the
waveguide. Denote by the electric type Green’s function with subscript “e” and the
magnetic type Green’s function with subscript “m”. For our analysis, we need the

electric type dyadic Green’s function with PEC condition on I, that is,
vx X vx X Ge(xa Y) - k2Ge(Xa Y) - ]I(S(X - Y)7
with boundary condition
nr X G.(x,y)=0 on T,
where x = (x,y, 2) represents an arbitrary point in R* and y = (2/,¢/,2') a point
source; I is 3 x 3 identity matrix; 6(x —y) = d(z — 2)d(y — v/)o(z — 2/).
An explicit representation of the dyadic Green’s functions can be written using

the modal solutions defined in Section 3.1.2.1. To facilitate our analysis, we modify the

notation for the modal solutions M and N with superscript “4+” and “-” as follows:
M"=M and NT =N,

VXMt=VxM and VXN =V x N,

M~=M|_ _ and N = N|___,
VxM =(VxM)_ ., and VXN =(VxN)__ ..
Here we see that superscript “-” means replacing z by —z. For example, for
Suih
VXM = VxVx(uehz) = | 2up | et
0y
uN?
we have
Quih
VxM = (VxVx@ue™z)| _ = Suih e th=,
uN?

With this notation, we have G, in the following form:
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e For z > 2/,

1.
G.(x,y) = —ﬁzz%(x—y)

NE

+ i [cmMnt(xww;(y)T] + [an;(x)N;(y)T] , (3.41)

1

3
Il

e For z < 2/,

1.
Ge(x,y) = —@ZZTfS(X—y)

3 [z 001507 +

NE

4NN ()] (3.42)

1

3
Il

where ¢, d, (m,n =1,2,...) are coefficients depending on the eigenvalues of surface
m

Laplacian on ¥ and also the geometric shape of 3. The terms 227, Mt (x)M(y)",

NF(x)N;(y)", ete. are understood as column-row multiplication. For example, if

a= (ala a2, a3)T7 b = (bla b27 b3)T7 then

a aiby aiby aibs
abT: a9 (bl b2 bg) - a2b1 Clgbz ngg

as azby asby asbs

Note 3.3.1 The electric dyadic Green’s functions defined above is symmetric (G.(x,y) =
Gel(y,x)) and can be separated into parts consisting of a singular matriz, non-zero sub-

matrices and full matrices as follows:

0 0 0 * x 0 * %k %

1
Ge:—ﬁ(S(X—y)OOO+Zcm**0+2dn***
oo 1] " 00 o0 " v % %

1
Here the singular term —ﬁd(x —y) contributes only when x = y. It arises from
the discontinuity of the magnetic dyadic Green’s function across a cross section
containing point source 'y (see Section 5.8 in [61]). However, this singular term will

not affect our analysis.
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Note 3.3.2 [t is worth mentioning that the governing equation for the magnetic type

dyadic Green’s function is
Vi X Vi X G (x,¥) = K G(x,y) = Vi x [[0(x = y)],
and the two dyadic Green’s functions are related as follows (see Section 4.3 in [61])

Vi % G€<X7 y) = Gm(xa Y)a
Vi X Gp(x,y) = I6(x—y)+ kG.(x,y).

In particular, the series representation for G,, satisfying magnetic wall condition
nr X (Vyx X Gp(x,y)) =0 on T

1s given by the following form.:

e Forz> 2,

Gulxy) = 3 [em (V% M (%)) M ()] + 3 4 (V% N () N, ()]

m=

o
i
[e=]

e Forz< 2,

Gn(xy) = i[cm (V5 M) M3)7] + 3 [ (V 5 8 00) M7 )]

o
3
Il
o

3.3.1.1 Decomposition of Green’s function

To facilitate the analysis of factorization of the near field operator in the sequel,
denote G = G, unless stated otherwise and we shall show that G = Gy+J where J is an
infinitely differentiable remainder dyadic function so that the integral form with kernel
J has well behaved properties which will allow us to employ the theory for integral
form with kernel Gy to analyze that of G.

Explicitly, Gy is the well-known free space dyadic Green’s function given by
1

GO(X? y) = q)(X, y)H + ]{Z2

VyVy@(xy), (x#Yy) (3.43)
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where I is a 3 x 3 identity matrix and V,V,®(x,y) is the Hessian matrix for ® where

o — xpliklx—yl)
Arlx —y|

Maxwell’s equation

Note that the ith column Gg,;,i = 1,2,3 of Gy satisfies the

Vy X Vy X GOi — kQGOi = eiéx in RS,

where e; is the unit vector along the ith coordinate axes, that is, X or y or z.

The major component of our analysis using dyadic Green’s function is the con-
tinuity properties of layer potentials in the vicinity of the boundary of D. In turn, we
consider the properties of layer potential with kernel J in a segment of the waveguide
W enclosing D and bounded by cross sections ¥;, ¥ _;, denote ;. Then we have the

following lemma:

Lemma 3.3.1 The dyadic Green’s function G for the waveguide W can be decomposed
into two parts G = Go +J in a bounded segment 4y = W_; ;) of the waveguide includ-
ing the scatterer D where Gy is the dyadic Green’s function for the free space (3.43)
and the remainder dyadic function J is infinitely differentiable in €, particularly, the

neighborhood of 0D.

Proof: Since J(x,y) = G(x,y) — Go(x,y), for a point source at y € €, J satisfies the
Maxwell’s equation in €; and nr x J = np X (G — Gy) on ['1. Moreover, we can

impose the following impedance boundary condition on ¥; and ¥_;:
(V X J) X Ny, — Zk’JT = (V X (G — Go)) X Ny, — Zk’(G — GO)T on 2[ and Z_l.

With an analysis analogous to Section 12.2.1 in [48], the solution to Maxwell’s
equation in a bounded domain €2; with impedance boundary condition on part of the
boundary 0, = 3, UX_; U f(—l,l) is uniquely solvable in H(curl, €);), thus J exists and
by uniqueness J = G — Gy on 0€2;. From the proof of Theorem 9.2 in [48], we have
that components of J are smooth functions in a sub-domain of €2; away from 0¢2; but
including D, moreover they are analytic by Theorem D.0.9. Therefore, we have the

desired smoothness of J in the neighborhood of 0D. [J
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3.3.2 Uniqueness Result

In order to prove the uniqueness result, first we have the following two lemmas:

Lemma 3.3.2 (Representation Formula) Let u® be the solution of the following for-
ward problem in W\D,

/

VxVxu —kuw=0 in W\D,
nrxu =0 on T,
npxu*=F on 0D, (3.44)

ny X (V xu®) =T(ng x u®) on X,

| Dz X (V xu®)=Ti(ny xu®) on %,

where F € H=Y2(div, D) and np is the inward normal to OD. Then for allx € W\D,

we have the representation formula

w(x) = /{m w(y) - (np x [Vy x G(x,y)]) = (np x [V xu*(y)]) - G(x,y) ds(y)

[

where 18 understood as vector-matrix or matrix-vector multiplication depending on

the position of dyadic and vector functions.

Note 3.3.3 There exist a unique solution to the forward problem stated in Lemma 3.5.2
above. Because this forward problem is well-posed in Q = W, »\D (Corollary 3.2.1),
then by the definition of operators Ty, T, and the uniqueness of solution in the blocked
wavequide (Lemma 3.1.3), the solution can be extended uniquely to W\D.

Proof: The proof is inspired from the proof of Lemma 2 in [9]. We analyze the problem
in two regions:

First, we consider a point source at x € W\D. Let r > 0 be such that B(x,2r) €
W\ D where B(x, 2r) is the ball of radius 2r about x. Define two new dyadic functions

as follows

Galy) 0 for y € B(x,r) (close to the point source),
x\Y) =
—G(x,y) for y ¢ B(x,r) (away from the point source),
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and

Gx(y) = Gxly) +G(x.y)
G(x,y) for y e B(x,r) (close to the point source),
0 for y ¢ B(x,r) (away from the point source).

In fact, Gx(y) is the same as G(x,y) around the neighborhood of x and zero outside

of B(x,7), Gx(y) is non-zero outside of B(x, 7).
Now take a test function v € (Cg°(W\D))3. In the sense of distribution on
W\D, we have

/W T XX Baly) — ) Vo) dy
= [ (&) (VY xvl) - Kevly) dy
W\D
= —/ ) G(x,y)" - (Vx V xv(y) — k*v(y))dy
(WAD)\B(x,r)
_— / (VXU xv(y) - k() Glx,y) dy.
(WAD)\B(x,r)

Since Vy X Vy X G(x,y) — k*G(x,y) = 0 for y € B(x,r), applying vector-dyadic
identity (B.34), we have

/W T X T X)) Vi) dy

= [ M) (T x Yy X Glxy) - FE(y)
(W\D)\B(x,7)
—(Vx Vxv(y)—kv(y)) G(x,y)dy
= [ ) (VX Uy X By)) - (VX VX V() Bl y)dy
(W\D)\B(x.r)
- / C npnonaee - (V) X [Vy x G, )] + [V x v(y)] X G(x,y)) ds(y).
A(W\D)\B(x.1))
Since v = 0 in the neighborhood of I and 0D, using dyadic identity (B.22), we have

/W T X T X C) KB Vi) dy

- /83( o) (v(y) % [Vy x G(x,¥)]) + Do - (IV x v(¥)] x G(x,¥)) ds(y)
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= /8B( )V(Y) - (MoBer) X [Vy X G(x,¥)]) — (napen X [V x v(y)]) - G(x,y) ds(y),

where nyp(x,, is the unit inward normal to B(x, ). Notice that

/W (T X ¥y X Blxy) = Bl y) - Vi) dy
= [, 19— )y = Vi)
we obtain, for any v € (C5°(W\D))?,
/W\D (V % V x Gx(y) — K*Gx(y)) - v(y) dy

- /W\D <V x V x Gy(y) + Vy x Vy x G(x,y) — k*(Gx(y) + G(x, y))> v(y)dy

- /a o V) (st X 9y Gl y)
— (o % [V x v¥)]) - G(x, y) ds(y) + v(x).

The above relation still holds when v is replaced by u®, the solution to Maxwell’s
equation. Because from the proof of Theorem 9.2 in [48], we have that, for u® €
Hye(curl, W\ D) and a compact subset of W\D including B(x,2r) in its interior, its
components are smooth functions when x is away from the boundary of that compact
subset. By Theorem D.0.9, they are analytic and thus u® € (C*(B(x,2r)))3.

Define a cut-off function y € C$°(B(x,2r)) such that x = 1 on B(x,7), then

xu® € (C(W\D))? and since supp(Gx(y)) C B(x,r),

/W (VX VX Guly) ~ FBa(y)) - u'(y) dy
— /W\D (V x V x Gx(y) — K*Gx(y)) - xu’(y) dy
= /W\D Gx(y) - (V x V x (xu’(y)) — K*(xu®(y))) dy

= [ B (VT ) = RO () dy

Therefore, we obtain
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— (naB(V) x [V x us(y)]) -G(x,y)ds(y) + u’(x). (3.45)

For the regions excluding the singularity, we consider a sub-domain g =

O\ B(x,7) C Q. Note that Vy x Vy x G(x,y) — k’G(x,y) = 0 in Qp since B(x,r) is
excluded and V x V x u®(y) — k*u®(y) = 0 since u® satisfies the Maxwell’s equation.

By applying vector-dyadic identity (B.34) on g, we have
0 = / u’(y) - (Vy x Vy x G(x,y) — K°G(x, y))
Qp
—(VxVxu(y) - ku(y)) - Gx,y)dy
- /ag nyo, - [W(y) X (Vy x G(x,y)) + (V x u’(y)) x G(x,y)] ds(y)
= | [ ) % (7 % Gy + (V% wly) x Gly)] dsly)

#3000 % (T % Gxy) + (7 x ') x Glx.y)] ds(y)

Jj=s,t

L st ) X (Fy % B03) 4 (9 5 wly) x G, daly)

+/6D np - [W(y) x (Vy x Glx,y)) + (V x u'(y)) x Glx,y)] ds(y)
= (I + II 4 III + IV).

Investigating term by term,

e Using vector-dyadic identity (B.22), we have

I= /F (np xu*(y)) - (Vy x G(x,y)) = (V xu’(y)) - (nr x G(x,y)) ds(y).

Since nr X u®* = 0 and nr x G(x,y) =0, we get [ = 0.

e For the integral on ¥, using vector-dyadic identity (B.22) again, we have
= [ (s xw(y) (V% Gxy) + (s x (V x 0 (y) - Bx.y) ds(y).
pI

Without the loss of generality, assume z > 2/ = t. Using series expansion of
functions (3.16) and (3.17) on cross section ¥; and explicit forms of G = G,
(3.41), we have, on %,

(ng x u’(y)) - (Vy x G(x,y))
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On the other hand, on

)
0 on >; for z

0
and on Y, by similar deriva

hmz} (X)(—amihy) + zﬂ: dy Kv%vn) igneig"z] (x)(=bn).
/= t. Same res

N

Therefore, 11

t

< 7

ults hold on ¥, for z

>z

tions
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e Using vector-dyadic identity (B.22) and equation (3.45), we have

I = / —u*(y) - (nopxm X [Vy X G(x,y)])
OB(x,r)

+ (noper X [V x®(y)]) - G(x,y) ds(y)
= u’(x).

Here nyp(x, is the unit inward normal to B(x,r).

Thus, we get III = —IV, that is
Wi = = [ np @) x [Ty x Gy + ¥ x w'(y)] x Gx.y) dsy)
= /aD w(y) - (np x [Vy x G(x,y)]) — (np x [V x u’(y)]) - G(x,y) ds(y).
Here np is the unit inward normal to D. This completes the proof. [

Note 3.3.4 If np represents the unit outward normal, the representation formula be-

W) = /a (uy) ) - [Ty X Glxy)] + (np x [V x w'(¥)) - Glox,y) ds(y)
- / [V % GO (ap X w'(3) + Glx.y)" - (o x [V x () ds(y)

Lemma 3.3.3 (Reciprocity) Denote by us(x) the solution of the forward problem in
Lemma 3.3.2 with F = —np x (G(x,2)p), i.e. the incident wave is due to a point

source at z € W\D with polarization p (|p| = 1). Then for all x,z € W\D, we have

Proof: First, by using the representation formula in Lemma 3.3.2, we have

w(x) = / u(y) - (np %V, % Gx.y)p)

—(np x V xug(y)) - G(x,y)pds(y). (3.46)
Interchanging the role of x and z, i.e. F = —np x (G(z,x)p) (with point source at
x € W\D), gives
ui(z) = Ux(Y) ’ (nD X Vy X G(Z’Y)p)
oD
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—(np x V xug(y)) - G(z,y)pds(y). (3.47)
Besides, by Green’s second identity, we have, for x,z & D,
| 86xyIp-(np x ¥, % Gla.y)p) = (np x Ty % Gx,y)p) - Gl ¥)psy)
= - /BD np - [G(x,y)p x (Vy x G(z,y)p) = G(z,y)p x (Vy x G(x,y)p)] ds(y)
= [ ByIp-(Ty Ty % Gla.y)p) = Gla.y)p- (Vy x Ty x Clx.y)p) dy

- / G, y)p- (Vy X V, x G(z,y)p — K*C(z,y)p + KC(z, y)p)
D
~G(z,y)p- (Vy x Vy X G(x,y)p — K°G(x,y)p + K’ G(x,y)p) dy
= 0

where the last equality follows from the fact that y € D and x,z ¢ D. Thus, we obtain

0 = G(x,y)p- (np x Vy x G(z,y)p)
0D

—(np x Vy x G(x,y)p) - G(z, y)pds(y). (3.48)

Now, integrating instead over ) = W(sﬁt)\D, and using the similar argument as

for evaluation of (/1) in Lemma 3.3.2, we can also show that

0= /aD ui()’) . (nD x V X% ui(Y)) - (nD x V X ui(y)) 'u;(}’> ds(y), (3'49)

Note that instead of having V x V x Gp — k*Gp = pd, we use V x V x u® — k*u® = 0
here.

Denote by t3(a) = uj(a)+G(a, 8)p. Using the symmetry of the dyadic Green’s
function G(«, 5)p = G(5, a)p, we add (3.47) and (3.48) and obtain, for x,z & 9D,

ul(z) = /8D<u;<y>+G<x,yp>-<anvyx@(z,ym)

)
)

- /aD (ux(y) +G(y,x)p) - (np x Vy x G(z,y)p)
)

—np x Vy x (uy(y) + G(y,x)p)| - G(z,y)p ds(y)
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— (np X V xuy(y)) - G(z,y)pds(y). (3.50)

Similarly, subtracting (3.49) from (3.46) will give us

u;(x) = /8D ug(y) - (np X V x5 (y)) — (np x V x ug(y)) - us(y) ds(y). (3.51)

Using these expressions, subtracting (3.51) from (3.50), we obtain

- /8 () (np % Vx5 (3) — (np XV x 5(3) - 550) ds(y)
- / (@) % np) (VX ) — (V% 83(3) - (85(3) % np) ds(y),

Since by assumption,

us (y) x np = [G(y,x)p + uy(y)] x np =0,

and

S

u;(y) x np = [G(y,z)p + uy(y)] x np =0,

we can conclude that ui(z) —uj(x) =0. O

Next, we shall prove the following uniqueness theorem:

Theorem 3.3.1 Assume that D, and Dy are two perfect electric conducting scatterers
in the waveguide away from its boundary. For a fived wave number k, if the tangential
components of the scattered fields us(-,y) and u5(-,y) for scatterers Dy and Dy respec-
tively coincide on a cross section 3 for all incident fields G(-,y)q with y € ¥ and all
polarizations q, then Dy = Ds.

Note 3.3.5 When the measurement is in the far field, this theorem is not true because
the evanescent waves will die out before reaching infinity, leaving only a finite number

of propagating modes (see [7] for a discussion in a 2D acoustic waveguide).

Proof: The proof is a modification of the proof of Theorem 5.6 in [19]. Denote ® =

W\ (D; U D), suppose nyg X ui(-,y) = ny x ui(-,y) for all y € 3 and polarization
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q. Let w(x,y) = uj(x,y) — ui(x,y), then ny x w = 0 on ¥, due to the uniqueness
of solutions in the blocked waveguide problem (Lemma 3.1.3), we have w = 0 on the
left of ¥, by the unique continuation principle (Theorem D.0.8), w(x,y) = 0 for every
X € D,y € ¥ C D which means uj(x,y) = uj(x,y) and so is uj(y,x) = uj(y,x) by
reciprocity relation (Lemma 3.3.3).

Now assume D; # D,. Then, without the loss of generality, there exists x* € ©
such that x* € 9D, and x* € D,. Let

1
z, =X+ —n(x*) €D, n=12...
n

for n big enough. Here n(x*) is the unit outward normal to dD; at x*.
Imagine z, as a point source on a cross section >,, then the scattered field
u; ,(x,2,) = u3,(x,2,) for every x € ®. In particular, uj , (x*,z,) = u3,,(x*,2,).

Let w, = u3,,(x,2,), replace x by x*, then

lim ny X w,(x*,2z,) = lim ny X w,(z,,X") = ny x w,(x*,x%),
n—oo n—oo

which is bounded due to the well-posedness of the forward problem for D, with point
source at x* & Ds.

On the other hand, we have that w,, = uj ,(x,z,), replace x by x* € 9Dy, then

lim ny X w,(x*,2,) = lim —ny X G(x*,2,)q = .
n—oo n—oo

Clearly, this contradicts with uj ,(x*,z,) = u3,,(x*, z,) and therefore D; = Dy. [J

3.3.3 The Near Field Operator and its Factorization

First, assume that k2 is not a Maxwell eigenvalue in D so that the well-posedness
holds for the forward problem in D, that is V x V x U —k?U = 0 in D with boundary
data np x Ulgp on 9D.

Next we introduce the near field operator:

Definition 3.3.1 For h € L2.(X), define the operator N : L3(X) — L4(X) by

N(h)(x) = / nz(x) x u'(x,y, h(y)) ds(y),

by
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where u® represents the scattered field in the presence of D. It is called the Near Field
Operator (NFO).

With this definition, we can further introduce the Near Field Equation (NFE):
Consider a point source y on a cross section ¥ away from its boundary 9% with

measurement at the same location. We seek a function g € L2(X) such that for

Vx e,

N(g)(x) = nx(x) x /Eus(xay,g(Y)) ds(y) = ns(x) x G(x, z)q]s. (3.52)

e > represents a surface where incident fields are generated (location of point
sources) and Y represents a surface where the receivers are located. For sim-
plicity, as is usual with the LSM, we choose T = X..

e u’(x,y,p) is the scattered field due to the incident field generated by a point
source at y with polarization p in the presence of D. Moreover, it is a linear
function of p. So if g = g1X+ g2y, then u®(x,y,g) = v*(x,y,X)g1 +u®(X,y,¥)g2.

e 7 is a sampling source point inside and in the vicinity of D.

e q is an artificial polarization with |q| = 1 associated with the sampling point z.

The integral equation (3.52) is called the Near Field Equation (NFE).
Note that although the trace of an H(curl) function on a cross section ¥ is in
H='2(div, ), we can define the near field operator from L2(X) to L%(X) on cross

sections away from D due to the following lemma:

Lemma 3.3.4 Given Q € ﬁffl/?(div7 Y1), the tangential component of solution to the

blocked waveguide problem (3.10) on any cross section ¥ where t < 1 < oo is in LA (2).

Proof: Since Q € ﬁ*1/2(div, %), by Lemma 3.1.2, it has the following representation
Q=) anVstn+ Y B.Vs X vy, (3.53)

such that
HQH?{flﬂ(div,z) = Z)‘?n|am|2 + ZNan’Z < 0.
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From Lemma 3.1.3, for z > ¢, the solution U to the blocked waveguide problem
in W o0y is given by (3.12), that is,

U = a’_m VE X Um eihm(z—t)
o Am 0
v 0
b »Un . b .
+ _n gn(z—t) i 0 elgn(z—1) ’
zn: ,u% 0 1dn
Un
where, using (3.53),
Ay = <Q7 vEum>Et - Oém)\%m
bn - <Q7 62 X Un>2t = Bnﬂi
Thus, we have
U = Zam Vi Xt ethm(z=1)
m 0
, 0
" Z _Bn VEUn 67jgn(z—t) _ ﬂn:un 0 e7jgn(z—t) 7
n 0 t3n
Un
and on ¥, using identities (B.11),(B.12),
Vstm, .
ny. X U|El = Z Oy, z 6’Lhm(lft)
m 0

x| (T e
So,

s x Uls[I725) = >N |ameihm’(l_t)|2 +) \Bneign(l—t)f

= Z)‘?n|am|2
m

pihm(1—t)

Vow

‘ 2

2
+ D il Bul? [Vime D
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Since there exists finite numbers m*, n* such that h,,, g, are real for m < m*,n < n*
and imaginary for m > m*, n > n*, respectively, we have
e For m > m*

pihm(1—t) |2

Vn

—24/72, —k2(1—t) 1
= = — 0 as m — oo.

Am N o2V ARk (1)

e Forn >n*

ign(I—t)|2 —24/p2—k2(1—t) _ Hn
|V/Hne™ ” = ppe PV = —GQW(Z—“ — 0 asn — oo.

Therefore, by Abel’s test, we have

Ios x Uls 7 = D2 An Z Py
m<m® ~l P
+m;n* A |? \/— T; 121Bal? |y /meton 0
-y e
m<m* =
—i—m;n 22 | ? 62 )\1 —— Z 12 |Ba? \/2—7;2“ : o

which implies ny X Uly, € L4(%;). O
In order to facilitate the factorization of the operator N, we shall define several

more operators:

Definition 3.3.2 For g € H~Y/2(div,0D), define the operator B : H='/%(div,dD)
L7(%) by
B(g)(x) := ny X Wy,

where w satisfies

7

VXxVxw—k*w=0 in W\D,
np X wlpgp =g on 0D,

ngy Xwlp=0 on T

B satisfies the radiation condition as 2z — Fo0.
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Definition 3.3.3 For h € L2(X), define the operator H : L4(X) — H~'/?(div,dD)

by
H(0 = px) ¢ | [ Gxy)- (nsy) < by asty)]
b oD
where “ -7 is understood as matriz-vector multiplication.
Choosing g = —H (h) when the scatterer D is a perfect electric conductor and

by superposition, we have the following relation (also see Figure 3.3):

N = —-BH.

B : H-12(div, 8D) — L3(L)

e ™

. 2 2
N L3(E) = LF(X) H: 13(X) — H1/2(div,0D)

Figure 3.3: Illustration of superposition of the operators B and H.

Definition 3.3.4 For¢& € H™V/%(curl, dD), let v(x) =
oD
define the operator F : H=Y/%(curl, dD) — L4(X) by

FEOM) = ns(x) xvls
ns(x) x [ | 6y o) < €3 ds<y>] g

where we note that v satisfies Mazwell’s equations in W\ D and the radiation condition.

Remark 3.3.1 Note that G = Gy + J (Lemma 3.5.1), then v is the electric field

potential operator for the wavequide that consists of the usual electric field potential
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operator in R? (see Section 6.3 in [19]) and a smooth perturbation. This can be seen

using integration by part on the VyVy term in definition of Go (3.43).

Definition 3.3.5 For ¢ € H™Y/?(curl,dD), let v to be the same as in Definition 3.5./,
define the operator S : H=Y/%(curl, 0D) s H~/2(div,0D) by

S(€)(x) = np X V|ap

— np(x) x [ /a Gey) - (ap(y) x £() ds(y)

Remark 3.3.2 Since v is the electric potential operator for the waveguide, S is just

oD

the electric field integral operator for the waveguide on OD.

Again, choose g = np X v|yp, by superposition, we have the following relation

(also see Figure 3.4):
F =BS.

B : HY/2(div,0D) = L3(T F : H™Y2(curl, 8D) — [2(X)

/_\//7

D

\—/ S : H-Y2(curl, aD) — H~Y/3(div, dD)

Figure 3.4: Illustration of the superposition of the operators B and S.

Thus, provided S is an isomorphism, we have B = F'S~! and N has the following

factorization (also see Figure 3.5):

N=-BH=-FS™'H.

With all the operators defined above, we have the following lemmas regarding

to their properties:
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F: H7Y2(curl, dD) — L3(X)

\—/S: H‘Uz(m_lrl,@D) — H_lfz(div, aD)

N:12(Z) = L3(X
(%) = Lr( )H:L$(>:).—>H—1/2(div,aD)

Figure 3.5: Illustration of the factorization of the operator V.

Lemma 3.3.5 The operator S is an isomorphism if k? is not a Mazwell eigenvalue

for D and k? is such that the forward problem in W\D is well posed.

Proof: First, from Lemma 3.3.1, the dyadic Green’s function G has the decomposition
G = Gg + J where J is smooth in the neighborhood of D.

Define operator Sy as operator S with kernel replaced by G, that is

S0(€)(x) = np(x) x [ | Gxy) - (n(y) % €3 ds(yﬂ

D oD
This is the standard electric field boundary operator. Then the operator S — Sy given
by

(S — So)(€)(x) = np(x) x { T, y) - (mp(y) x £(y)) ds<y>]

oD oD

has smooth kernel and is thus continuous (see Theorem 8.7-5 in [44]).

Thus we can use the properties of Sy to prove the desired properties of S (in-
jectivity and surjectivity) as follows:

First we prove the injectivity of S. Suppose S(§) = 0, denote A and Ag the

vector potentials with kernel G and Gy, respectively, that is

AE)(x) = [)DG<x,y>-<nD<y>x5<y>>d8<y>, x ¢ D,

A (x) = Go(x,y) - (np(y) x £(y)) ds(y), x ¢ 0D.

oD
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From the discussion at the end of Section 6.3 in [19], A¢(§) defines two functions from
H=2(curl, dD) to uy € H(curl, D) and uj € Hy,.(curl, R*\ D). By the continuity of
Ap (see Theorem 6.12 in [19]), as x approaches 0D, we have

np X u6|3D =np X uar’aD =np X AO(f)’BD-

This implies that A(€) defines two functions u~ € H(curl, D) and u* € Hy,.(curl, W\D)
with
np X u_|aD =np X u+|3D =np X A(€)|@D = S(f) = 0.

From the uniqueness of the forward problem in D (since k? is not a Maxwell eigenvalue)
and the assumption of the well-posedness of the forward problem in W\D, we obtain

the lifting u= = u™ = 0 and then
np X (v X u_)|8D =np X (V X 11+)|5D =0.

To complete the proof of injectivity, we use the jump relation of np x (V x Ag) on 0D

(see Theorem 6.12 of [19]) which implies that

l'lDXf = an(qua)\aD—nDX(qug)]aD
= nDX(qu_)\aD—an (VXU+)’3D

= 0.

Thus, ¢ = 0 since np - £ = 0 (because & € HY/2(curl, dD)).
To show the surjectivity of S, let g € H~/?(div,dD), then there are liftings
u,u’ that satisfy the Maxwell’s equation in D and Q = W,;\D (using the DtN

maps on X, 3 as in (3.44)) with boundary data
np X u |pp =np xutlpp =g.
Denote by ¢ € H'/?(curl, dD) such that

np X f =np X (V X u+)|3D —nNp X (V X u_)‘ap,
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and define
a@w:/ G(x,y) - (nply) x €(y)) ds(y),  x ¢ D,
oD

with the corresponding functions a~ and a* in D and W\D. Obviously, a* satisfies
the radiation condition.

Using the continuity of the vector potential a (see Theorem 6.12 of [19]), we
have

np X a+|aD —np X ailaD =0. (354)

Using the jump relation of np x (V x a) on D (see Theorem 6.12 of [19]), we have
np X (V X a+)]aD —np X (V X a*)\aD =np X 5 (355)

Notice that the functions u~ and u™ satisfy the same relationship (3.54),(3.55)

as a~ and a’” on 0D. Define

u in D, a- in D,
u= and a= -

ut in Q. a® in W\D.
By the definition of DtN maps on >, ¥; and the well-posedness of blocked waveguide
problem (Lemma 3.1.3), u™ can be extended uniquely to W\ D. Since a also solves the
problems in D and W\ D, we can conclude that u = a in the entire waveguide. Hence,
we obtain

np X ulpp =np x alpp = np x [/ G(x,y) - (mp(y) x &£(y)) ds(y)
oD oD

Therefore, we get g = S(£) and this completes the proof. [

Lemma 3.3.6 The operators H, F' and N defined in Definition 3.53.3, 3.5.4 and 3.53.1
are compact operators, they are also injective with dense range if k* is not a Mazwell

eigenvalue for D and k? is such that the forward problem in W\D is well posed.
Proof: Recall the operator H : L2(X) — H~'/?(div,dD) is such that, for h € L2.(X),

H@M@ZHM@X{LG@J%@ﬂwxh@D%@)

oD
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To prove compactness, since G is smooth for (x,y) € 9D x X, we see that H is
compact because integral operator with smooth kernel is compact (see Theorem 8.7-5
in [44]).

For injectivity, for h € LZ(X), consider

va(x) = / G(x,y) - (nx(y) x h(y)) ds(y).

Suppose that on 9D, np X vylap = 0 € H~V/?(div,dD), then vy, solves Maxwell’s
equation in D with vanishing boundary data on dD. Because k? is not a Maxwell
eigenvalue, vy, vanishes in D and then in the waveguide W with the help of the unique
continuation theorem (Theorem D.0.8). In particular, ny X vu|y = 0. With the series

representation of h on X,

1 [ Vsu, 1 (Vv X U,
OZnEXh:Zam— ¥ +Zb— . ;
- M 0

and the orthogonality of Vsu,, and 62 X v,, we see that all the coefficients «,,, 5, are
zeros which proves the injectivity of H.

To prove the denseness of the range, we shall prove that the adjoint operator
H* : HY2(curl, D) v L2(X) is injective. For ¢ € H~'/%(curl,dD) and h € L4(%),
using identity (B.2), we have

(€, H(h)),, — <§<X),nD(x) x VE G(x,y) - (ns(y) xh(Y))ds(Y)] aD>

Using Fubini’s theorem to interchange the integral over > and 0D, we obtain

€ty = (| [ (€0 xno() Boyiasto| ns) xhiy))

3

Note that the Fubini’s theorem is applicable here since
¢ x np = Vapa + Vap x f,

with o € H*?(0D) and 8 € HY?(0D) (see Theorem 3.8 in [62]). Of course Vypa €
L2.(9D) and so Fubini’s theorem applies directly. For the other term, because Vap X B e
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{v e (H?D))* | np-v =0 a.e. on dD} and L2(ID) is dense in this space, Fubini’s
theorem also applies.

Using the identity (B.2) again, we have

&ty = (| [ (€60 x mp) Boyiasto)| x mufy)hiy) )

= (nst) % | [ o) x €007 By dstx)| Z ,h<y>>2 .

Using identity (B.27) and symmetry of G(x,y), we obtain

(€ HMWp = (s x| [ By ) x €0 ds(x) ,h<y>>2

by

= () x| [ BOe)- o) ¢ €00 ()] ,h<y>>2

L/ oD

— (nst) | [ B (o) » §<x>>ds<x>]z ,h<y>>z.

Thus, we see that H* is defined by

H'(E)y) = ns(y) x [ || & apl) x 6 ds<x>] 2
_ FOW).

Interchanging x and y gives

) = s x |

If H*(§) = 0, using the series representation of the dyadic Green’s function for z > 2/
(3.41), we get
_ T
Gxy) = D e (Mu ) |+ [N N ()]

Here the singular term vanishes since (x,y) € ¥ x dD. Then we have

(M, (y),np(y) x &(y))op = 0,
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(N, (y),np(y) x &(y)op = 0,

which implies that the integrand of matrix vector multiplication is zero for x with z > 2/
and then for all x € W\ D by using the unique continuation theorem (Theorem D.0.8).
By applying the trace theorem from H,.(curl, W\D) onto H~'/?(div,0D), we have
that

nD<x>x[/ Glx.y) o) X €3 ds(y)| =0 (= S(@).
oD

oD
Because operator S is an isomorphism, we have € = 0 and thus ¢ = 0 which completes
the proof of injectivity of H*.
For the operator F, as we have shown that F(£) = H*(), this proves that it is
compact, injective with dense range since the operator H has the same property.
For the operator N, using the factorization N = —FS™'H, we see that it is
compact, injective with dense range as well by noticing that F, H are compact, injective

with dense range and S is an isomorphism. This completes the proof. [J

3.3.4 Justification of the Linear Sampling Method
To provide a justification of the LSM for the waveguide, first we have the fol-

lowing lemma:
Lemma 3.3.7 nyx(-) x G(-,z)q|s € B(H Y2(div,dD)) if and only if z € D.

Proof: The proof follows the lines of Lemma 7.20 in [19]. First note that B = F.S™!
where S is an isomorphism and F' is compact, injective with dense range.

If z € D, then B (—np x G(-,2)qlop) = nx X G(-,2z)q|s.

If z € W\D and assume that there exists ¢ € H~'/?(div,dD) such that B(c) =
ny X G(-,z)q|s. Then by the uniqueness of forward problem in W\D, the scattered
field w € Hjo.(curl, W\ D) corresponding to the boundary data ¢ and the incident field
due to G(-,2z)q coincide in (W\D)\{z}. However, since G = G + J away from I', and
Goq is not locally integrable in H(curl), this leads to a contradiction. [J

Now, the main theorem we shall prove is the following:
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Theorem 3.3.2 Assume that k* is not a Maxwell eigenvalue for D and k* is such
that the forward problem is well-posed. Let N be the Near Field Operator defined in
Definition 3.5.1 for scattering from a perfect electric conductor, then the following

holds:
e Forz e D and a given ¢ > 0 there exists a function g¢ € L4(X) such that

IN(g;) — ns(x) X G(x, z)d|s/l1z ) <€ (3.56)

and the vector potential field Ug:. = / G(x,y)-g;(y) ds(y) with density function

b
g converges to the solution of Mazwell’s equation with boundary condition np X
U + G(x,2)q] =0 in H(curl, D) as e — 0.

o Forz ¢ D, every g € L2(X) that satisfies (3.56) for a given € > 0 is such that
ll_]% ng||L2T(z) = 0Q.
Proof: The proof follows the lines of Theorem 7.21 in [19]. Under the assumption of
k we have the well-posedness of the interior Maxwell problem in H(curl, D). Given
€ > 0, since H : L2(X) — H~Y2(div,dD) is compact, injective with dense range, we
can choose g¢ = ny x h¢ € L2(X) such that

€ €
|H (hg) +np x G('»Z)QHH—W(diV,aD) < ma

where || B|| is the standard induced norm of B. Then, recalling that N = —BH, we

have

IV
w
=
=
5—3
_|_
=
ol
X
@
5
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S
=
i\)
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Now if z € D, then by the well-posedness of interior Maxwell problem, the convergence
of H(hS) +np x G(-,2z)qlap — 0 as € — 0 in H~V/2(div,dD) implies the convergence

Ug. — U as e — 0 in H(curl, D) where U solves the interior Maxwell equation with
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boundary condition np x [U + G(x,z)q] = 0. Thus, we are done with the proof of the
first statement.

For the second statement, for z ¢ D, assume that there exists a sequence {¢,}
with €, — 0 and corresponding vector potentials U,, with kernel g, := g;* such that
U (curt,py is bounded. Further we assume weak convergence U,, = U € H(curl, D)
as n — 0o.

Denote by U® € Hj,.(curl, W\ D) the solution to the exterior Maxwell problem
with np x U%|sp = np x Ulyp on dD with boundary data ny x U*|yx on 3. Since
N(g,) gives the boundary data of exterior problem on ¥ due to the incident field
—np X U,lgp on OD, then from (3.56) we can conclude that there exists a function
g, € L2(X) corresponding to the density function of U such that N(g) = —nyg x
G(x,2)q|s and therefore ny x G(x,z)q|s € B(H~Y?(div,0D)). But this contradicts

with Lemma 3.3.7, and the proof of the second statement is done. [

3.4 Numerical Simulation

In this section, we shall describe some numerical simulations of the reconstruc-
tion of scattering objects in order to investigate the practical use of the Linear Sampling
Method (LSM) inside the waveguide. Specifically, we use the Method of Fundamental
Solutions (MFS) to generate synthetic scattering data to be collected at the receivers
located on a cross section of the waveguide away from the scatterer. Because Theo-
rem 3.3.2 shows that the near field equation is ill-posed, we shall use a regularization

approach to solve a discrete version of the near field equation.

3.4.1 The Method of Fundamental Solutions

The basic idea of the Method of Fundamental Solutions (MFS) is that, by using
the fields due to a finite number of point sources located inside the scatterer D (see,
e.g., {01,09,...,0)} in Figure 3.6), we aim to simulate the scattered field u® due to an

incident field u’ outside of D. In particular, we match the field due to points sources

inside D to the incident field on the boundary 9D.
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Figure 3.6: Illustration of the basic idea of the Method of Fundamental Solutions.

To further explain the rationale of this method, consider a closed surface S in-
side the scatterer D and a tangential vector field g € L3(S), then from Definition 3.3.3
and an extension of Lemma 3.3.6, we know that H(g) is injective with dense range
in H~'/2(div, D). Thus, given a tangential field on 9D representing the perfect con-
ducting data generated by an incident field, it can be approximated by

H(E) ) = o) ¢ | [ Gy dsty)| (357)

oD
If the incident field is denoted as usual by u’, then there exists g € L2(S) such that
H(g) ~ —np x u'|sp to any tolerance. Then we are able to use / G(x,y) -gly)ds(y)
to approximate scattering data u® away from 9D. ’

In numerical simulations, we can discretize the integral in (3.57) and still ap-
proximate —np x u‘|sp. To describe more in detail the implementation of the MFS for
the waveguide, as shown in Figure 3.6, let {01,09,...,0} be a set of M grid points
inside D where a sequence of point sources are located. We also choose the polarization
for each source. Then the field generated by these point sources in the waveguide is

given using sums of Green’s functions as follows:

uprs(X) = Z Z am;G(%,0.,)Pj, (3.58)

m=1 j=1

where

0, : Them™ point source (grid point) inside D where m = 1,2,..., M,
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G(x,0,,) : Dyadic Green’s function G, due to point source at o,,,
p; : Polarization of the point source at y,, where j =1,2,3 and |p;| = 1,
amj : Undetermined scalar coefficient corresponding to
the myy, grid point and j* polarization,

uyrs(x) : Electric field at an arbitrary point x € W\D.

Here p; can be chosen as an orthonormal basis of R3, for example, X, y, z. Note that the
representation (3.58) can be considered as a discretized version of the surface integral
in (3.57).

Of course the MFS solution exactly satisfies Maxwell’s equation in the waveg-
uide, the boundary condition in the waveguide, and the radiation condition. Here only
the boundary condition on dD needs to be approximated.

In order to correctly simulate the scattered field, we consider the following min-

imization problem:
{am;} = argmin {HDD X upmrs + np X ui||%2(ap) + [IVap - (np X upps + np X ui)H%Q(aD)} :

Here we would prefer to use the H~/2(div, D) norm but use the H(div,dD)
norm instead because it is very challenging to use the H~'/2 norm.

Now, using the identity (see, e.g. (6.43) in [19])
V&D : (I’ID X U) = —nNp- (V X U),
we are equivalently minimizing the following quantity

{0y} = argmin {||nD X Unirs + 0p X U 22op) + [0 - (V X uyps + V X ui)HiQ(aD)} .
(3.59)
In practice, we also approximate the surface of D using a triangular gird and
approximate the norms on each triangular element by using a quadrature at a single
quadrature point at the centroid of each element to approximate the integral. Since

the number of triangular elements is much greater than the number of undetermined
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coefficients a,;, we actually minimize the norms in the Least-Square sense as show in
(3.59). For numerical implementation, we use the truncated singular value decompo-
sition (SVD) to solve for the linear system.

Specifically, if the number of triangular element for the surface of D is Np, then
the resulting linear system is given by Ba = ¢ and if p = 2Ny, q = 3M,p > q, then
a is a ¢ x 1 vector consisting of all the unknown a,,;’s, ¢ is a p x 1 column vector
due to the incident field u’ (that is, —np x u’|sp and —np x (V x u’)|sp), and B is a
p X ¢ matrix. Given the Singular Value Decomposition (SVD) of B = UAV* where “*”
represents the conjugate transpose, the normal equation BB*a = B*c can be written

as

VA'AV*a = B*c = VA*U”c.

Therefore, the optimal « is given by a = VATU*c where “4” represents the pseudoin-
verse.

In choosing the parameters, we shall take into the consideration the following:

e Number of terms truncated in the series expansion of the dyadic Green’s function
in u* and uyps:

Since the problem is to collect the near field but far away from the scatterer, we
shall include at least all the propagating modes, that is, all the m,n such that
hpm = VK2 =X, > 0 and g, = /k? — u2, > 0. Also, we shall include more
evanescent modes in order that (3.58) represents a better approximation. But
the number of terms should be controlled since otherwise the whole problem will
be very computationally expensive.

e Truncated SVD for solving Least-Square problem for obtaining coefficients {c; }:

To solve for the coefficients a = VATU*c, we shall arrange the singular values in
A, denote {6, },>1, in decreasing order and truncate at [ = [, when 6,/6,, > b> 0,
for example b = 104

e Number of grid points {0, }}*_, and their locations inside D:

Choosing the grid points inside the scatterer D requires additional work. Al-
though it seems plausible to increase the number of grid points M inside D in
(3.58) for a more accurate solution {ay,;} in the Least-Square sense, this is not
for free in a practical implementation since, for instance, (3.58) is used to ap-
proximate a compact operator using finite dimensional approximation and thus
the condition number of the problem will grow rapidly as M increases (see, e.g.,
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Section 4.1 in [19], [3]). For the choice of locations of grid points, denote by
d(S,0D) = inf{|x — y|} where x € S,y € dD. On one hand, if d(S,0D) is
small, the kernel G becomes highly peaked which needs fine discretization. On
the other hand, if d(S, dD) is big, G becomes smoother and this amplifies the the
condition number for the problem. We shall use some heuristic ways to choose
the number and location of grid points {o,,}*_,. For example, using a uniform
distribution of points on a smaller sphere if D is a sphere or using a cube for the
location of grid points if D is a cube.

As a further remark, although the drawback of MSF concerning the choice of grid
points and the expense of including more terms in the series representation of dyadic
Green’s function hinders us from improving the results easily, this idea can serve for the
generation of synthetic scattering data for the forward problem as it can be computed
by using series representations which greatly reduces the computational complexity

compared with traditional Galerkin-based methods such as the finite element method.

3.4.2 The Near Field Equation

With the synthetic data generated by using MFS in hand, we next consider
the near field equation (3.52) in order to solve for the indicator function g for each
sampling point z.

For numerical simulations, instead of considering only the tangential field on
cross section X, we incorporate more data by including all components of scattering
data at measurements by solving the following integral equation: find g € (L*(2))?
such that

N(g)(x) = / w(x,y,g(y)) ds(y) = G(x, 2)qlx. (3.60)

Since the scattered field u® is a linear function of the vector function g =
g1e1 + goes + gzes where e; = X,e5 = y,e3 = 2z, the left hand side of the integral

eugation (3.60) may be equivalently written as
/us(x,y,g(Y))dS(Y) = /us(x,%glel + g2€2 + gses) ds(y)
s s

— A[Zus(x,y,ek)gk] ds(y).

k=1
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Componentwise, we have

s [uwi(xy,ex) (G(x,2)q):
/2 Z w(x,y,er) | 9| ds(y) = | (G(x,2)q), . (3.61)
k=1 u;(x, Yy, ek) (G(X, Z)Q)g

)
To evaluate the integral numerically, we discretize the integral by applying a quadrature
rule the choice of which depends on the cross section X of the waveguide. For example,
we can use the Gauss-Jacobi quadrature rule for a cylindrical waveguide and the tensor
product composite Midpoint rule for a rectangular waveguide.

Let y;,7 =1,2,...,n be n point sources at quadrature points on > and x;,7 =
1,2,...,m be m receivers also on X. In fact, we take m = n and y; = x;,1 < j <
n. We loop through point sources (y;’s) at all the quadrature points with all three
polarizations p = ey, e, or e3 and collect measurements at all the receivers (x;’s). Then
by collecting measurement at all the receivers (x;’s) due to a sampling point z with

polarization p = eq, ey or es, the equation (3.61) can be reduced to a linear system

A3m><3n(gz)3n><1 = (bz>3m><17

where the matrix As,,«3, consists of mn 3 x 3 blocks and each block records the
measurement at the i*" receiver due to the ;' point source associated with weight of
the quadrature point w;;. For instance, the structure of (i)™ block can be written as
follows:
ui(x;,yj,er) uj(xiyj,e) ui(xi,yj es)
Wij | u3(x;,yj.€1) us(x;,yj,e2) u(xi,yj,es)
us(x, yj,e1) ui(xi,yj ex) u3(Xi,y; es)
The column vector (g,)snx1 consists of a number of n 3 x 1 blocks with each block
corresponding to the indicator function for the j*® point source. Lastly, the column
vector (bg)smx1 consists of a number of m 3 x 1 blocks with each block corresponding
to the measurements of the dyadic Green’s function G(x,z)q at the i*® receiver due to

sampling point z with polarization q = e, e; or es.
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Since there are three polarizations for each sampling point, we use the average
of the discrete [? norms of indicator function g for each of these three polarizations for

identification of the shape of the scatterer.

3.4.3 Numerical Results: Cylindrical Waveguide

For numerical results, we use a cylindrical waveguide. In particular, consider
a cylindrical waveguide with cross section ¥ a disk of radius a. From the discussion
in Section 6.1 and 6.2 in [61], using cylindrical coordinates (x,y,z) — (r, ¢, z), two

families of modal solutions M and N exist having double indices:

Mpn = VX (Un(r, @)e™*2),  for m >1,n >0,
1 )
Ny = EV X V X (Uyn(r, ¢)e™?z), form >1,n >0,
where
umn(ra ¢) - Jn(,umnr>€ y Bmn = —,
Umn(ra ¢) - Jn()\mnr)ein¢7 >\mn = pmn
a

Here g,,, represents the m'™ root of the derivative of the n'" order of Bessel function
Jo(z) and p,,, represents the m'™ root of the n' order of Bessel function .J,,(z).

Correspondingly, the coefficients ¢,,, and d,,, in the dyadic Green’s function G,
in (3.41) and (3.42) are:

2

a 2
_ 2 _ 2 n 2
Cmn = /0 Jn(ﬂmnr)r dr = %2 (lumn - E) Jn(:umna)v

a® [0J,( )1’
or

s —— J? An, dr =
/0 ) dr = 5

r=a

The parameters related to the waveguide are listed as follows:

e Wave number: k = 27 so the wavelength is 1.
e Radius of the circular pipe: a =1

e Location of cross section for point source/receiver: ¥ x {z = 0}
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Figure 3.7: Illustration of generic distribution of point sources/receivers on a cross
section of typical circular waveguide.

e Mesh on the cross section for point source/receiver: 10 x 10 mesh in polar coor-
dinates with uniform distribution on [0, 27] in the angular direction and located
at Gauss-Jacobi quadrature points along the radial direction.

e Number of terms kept in dyadic Green’s function: N = 15 in order to include all
propagating modes.

— Number of propagating mode due to k = 27: 11

— Number of evanescent mode: N — 11 =4

e Region of sampling points: a box of size 0.5 x 0.5 x 2 centered at (0,0, 20).

Parameters for the scattering object D are listed below:

e Location and shape of D: a sphere of radius 0.2 centered at (0,0, 20).
e Location of grid points for MF'S: on surface of a concentric sphere of radius 0.16.

e Distribution of grid points for MFS: 30 points distributed on six latitude circles
with degrees £75° (3 points on each cicle), £45° (5 points on each circle) and
+15° (7 points on each circle) (see Figure 3.8 for a generic illustration).

e Noise on scattering data: no noise

The reconstruction of D by using Tikhonov regularization combined with Mo-
rozov discrepancy principle is given in Figure 3.9 (note that the positive z-axis in the

plot is pointing upward).
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Figure 3.8: Illustration of generic distribution of grid points on a sphere.

If we keep more terms in dyadic Green’s function (N = 25) and use more
grid points for MF'S (66 points uniformly distributed on a sphere of radius 0.17), the
reconstruction can be improved (see Figure 3.10).

From the plot, we are able to reconstruct the scatterer in a reasonable sense by
using LSM. Note that only one sided data is used.

As a further test, we also show the results for the reconstruction of a cube (with
non-smooth boundary) in this waveguide for reference. Parameters for the scattering

object D are listed below:

e Location and shape of D: a cube of side length 0.4 centered at (0,0, 20).

e Location of grid points for MFS: on surface of a concentric cube of side length
0.32.

e Distribution of grid points for MFS: 56 points uniformly distributed on six faces,
four edges and eight vertices (see Figure 3.11 for a generic illustration)

e Noise on scattering data: no noise

Using the same inverse technique, the reconstruction of D is given in Figure 3.12.
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Plat of izosurface with walue 0.75

Figure 3.9: Left: Plot of original scattering object (sphere of radius 0.2). Right:
Reconstruction of object with isosurface value 0.75.

Plat of izozurface with value 0.4

Figure 3.10: Left: Plot of original scattering object (sphere of radius 0.2). Right:
Reconstruction of object with isosurface value 0.4.

147



Figure 3.11: Illustration of generic distribution of grid points on a cube.

Plat of izozurface with value 0.1

Figure 3.12: Left: Plot of original scattering object (cube of side length 0.4). Right:
Reconstruction of object with isosurface value 0.1.
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Chapter 4

CONCLUSION AND FUTURE WORK

In this thesis we have investigated problems arisen from scattering and inverse
scattering theory with special characteristics in the background media, in particular,
the presence of geometrical settings with prescribed material properties. We have
shown the discreteness and existence of transmission eigenvalues and identified the
first few real transmission eigenvalues for PEC backed scattering objects which may be
useful for obtaining their material properties. We also justified the Linear Sampling
Method (LSM) applied for the reconstruction of PEC objects inside a PEC waveguide.
For each problem, we have developed methods that cater to the presence of structure
in the background and have proved the standard scattering theory can be applied with
proper modifications.

Meanwhile, there are still many interesting questions and future research op-
portunities based on the work in this thesis. To name a few, we have

1. Enlightened from the investigation of transmission eigenvalues, we can also con-
sider the reconstruction of dielectric scattering objects in a 3D waveguide and
look for the corresponding transmission eigenvalues. Furthermore, we can inves-

tigate the scattering and inverse scattering in a 3D waveguide where a dielectric
scattering object sits on the wall of the waveguide.

2. There have been studies on transmission eigenvalues for objects with defects
inside. The study can be then extended to the investigation of transmission
eigenvalues for PEC backed scattering objects with defects. This will create
mathematical difficulties if the defects are located on the interface between the
object and conducting substrate. Also, one can study the problem where non-
perfect conducting regions are present in the PEC substrate.

3. In Section 3.4, we discussed the advantages and drawbacks of implementation of
ideas from Method of Fundamental Solutions. As an alternate, it will be very
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beneficial to develop other forward solvers using Galerkin-based methods. We are
currently studying on the theory and numerical approach on Ultra Weak Vari-
ational Formulation (UWVF) [37] for the waveguide and this will also serve for
fields generation for other inverse scattering problems in electromagnetic theory.

. The specialty of this thesis is to study the scattering and inverse scattering prob-
lem pertaining to non-standard backgrounds. As a problem of the same type,
we have investigated an inverse scattering problem involving the design and use
of a device called a “Hyperlens”. This device has been suggested by physicists
[38]. It consists of a sequence of concentric thin layers of dielectric and metallic
material with a hole inside used to enclose the unknown scatterer. The expecta-
tion is that this “lens” will enhance remote measurements of the scattered field
in order to help identify the shape of objects placed in the lens better than in
its absence. The goal is to provide a microscope with enhanced resolution. We
have conducted various numerical simulations for imaging scatterers of different
shapes in the cavity of the lens illuminated by incoming plane waves from multi-
ple directions as well as new configurations by using multiple point sources close
to the lens and collect data outside the lens. Future work could be the study
of influence of material property of this “lens” on reconstruction of the scatterer
and the justification of qualitative methods applied to this problem (e.g. LSM).
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Appendix A
DERIVATION OF MODAL SOLUTIONS FOR THE WAVEGUIDE

Here we present some details of modal solutions to the governing Maxwell’s
equation in (3.6), that is,
V xV xu®— k=0, (A.1)
In particular, we use separation of variable to decompose solution to (A.1) into
the two families of modes.
By taking the divergence of (A.1) we have V- u® = 0. Using the vector identity
(B.8), (A.1) can be written as the vector Helmholtz equation

Au® + k*u® = 0.
Let u$ = Aj(z,y)0;(2),j = 1,2,3. Then for each component,
(Aj)aaby + (Al + (A7)0 + K*(A;)6; = 0.
If Ay = (2)*+ (8%)2, a standard separation of variables argument shows that
Any(A;) + X(A;) =0 and 07+ (K* — A*)6; = 0.

For A > 0, let
VE2 =X if A<k,
VA2 —Ek2 if N>k

Then we have 0(z) = ae™®+ Be~™ for some constants o, 3. The choice of «, 3 depends

h:

on whether we are to the left or the right of the scatterer D. Consider 6;(z) = €%

then one mode of u?® is given by

Al (:Ev y)eihlz Al ([E, y) 0 0
U= | Ay(z,y)eth=* | = 0 ez 4 Ay(z,y) eh2? 4 0 eths?.
A3 (Z‘, y>eihgz 0 0 A3<I, y)
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We now show that we can assume that hy = hy = hs = h so that U has the

form

Of course the same conclusion holds for e=#=.

Note A.0.1 For the solvability results of our analysis, we will assume h # 0 (or
k% #£ \2).
Let ¢; = ihy, co = tho, c3 = ths, then V - U = 0 implies
Ay €77 4 Ay ye® + Ascze™® = 0.
Fix x,y, let a1 = A4, a2 = Asy, a3 = Azcs = Asihg, then for any z, we have
a1 + age?® 4 aze®* = 0.

Set z = 0, so that a; + ay + a3 = 0. Hence a3 = —(a; + a2) and so

a1 + age®®® — (a1 + az)e®* = 0. (A.3)
Taking the first derivative of (A.3) above and setting z = 0 gives

aicy + azcy — (a1 + ag)ez = 0,

so that

a1(01 — 03) + a2(02 — 63) =0.

Taking the second derivative of (A.3) and setting z = 0 gives
ayci + axcs — (ay + ag)c; = 0,

or

a1(01 — 03)2 + CLQ(CQ — 03)2 = O
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Combining these equations, we have linear system

1 1 ailcp — ¢
1(1 3) _

c1+c3 catc3 as(co — c3)
The determinant of the matrix is ¢ — ¢;. We discuss the solutions case by case:
1. Suppose ¢y # ¢1, then aj(c; — ¢3) = 0 and ag(cy — ¢3) = 0.

e Suppose ay, as # 0, then ¢; = ¢3 = ¢o which is a contradiction.

e Suppose a; = 0 and ap # 0, then a3 = —ay so that Agcs = —Ay,. Also
we have co = c3 but ¢3 # ¢;. This implies ho = hs and hsy # hy;. But
a; = Ay, =0 for all z,y. Hence Ay = A;(y). This gives

A (y)eh A(y) 0 |
U= | A(ay)e’ | = | 0 ™+ | Ay(z,y) | "2
As(z,y)eth?* 0 Az, y)
Ai(y) . 0 .
A short calculation shows that both 0 e™* and | Ag(x,y) | e2?
0 A3($ay)

satisfy the Maxwell’s equations. Hence U can be separated into two modes
of the required form (A.2).

e In the same way, if a; # 0 and ay = 0, we have

(IL’, y) thiz 0 ) Al (ZL‘, y) )
U= 2 33) thoz — A2($) ezhgz+ 0 ezhlz'
As(z,y)eth® 0 Az(z,y)
0 ) Al (ZE, y) )
Again, both [ As(x) | ei2* and 0 eM* satisfy the Maxwell’s e-
AS (1:7 y)
quation and then U can be separated into two modes of the required form

(A.2).

e Suppose a;,as = 0 so that a3 = 0. Hence Azcs = 0 and ¢; # ¢y, If
C1,C9,C3 7& 0, then a; = Al,m = O,CLQ = A27y = O,Ag = 0 for all xr,Yy, or
Al = Al(y)7 AQ = AQ((E), Ag = (0. This giVGS

A (y)e
U = | Ay(z)eth2?
0

This is ruled out since V x V x U — k*U = 0 implies A] — c?A; = 0. But
since AY — (¢? + k*)A; = 0, this gives A; = 0, and in the same way A, = 0.
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2. Suppose ¢y = ¢q, then (a; + a3)(¢; — ¢3) = 0.

e Kither a; + as # 0 so that ¢ = ¢; = ¢3 and then hy = hy = hg. This gives,
as desired,
Al ({L‘, y)
U= | Ay(x,y) | ™M=
A3('x7 y)

e Alternatively, a; + as = 0 which implies a3 = 0, so Ascs = 0. If ¢3 # 0, then
Az = 0 for all z,y. This gives

Al(x7 y) .
U= | Ay(z,y) | ™=
0

In summary, we have shown the claimed form (A.2) for U.

To further analyze the decomposition of U, since U satisfies Maxwell’s equation

(A.1), we have

Teihz )
E*U =V x V x +V x V x (A3e*7),
0
Ay
where Ar = . Then
Ay
) —Ayih
ATe'Lhz .
V xV x = Vx Aqih e
0
AZ,I - Al Y
Ash?
= A h? e 1V x ((Agy — Ary)e™2).

By the divergence free condition, V- U = A, , + Ay, +ihA3 = 0, we have

. Ayh?
ATe’hz h T
V x V x = | Aip? | e+ V x ((Agp — Ay y)e"2)
0
Azh?
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= WU+ V x ((Ag, — Ay,)e™2).
Thus,
U = WU+ V x ((Aye — A1,)e?2) +V x V x (Aze?3).

So under our assumption that k% — h? # 0,

1 .
U = = TV X (Aae — Ary)e™2) +

= FV X ((Agm _Aly) ZhZA) +

1 .
TV X VX (Ase*2)

)\QV x V x (Asze"*z).

The Maxwell’s equation (A.1) is derived from the Maxwell’s system
VxE—-i#H = 0,
VxH+WHE = 0,

where E and H are electric field and magnetic field, respectively.

Al('xvy) Bl(‘ra y)
HE=U-= | Ay(z,y) e then H = By (z,y) e where Ay, — Ay, =
Ag(llf,y) Bg(I’, y)

ikBs(z,y) and therefore, U can be written as

ik thA thA
U:ﬁVx(B )+)\V><V><(A z),

k
where \2 = k? — h%. Let u = 831—2 and v = Agﬁ, then we have derived the following

representation for U:
U:VX(mpH%VXVX(mp)

Here v and v are called generating functions for U and z is called the pilot vector.
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Appendix B
IDENTITIES IN VECTOR CALCULUS

B.1 Vector Identities

Assume a, b, ¢ are vectors,
axb=—-bxa, (B.1)

a-(bxc)=b-(cxa)=c-(axb). (B.2)

B.2 Differential Identities

Assume u, v are vector functions and p, ¢ are scalar functions,

x (Vp) =0, (B.3)

V- (Vxv)=0, (B.4)
V- (¢v)=Vé-v+¢V-v, (B.5)

X (V) = ¢V x v + (V) x v, (B.6)
x(uxv)=u(V-v)—(u-V)v+(v:-Viu-v(V-u) (B.7)

V x (Vxu)=V(V-u)— Au, (B.8)
Viuxv)=v-Vxu—u-Vxv. (B.9)

In the (B.8), Au = (Auy, Aus, Aug) in Cartesian coordinates only.

B.3 Differential Identities and Integral Theorems on a Surface
Let S C R? be a smooth surface with unit normal n and let v and p be smooth

functions defined in a neighborhood of S. The following identities hold:

Vsp = (n x Vpls) x n, (B.10)
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Vg X p=—nx Vgp, (B.11)

n x (Vs x p) = Vsp, (B.12)
Vsgxv=-=Vg-(nxv), (B.13)
Vs-v=Vgx(nxv), (B.14)
Vs-(mxv)=-n-(Vxv)s. (B.15)

Theorem B.3.1 [Theorem 2.5.19 in [51] and Corollary 3.21 in [}8]] Let S C R? be
a bounded simply connected Lipschitz domain with unit outward normal v and unit
tangent T to 0S. For u € CY(S) and v € (CY(S))?, the following Stokes identities
hold:

/uVS-vdx:—/(Vgu-v)dx—i-/ v-vuds, (B.16)
S S s
/uvsxvdx—/(ﬁsxzrv)dx%—/ T-vuds, (B.17)
S S a5
and
Vs (Vg xu) =0, (B.18)
vs X (Vsu) =0. (Blg)

Moreover, on 0S, we have that

v-Vs Xu=r-Vsu, (B.20)

T - 62 X u=—v-Vyu. (B.21)

B.4 Dyadic Identities

For dyadic function G written as 3 x 3 matrix, denote by g; the lth column of
G and define V -G to be the matrix with /th column V -g; and V x G to be the matrix
with [th column V x g;.

Assume a, b, ¢ are vector functions and A, B, C are dyadic functions,

a-(bxC)=-b-(axC)=(axh)-C, (B.22)
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ax(bxC)=b:-(axC)—(a-b)C,

V- (VxA)=0,

VX (VxA)=V(V-A)—AA,
axB=—[B"-a]
a-B=DBT.a,

C' - (axB)=—(axC)" B,

(also see Section 1-3 in [61]).

B.5 Integral Theorems

Let 2 C R? be a bounded Lipschitz domain with boundary 92 and unit outward

normal ngq.

o If £ € CYQ) and u € (C*(Q))3, then

/V~u§dx——/u~V§dx+/ nyq - uéds.
Q Q 9

e (First Green’s identity) If £ € C*(Q) and n € C?(Q), then

/Angdx:—/vn-vgdx+/ M _¢ g
Q Q a0 Onog

e (Second Green’s identity) If £ € C*(Q) and n € C%(Q2), then

_ on . 0
/Q(Ang mnag)dr = /an (anaa : Ongpq 77) ds.

e Suppose u and ¢ are in (C1(Q))3, then

/qu-gbdx:/u-Vx¢dx+/ ngo X U - ¢ds.
Q Q

oN
Assume p, q are vector functions and P, Q are dyadic functions, then

e First vector-dyadic Green’s identity
[ 9 %p) (VX Q) = (Vx T x Q) ds
Q

=/ nyo - [p x V x Q] ds,
B
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(B.31)

(B.32)

(B.33)



e Second vector-dyadic Green’s identity

[ %V xp) 0-p (V2 T x Q) de
IAQH@Q'[pXVX@—F(VXp)X@]dS, (B.34)
e First dyadic-dyadic Green’s identity
/Q[(VXQ)T-(VX]P’)—(VXVXQ)T-]P’] dz
- /8 (VX Q)" (0 x P) . (B.35)
e Second dyadic-dyadic Green’s identity
/Q[(@)T'(VxVxP)—(VxVxQ)T-]P’] dz

_ /8 [(VX@ - (0 x B) + (@ - (non x T x B)] d (B.36)
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Appendix C
THEOREMS IN FUNCTIONAL ANALYSIS

Theorem C.0.1 [Theorem 3.8-4 in [44]] (Riesz Representation) Let H,, Hy be
Hilbert spaces, K =R or C and

h: H1 X H2 — K
a bounded sesquilinear form. Then h has a representation
h(z,y) = (Sz,y)

where S : Hi — Hy is a bounded linear operator. S is uniquely determined by h and
has norm

1511 = NIl

Theorem C.0.2 [Corollary 8.23 in [19]] Let Hy and Hsy be two Banach spaces and
denote by L(Hy, Hy) the Banach space of bounded linear operators mapping Hy into
H,. Let D be a domain in C and let A : D — L(Hy, Hy) be an operator valued function
such that for each ¢ € Hy the function Ay : D — Hs is weakly holomorphic. Then A

15 strongly holomorphic.

Theorem C.0.3 [Theorem 8.25 in [19]] Every analytic function is holomorphic and

vice versa.

Theorem C.0.4 [Theorem 5.2.3 in [36]] (Lax-Milgram Lemma) Let a continuous

sesquilinear form a(u,v) be coercive on the Hilbert space H, that is, a(u,v) satisfies

la(v,v)| > apllv||3; for allv e H
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with ag > 0. Then to every bounded continuous linear functional l(v) on H, there

exists a unique solution uw € H of the following variational equation
a(u,v) = Il(v) for allv € H.

Furthermore,

1
lullr < — [0l &+
Qo

[T

where “«” represents the dual space.

Theorem C.0.5 (Theorem 2.1 in [16]) Let T — A, be a continuous mapping from
(0,00) to the set of self-adjoint and positive definite bounded linear operators on X and
let B be a self-adjoint and non-negative compact bounded linear operator on X. We
assume that there exists two positive constant 79 > 0 and 7, > 0 such that

(1). A, — 1B is positive on X,

(2). A, — 1B is non-positive on an m dimensional subspace of X.

Then each of the equations \;(T) = 7 for j = 1,...,m, has at least one solution in
(70, T1] where A\;(T) is the jth eigenvalue (counting multiplicity) of A, with respect to
B, i.e. ker(A. — \;j(1)B) # {0}.

Theorem C.0.6 [Theorem 3.6 in [2]] Let X denote a Hilbert space. Assume that
C C C is an open connected set and that Ay, : X — X is a compact linear operator for
all k € C that depends analytically on k. Then, for all k € C' except possibly for some

1solated points, the equation

has the same number of linearly independent solutions.

Theorem C.0.7 [Theorem 2.33 in [48]] (Fredholm Alternative) Let B : X — X
be a bounded linear operator where X is a Hilbert space. Suppose B = I + A, where A
18 a compact operator and I is the identity operator. Then either

1. The homogeneous equation Bu = 0 has only the trivial solution v =0 in X. In
this case, for every f € X, the inhomogeneous equation Bu = f has a unique
solution depending continuously on f; or

2. The homogeneous equation Bu = 0 has exactly p linearly independent solutions
for some finite integer p > 0.
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Appendix D
THEOREMS IN ELECTROMAGNETIC THEORY

Theorem D.0.8 [simplified version of Theorem 9.3 in [19]] (Unique Continuation
Principle) Let G be a domain in R® and let E;H € CY(G) be a solution of

VxE—ikH=0, VxH+ikE=0

Suppose E, H vanishes in a neighborhood of some xq € G. Then E,H 1is identically

zero in G.

Theorem D.0.9 [Theorem 6.3 in [19]] Any continuously differentiable solution to the

Mazwell equations has analytic cartesian components.
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