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ABSTRACT

Scattering and inverse scattering theory plays a central role in mathematical

physics. For example, through the use of acoustic or electromagnetic waves, one can

detect and identify objects that are hard to or cannot directly be observed as well as

obtain information about the material properties of objects of interest.

However, in practical applications, the presence of complex background media in

which the problems are considered restricts us from applying directly the existing the-

oretical results and numerical methods. This constraint requires delicate modification

of well-established theory and development of alternate computational approaches.

In this thesis, we investigate the applicability of qualitative methods in inverse

scattering theory for obtaining material properties and recovering shapes of unknown

objects by using time-harmonic electromagnetic waves under different geometrical con-

figurations. In particular, we first consider a 2D model where a bounded dielectric scat-

terer sits on an infinite metallic substrate. This is a model problem for non-destructive

testing of aircraft coatings. We validate the application of the Linear Sampling Method

(LSM) for detecting special frequencies called transmission eigenvalues for both isotrop-

ic and anisotropic media. Then we move to a 3D model where a bounded perfectly

electric conducting object is located inside an infinite long perfectly electric conducting

waveguide and justify the application of the LSM for reconstructing the shape of the

object.

For both cases, we show that additional work needs to be done in order to recast

standard results from scattering and inverse scattering theory to the model problems

we consider. Also, this work gives an idea of the effort needed to adapt academic

research to industrial applications.

xiii



Chapter 1

INTRODUCTION

1.1 Historical Review

Scattering and inverse scattering problems arise in various areas of mathematics

and physics and have a long history. Examples include the non-destructive testing

of materials [31, 45], medical imaging [46, 50], remote sensing [28, 56] and seismic

exploration [34, 47]. As an important and attractive field, the mathematical theory

of shape identification and the determination of material properties has progressed

rapidly over the last few decades.

This thesis focuses on the use of electromagnetic waves governed by Maxwell’s

equations to probe remote objects. In order to better understand the inverse problem,

it is worth mentioning that the corresponding forward problem is to find the total

field and scattered field due to a known incident field when we know the material

parameter(s) describing the scattering object together with its shape. In our case this

forward problem is linear and well posed. The inverse problems we shall study uses

measurements of the scattered field resulting from the interaction of a known incident

field with an unknown scatterer in order to probe this object. From this data we are

to recover the shape of the scattering object as well, possibly, as parameters pertinent

to the scatterer such as its relative permittivity and permeability. The inverse problem

is generally ill-posed and non-linear.

In developing inversion algorithms for target identification, the first techniques

to emerge were based on the weak scattering approximation and in particular using

the popular Born approximation [5, 27]. This is computationally efficient and often

very successful. However, if the weak scattering approximation does not hold, the
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resulting inversion schemes may be inaccurate and result in poor reconstructions [60].

As a common alternative, constrained optimization methods (see, e.g., [6, 30]) are

well developed and usually require an iterative approach together with solution of the

forward problem at least once during each iteration. This approach can deal with a

variety of constraints and is applicable with reduced measurement data, such as only

one incident wave. But it is computationally expensive and so may be very slow and

may also stop at local minima. Moreover, this method requires a priori information

that may not be available such as the number of connected components of the scattering

object and the type of boundary condition on the object.

More recently, a new class of approaches which avoid possibly incorrect lineariza-

tion but which seek only partial information about the scattering object (optimization

approaches try to recover a complete description of the scatterer) have been developed.

These are now referred to as “qualitative methods” and usually need very limited a

priori data. They are relatively faster than optimization approaches but require sub-

stantially more input data (that is, more measured data). Examples of such methods

include, for instance, the Linear Sampling Method (LSM) [20, 25], the Factorization

Method [40, 41], and the Method of Singular Sources [53, 54]. This thesis will focus on

the LSM, and we shall give more background on the LSM later in thesis introduction.

1.2 Time Harmonic Electromagnetic Waves

For the model problems we shall consider in the sequel, the fields (incident,

scattering and total fields) are time-harmonic electromagnetic waves and thus governed

by Maxwell’s equations. Depending on the application, these fields will satisfy different

versions of Maxwell’s equations depending on the assumption on the application. To

connect the various models, we start with the full time dependent Maxwell’s system

in R3. In the time domain, the space and time dependent quantities D,H,B, E and J

and ρ̃ satisfy

∂D
∂t
−∇×H = −J , (1.1)

2



∂B
∂t

+∇× E = 0, (1.2)

∇ · B = 0, (1.3)

∇ · D = ρ̃, (1.4)

where D is the electric displacement, H is the magnetic field, J is the current density;

B is the magnetic induction, E is the electric field and ρ̃ is the charge density. Here

equations (1.3) and (1.4) are consequences of equations (1.1) and (1.2) provided initial

and boundary conditions are consistent with them.

Furthermore, we assume the following linear constitutive relations:

D = ε̃E where ε̃ is permittivity, (1.5)

B = µ̃H where µ̃ is permeability, (1.6)

J = σ̃E where σ̃ is conductivity (Ohm’s law), (1.7)

and ε̃, µ̃ and σ̃ are given functions of position describing the electromagnetic properties

of the medium.

Plugging (1.5) and (1.7) into (1.1) and (1.6) into (1.2), we obtain

ε̃
∂E
∂t

+ σ̃E −∇×H = 0, (1.8)

µ̃
∂H
∂t

+∇× E = 0. (1.9)

Now let F [ · ] denote the Fourier transform in time, that is,

F [f ] =

∫ ∞
−∞

exp(iωt)f(t) dt.

Applying the Fourier transform in time to (1.8) - (1.9), and recalling the assumption

that ε̃, σ̃ and µ̃ are independent of time, we obtain

−iωε̃F [E ] + σ̃F [E ]−∇×F [H] = 0,

−iωµ̃F [H] +∇×F [E ] = 0.

3



We denote by ε0, µ0 the positive and constant electromagnetic coefficients for

free space. Setting E =
√
ε0F [E ], H =

√
µ0F [H], then substituting for F [E ] and F [H]

above gives

−iω
(
ε̃+ i

σ̃

ω

)
√
ε0µ0

1

ε0
E−∇×H = 0,

−iωµ̃√ε0µ0
1

µ0

H +∇× E = 0.

Let k denote the wave number for the background medium given by k = ω
√
ε0µ0.

Then defining the relative quantities ε =

(
ε̃

ε0
+ i

σ̃

ωε0

)
and µ =

µ̃

µ0

(so ε = 1 and µ = 1

in the background), we end up with the time harmonic system of Maxwell equations

as follows: the unknown spatially dependent complex valued vector fields E and H

satisfy

− ikεE−∇×H = 0, (1.10)

−ikµH +∇× E = 0. (1.11)

Generally, in R3, we have

E(x) =


E1(x, y, z)

E2(x, y, z)

E3(x, y, z)

 ,H(x) =


H1(x, y, z)

H2(x, y, z)

H3(x, y, z)

 ,

and ε is a matrix function of position.

Using (1.11) to replace H in (1.10), we can eliminate H and the time harmonic

Maxwell’s system can be reduced to the following second order system of equations:

∇× (µ−1∇× E)− k2εE = 0. (1.12)

In certain geometric settings, equation (1.12) can be further simplified. Suppose

that the coefficients ε and µ are independent of z (that is, the medium is translation

invariant) and that we only seek solutions E and H propagating on the (x, y) plane and

4



individually independent of z. We also assume that µ = 1 (no magnetic components

are present) and the medium is orthotropic so that

ε =


ε11(x, y) ε12(x, y) 0

ε12(x, y) ε22(x, y) 0

0 0 ε33(x, y)

 .

In this case the vector Maxwell’s equation (1.12) can be decomposed into two scalar

equations in R2. The two models are referred to as Transverse Electric (TE) mode

scattering and Transverse Magnetic (TM) mode scattering respectively in electrical

engineering.

Using all these assumptions, for the TE case, the magnetic field is given by

H = H(x, y) =


H1(x, y)

H2(x, y)

0

 ,

and the electric field is given by

E = E(x, y) =


0

0

E3(x, y)

 ,

where E3(x, y) = − 1

ikε33

(
∂H2(x, y)

∂x
− ∂H1(x, y)

∂y

)
.

Direct calculation then shows that E3(x, y) satisfies

∆E3 + k2ε33E3 = 0.

For the TM case, the electric field is given by

E = E(x, y) =


E1(x, y)

E2(x, y)

0

 ,

5



and the magnetic field is given by

H = H(x, y) =


0

0

H3(x, y)

 ,

where H3(x, y) =
1

ikµ

(
∂E2(x, y)

∂x
− ∂E1(x, y)

∂y

)
.

Again direct calculation shows that H3(x, y) satisfies

∇ · (A∇H3) + k2H3 = 0,

where A is a 2× 2 matrix obtained from ε given by

A =
1

det(ε)
ε where ε =

ε11 ε12

ε12 ε22

 .

1.3 Review of Qualitative Methods for Inverse Scattering Problems

Before presenting the details of our work, we shall first review the general his-

torical background of qualitative methods using a simple model problem in standard

settings.

As an illustration, consider the following forward scattering problem for a simply

connected bounded domain D (for the TE case in 2D where, following Colton and Kress

[19], we use the notation n(x) = ε33): find u and us such that

∆u+ k2n(x)u = 0 in D,

∆us + k2us = 0 in R2\D̄,

u = ui + us on ∂D,
∂u

∂ν
=

∂

∂ν
(ui + us) on ∂D,

√
r

(
∂us

∂r
− ikus

)
→ 0 as r := |x| → ∞,

(1.13)

where ui is the incident field assumed to satisfy the 2D Helmholtz equation ∆ui+k2ui =

0 except possibly for isolated point(s) outside D. A typical incoming wave is the plane

wave

ui = exp(ikx · d), (1.14)

6



where d (|d| = 1) is the direction of propagation of the wave.

If there exists a frequency k and incident field ui (not necessarily a plane wave)

such that the scattering field us is zero, then w := u|D and v := ui|D satisfy the

following homogeneous problem

∆w + k2n(x)w = 0 in D,

∆v + k2v = 0 in D,

w − v = 0 on ∂D,
∂w

∂ν
− ∂v

∂ν
= 0 on ∂D.

(1.15)

This problem is referred to as the Interior Transmission Eigenvalue problem for the

Helmholtz equation and any value k such that this homogeneous problem has nontrivial

solutions is then referred to as a Transmission Eigenvalue.

The interior transmission problem was first discussed by Colton and Monk

[21, 22] and Kirsch [39] in the mid 1980s in connection with inverse scattering for

acoustic waves in an inhomogeneous medium. For almost two decades after this, most

results on the interior transmission problem were concerned with well-posedness of the

non-homogeneous interior transmission problem. Concerning transmission eigenvalues

themselves, by an application of the analytic Fredholm theory, one can often show

that the transmission eigenvalues form at most a discrete set with infinity as the on-

ly possible accumulation point [19, 24]. Relatively recently, Päivärinta and Sylvester

[52] showed that, in the case of scalar isotropic media a finite number of transmis-

sion eigenvalues exist provided the index of refraction is large enough. Kirsch then

extended this existence result to the case of anisotropic media for both the scalar case

and Maxwell’s equations [42]. Subsequently, Cakoni and Haddar presented a general

proof for the existence of transmission eigenvalues for a wide class of scattering prob-

lems [17]. Meanwhile, Cakoni, Colton and Haddar investigated the difficult case of a

medium with cavities, i.e. regions with zero contrast [12]. Soon, Cakoni and Gintides

refined this proof by removing the assumption on the size of the index of refraction

[15]. Together with Haddar, they proved the existence of an infinite discrete set of

transmission eigenvalues and provided new results on monotonicity properties of the
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eigenvalues [16]. This latter paper opened the way to determine properties of the index

of refraction from transmission eigenvalues.

To obtain partial information on the material properties of the scattering object,

one can try to use measurements of the interior transmission eigenvalues. This problem

arises in inverse scattering theory for inhomogeneous media [21]. Of particular interest

is the spectrum associated with the interior transmission eigenvalue problem, more

specifically the existence of eigenvalues and their dependence on the material properties

of the scatterer. On the one hand, it is important to know that transmission eigenvalues

form a discrete set because one needs to avoid those frequencies that correspond to

transmission eigenvalues in, for example, standard sampling methods for reconstructing

the support of the scatterer. On the other hand, it is important to know whether

the eigenvalues exist and to understand their connection with the index of refraction

because one can then try to use the transmission eigenvalues to obtain information

about physical properties of the scatterer [11]. Either way, the spectral properties of

the interior transmission problem have become an interesting and current question in

inverse scattering theory [18].

To recover the support of the scattering object, the Linear Sampling Method

(LSM) turns out to be an efficient approach. To describe the rationale behind this

method, we recall that the last condition in (1.13) (also called the Sommerfeld radiation

condition) is imposed on the scattered field. This implies an asymptotic expansion of

the scattered field us (given ui the plane wave (1.14)) as follows:

us(x) =
eikr

r

{
u∞(x̂,d) +O

(
1

r

)}
as r := |x| → ∞ and x̂ =

x

|x|
.

Here u∞(x̂,d) is called the Far Field Pattern (FFP) of the scattered wave.

The classical LSM is then based on the following Far Field Equation (FFE):

find a function gz ∈ L2(S) such that

(Fgz)(x̂) :=

∫
S
u∞(x̂,d)gz(d) ds(d) = Φ∞(x̂, z) for all x̂ ∈ S, (1.16)

where S is the unit circle and Φ∞(x̂, z) is the Far Field Pattern (FFP) of the field due

to a point source located at the auxiliary point (sampling point) z.
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In 2D, for instance, the field due to a point source in vacuum is given by

the radiating fundamental solution to the Helmholtz equation defined by Φ(x, z) :=
i

4
H

(1)
0 (k|x − z|),x 6= z where H

(1)
0 is the zeroth order Hankel function of the first

kind. Denoting the direction of the incident plane wave by d = (cos(φ), sin(φ)) and

the observation direction x̂ = (cos(θ), sin(θ)), the FFE becomes∫ 2π

0

u∞(θ, φ)gz(φ) dφ = γ exp(−ikrz cos(θ − θz)) for θ ∈ [0, 2π),

where γ =
exp(iπ/4)√

8πk
and (rz, θz) are the polar coordinates of sampling point z.

Using the Far Field Equation (FFE), the reconstruction of the shape of D and

its transmission eigenvalues can be extracted from the function gz.

To present the theoretical underpinning for this statement, we first need some

more assumptions on the function n(x). Following [10], let n(x) ∈ C(D̄) (note this can

be generalized to n(x) > c > 0 a.e. in D such that n(x) ∈ L∞(D) and 1/|n(x)− 1| ∈

L∞(D), see [16]). In addition, let

n∗ := inf
x∈D

n(x) > 0, n∗ := sup
x∈D

n(x) <∞.

Further assume that

Im (n(x)) = 0 and either 0 < n∗ < 1 or n∗ > 1. (1.17)

Also define the Herglotz wave function corresponding to gz ∈ L2[0, 2π] by

wgz(x) =

∫ 2π

0

exp(ikx · d)gz(φ) dφ where d = (cos(φ), sin(φ)).

Then we have the following theorems:

Theorem 1.3.1 (TE case of Theorem 6.50 in [10]) Assume that D is a bounded do-

main having a C2-boundary ∂D such that R2\D̄ is connected, and n satisfies assump-

tion (1.17). Furthermore, assume that k is not a transmission eigenvalue corresponding

to the homogeneous interior transmission problem (1.15). Then we have that
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• For z ∈ D and a given ε > 0, there exists a function gεz ∈ L2[0, 2π] such that

‖Fgεz − Φ∞(·, z)‖L2[0,2π] < ε,

and the Herglotz wave function wgεz(x) with kernel gεz converges in H1(D) to a
function v ∈ H1(D) as ε→ 0, where (w, v) is the unique solution of the following
interior transmission problem

∆w + k2n(x)w = 0 in D,
∆v + k2v = 0 in D,

w − v = Φ(·, z) on ∂D,
∂w

∂ν
− ∂v

∂ν
=
∂Φ(·, z)

∂ν
on ∂D.

• For z 6∈ D and a given ε > 0, every function gεz ∈ L2[0, 2π] that satisfies

‖Fgεz − Φ∞(·, z)‖L2[0,2π] < ε

is such that
lim
ε→0
‖wgεz‖H1(D) =∞,

where again wgεz is the Herglotz wave function with kernel gεz.

Theorem 1.3.2 (TE case of Theorem 6.51 in [10]) Assume that n satisfies assumption

(1.17). Let k be a transmission eigenvalue corresponding to the homogeneous interior

transmission problem (1.15) and gεz satisfy

‖Fgεz − Φ∞(·, z)‖L2[0,2π] < ε.

Then for every z ∈ D, except possibly for a nowhere dense set, ‖wgεz‖H1(D) cannot be

bounded as ε→ 0. Here wgεz is the Herglotz wave function with kernel gεz.

From Theorem 1.3.1, we see that the shape of D can be determined by the norm

of gεz as it will be unbounded if the sampling point z 6∈ D and bounded for z ∈ D as

ε→ 0. Together with Theorem 1.3.2, Theorem 1.3.1 also suggests that for almost every

z ∈ D, wgεz behaves differently if k is a transmission eigenvalue where the norm of gεz

will be unbounded and if k is not a transmission eigenvalue where the norm of gεz will

be bounded.

The Linear Sampling Method (LSM) described above was first introduced by

Colton and Kirsch [20]. Its origin traces back to the Dual Space Method developed
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by Colton and Monk during the late 80’s. This qualitative method drew considerable

attention as a novel approach to inverse scattering theory due to its many advantages

such as the requirement of no priori assumptions about the material or the geometry

of the scattering object. Also, the numerical implementation of the LSM is very simple

and fast since as seen from (1.16), sampling is done by solving an ill-posed linear integral

equation for each sampling point z. Many books (see, e.g., [10, 13, 19, 43, 48]) have

included this approach as a way of determining the shape of an unknown object. Later

on, the LSM extended to a broad range of applications. For instance, using limited

aperture data on a subset of S in (1.16) [10] or using near field data excited by point

sources [55]. The employment of the LSM under different geometric settings is also

investigated such as inside an acoustic waveguide [49] (for inverse source problem, see

[8]). Particularly, the waveguide effect arises due to the presence of the boundary of the

waveguide which separates the wave into propagating modes and evanescent modes.

Since only a finite number of propagating modes can be captured at long distance while

all the other evanescent modes decay exponentially, it increases the ill-posedness of the

reconstruction of the scatterer.

1.4 Framework of the Thesis

In this thesis, we shall investigate two model inverse scattering problems. The

first concerns the determination of transmission eigenvalues in non-destructive testing

and the second seeks to justify the LSM for reconstructing an unknown scattering object

in a waveguide. Both involve scattering in non-constant or “complex” background

media.

In Chapter 2, we consider an interior transmission problem arising in a non-

destructive testing application. Specifically, it corresponds to inverse scattering for a

bounded isotropic dielectric medium lying on an infinite perfectly conducting surface.

The novelty here is that a mixed boundary condition appears due to the presence of

the perfect electric conducting surface. This configuration has also been considered for

the modeling of near field optical microscopes [29] and the simulation of the radiation
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of an antenna situated on a large metallic structure [4]. In particular, we investigate

the 2D scalar case of this problem where, in the corresponding scattering problem, the

dielectric medium is illuminated by time harmonic TE or TM polarized electromagnetic

waves respectively. In both cases we formulate the interior transmission problem for

the appropriate Helmholtz equation and show that the transmission eigenvalues form

an infinite discrete set. We also derive an analogue of the Faber-Krahn inequality by

converting the problem to a fourth order elliptic equation. We also show the existence

of these eigenvalues by adapting the proof in [16] with necessary modifications. Lastly,

we conduct various numerical experiments related to finding the first real transmission

eigenvalue for both TE and TM scattering. We show that real transmission eigenvalues

can be found from near field data, although in some cases the accuracy requirements

on the data is very stringent.

In Chapter 3, we are concerned with applying the LSM in a 3D electromagnetic

waveguide with bounded cross-section. This is motivated by practical applications,

for example, the detection of clogs or defects in petroleum pipes buried under the

sea floor. Analogous to the analysis for a 2D acoustic waveguide by Bourgeois and

Lunéville [9], the aim is to understand how the LSM must be modified in the case of

a 3D electromagnetic waveguide. This generalization is far from trivial in a number of

places. To name a few, in the direct problem, the Rellich’s Lemma (see Lemma 2.12

in [19]) for proving the uniqueness of the solution to the forward problem does not

hold in a waveguide due to the fact that the information carried by the exponentially

decaying modes cannot be captured in the far field. Also the problem requires a

good understanding of the background dyadic Green’s function and an elaboration of

procedures for factorizing the near field operator where the near field data is collected

on a cross section of the waveguide far away from the scattering object.

We start by justifying the forward problem. Importantly, we show the well-

posedness of the forward problem because standard results for free space don’t apply

here. Then we move to the corresponding inverse problem to show how to adapt the

LSM to the inverse electromagnetic waveguide problem. In particular, we analyze the
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background dyadic Green’s function of the waveguide, its decomposition in the vicinity

of singularity (point source), the representation formula of the scattered field as well as

the reciprocity property to prove a uniqueness theorem for determining the unknown

scatterer. Then we employ a factorization of the near field operator to justify the

LSM for the waveguide. Finally, we describe a numerical approach we use to produce

synthetic scattering data and numerical results for the reconstruction of an unknown

scatterer.

In the final chapter of the thesis, we end up with some open problems and

potential future work as well as mentioning other inverse problems that may be of

interest.
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Chapter 2

DIELECTRIC SCATTERER ON A CONDUCTING PLANE

2.1 Interior Transmission Problem

2.1.1 Configuration of the Problem

We consider a Perfect Electric Conductor (PEC) backed dielectric scattering

object illuminated by point source(s). Let D ⊂ R2 be a bounded open set having

a piecewise smooth Lipschitz boundary Γ = Γa ∪ Γm such that Γa is the interface

between the background dielectric medium Da and the domain D and Γm the interface

between the infinite perfect electric conducting substrate Dm and D (see Figure 2.1).

We assume that Dm = {(x, y)|y < 0}. The unit normal vector to ∂D directed into the

exterior of D is denoted by ν.

Figure 2.1: Configuration of plane supported domain.
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If D is illuminated by time harmonic Transverse-Electric (TE) polarized elec-

tromagnetic waves, the corresponding scattering problem is for an isotropic inhomo-

geneous media. The scattering problem for inhomogeneous media illuminated by time

harmonic Transverse-Magnetic (TM) polarized electromagnetic waves can give rise to

an anisotropic problem. We will discuss these case by case in Section 2.1.4 and Sec-

tion 2.1.5, respectively.

Remark 2.1.1 Our proofs of the discreteness and existence of transmission eigenval-

ues in the following sections do not require Γm to be a segment of the x-axis. For

example, Γm could be the finite union of smooth arcs. However, we impose the assump-

tion that Γm is a segment of the x-axis because we use this fact in some later proofs (see

Corollary 2.1.2 for TE case and Corollary 2.1.4 for TM case) and for the numerical

results (see Section 2.2).

2.1.2 Function Spaces and Preliminary Results

Concerning the spaces we will be using, first for u, v ∈ L2(D), let

(u, v)D =

∫
D

u v̄ dx and 〈u, v〉Γ =

∫
Γ

u v̄ ds

where the overbar denotes complex conjugate and denote Γ = Γa ∪ Γm. Next, we

introduce the usual energy spaces

H1(D) := {u ∈ L2(D) | ∇u ∈ (L2(D))2},

H1
0 (D) := {u ∈ H1(D) | u = 0 on Γ}.

For the scalar isotropic case, we have the following Sobolev spaces

H(div, D) := {u ∈ (L2(D))2 | ∇ · u ∈ L2(D)},

H0(div, D) := {u ∈ H(div, D) | ν · u = 0 on Γ},

H0a(div, D) := {u ∈ H(div, D) | ν · u = 0 on Γa},

and

H(D) := {u ∈ H1(D) | ∇u ∈ H(div, D)}
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:= {u ∈ L2(D),∇u ∈ (L2(D))2,∇ · (∇u) = ∆u ∈ L2(D)},

H0(D) := {u ∈ H1
0 (D) | ∇u ∈ H0(div, D)}

:= {u ∈ L2(D),∇u ∈ (L2(D))2,∇ · (∇u) = ∆u ∈ L2(D),

u = 0 on Γ, ν · ∇u = 0 on Γ},

H0a(D) := {u ∈ H1
0 (D) | ∇u ∈ H0a(div, D)}

:= {u ∈ L2(D),∇u ∈ (L2(D))2,∇ · (∇u) = ∆u ∈ L2(D),

u = 0 on Γ, ν · ∇u = 0 on Γa},

equipped with the inner product

(u, v)H(D) := (u, v)D + (∇u,∇v)D + (∆u,∆v)D.

Here H(D), H0(D) and H0a(D) are all Hilbert spaces, and H0(D) is equivalent to the

classical Sobolev space H2
0 (D) (see, e.g., [16]).

For the scalar anisotropic case, for u,v ∈ (L2(D))2, let

(u,v)D =

∫
D

u · v̄ dx and 〈u,v〉Γ =

∫
Γ

u · v̄ ds.

And we introduce the following Sobolev spaces

H1
0a(D) := {u ∈ H1(D) | u = 0 on Γa},

and

G(D) := {u ∈ H(div, D) | ∇ · u ∈ H1(D)}

:= {u ∈ (L2(D))2,∇ · u ∈ L2(D),∇(∇ · u) ∈ (L2(D))2},

G0a(D) := {u ∈ H0(div, D) | ∇ · u ∈ H1
0a(D)}

:= {u ∈ (L2(D))2,∇ · u ∈ L2(D),∇(∇ · u) ∈ (L2(D))2,

ν · u = 0 on Γ,∇ · u = 0 on Γa},

equipped with the inner product

(u,v)H(D) := (u,v)D + (∇ · u,∇ · v)D + (∇∇ · u,∇∇ · v)D.

16



With these definitions, we can further define the following continuous sesquilin-

ear forms on H0a(D)×H0a(D) and G0a(D)× G0a(D), respectively:

C(u, ξ) := (∇u,∇ξ)D, (2.1)

N (u, η) := (∇ · u,∇ · η)D . (2.2)

Let us denote by C and N the bounded linear operators from H0a(D) to H0a(D) and

G0a(D) to G0a(D), respectively, defined using the Riesz representation theorem (see

Theorem C.0.1) by

(Cu, ξ)H0a(D) = C(u, ξ) (2.3)

for all ξ ∈ H0a(D) and

(Nu, η)G0a(D) = N (u, η)

for all η ∈ G0a(D).

Then, we have the compactness of the following operators:

Lemma 2.1.1 C : H0a(D) −→ H0a(D) is a compact operator.

Proof : Let un be a bounded sequence in H0a(D). Hence there exists a subsequence,

denoted again by un, which converges weakly to u0 in H0a(D). Since ∇un is also

bounded in (H1(D))3, from the Rellich compactness theorem we have that a suitable

subsequence again denoted ∇un converges strongly to ∇u0 in (L2(D))3. But

‖C(un − u0)‖2
H0a(D) = (C(un − u0), C(un − u0))H0a(D)

= C(un − u0, C(un − u0))

= (∇(un − u0),∇[C(un − u0)])D

≤ ‖∇(un − u0)‖L2(D)‖∇[C(un − u0)]‖L2(D)

≤ ‖∇(un − u0)‖L2(D)‖C(un − u0)‖H0a(D),

which implies

‖C(un − u0)‖H0a(D) ≤ ‖∇(un − u0)‖L2(D).

This proves that Cun converges strongly to Cu0 and therefore C is compact. �
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Remark 2.1.2 As an alternate definition, one can also define the continuous sesquilin-

ear form on H1(D)×H1(D) such that

C(u, ξ) := (∇u,∇ξ)D,

then the corresponding bounded linear operator C as in (2.3) will be from H1(D) to

H1(D) and is also compact. However, in order to facilitate the analysis in the sequel,

we shall use the definition given by (2.1).

Lemma 2.1.2 N : G0a(D) −→ G0a(D) is a compact operator.

Proof : The proof is similar to the proof of Lemma 3.2 in [11]. �

2.1.3 Poincaré Type Inequality

Before discussing transmission eigenvalue problem for the geometric setting in

Figure 2.1, we shall state the following Poincaré type inequalities which summarize the

essential differences with the standard transmission eigenvalue problem:

Lemma 2.1.3 For u ∈ H0a(D), we have that

‖∇u‖2
L2(D) ≤

1

λ(D)
‖∆u‖2

L2(D), (2.4)

where λ(D) is the first eigenvalue of the buckled plate eigenvalue problem with Dirichlet

boundary condition on Γ, Neumann boundary condition on Γa and Laplacian boundary

condition on Γm. Specifically:

−∆2v = λ∆v in D,

v = 0 on Γ,
∂v

∂ν
= 0 on Γa,

∆v = 0 on Γm.
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Proof : First, from the Riesz representation theorem (see Theorem C.0.1), we define

two operators as follows:

A : H0a(D) −→ H0a(D) bounded linear operator such that

(Au, v)H(D) = (∆u,∆v)D for u, v ∈ H0a(D),

B : H0a(D) −→ H0a(D) bounded linear operator such that

(Bu, v)H(D) = (∇u,∇v)D for u, v ∈ H0a(D).

Then we have that

• The operator A is self-adjoint, positive definite (using the Poincaré type inequal-
ity (2.4) in H1

0 (D)).

• The operator B is self-adjoint, non-negative, compact (choosing B in place of C
in Lemma 2.1.1).

Next, consider the following eigenvalue problem: find λ ∈ R and non-trivial φ ∈ H0a(D)

such that

(∆φ,∆ψ)D = λ(∇φ,∇ψ)D for any ψ ∈ H0a(D). (2.5)

Then, by using the definition of operators A and B above, we have

(Aφ, ψ)H = λ(Bφ, ψ)H if and only if Aφ = λBφ in H0a(D).

Applying Theorem 2.1 and Theorem 2.2 in [17], we get

(Aφ, φ)H
(Bφ, φ)H

=
(∆φ,∆φ)D
(∇φ,∇φ)D

≥ λ1,

where (λk)k≥1 (increasing sequence of positive real numbers) are the eigenvalues of

Aφk = λkBφk and φk’s are the corresponding eigenfunctions. Then

(∇φ,∇φ)D ≤
1

λ1

(∆φ,∆φ)D.

Thus we have the desired Poincaré Inequality.

To justify that λk corresponds to the eigenvalues for the buckled plate eigenvalue

problem stated above, given φ ∈ H0a(D) smooth enough (for example, φ ∈ H4(D) ∩

H0a(D)) that satisfies the variational form in (2.5), integration by parts gives(
∆2φ+ λ∆φ, ψ

)
D

+

〈
∆φ,

∂ψ

∂ν

〉
Γ

= 0.
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Choosing ψ ∈ H0(D) so that ∇ψ ∈ H0(div, D) ⊂ H0a(div, D), we have(
∆2φ+ λ∆φ, ψ

)
D

= 0 in H0(D).

Since H0(D) is dense in L2(D), we have

∆2φ+ λ∆φ = 0 in the L2 sense.

This leads to 〈
∆φ,

∂ψ

∂ν

〉
Γ

= 0.

Now, since ψ ∈ H0a(D) is arbitrary, we have ∆φ|Γm = 0. The proof is done. �

Note 2.1.1 From Lemma 2.1.3 and the classical Poincaré inequality on H1
0 (D), we

can see that the norm ‖u‖ = ‖∆u‖L2(D) is equivalent to the one we defined for H0(D)

and H0a(D).

Lemma 2.1.4 For ∇ · u ∈ H1
0a(D), we have that

‖∇ · u‖2
L2(D) ≤

1

µ(D)
‖∇∇ · u‖2

L2(D),

where µ(D) is the first eigenvalue of −∆ on D with Dirichlet boundary condition on

Γa and Neumann boundary condition on Γm. Specifically:
−∆v = µv in D,

v = 0 on Γa,
∂v

∂ν
= 0 on Γm.

Proof : First, from the Riesz representation theorem (see Theorem C.0.1), we define

two operators as follows:

A : H1
0a(D) −→ H1

0a(D) bounded linear operator such that

(Au, v)H1(D) = (∇u,∇v)D for u, v ∈ H1
0a(D),

B : H1
0a(D) −→ H1

0a(D) bounded linear operator such that

(Bu, v)H1(D) = (u, v)D for u, v ∈ H1
0a(D).

Then we have that
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• The operator A is self-adjoint, positive definite (using the standard Poincaré
inequality in H1

0a(D) since Γa is assumed to have positive measure).

• The operator B is self-adjoint, non-negative, compact (choosing B in place of N
in Lemma 2.1.2).

Next, consider the following eigenvalue problem: find µ ∈ R and non-trivial φ ∈ H1
0a(D)

such that

(∇φ,∇ψ)D = µ(φ, ψ)D for any ψ ∈ H1
0a(D). (2.6)

Then, by using the definition of operators A and B above, we have

(Aφ, ψ)H1 = µ(Bφ, ψ)H1 if and only if Aφ = µBφ in H1
0a(D).

Applying Theorem 2.1 and Theorem 2.2 in [17], we get

(Aφ, φ)H1

(Bφ, φ)H1

=
(∇φ,∇φ)D

(φ, φ)D
≥ µ1,

where (µk)k≥1 (increasing sequence of positive real numbers) are the eigenvalues of

Aφk = µkBφk and φk’s are the corresponding eigenfunctions. Then

(φ, φ)D ≤
1

µ1

(∇φ,∇φ)D.

Thus we have the desired Poincaré Inequality.

To justify that µk corresponds to the eigenvalues of −∆ stated above, given

φ ∈ H1
0a(D) smooth enough (for example, φ ∈ H2(D) ∩ H1

0a(D)) that satisfies the

variational form in (2.6), integration by parts gives

(−∆φ− µφ, ψ)D +

〈
∂φ

∂ν
, ψ

〉
Γ

= 0.

Choosing ψ ∈ H1
0 (D) ⊂ H1

0a(D), we have

(−∆φ− µφ, ψ)D = 0 in H1
0 (D).

Since H1
0 (D) is dense in L2(D), we have

−∆φ− µφ = 0 in the L2 sense.
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This leads to 〈
∂φ

∂ν
, ψ

〉
Γ

= 0.

Now, since ψ ∈ H1
0a(D) is arbitrary, we have

∂φ

∂ν

∣∣∣∣
Γm

= 0. The proof is done. �

2.1.4 Scalar Isotropic Media

2.1.4.1 Formulation of the Problem

The interior transmission eigenvalue problem corresponding to the scattering

problem for an isotropic inhomogeneous medium (TE mode electromagnetic scattering)

with configuration as in Section 2.1.1 in R2 reads: find w and v in suitable function

spaces such that (here x = (x, y)):

∆w + k2n(x)w = 0 in D, (2.7)

∆v + k2v = 0 in D, (2.8)

w − v = 0 on Γa, (2.9)

∂w

∂ν
− ∂v

∂ν
= 0 on Γa, (2.10)

w = 0, v = 0 on Γm. (2.11)

Note that (2.7) to (2.10) arise in the standard interior transmission eigenvalue problem

when the domain D is immersed in a dielectric background. The boundary conditions

(2.11) are due to the presence of the conducting surface. Here we assume that for some

constant γ the positive real-valued function n is such that n(x) ≥ γ > 0 a.e. in D,

n ∈ L∞(D) and 1/|n(x)− 1| ∈ L∞(D). Then, with the aid of function spaces defined

in Section 2.1.2, the interior transmission eigenvalue problem becomes the following:

Find w ∈ L2(D) and v ∈ L2(D) and k ∈ R such that w − v ∈ H0a(D) satisfies (2.7),

(2.8) and (2.11), that is,

∆w + k2n(x)w = 0 in D,

∆v + k2v = 0 in D,

w = 0, v = 0 on Γm,
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where we still need to give a suitable meaning to the last boundary condition.

The real transmission eigenvalues are the values of k > 0 for which this interior

transmission problem has non-trivial solutions. The boundary conditions (2.9), (2.10)

are incorporated in the fact that w − v ∈ H0a(D).

2.1.4.2 Discreteness of Transmission Eigenvalues

Based on the analytic Fredholm theory, it is well known that, in the absence of

a conducting surface, the set of transmission eigenvalues is at most discrete with +∞

as the only possible accumulation point [19, 24, 58]. The goal here is to show that this

is also true when the conducting surface is present.

It is worth mentioning that when Γm is a segment of the x-axis, we could prove

the discreteness of the transmission eigenvalues using an image principle. Instead we

use the analytic Fredholm theory because the results extend to more general Γm (see

Remark 2.1.1). Yet an alternative approach is to use the standard Fredholm theory

along the lines of [42].

First of all, following standard procedure [16], we write (2.7),(2.8) as an equiva-

lent quadratic eigenvalue problem for u = w−v ∈ H0a(D) for a fourth order differential

equation in the following standard way: (2.7)− (2.8) implies that

∆u+ k2u = −k2(n− 1)w in D. (2.12)

Dividing both sides of (2.12) by (n− 1) and applying the operator (∆ + k2n) gives

(∆ + k2n)
1

n− 1
(∆u+ k2u) = 0 in D. (2.13)

Also from (2.12) we have that

w = − 1

k2

1

n− 1
(∆u+ k2u).

Then the boundary condition w = 0 in (2.11) implies that

1

n− 1
(∆u+ k2u) = 0 on Γm,
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which will turn out to be a natural boundary condition for u.

Note that in addition u = w − v ∈ H0a(D) implies that

u = 0 on Γ,
∂u

∂ν
= 0 on Γa.

Thus if k is a transmission eigenvalue, then there is a non-trivial solution u ∈ H0a(D)

to the following problem:

(∆ + k2n)
1

n− 1
(∆u+ k2u) = 0 in D,

u = 0 on Γ,
∂u

∂ν
= 0 on Γa,

1

n− 1
(∆u+ k2u) = 0 on Γm.

To study this eigenvalue problem, we write it in variational form. To this end,

we multiply (2.13) by the complex conjugate of a test function ψ̄ ∈ H0a(D). Denote

by β =
1

n− 1
(∆u+ k2u), then integration by parts twice shows that

(
∆β + k2nβ, ψ

)
D

= (β,∆ψ)D −
〈
β,
∂ψ

∂ν

〉
Γ

+
(
k2nβ, ψ

)
D
.

Using all the boundary conditions, we get the variational form of the interior trans-

mission eigenvalue problem of finding a function u ∈ H0a(D), u 6= 0 and k ∈ R such

that (
1

n− 1
(∆u+ k2u),∆ψ + k2nψ

)
D

= 0 for all ψ ∈ H0a(D).

Notice that (2.13) can be rewritten as(
1

n− 1
(∆u+ k2u),∆ψ + k2ψ

)
D

+ k2
(
∆u+ k2u, ψ

)
D

= 0.

By applying integration by parts again, we can finally reach the following equivalent

form of finding a function u ∈ H0a(D), u 6= 0 and k ∈ R such that

Bk(u, ψ)− k2C(u, ψ) = 0 for all ψ ∈ H0a(D), (2.14)
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where

Bk(u, ψ) :=

(
1

n− 1
(∆u+ k2u), (∆ψ + k2ψ)

)
D

+ k4(u, ψ)D,

and C is defined as in (2.1).

In a similar fashion, the transmission eigenvalue problem can also be written as

the problem of finding a non-trivial u ∈ H0a(D) and k such that

(∆ + k2)
1

1− n
(∆u+ k2nu) = 0 in D,

u = 0 on Γ,
∂u

∂ν
= 0 on Γa,

1

1− n
(∆u+ k2nu) = 0 on Γm,

where the natural boundary condition for u on Γm arises from the condition v = 0 in

(2.11).

In this way, the corresponding variational form is to find a function u ∈ H0a(D), u 6=

0 and k ∈ R such that

B̃k(u, ψ)− k2C(u, ψ) = 0 for all ψ ∈ H0a(D), (2.15)

where

B̃k(u, ψ) :=

(
1

1− n
(∆u+ k2nu), (∆ψ + k2nψ)

)
D

+ k4(nu, ψ)D

=

(
n

1− n
(∆u+ k2u), (∆ψ + k2ψ)

)
D

+ (∆u,∆ψ)D,

and C is the same as before.

Clearly, Bk(·, ·) and B̃k(·, ·) are continuous sesquilinear forms on H0a(D) ×

H0a(D). Let us denote by Bk and B̃k the bounded linear operators from H0a(D)

to H0a(D) defined using the Riesz representation theorem (see Theorem C.0.1) by

(Bku, ψ)H0a(D) = Bk(u, ψ), (2.16)

(B̃ku, ψ)H0a(D) = B̃k(u, ψ), (2.17)

for all ψ ∈ H0a(D).

Now we can state and prove the following theorem:
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Theorem 2.1.1 (Discreteness) If
1

n(x)− 1
> α > 0 a.e. in D for some constant

α > 0, then

1. The set of transmission eigenvalues is at most discrete and does not accumulate
at 0.

2. All real transmission eigenvalues, if they exist, are such that k2 ≥ λ(D)

supD(n)
where

λ(D) is the first eigenvalue of the buckled plate eigenvalue problem stated in
Lemma 2.1.3.

Proof : To prove the first part of the theorem we consider the formulation (2.14).

Indeed, following the proof in [17], we have

Bk(u, u) =

(
1

n(x)− 1
(∆u+ k2u),∆u+ k2u

)
D

+ k4(u, u)D

≥ α‖∆u+ k2u‖2
L2(D) + k4‖u‖2

L2(D)

≥ α
(
‖∆u‖L2(D) − ‖k2u‖L2(D)

)2
+
(
k2‖u‖L2(D)

)2

= αX2 − 2αXY + (α + 1)Y 2,

where X = ‖∆u‖L2(D) and Y = k2‖u‖L2(D). Then we obtain

Bk(u, u) ≥ ε
(
Y − α

ε
X
)2

+

(
α− α2

ε

)
X2 + (1 + α− ε)Y 2, (2.18)

for α < ε < α + 1. By setting ε = α + 1/2, we have that

Bk(u, u) ≥ α

1 + 2α
(X2 + Y 2).

Also notice that, using Lemma 2.1.3,

‖u‖H(D) = (u, u)H(D) = (u, u)D + (∇u,∇u)D + (∆u,∆u)D

=

(
Y

k2

)2

+ ‖∇u‖2
L2(D) +X2

≤
(
Y

k2

)2

+
1

λ(D)
‖∆u‖2

L2(D) +X2

=

(
1 +

1

λ(D)

)
X2 +

(
1

k4

)
Y 2.
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Then the above estimate yields the existence of a constant ck > 0 (independent of u

and α) such that

Bk(u, u) ≥ ck
α

1 + 2α
‖u‖2

H(D).

Hence the sesquilinear form Bk(·, ·) is coercive in H0a(D) ×H0a(D) and consequently

the operator Bk : H0a(D) −→ H0a(D) is a bijection for fixed k.

To use the analytic Fredholm theory, we first have the following observations:

• The sesquilinear form Bk(·, ·) is analytic in k.

• Denote by L(·, ·) the set of all bounded linear operators from one Banach s-
pace to another. Define the operator valued function f : k ∈ C → Bk ∈
L(H0a(D),H0a(D)) such that for each u ∈ H0a(D), the function fu : k ∈ C 7→
Bku ∈ H0a(D) is weakly analytic. This is true since for each l ∈ [H0a(D)]∗ :=
L(H0a(D),C) where ∗ represents the dual space, we have that

l(fu(k)) = l(Bku) = (Bku, ψ)H0a(D) = Bk(u, ψ) ∈ C for some ψ ∈ H0a(D)

is analytic in k. Then by Theorem C.0.2 and Theorem C.0.3, f is strongly
analytic.

• By the Lax-Milgram Lemma (Theorem C.0.4), there exists a bounded linear
inverse operator B−1

k of Bk in a neighborhood of the positive real axis and in
particular, this inverse B−1

k is also strongly analytic in k.

Then we show that the operator Bk − k2C : H0a(D) −→ H0a(D) is an isomor-

phism for k > 0 small enough. From (2.18) and Lemma 2.1.3, we have for α < ε < α+1,

Bk(u, u)− k2C(u, u) ≥ ε
(
Y − α

ε
X
)2

+

(
α− α2

ε

)
X2 + (1 + α− ε)Y 2 − k2‖∇u‖2

L2(D)

≥
(
α− α2

ε

)
X2 + (1 + α− ε)Y 2 − k2‖∇u‖2

L2(D)

≥
(
α− α2

ε
− k2

λ(D)

)
‖∆u‖2

L2(D) + (1 + α− ε)k4‖u‖2
L2(D).

Therefore, if k2 < (α−α2/ε)λ(D) for every α < ε < α+ 1, then Bk−k2C is invertible,

whence the analytic Fredholm theory (see Theorem 8.26 in [19]) implies that the set

of transmission eigenvalue is at most discrete.
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In particular, by choosing α =
1

n∗ − 1
where n∗ = supD n(x) and taking ε

arbitrarily close to α+ 1 we have that if k2 <
α

α + 1
λ(D) =

λ(D)

supD n(x)
then k is not a

transmission eigenvalue.

The second part of the theorem is a consequence of the proof of part 1. �

Alternatively, for 0 < n(x) < 1 we have,

Theorem 2.1.2 (Discreteness) If
n(x)

1− n(x)
> α > 0 a.e. in D for some constant

α > 0, then

1. The set of transmission eigenvalues is at most discrete and does not accumulate
at 0.

2. All transmission eigenvalues, if they exist, are such that k2 ≥ λ(D) where λ(D) is
the first eigenvalue of the buckled plate eigenvalue problem stated in Lemma 2.1.3.

Proof : The proof is similar to the proof of Theorem 2.1.1. Here we need to use the

sesquilinear form (2.15). Again, following the proof in [17], similar to the derivation in

Theorem 2.1.1, we have

B̃k(u, u) ≥ ε
(
X − α

ε
Y
)2

+

(
α− α2

ε

)
Y 2 + (1 + α− ε)X2, (2.19)

for α < ε < α + 1, where X = ‖∆u‖L2(D) and Y = k2‖u‖L2(D).

Proceeding in the same way as in the first part of Theorem 2.1.1, we have again

B̃k(u, u) ≥ α

1 + 2α
(X2 + Y 2).

Consequently, we can conclude again that

B̃k(u, u) ≥ ck
α

1 + 2α
‖u‖2

H(D),

where ck > 0 is a constant independent of u and α, whence B̃k(·, ·) is a coercive

sesquilinear form in H0a(D)×H0a(D).

Arguing exactly in the same way as in the first part of Theorem 2.1.1 we conclude

from analytic Fredholm theory that B−1
k is strongly analytical in k. Finally, to show
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that B̃k − k2C is invertible for k small enough, using (2.19) and Lemma 2.1.3 for

α < ε < α + 1 we have that

B̃k(u, u)− k2C(u, u) ≥
(
α− α2

ε

)
k4‖u‖2

L2(D) +

(
1 + α− ε− k2

λ(D)

)
‖∆u‖2

L2(D).

Therefore, if k2 < (α+ 1− ε)λ(D) for every α < ε < α+ 1, then B̃k−k2C is invertible,

whence the analytic Fredholm theory implies that the set of transmission eigenvalue is

at most discrete.

In particular, by taking ε > 0 arbitrarily close to α we have that k such that

k2 < λ(D) are not transmission eigenvalues.

The second part of the theorem is a consequence of the proof of part 1. �

Next we want to provide bounds on transmission eigenvalues. Notice that from

the assumption of Theorem 2.1.1

1

n(x)− 1
> α > 0 which means n(x) ≥ δ∗ > 1

a.e. in D for some constant δ∗ > 0.

Similarly, from the assumption of Theorem 2.1.2

n(x)

1− n(x)
> α > 0 which means n(x) ≤ δ∗ < 1

a.e. in D for some constant δ∗ > 0.

Then, as a direct result of Theorem 2.1.1 and Theorem 2.1.2, we have the

following consequence:

Corollary 2.1.1 (Faber-Krahn inequality)

1. Assume that n(x) ≥ δ > 1 for all x ∈ D and some constant δ. Then, if k is a
transmission eigenvalue,

k2 ≥ λ(D)

supD n(x)
.

2. Assume that 0 < γ ≤ n(x) ≤ δ < 1 for all x ∈ D and some constants γ and δ.
Then, if k is a transmission eigenvalue,

k2 ≥ λ(D).

Here λ(D) is the first eigenvalue of the buckled plate eigenvalue problem stated in

Lemma 2.1.3.
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2.1.4.3 Existence of Transmission Eigenvalues

The next theorem confirms that transmission eigenvalue exists. It can be ex-

tended to more general Γm (see Remark 2.1.1). The key result we use for the existence

is Lemma C.0.5.

Theorem 2.1.3 Let n ∈ L∞(D) satisfy either one of the following assumptions:

(1). 1 + α ≤ n∗ ≤ n(x) ≤ n∗ ≤ ∞,

(2). 0 < n∗ ≤ n(x) ≤ n∗ < 1− β,

for some constants α > 0 and β > 0. Then there exists an infinite set of transmission

eigenvalues with +∞ as the only accumulation point.

Proof : First of all, the discreteness of the transmission eigenvalues is proved in the last

section by noticing that the first assumption satisfies the condition of Theorem 2.1.1

and the second assumption satisfies the condition of Theorem 2.1.2.

For existence, we adopt the proof of Theorem 2.5 in [16] with certain necessary

modifications. Suppose assumption (1) holds which implies that

0 <
1

n∗ − 1
≤ 1

n− 1
≤ 1

n∗ − 1
<∞.

Then Bk and C defined by (2.16) and (2.3) satisfy the requirements of Theorem C.0.5

with X = H0a(D) and from the proof of Theorem 2.1.1 they also satisfy the assumption

(1) of Theorem C.0.5 with τ0 := k2 < λ(D)/n∗, that is, Bτ0 − τ0C (equivalent to

Bk − k2C) is positive on X.

Next, let k1,n∗ be the first transmission eigenvalue for the disk S of radius R = 1

and n := n∗. By a scaling argument, kε,n∗ := k1,n∗/ε is the first transmission eigenvalue

corresponding to the disk of radius ε > 0 with n := n∗. Take ε > 0 small enough such

that D contains m := m(ε) ≥ 1 disjoint disks S1
ε , S

2
ε , · · · , Smε of radius ε, then kε,n∗ :=

k1,n∗/ε is the first transmission eigenvalue for each of these disks with n := n∗ and let

uS
j
ε ,n∗ ∈ H2

0 (Sjε ), j = 1, · · · ,m be the corresponding eigenfunction. The extension by

zero ũj of uS
j
ε ,n∗ to the whole D is then in H2

0 (D) ⊂ H0a(D). Furthermore, the vectors
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{ũ1, ũ2, . . . , ũm} are linearly independent and orthogonal in H2
0 (D) ⊂ H0a(D) and we

have that

0 =

(
1

n∗ − 1
(∆ũj + k2

ε,n∗ũ
j),∆ũj + k2

ε,n∗ũ
j

)
D

=
1

n∗ − 1
‖∆ũj + k2

ε,n∗ũ
j‖2
L2(D) + k4

ε,n∗‖ũ
j‖2
L2(D) − k2

ε,n∗‖∇ũ
j‖2
L2(D)

for j = 1, . . . ,m.

Denote by U the m-dimensional subspace of H2
0 (D) ⊂ H0a(D) spanned by

{ũ1, ũ2, . . . , ũm}. Then we have that for τ1 := k2
ε,n∗ and for every ũ ∈ U

(Bτ1ũ− τ1Cũ, ũ)H0a(D)

= (Bkε,n∗ ũ− k
2
ε,n∗Cũ, ũ)H0a(D) = Bkε,n∗ (ũ, ũ)− k2

ε,n∗Ckε,n∗ (ũ, ũ)

=

(
1

n− 1
∆ũ+ k2

ε,n∗ũ,∆ũ+ k2
ε,n∗ũ

)
D

+ k4
ε,n∗‖ũ‖

2
L2(D) − k2

ε,n∗‖∇ũ‖
2
L2(D)

≤ 1

n∗ − 1
‖∆ũ+ k2

ε,n∗ũ‖
2
L2(D) + k4

ε,n∗‖ũ‖
2 dx− k2

ε,n∗‖∇ũ‖
2
L2(D) = 0.

This means that assumption (2) of Theorem C.0.5 is also satisfied and therefore we

can conclude that there are m(ε) transmission eigenvalues (counting multiplicity) inside

[τ0, τ1] = [τ0, k
2
ε,n∗ ]. Then by letting ε → 0, we can show that there exists an infinite

countable set of transmission eigenvalues that accumulate at ∞.

If assumption (2) of the theorem holds, we have that

0 <
n∗

1− n∗
≤ n

1− n
≤ n∗

1− n∗
<∞.

Then use B̃k and C defined by (2.17) and (2.3), let X = H0a(D), choose τ0 := k2 ≤

λ(D), τ1 := k2
ε,n∗ , proceed the similar argument, we can prove the same result. �

Note 2.1.2 The first transmission eigenvalue for the disk S we mentioned in the above

theorem is the first real non-zero eigenvalue of:

∆w + k2n0w = 0 in S,

∆v + k2v = 0 in S,

w − v = 0 on ∂S,
∂w

∂ν
− ∂v

∂ν
= 0 on ∂S,
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where n0 > 0 is a constant and n0 6= 1. It can be computed by separation of variables

and then finding the zeros of the appropriate determinant (see [16] for details).

Like Corollary 2.6 in [16], we can also obtain estimates for transmission eigen-

values by using Theorem 2.1.3. Our proof requires the flatness of boundary Γm as

mentioned in Remark 2.1.1.

We denote by Sr1 the largest disk of radius r1 such that Sr1 ⊂ D and Ŝr2 the

smallest half disk of radius r2 such that D ⊂ Ŝr2 . Denote k1,n∗ the first transmission

eigenvalue corresponding to the disk S1 of radius one with n := n∗ and k̂1,n∗ the first

transmission eigenvalue corresponding to the half disk Ŝ1 of radius one with n := n∗.

We have seen that k1,n∗ can be computed since Sr1 is not touching the boundary

of conducting surface. On the other hand, to find transmission eigenvalues for the half

disk Ŝ1 with constant n := n̂0 (n̂0 > 0, n̂0 6= 1), the corresponding interior transmission

problem is to find eigenvalues of:

∆w + k2n̂0w = 0 in Ŝ1,

∆v + k2v = 0 in Ŝ1,

w − v = 0 on ∂Ŝ1a,
∂w

∂ν
− ∂v

∂ν
= 0 on ∂Ŝ1a,

w = 0, v = 0 on ∂Ŝ1m,

where ∂Ŝ1a is the interface of domain Ŝ1 and the background dielectric medium Da and

∂Ŝ1m is the interface of domain Ŝ1 and the infinite perfect electric conducting substrate

Dm.

The idea here is to extend the half disk to a full disk S1 so that the problem

becomes one for the full disk considered in Note 2.1.2. Solutions to the Helmholtz

equation for w and v are:

w : Jm(k
√
n̂0r) cos(mθ) and Jm(k

√
n̂0r) sin(mθ), m = 0, 1, . . .

v : Jm(kr) cos(mθ) and Jm(kr) sin(mθ), m = 0, 1, . . . .

Then we drop the solutions that do not meet boundary condition on ∂Ŝ1m, that is,

those depending on cos(mθ) (even eigenfunctions) and make the remainder satisfy the
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boundary conditions on ∂Ŝ1a. Consequently, the transmission eigenvalues correspond-

ing to the half disk can be computed by finding the zeros of the following determinant:

det

 Jm(kr) Jm(k
√
n̂0r)

−J ′m(kr) −
√
nJ ′m(k

√
n̂0r)

 .

Note that sin(mθ) = 0 when m = 0, so k̂1,n̂0 is the first zero of

det

 J1(kR) J1(k
√
n̂0R)

−J ′1(kR) −
√
n̂0J

′
1(k
√
n̂0R)

 ,

where R = 1. Correspondingly, when n := n∗, k̂1,n∗ is the first zero of

det

 J1(kR) J1(k
√
n∗R)

−J ′1(kR) −
√
n∗J ′1(k

√
n∗R)

 .

By a scaling argument, we have that k̂ε,n∗ := k̂1,n∗/ε is the first transmission eigenvalue

corresponding to half disk of radius ε > 0 with n := n∗.

For a given 0 < ε ≤ r1 let m(ε) ∈ N be the number of disjoint balls Sε of radius

ε that are contained in D, we have the following corollary:

Corollary 2.1.2 Assume that n(x) ∈ L∞(D), then

(1). If 1 + α ≤ n∗ ≤ n(x) ≤ n∗ <∞, then

0 <
k̂1,n∗

r2

≤ k1,D,n(x) ≤
k1,n∗

r1

.

There are at least m(ε) transmission eigenvalues in the interval
[
k̂1,n∗

r2
, k1,n∗

ε

]
.

(2). If 0 < n∗ ≤ n(x) ≤ n∗ < 1− β, then

0 <
k̂1,n∗

r2

≤ k1,D,n(x) ≤
k1,n∗

r1

.

There are at least m(ε) transmission eigenvalues in the interval
[
k̂1,n∗
r2
,
k1,n∗

ε

]
.

Proof : We first suppose that assumption (1) holds. Then, for any u ∈ H0a(D), we

have the following inequality for the Rayleigh quotient (Bτu, u)H0a(D)/(Cu, u)H0a(D),

that is,

(Bτu, u)H0a(D)

(Cu, u)H0a(D)

∣∣∣∣
n=n∗

≤
(Bτu, u)H0a(D)

(Cu, u)H0a(D)

∣∣∣∣
n=n

.
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Or equivalently,

1
n∗−1
‖∆u+ τu‖2

L2(D) + τ 2‖u‖2
L2(D)

‖∇u‖2
L2(D)

≤
∫
D

1
n(x)−1

|∆u+ τu|2 dx+ τ 2‖u‖2
L2(D)

‖∇u‖2
L2(D)

.(2.20)

From formula (2.1) in [16], corresponding to our case,

λj = min
W⊂Uj

(
max

u∈W\{0}

(Bτu, u)H0a(D)

(Cu, u)H0a(D)

)
, (2.21)

where Uj denotes the set of all j dimensional subspaces W of H0a(D) such that W ∩

ker(C) = {0}. We now argue that for an arbitrary τ > 0,

λ1(τ, Ŝr2 , n
∗)

1©
≤ λ1(τ,D, n∗)

2©
≤ λ1(τ,D, n(x)), (2.22)

where λ1(τ,D, n∗) and λ1(τ,D, n(x)) are the first eigenvalue of the auxiliary problem

for D and n∗, n(x), respectively, whereas λ1(τ, Ŝr2 , n
∗) is the first eigenvalue of the

auxiliary problem for Ŝr2 and n∗. The auxiliary eigenvalue problems are

Bτu− λ(τ)Cu = 0 where u ∈ H0a(D) if 1/(n− 1) > γ > 0,

and

B̃τu− λ(τ)Cu = 0 where u ∈ H0a(D) if n/(1− n) > γ > 0.

Clearly, from (2.21), inequality 2© holds because of (2.20); inequality 1© also holds

by noting that the extension by zero û of u ∈ U1 ⊂ H0a(D) to the whole Ŝr2 is in

Û1 ⊂ H0a(Ŝr2).

Thus, we have

• For τ1 := (k1,n∗/r1)2, Sr1 ⊂ D, from the proof Theorem 2.1.3 we have that
λ1(τ1, D, n(x))− τ1 ≤ 0.

• For τ0 := (k̂1,n∗/r2)2, D ⊂ Ŝr2 , we have λ1(τ0, Ŝr2 , n
∗) − τ0 = 0 and hence from

(2.22) we see that λ1(τ0, D, n(x))− τ0 ≥ 0.

Therefore, the first eigenvalue k1,D,n(x) corresponding to D and n(x) is between

k̂1,n∗/r2 and k1,n∗/r1. Also there is no transmission eigenvalue for D and n(x) that

is less than k̂1,n∗/r2 (see Corollary 2.6 in [16] for a similar argument). The case for

0 < n∗ ≤ n(x) ≤ n∗ < 1− β can be proven in a similar way. �
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Remark 2.1.3 From the proof of Theorem 2.1.1, Theorem 2.1.2 and Corollary 2.1.2
we have that

1. If 1 + α ≤ n∗ ≤ n(x) ≤ n∗ <∞, then

k1,D,n(x) ≥ max

(
k̂1,n∗

r2

,

√
λ(D)

n∗

)
.

2. If 0 < n∗ ≤ n(x) ≤ n∗ < 1− β, then

k1,D,n(x) ≥ max

(
k̂1,n∗

r2

,
√
λ(D)

)
.

Here λ(D) is the first eigenvalue of the buckled plate eigenvalue problem stated in

Lemma 2.1.3.

2.1.5 Scalar Anisotropic Media

2.1.5.1 Formulation of the Problem

The interior transmission eigenvalue problem corresponding to the scattering

problem for an anisotropic inhomogeneous medium (TM mode electromagnetic scat-

tering) with configuration as in Figure 2.1 in R2 reads: find ŵ and v̂ in suitable function

spaces such that

∇ · (A(x)∇ŵ) + k2ŵ = 0 in D, (2.23)

∆v̂ + k2v̂ = 0 in D, (2.24)

ŵ − v̂ = 0 on Γa, (2.25)

∂ŵ

∂νA
− ∂v̂

∂ν
= 0 on Γa, (2.26)

∂ŵ

∂νA
= 0,

∂v̂

∂ν
= 0 on Γm, (2.27)

where
∂ŵ

∂νA
= ν(x) · A(x)∇ŵ.

Note that (2.23) to (2.26) arise in the standard interior transmission eigenvalue

problem when the domain D is immersed in a dielectric background. The boundary

conditions (2.27) are due to the presence of the conducting surface. Here we assume
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that A is a real valued 2 × 2 matrix-valued function whose entries are piecewise con-

tinuously differentiable functions in D̄ with (possible) jumps along piecewise smooth

curves such that A is symmetric and ξ̄ ·Aξ ≥ γ|ξ|2, ξ̄ ·A−1ξ ≥ β|ξ|2 for all ξ ∈ C2 and

x ∈ D̄ where γ, β are positive constants.

Let w = A(x)∇ŵ and v = ∇v̂, then following the derivation in [11], the

interior transmission eigenvalue problem for this case becomes the following: Find

w ∈ (L2(D))2,v ∈ (L2(D))2 and k ∈ R such that w − v ∈ G0a(D) and the functions

satisfy

∇(∇ ·w) + k2A−1w = 0 in D, (2.28)

∇(∇ · v) + k2v = 0 in D, (2.29)

ν ·w = 0, ν · v = 0 on Γm. (2.30)

The boundary conditions (2.25), (2.26) are incorporated in the fact that w − v ∈

G0a(D). Thus we establish the follow result:

Lemma 2.1.5 If k is a transmission eigenvalue, that is, if there exists non-trivial func-

tions ŵ ∈ H1(D) and v̂ ∈ H1(D) that satisfie (2.23) to (2.27), then w = A(x)∇ŵ ∈

(L2(D))2 and v = ∇v̂ ∈ (L2(D))2 satisfy w − v ∈ G0a(D) and (2.28) to (2.30).

2.1.5.2 Discreteness of Transmission Eigenvalues

Similar to Section 2.1.4, the goal here is to show that the set of transmission

eigenvalues is at most discrete with +∞ as the only possible accumulation point when

the conducting surface is present.

We can write (2.28),(2.29) as an equivalent eigenvalue problem for u = w−v ∈

G0a(D) for a fourth order differential equation in the following way: (2.28) − (2.29)

implies that

∇(∇ · u) + k2u = −k2(A−1 − I)w in D. (2.31)
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Multiplying both sides of (2.31) by (A−1 − I)−1 and applying the operator (∇∇ ·

+k2A−1) gives

(∇∇ ·+k2A−1)(A−1 − I)−1(∇∇ · u + k2u) = 0 in D. (2.32)

Also from (2.31) we have that

w = − 1

k2
(A−1 − I)−1(∇∇ · u + k2u).

Then the boundary condition ν ·w = 0 in (2.30) implies that

ν · (A−1 − I)−1(∇∇ · u + k2u) = 0 on Γm.

Note that in addition u = w − v ∈ G0a(D) implies that

ν · u = 0 on Γ, ∇ · u = 0 on Γa.

Thus if k is a transmission eigenvalue, then there is a non-trivial solution u ∈ G0a(D)

to the following problem:

(∇∇ ·+k2A−1)(A−1 − I)−1(∇∇ · u + k2u) = 0, in D,

ν · u = 0 on Γ,

∇ · u = 0 on Γa,

ν · (A−1 − I)−1(∇∇ · u + k2u) = 0 on Γm.

To study this eigenvalue problem, we write it in variational form. To this end, we

multiply (2.32) by the complex conjugate of a test function ψ̄ ∈ G0a(D), denote by

β = (A−1 − I)−1(∇∇ · u + k2u), then using the fact that A is symmetric, integration

by parts twice shows that

(
∇∇ · β + k2A−1β, ψ

)
D

= −〈β · ν,∇ · ψ〉Γ + (β,∇(∇ · ψ))D +
(
β, k2A−1ψ

)
D
.

Using all the boundary conditions, we get the variational problem of finding a function

u ∈ G0a(D),u 6= 0 and k ∈ R such that

(
(A−1 − I)−1(∇∇ · u + k2u),∇∇ · ψ + k2A−1ψ

)
D

= 0 for all ψ ∈ G0a(D). (2.33)
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Using the fact that A−1(A−1 − I)−1 = [(A−1 − I) + I](A−1 − I)−1 = I + (A−1 − I)−1,

(2.33) can be rewritten as

(
(A−1 − I)−1(∇∇ · u + k2u),∇∇ · ψ + k2ψ

)
D

+
(
∇∇ · u + k2u, k2ψ

)
D

= 0.

By applying integration by parts again, we can finally reach the following equivalent

form of finding a function u ∈ G0a(D),u 6= 0 and k ∈ R such that

Mk(u, ψ)− k2N (u, ψ) = 0 for all ψ ∈ G0a(D),

where

Mk(u, ψ) :=
(
(A−1 − I)−1(∇∇ · u + k2u),∇∇ · ψ + k2ψ

)
D

+ k4 (u, ψ)D ,

and N is defined as in (2.2).

In a similar fashion, the transmission eigenvalue problem can also be written as

the problem of finding a non-trivial u ∈ G0a(D) and k such that

(∇∇ ·+k2)(I − A−1)−1(∇∇ · u + k2A−1u) = 0 in D,

ν · u = 0 on Γ,

∇ · u = 0 on Γa,

ν · (I − A−1)−1(∇∇ · u + k2A−1u) = 0 on Γm,

where the natural boundary condition for u on Γm arises from the condition ν · v = 0

in (2.30).

In this way, the corresponding variational form is to find a function u ∈ G0a(D),u 6=

0 and k ∈ R such that

M̃k(u, ψ)− k2N (u, ψ) = 0 for all ψ ∈ G0a(D),

where

M̃k(u, ψ) :=
(
(I − A−1)−1(∇∇ · u + k2A−1u),∇∇ · ψ + k2A−1ψ

)
D

+ k4
(
A−1u, ψ

)
D
,

and N is the same as before.
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The analysis now proceeds along similar lines to the analysis of the TE case.

Clearly, Mk(·, ·) and M̃k(·, ·) are continuous sesquilinear forms in G0a(D) × G0a(D).

Let us denote by Mk and M̃k the bounded linear operators from G0a(D) to G0a(D)

defined using the Riesz representation theorem by

(Mku, ψ)G0a(D) = Mk(u, ψ),

(M̃ku, ψ)G0a(D) = M̃k(u, ψ),

for all ψ ∈ G0a(D).

Now we can state the following theorems:

Theorem 2.1.4 (Discreteness) Assume that ξ̄ · (A−1− I)−1ξ ≥ α|ξ|2 in D and for all

ξ ∈ C2 where α > 0 is a constant. Then

1. The set of transmission eigenvalues is at most discrete and does not accumulate
at 0.

2. All transmission eigenvalues, if they exist, are such that k2 ≥ α

1 + α
µ(D) where

µ(D) is the first eigenvalue of −∆ on D with boundary conditions stated in Lem-
ma 2.1.4.

Theorem 2.1.5 (Discreteness) Assume that ξ̄ ·A−1(I−A−1)−1ξ ≥ α|ξ|2 in D and for

all ξ ∈ C2 where α > 0 is a constant. Then

1. The set of transmission eigenvalues is at most discrete and does not accumulate
at 0.

2. All transmission eigenvalues, if they exist, are such that k2 ≥ µ(D) where µ(D) is
the first eigenvalue of −∆ on D with boundary conditions stated in Lemma 2.1.4.

The proof of these two theorems is similar to the proof of Theorem 3.1 and

Theorem 3.2 in [11] and it is worth pointing out that whenever the Poincaré inequality

is applied in the proof, it should be the one from Lemma 2.1.4 as using Lemma 2.1.3

in our proof of Theorem 2.1.1 and Theorem 2.1.2.

Next, we want to provide bounds on transmission eigenvalues and we have the

following corollary:
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Corollary 2.1.3 (Faber-Krahn inequality)

1. Assume that ‖A−1‖2 ≥ δ > 1 for all x ∈ D and some constant δ. Then, if k is a
transmission eigenvalue,

k2 ≥ λ(D)

supD ‖A−1‖2

.

2. Assume that 0 < β ≤ ‖A−1‖2 ≤ δ < 1 for all x ∈ D and some constants β and
δ. Then, if k is a transmission eigenvalue,

k2 ≥ λ(D).

Here λ(D) is the first eigenvalue of −∆ on D with boundary conditions stated in

Lemma 2.1.4.

Proof : The proof is similar to the proof of Theorem 3.3 in [11]. �

2.1.5.3 Existence of Transmission Eigenvalues

The next result confirms that transmission eigenvalue exists:

Theorem 2.1.6 Given A defined in Section 2.1.5.1, let A−1 ∈ L∞ (D,R2×2) satisfy
either one of the following assumptions:

(1). 1 + α ≤ n∗ ≤ (ξ̄ · A(x)−1ξ) ≤ n∗ ≤ ∞,

(2). 0 < n∗ ≤ (ξ̄ · A(x)−1ξ) ≤ n∗ < 1− β,

for every ξ ∈ C2 such that ‖ξ‖ = 1 and some constants α > 0 and β > 0. Then there

exists an infinite set of transmission eigenvalues with +∞ as the only accumulation

point.

Proof : This theorem can be proven in the same way as Theorem 2.1.3. In particular,

the proof is similar to the discussion of Problem 2 of Section 2.3 as well as Theorem

2.10 in [16] by noting that H0(D) in that reference is a subspace of G0a(D) here. �

In the same way as in our discussion in Note 2.1.2, we need the first transmission

eigenvalue corresponding to the disk of radius one as well as the half disk of radius one,

respectively.
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For the full unit disk S1, we need to consider the first real non-zero eigenvalue

of 

∆w + k2n0w = 0 in S1,

∆v + k2v = 0 in S1,

w − v = 0 on ∂S1,
1

n0

∂w

∂ν
− ∂v

∂ν
= 0 on ∂S1,

(2.34)

where n0 > 0 is a constant and n0 6= 1. This is standard and can be computed by

separation of variables and then finding the zeros of the appropriate determinant.

For the half unit disk Ŝ1, we need to consider the first real non-zero eigenvalue

of 

∆w + k2n̂0w = 0 in Ŝ1,

∆v + k2v = 0 in Ŝ1,

w − v = 0 on ∂Ŝ1a,
1

n̂0

∂w

∂ν
− ∂v

∂ν
= 0 on ∂Ŝ1a,

1

n̂0

∂w

∂ν
= 0,

∂v

∂ν
= 0 on ∂Ŝ1m,

(2.35)

where n̂0 > 0 is a constant and n̂0 6= 1. Similar to the argument before Corollary 2.1.2,

we can convert this to a standard problem by extending the half disk Ŝ1 to a full disk

S1 and drop the solutions that do not meet the boundary conditions on ∂Ŝ1m, that is,

odd eigenfunctions. Then the eigenvalues can be computed by finding the zeros of the

appropriate determinant.

Without confusion, we use the same notation as in Section 2.1.4.3 and denote

by k1,n∗ and k̂1,n∗ the first transmission eigenvalue of problem (2.34) with n0 := n∗ and

problem (2.35) with n0 := n∗, respectively. With no surprises, we have results similar

to Corollary 2.1.2 and Remark 2.1.3:

Corollary 2.1.4 Assume that A−1 ∈ L∞ (D,R2×2), and let k1,D,A−1(x) be the first

transmission eigenvalue for (2.28) to (2.30) with w − v ∈ G0a(D). Then
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(1). If 1 + α ≤ n∗ ≤ (ξ̄ ·A(x)−1ξ) ≤ n∗ ≤ ∞ for every ξ ∈ C2 such that ‖ξ‖ = 1, and
some constant α > 0, then

0 <
k̂1,n∗

r2

≤ k1,D,A−1(x) ≤
k1,n∗

r1

.

There are at least m(ε) transmission eigenvalues in the interval
[
k̂1,n∗

r2
, k1,n∗

ε

]
.

(2). If 0 < n∗ ≤ (ξ̄ · A(x)−1ξ) ≤ n∗ < 1− β for every ξ ∈ C2 such that ‖ξ‖ = 1, and
some constant β > 0, then

0 <
k̂1,n∗

r2

≤ k1,D,A−1(x) ≤
k1,n∗

r1

.

There are at least m(ε) transmission eigenvalues in the interval
[
k̂1,n∗
r2
,
k1,n∗

ε

]
.

Remark 2.1.4 From the proof of Theorem 2.1.4, Theorem 2.1.5 and Corollary 2.1.4

we have that

1. If 1 + α ≤ n∗ ≤ (ξ̄ · A(x)−1ξ) ≤ n∗ ≤ ∞, then

k1,D,A−1(x) ≥ max

(
k̂1,n∗

r2

,

√
λ(D)

n∗

)
.

2. If 0 < n∗ ≤ (ξ̄ · A(x)−1ξ) ≤ n∗ < 1− β, then

k1,D,A−1(x) ≥ max

(
k̂1,n∗

r2

,
√
λ(D)

)
.

Here λ(D) is the first eigenvalue of −∆ on D with boundary conditions stated in

Lemma 2.1.4.

2.2 Numerical examples

In this section we shall present some numerical investigations of the determi-

nation of transmission eigenvalues for both isotropic media ((2.7) to (2.11)) and or-

thotropic media ((2.23) to (2.27)) from scattering data. We shall restrict ourselves

to simple 2D cases with flat Γm (see Remark 2.1.1) in order to make a comparison

with the well-studied results for the cases where the conducting surface is absent. In

particular we assume:
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• Isotropic media: n(x) > 0 (n(x) 6= 1),

• Orthotropic media: A =
1

n(x)
I with n(x) > 0 (n(x) 6= 1),

where n(x) is a piecewise constant function and I is 2× 2 identity matrix.

2.2.1 Configuration

We consider scattering by a domain D illuminated by TE / TM polarized waves

due to point sources located along a line above D as shown in Figure 2.2 where D lies

on an infinite perfectly electrically conducting half plane {(x, y) | y < 0}. In Figure 2.2

Figure 2.2: Geometric notation for plane supported scattering problem.

and later in this section we use the following notation

D : The dielectric scatterer (not necessarily a half disk),

r : Radius of the scatterer when D is a half disk,

Γa : Interface between scatterer and air,

Γm : Interface between scatterer and metallic substrate,

H : Height of the line where point sources are located,

L : Length of the line where point sources are located,
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l : Distance between neighboring point sources.

Here the receivers are at the same locations as the point sources.

2.2.2 Formulae and Methods

2.2.2.1 Image Theory and Green’s Function

The domain of the scattering problem is the upper half plane. In order to either

generate synthetic data from a forward solver or compute the inverse problem, we

shall need the Green’s function due to a point source located in the upper half plane.

To facilitate the computation, we use image theory to extend the domain to the entire

plane by putting a point sink at the mirrored position of each point source with respect

to the x-axis (see Figure 2.3). Then, without violating the boundary condition on Γm,

the Green’s function on the entire domain becomes the source-sink combination in

pairs, that is,

• TE case:
G(x, z) = H

(1)
0 (k|x− z+|)−H(1)

0 (k|x− z−|), (2.36)

• TM case:
G(x, z) = H

(1)
0 (k|x− z+|) +H

(1)
0 (k|x− z−|), (2.37)

whereH
(1)
0 represents Hankel function of the first kind of order 0, and if z+ = (z1, z2), z2 >

0, then z− = (z1,−z2).

Note 2.2.1 For TE case, the boundary condition on Γm can be satisfied when the

extension is an odd extension of the solution in the upper half plane and, for TM case,

when the extension is an even extension of the solution in the upper half plan.

2.2.2.2 Forward Problem

To generate the synthetic data for the forward problem, we compute the total

field inside and outside the scatterer (D ∪ D′) illuminated by one pair of source-sink

combination given by (2.36) or (2.37). For example, in the TE case, we have
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Figure 2.3: Computational domain for the plane supported transmission eigenvalue
problem.

1. Series representation

For a disk, we have explicit formulas for the total field in polar coordinate:

u =


uin =

∞∑
m=−∞

αmJm(k
√
n(x)r) exp(imθ) in D ∪D′,

uout =
∞∑

m=−∞

βmH
(1)
m (kr) exp(imθ) + uinc in (D ∪D′)c,

(2.38)

where Jm represents Bessel function of order m, H
(1)
m represents Hankel function

of the first kind of order m, (r, θ) represents the polar coordinates of x and αm
and βm are coefficients that can be determined by boundary conditions on the
interface |x| = r as follows:{

uin = uout (Continuity Condition),
∂uin
∂r

=
∂uout
∂r

(Flux Condition).

2. Coupling procedure

For a general domain, we employ the finite element method (using quadratic finite
elements) inside a circular artificial domain Ω (enclosing D ∪ D′ and excluding
the point sources and sinks) coupled with series representation outside Ω. In this
way, the governing equations in each domain are:

• In Ω: 
∆u+ k2n(x)u = 0,
n(x) 6= 1 in D ∪D′,
n(x) = 1 in (D ∪D′)c.
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• In Ωc: 
∆us + k2us = 0,
u = us + uinc,
us satisfies the Sommerfeld radiation condition.

On ∂Ω, a coupling procedure is carried out by using the Neumann to Dirichlet
(NtD) mappings:

T : λ −→ u|∂Ω where
∂u

∂n

∣∣∣∣
∂Ω

= λ,

where λ can be written as series expansion

λ =
∑
m

λmφm =
∑
m

λm exp(imθ), (2.39)

and T diagonalizes in the Fourier space (see [35]).

2.2.2.3 Inverse Problem

For solving the inverse problem of determining the shape of D or computing the

transmission eigenvalues, we use the Linear Sampling Method (LSM) which is based

on the Near Field Equation (NFE): we seek gz ∈ L2(Σ) such that

(Ngz)(x) :=

∫
Σ

us(x,y)gz(y) ds(y) = G(x, z), ∀x ∈ Υ (2.40)

where

• us(·,y) is the scattered field (in the presence of the scatterer) due to the incident
wave for the appropriate source at y. It is measured on Σ and hence is referred
to as “Near Field Data” (NFD).

• gz(y) is the indicator function due to a source at z.

• G(·, z) is the background Green’s function (in the absence of the scatterer) due
to a source at z. This is just the fundamental solution for a point source at z
given by (2.36) or (2.37) as appropriate.

• Σ is the curve on which the point sources lie. Integration is performed over this
curve. Specifically, after discretization, point sources are uniformly distributed
on a line of length L above the scatterer with height H (see Figure 2.2).

• Υ is the curve on which the receivers are located. For simplicity, as is usual with
the LSM, they are on the same locations as the point sources. So Υ = Σ.

46



Usually, the NFD is corrupted with random noise of size, for example, 1% in the

relative L2 norm. Specifically, for a finite number of sources and receivers, the NFD

is represented by a matrix N , then for each entry Ni,j, the corresponding corrupted

data is Ñi,j = Ni,j(1 + εη) where ε is the noise level (for example, 1%) and η ∈ R is a

random number following uniform distribution on [−1, 1]. It is worth mentioning that

for some scatterers with certain values of n(x), the transmission eigenvalues which can

be determined from the NFD are very sensitive to the noise level. Thus, we sometimes

assume less than 1% random relative noise on the data as noted in the upcoming

sections.

The integral equation (2.40) is discretized by using the Trapezoidal rule and

collocation at the integration points and then the discrete problem is solved using

techniques appropriate for ill-posed problems such as Tikhonov Regularization or the

Truncated Singular Value Decomposition (TSVD) [33]. The choice of parameters for

these methods are based on either an empirical value or approaches such as the Gener-

alized Morozov Principle [13], the L-Curve Criterion or Generalized Cross-Validation

(GCV) [33].

In practice, for the reconstruction of the shape of D, we choose several sampling

points in the region we expect D to be found, compute the discrete l2 norm of gz, and

make contour plot of the reciprocal of these values. We expect the shape of D are

indicated by contour lines of the reciprocal of the norm of gz. For the determination of

transmission eigenvalues, we choose several sampling points inside the original scatterer

D (assumed a priori known), average the discrete l2 norm of gz at these points for

different wavenumbers, and plot these values against wavenumber. We expect that

transmission eigenvalues are indicated by peaks in the graph.

Note that in applications both procedures would be applied to measured data

directly with no need to solve any forward problem.

Remark 2.2.1 It is worth pointing out that, in this thesis, we have focused on the novel

problem of analyzing the interior transmission eigenvalue problem with mixed boundary
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data. With this well in hand and the discussion in Sections 4.5, 4.6, 6.5 and 6.6 of

[10], it should be possible to prove the analogue of Theorem 1.3.1 and Theorem 1.3.2

using the near field equation with limited aperture data.

2.2.3 Numerical Results

2.2.3.1 Forward Problem

To give some idea of the fields for the forward problem, we present results from

our forward solvers for the TE case described in Section 2.2.2.2. Specifically, we use

series representations (2.38) of the scattered field outside and the total field inside for

scattering from a half disk on a perfect conducting plane. And we use the coupling of

finite element solution and series representation for scattering from a half square on a

perfect conducting plane. The parameters are:

• Wavenumber: k = 4.5

• Relative permittivity of scatterer: n(x) = 4

• Location of point source in polar coordinates: z+ = (ρ, φ) = (3, π/2) and thus
z− = (ρ, φ) = (3,−π/2)

• For half disk (D1)

1. Radius of half disk: r = 1/2

2. Terms kept in the series representation (2.38) of background Green’s func-
tion: from m = −14 to m = 14 so that all the modes of major impact are
included (see plot of coefficients in Figure 2.4).

• For half square (D2)

1. Size of half square: [−0.5, 0.5]× [0, 0.5]

2. Radius of circular artificial domain for finite element solver: 1.25

3. Terms kept in the series representation (2.39) for NtD mapping in coupling
procedure: from m = −30 to m = 30 so that all the coefficients λm of major
impact are included (see plot of coefficients in Figure 2.4).

A plot of the total field (real part, imaginary part and absolute value) due to a

half disk (D1) and the coefficients αm’s and βm’s in the series expansions (see (2.38))

are given in Figure 2.4.
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Figure 2.4: Plot of total field in the presence of a half disk D1 of radius 1/2 (white
curve) using image theory and coefficients for series expansions of the
total field inside D1 and the scattered field outside D1 (see (2.38)).

A plot of the total field (real part, imaginary part and absolute value) due to a

half square (D2) and the coefficients λm’s in the NtD mapping (see (2.39)) using the

coupling procedure is given in Figure 2.5.

2.2.3.2 Inverse Problem for Shape Reconstruction

To illustrate the reconstruction of the half disk D1 and half square D2 described

in Section 2.2.3.1, we put several point sources/receivers on a line above D1 and D2,

respectively, as shown in Figure 2.2. For each point source, we compute the scattered

field using the forward solvers described in Section 2.2.3.1 for D1 and D2, respectively,

and collect the scattering data at all the receivers. Then we use Tikhonov regularization
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Figure 2.5: Plot of total field in the presence of a half square D2 of size [−0.5, 0.5]×
[0, 0.5] (white line) using image theory and coefficients λm’s in series
expansion of NtD mappings (see (2.39)).

combined with the Generalized Morozov Principle to solve the NFE (2.40).

Other parameters are:

• Location of point sources/receivers: uniformly distributed along a line of height
y = H = 2/3 between x = −L/2 = −3/2 and x = L/2 = 3/2, distance between
neighboring points is λ/10 where λ = 2π/k is the wavelength.

• Level of random relative noise added on the scattering data: %1.

• Region of sampling points: a rectangle of size [−1, 1]× [0.05, 1].

The contour plot of the reconstruction of half disk D1 is given in Figure 2.6 and

the contour plot of the reconstruction of half square D2 is given in Figure 2.7.
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Figure 2.6: Contour plot of reconstruction of half disk D1 of radius 1/2 (white curve)
with relative permittivity n(x) = 4 by LSM under wavenumber k = 4.5.

2.2.3.3 Computation of Transmission Eigenvalues

To validate the computation of transmission eigenvalues from near field data,

we shall present some numerical results for both TE and TM cases. Specifically, we

test the method on a half disk and a half square with a constant n(x), respectively. In

particular, let the radius of half disk be r = 1/2, the size of half square be [−0.5, 0.5]×

[0, 0.5] as in Section 2.2.3.1 and n(x) = 4 or n(x) = 16. The other parameters are:

• Wavenumber k

k TE case TM case
n(x) = 4 from 4.5 to 8.5 with step size 0.02 from 4.0 to 8.0 with step size 0.02
n(x) = 16 from 1.5 to 3.5 with step size 0.01 from 1.5 to 3.5 with step size 0.01

Table 2.1: Range of wavenumber for computation of transmission eigenvalue

• Location of point sources: uniformly distributed along y = H = 3/2 between
x = −L/2 = −3/2 and x = L/2 = 3/2, distance between neighboring points is
λ/10 where λ = 2π/k is the wave length.

• Sample points z = (z1, z2) for computing average of ‖gz‖2: points inside the
scatterer which are not close to the boundary. Specifically,
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Figure 2.7: Contour plot of reconstruction of half square D2 of size [−0.5, 0.5] ×
[0, 0.5] (white line) with relative permittivity n(x) = 4 by LSM under
wavenumber k = 4.5.

– For half disk: points satisfying |z| < 0.45 and z2 > 0.1.

– For half square: points satisfying |z1| < 0.45 and 0.1 < z2 < 0.45.

We concentrate on detecting the first transmission eigenvalue which is important

for non-destructive testing and then compare our results with well-studied transmission

eigenvalues for the full disk or the full square in the absence of a conducting surface.

In particular, for the half disk, we shall present results for both cases with n(x) = 4

and n(x) = 16. For the half square, since it is much harder to come up with an explicit

formula for transmission eigenvalues of a full square, we just present results for TE

case with n(x) = 16 and TM case with n(x) = 4 which can be immediately compared

with the published data [14, 23].

We also note that we use the coupling procedure (for the TE case, it is described

in Section 2.2.2.2) to generate the synthetic data both for the scattering of a half disk

and a half square.

1. TE case
First, we list the first few transmission eigenvalues for full disk and full square
in the absence of the conducting background (see Table 2.2). In Table 2.2, the
results for n(x) = 16 are from Table 1 and Table 3 in [23], respectively. The
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TE Full Disk Full Square
n(x) = 4 5.8052, 6.7684, 6.8241, 7.9529 �
n(x) = 16 1.9880, 2.6129, 3.2240 ≈ 1.89, ≈ 2.46, ≈ 2.47, ≈ 2.89

Table 2.2: Standard transmission eigenvalue for disk of radius 1/2 and unit square
for the TE case.

result for n(x) = 4 for the full disk can be obtained by using the same argument
as in Section 3.1 of [23].

(a) Half Disk

i. n(x) = 16
We apply Tikhonov Regularization combined with the Generalized Mo-
rozov Principle [13]. The NFD is corrupted with 1% random relative
noise. The result is shown in Figure 2.8. Vertical lines indicate trans-

Figure 2.8: TE case, half disk, n(x) = 16.

mission eigenvalues of the full disk and peaks in the graph should give
eigenvalues of the half disk. The leftmost eigenvalue of the full disk is
not an eigenvalue of the conducting surface backed half disk since to
be an eigenfunction for the half disk, the eigenfunction of the full disk
would need to be an odd function, which is not the case. Thus the first
eigenvalue is different for the conducting surface backed scatterer and
is also well discriminated.
Actually, from the discussion before Corollary 2.1.2, the first transmis-
sion eigenvalue due to the above set up can be computed explicitly
(≈ 2.61). In comparison with Table 2.2 and the corresponding deriva-
tion in Section 3.1 of [23], the first real transmission eigenvalue in our
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case should be the second real transmission eigenvalue for a full disk in
the absence of conducting surface. We indeed observe good agreement
from Figure 2.8.

ii. n(x) = 4
We use exactly the same approach with the same noise level as for
n(x) = 16. The result is shown in Figure 2.9. Note that in this plot we

Figure 2.9: TE case, half disk, n(x) = 4.

detect the first transmission eigenvalue of the full disk. This is consistent
with the fact that this transmission eigenvalue actually corresponds
to an odd eigenfunction for the full disk. Also, we do not detect the
second transmission eigenvalue for a full disk because that one indeed
corresponds to an even eigenfunction, and hence is not an eigenvalue of
the half disk.

(b) Half Square with n(x) = 16
It turns out that for this case, the result (see Figure 2.10) is not as promising
as for the previous examples when using the same approach and noise level
as before. The peaks of ‖gz‖2 do not align with any eigenvalues for the full
square. Practically, the norm of gz is sensitive to the choice of regularization
parameter λ as well as the size of the random relative noise. However,
we can still obtain the desired result with proper control of the random
noise level and parameter λ. As an illustration, the result for Tikhonov
Regularization with an empirical choice for λ = 10−12 and 10−3% random
relative noise on the NFD is shown in Figure 2.11. It is worth pointing
out that the possible reason for issues with detecting the first transmission
eigenvalue (for example, in Figure 2.10, there are two peaks fairly close to
the desired location of transmission eigenvalues) is that the second and third
transmission eigenvalues for the full square are very close to each other.
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Figure 2.10: TE case, half square, n(x) = 16.

Figure 2.11: TE case, half square, n(x) = 16, 10−3% random relative noise, regular-
ization parameter λ = 10−12.

2. TM Case
First, we list the first few eigenvalues for full disk and full square (see Table 2.3).
The result for the full square is from Table 1 in [14]. The results for the full disk
can be obtained by mimicking the discussion of Section 3.1 in [23], the difference
is that instead of having problem as in Note 2.1.2, we have problem (2.34).

(a) Half Disk

i. n(x) = 16
We use Tikhonov Regularization combined with the Generalized Moro-
zov Principle. The NFD is corrupted with 1% random relative noise.
The result is shown in Figure 2.12. Here the first transmission eigen-
value detected is the same one for the full disk since the corresponding
eigenfunction is even.
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TM Full Disk Full Square
n(x) = 4 5.8052, 6.8008, 7.5660, 7.6066 ≈ 5.3
n(x) = 16 2.0840, 2.6129, 2.6633, 3.2656 �

Table 2.3: Standard transmission Eigenvalue for disk of radius 1/2 and unit square
for the TM case.

Figure 2.12: TM case, half disk, n(x) = 16.

ii. n(x) = 4
We first use the same approach with the same noise level as for the
previous example. The result is shown in Figure 2.13. Clearly, this is
not a successful determination of the eigenvalues. Indeed, similar to
the half square with n(x) = 16 in the TE case, we have sensitivity
issues depending on the choice of the regularization parameter λ and
the random relative noise level.
It turns out that, with proper control of the random relative noise level,
the Tikhonov Regularization with an empirical choice for λ can detect
the first eigenvalue. As an illustration, the results for Tikhonov Regu-
larization with parameter λ = 10−12 and 10−2% random relative noise
on the NFD is shown in Figure 2.14.
Alternative Measurement Geometries

• If we change the location of points sources by letting Σ in the NFE
(2.40) be an arc of radius 3/2 between angles π/6 and 5π/6, we
get better results (see Figure 2.15). As usual we use Tikhonov
Regularization combined with the Generalized Morozov Principle
and 1% random relative noise on the NFD.

• If we elongate Σ in the NFE (2.40) by letting the length of line be
L = 6 so that the point sources are uniformly distributed between
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Figure 2.13: TM case, half disk, n(x) = 4.

Figure 2.14: TM case, half disk, n(x) = 4, 10−2% random relative noise, regulariza-
tion parameter λ = 10−12.

x = −L/2 = −3 and x = L/2 = 3, we can also get good results (see
Figure 2.16).

(b) Half Square with n(x) = 4
First we present the result for Tikhonov Regularization combined with Gen-
eralized Morozov Principle (see Figure 2.17). The NFD is corrupted with
1% random relative noise. In the same way as for the half disk with n(x) = 4
above, the result is not accurate. However, with proper control of the regu-
larization parameter and noise level, we can observe good agreement between
the peaks and known eigenvalues. For instance, the result for Tikhonov Reg-
ularization with parameter λ = 10−12 and 10−3% random relative noise on
the NFD is shown in Figure 2.18. Here the first transmission eigenvalue
detected should be the first one for the full square since the corresponding
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Figure 2.15: TM case, half disk, n(x) = 4, using curved measurement geometry.

Figure 2.16: TM case, half disk, n(x) = 4, using elongated measurement geometry.

eigenfunction is even.

Alternative Measurement Geometries. Similar to the case of a half disk with
n(x) = 4, we can have good results by letting Σ be an arc or elongating the
length of Σ (see Figure 2.19 and Figure 2.20, respectively).

Remark 2.2.2 The numerical results above show that the determination of transmis-

sion eigenvalues for the TM case is more delicate than for the TE case. This is not

uncommon as, for instance, we note that numerical examples in Cossonniere’s thesis

[26] also suggest that determining TM mode transmission eigenvalues from far field

data is more difficult than for the TE mode (see Figure 6.13 of [26] where the LSM

predicts eigenvalues shifted from their true values).
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Figure 2.17: TM case, half square, n(x) = 4.

Figure 2.18: TM case, half square, n(x) = 4, 10−3% random relative noise, regular-
ization parameter λ = 10−12.

In conclusion, we have shown that, for both TE and TM scattering, it is possible

to identify the first transmission eigenvalue from near field data with a standard regu-

larization approach (Tikhonov Regularization combined with the Generalized Morozov

Principle). Some problems show great sensitivity to noise (for example, the TM case

for half disk or half square with n(x) = 4), but even in these cases a proper choice of

regularization parameter and noise level will also give good results. Another option is

to change the geometry of the measurement line. However, its effectiveness is restrict-

ed. For instance, it turns out that when two transmission eigenvalues are close to each
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Figure 2.19: TM case, half square, n(x) = 4, using curved measurement geometry.

Figure 2.20: TM case, half square, n(x) = 4, using elongated measurement geometry.

other (TE case for the half square with n(x) = 16), the change to the measurement

array (curve or elongation) will not improve the results.

As a final remark, this chapter appeared in [63] and more discussion on finding

real transmission eigenvalues using other regularization techniques can also be found

in that paper.
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Chapter 3

PERFECTLY ELECTRIC CONDUCTING SCATTERER IN A
WAVEGUIDE

3.1 The Forward Problem

Note that the notation used for this chapter on the waveguide problem is rede-

fined compared to the previous chapter.

3.1.1 Configuration and Problem Description

We consider a waveguide occupying the domain W = Σ × R in R3 where Σ

is a simply connected bounded convex and open domain in R2. The boundary of W

is piecewise smooth and denoted by Γ with outward normal nΓ. A scatterer D with

smooth boundary is located inside the waveguide away from Γ with outward normal

nD (see Figure 3.1). We assume that the waveguide is filled with air (or vacuum) such

that ε0 = µ0 = 1 where ε0 and µ0 represent the background electric permittivity and

magnetic permeability, respectively. In the following, we will denote (x, y, z) a generic

point of W .

Figure 3.1: 2D view of generic configuration of waveguide in the presence of scatterer.

Note that the axis of the waveguide is parallel to the z-axis. We shall also denote

by x̂, ŷ, ẑ the standard unit vectors in R3.
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Let ui denote an incident field excited by an electric point source at x0 =

(x0, y0, z0) located on a cross section Σ × {z0} with polarization vector p (|p| = 1).

The incident field is assumed to satisfy the Maxwell system in the absence of the

scatterer D, that is

∇×∇× ui − k2ui = F in W,

nΓ × ui = 0 on Γ,

where F = pδx0 . Here k = ω
√
ε0µ0 is the wavenumber where ω is the angular frequency.

Furthermore, we assume that the scatterer D and the boundary of the waveg-

uide Γ are perfect electric conductors (PEC), for example, made of metal. Then the

scattering problem we wish to solve is the model problem of finding the total field u

such that

∇×∇× u− k2u = F in W\D̄, (3.1)

nD × u = 0 on ∂D, (3.2)

u = ui + us in W\D̄, (3.3)

nΓ × u = 0 on Γ, (3.4)

us satisfies an appropriate radiation condition as z → ±∞, (3.5)

where the vector function us represents the unknown scattered field. The radiation

condition here means that the scattered field us should be an outgoing wave that can

be represented by modes, such that for each mode, it is either outward propagating or

decaying exponentially away from the scatterer. It will be given explicitly in Defini-

tion 3.1.1 after we have developed some more notation.

Correspondingly, the forward problem for the scattered field us is:

∇×∇× us − k2us = 0 in W\D̄,

nD × us = −nD × ui on ∂D,

nΓ × us = 0 on Γ,

us satisfies an appropriate radiation condition as z → ±∞.

(3.6)
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3.1.2 Modal Solutions to Maxwell’s Equation

To describe the radiation condition and also as a vital part of our inverse al-

gorithms, we need an expansion of the dyadic Green’s function (see Section 3.3.1) in

terms of waveguide modes. We start by developing the well known modal solution in

the waveguide.

3.1.2.1 Modal Solutions in the Waveguide

First, from Appendix A, we see that a mode U of the scattered field us can be

represented by a combination of members of two families of solutions:

M = ∇× (ũz) or N =
1

k
∇×∇× (ṽz),

where the generating function ũ can be written in the form ũ(x, y, z) = u(x, y)eihz and

ṽ(x, y, z) = v(x, y)eihz. The function u satisfies the 2D scalar Helmholtz equation on

Σ:

∆Σu+ ξ2u = 0 where k2 = ξ2 + h2 (h 6= 0)

with an appropriate boundary condition on ∂Σ = Σ ∩ Γ. Similarly, v also satisfies the

2D scalar Helmholtz equation on Σ.

Note 3.1.1 The constant in the definition of N is convenient for the following rela-

tions

N =
1

k
∇×M and M =

1

k
∇×N. (3.7)

Next we derive the boundary condition for u on ∂Σ such that M and N satisfy

the PEC boundary condition on Γ in (3.6).

• Consider the first family of solutions

M = ∇× (u(x, y)eihzẑ),

which satisfies the Maxwell’s equation in (3.6) as long as u satisfies

∆Σu+ λ2u = 0
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on Σ and suitable boundary conditions on ∂Σ = Σ ∩ Γ, and h is chosen so that
h2 = k2 − λ2.

To investigate the PEC boundary conditions, we want

nΓ ×M = nΓ ×∇× (u(x, y)eihzẑ) = 0.

Since

M = ∇× (u(x, y)eihzẑ) =

 ∂u
∂y

−∂u
∂x

0

 eihz,

if nΓ = (n1, n2, 0)T , we have

nΓ ×M =

n1

n2

0

×
 ∂u

∂y

−∂u
∂x

0

 eihz = −

 0
0

n1
∂u
∂x

+ n2
∂u
∂y

 eihz = 0,

which implies that
∂u

∂n
= 0 on ∂Σ.

• Consider the second family of solutions

N =
1

k
∇×∇× (v(x, y)eihzẑ),

which satisfies the Maxwell’s equation in (3.6) as long as v satisfies

∆Σv + µ2v = 0

on Σ and appropriate boundary conditions on ∂Σ = Σ ∩ Γ, and h2 = k2 − µ2.

To investigate the PEC boundary conditions, we want

nΓ ×N = nΓ ×
1

k
(∇×∇× (v(x, y)eihzẑ)) = 0.

Using relation (3.7), straightforward calculation gives

nΓ ×N = nΓ ×
(

1

k
∇×M

)

=

n1

n2

0

×
1

k

 ∂v
∂x
ih

∂v
∂y
ih

vµ2

 eihz


=

1

k

 n2vµ
2

−n1vµ
2(

n1
∂v
∂y
− n2

∂v
∂x

)
ih

 eihz = 0,

which implies that v = 0 on Σ.

64



Therefore, in summary, we obtain

• The first family is given by

M = ∇× (u(x, y)eihzẑ) =

 ∂u
∂y

−∂u
∂x

0

 eihz,

where λ is an eigenvalue and u is the corresponding non-trivial eigenfunction that
satisfies

∆Σu+ λ2u = 0 in Σ,
∂u

∂n
= 0 on ∂Σ = Σ ∩ Γ.

• The second family is given by

N =
1

k
∇×∇× (v(x, y)eihzẑ) =

1

k

 ∂v
∂x
ih

∂v
∂y
ih

vµ2

 eihz,

where µ is an eigenvalue and v is the corresponding non-trivial eigenfunction that
satisfies

∆Σv + µ2v = 0 in Σ,

v = 0 on ∂Σ = Σ ∩ Γ.

Note 3.1.2 If alternatively the magnetic wall boundary condition nΓ × (∇ ×U) = 0

is considered on Γ, then for the first family of solutions M , we have

nΓ ×∇×M =


n1

n2

0

×


∂u
∂x
ih

∂u
∂y
ih

uλ2

 eihz =


n2uλ

2

−n1uλ
2(

n1
∂u
∂y
− n2

∂u
∂x

)
ih

 eihz.

From this we see that u must satisfy the Dirichlet boundary condition u = 0 on Σ.

On the other hand, for the second family of solutions N , using relation (3.7),

we have

nΓ ×∇×N = nΓ × (kM)

=


n1

n2

0

×
k


∂v
∂y

− ∂v
∂x

0

 eihz

 = −k


0

0

n1
∂u
∂x

+ n2
∂u
∂y

 eihz.

This means that v should satisfy the Neumann boundary condition
∂v

∂n
= 0 on Σ.
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3.1.2.2 Eigenvalue Problem on the Cross Section of the Waveguide

To further investigate the modal solution, we are led to study the eigenvalue

problems of finding non-trivial solutions u and v together with corresponding eigen-

functions u and v such that

(E1)

 ∆u+ λ2u = 0 in Σ,
∂u

∂n
= 0 on ∂Σ.

and (E2)

 ∆v + µ2v = 0 in Σ,

v = 0 on ∂Σ.

Both of these problems are standard eigenvalue problems for the Laplacian and we have

the following theorems (Theorems 8.5 and 8.6 in [59]) under the geometric assumptions

on Σ in the introduction to this chapter (Section 3.1.1):

Theorem 3.1.1 Problem (E1) has a countable family of eigenpairs (um, λm) where

um ∈ H1(Σ),m = 0, 1, . . . with um 6= 0 and λm ∈ R. We may choose λ0 = 0 and

λm ≥ λm−1,m ≥ 1. In addition, {um}∞m=0 may be chosen as an orthonormal basis in

L2(Σ). Moreover, the sequence {um/
√
λm + 1}m≥0 constitutes an orthogonal basis in

H1(Σ).

Theorem 3.1.2 Problem (E2) has a countable family of eigenpairs (vm, µm) where

vm ∈ H1
0 (Σ),m = 1, 2, . . . with vm 6= 0 and µm ∈ R, µm > 0. We may choose µm ≥

µm−1 for all m ≥ 2. In addition, {vm}∞m=0 may be chosen as an orthonormal basis

in L2(Σ). Moreover, the sequence {vm/
√
µm}m≥0 constitutes an orthogonal basis in

H1
0 (Σ).

Remark 3.1.1 Since Σ is convex, we know that both um and vm are in H2(Σ) for each

m,n.

Now we can specify precisely the modal solutions corresponding to the PEC

boundary conditions on the waveguide wall. The two families are:

1. First family:
Mm = ∇× (ume

ihmzẑ),m = 1, 2, . . .

where

hm =

{ √
k2 − λ2

m if k2 > λ2
m,

i
√
λ2
m − k2 if k2 < λ2

m,
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where we choose the positive square root. Note that the mode corresponding to
λ0 = 0, h0 = k has u0 constant and so does not contribute to the solution.

2. Second family:

Nm =
1

k
∇×∇× (vme

igmzẑ),m = 1, 2, . . .

where

gm =

{ √
k2 − µ2

m if k2 > µ2
m,

i
√
µ2
m − k2 if k2 < µ2

m,

where again we choose the positive square root.

Here we see that it is possible that all the hm and gm are imaginary so that no traveling

waves occur.

For the reminder of the thesis we assume that we avoid the cut-off frequencies

k such that λ2
m = k2 and µ2

m = k2, that is, we assume hm =
√
k2 − λ2

m 6= 0 and

gm =
√
k2 − µ2

m 6= 0 for all m = 1, 2, . . .. Then we will see in detail in the sequel that

there exists other possible exceptional frequencies which will impact our analysis and

should also be avoided.

3.1.3 Weak Formulation and Variational Formulation

3.1.3.1 Function Spaces

In order to further analyze the forward problem and its well-posedness, we shall

introduce all the function spaces to be considered in the later sections.

1. Spaces for the unbounded domain

For a general domain D ⊂ R3, we define the usual energy space for electromag-
netic field as:

H(curl,D) = {u ∈ (L2(D))3 | ∇ × u ∈ (L2(D))3}

equipped with norm

‖u‖H(curl,D) =
(
‖u‖2

L2(D) + ‖∇ × u‖2
L2(D)

)1/2

.

In order to investigate the scattering problem in a weak sense, we consider the
waveguide in the presence of scatterer (see Figure 3.1) and define Hloc(curl,W\D̄)
the space of functions u ∈ H(curl,W(−R,R)\D̄) for any R sufficiently large where
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W(−R,R) is the segment of waveguide bounded by cross sections ΣR and Σ−R and
containing D in its interior. We also denote by

H0(curl,W\D̄) = {u ∈ H(curl,W\D̄) | nΓ×u = 0 on Γ and nD×u = 0 on ∂D},

and

Hloc,0(curl,W\D̄) = {u ∈ Hloc(curl,W\D̄) | nΓ×u = 0 on Γ and nD×u = 0 on ∂D}.

2. Spaces for bounded domains

For the variational formulation, we shall reduce the unbounded domain to a
bounded region containing D in its interior. A sketch of this is shown in Figure 3.2
where

Figure 3.2: Bounded sub-domain of waveguide in the presence of scatterer.

W(s,t) : Sub-domain of waveguide bounded by cross sections Σ× (s, t),

Ω : Domain inside W(s,t) excluding the scatterer D,

ΩL : Unbounded domain on the left hand side of cross section Σs = Σ× {s},
ΩR : Unbounded domain on the right hand side of cross section Σt = Σ× {t}.

Taking into account the boundary conditions in the waveguide, we define

X = {u ∈ H(curl,Ω) | nΓ × u = 0 on Γ and nD × u = 0 on ∂D}.

To state the corresponding trace space, note that the standard trace space for
H(curl,Ω) is

H−1/2(div, ∂Ω) = {f ∈ (H−1/2(∂Ω))3 | there exists v ∈ H(curl,Ω)

such that nΩ × v|∂Ω = f},

where nΩ = −nD or nΣs or nΣt or nΓ, ∂Ω = ∂D ∪ Σs ∪ Σt ∪ Γ(s,t) and Γ(s,t) =
∂Σ× (s, t) is the boundary of segment of the waveguide bounded by Σs and Σt.
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Then, we define specifically the trace space on the cross sections:

H̃−1/2(div,Σs) = {f ∈ (H−1/2(Σs))
3 | there exists v ∈ X

such that nΣ × v|Σs = f}.

A similar definition holds H̃−1/2(div,Σt). Moreover, the dual space of all the
trace spaces above are denoted by

H−1/2(curl, ∂Ω), H̃−1/2(curl,Σs), H̃
−1/2(curl,Σt),

respectively.

For the ease of analyzing the inverse problem, we also define the trace space on
∂D:

H−1/2(div, ∂D) = {f ∈ (H−1/2(∂D))3 | there exists v ∈ X
such that n∂D × v|∂D = f}.

Also, the dual space of this trace space is denoted by H−1/2(curl, ∂D).

3.1.3.2 Differential Operators on the Cross Section

With the eigenvalue problems (E1) and (E2) introduced in Section 3.1.2.2, we

shall also investigate the space of surface tangential vector fields on cross sections Σ

given by

L2
T (Σ) = {w ∈ (L2(Σ))3 | nΣ ·w = 0 a.e. on Σ}.

First of all, we recall several differential operators on a simply connected bound-

ed smooth surface S ⊂ R3. Let u be a differentiable scalar function and v a differen-

tiable tangent vector function defined on S, denote by ∇Su,∇S ·v,∇S ×v, ~∇S ×u the

surface gradient, surface divergence, surface curl and vectorial surface curl, respectively.

The scalar Laplace-Beltrami operator

∆Su = ∇S · (∇Su) = −∇S × (~∇S × u),

and the vector Laplace-Beltrami operator

∆Sv = ∇S(∇S · v)− ~∇S × (∇S · v)

(see Section 6.3 in [19] or Section 3.4 in [48]). Relations among these operators are

given in Appendix B.3. Also note that these operators can be extended to a Lipschitz

domain (see Section 3.4 in [48]).
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Note 3.1.3 With operators defined above, for a differentiable scalar function φ =

φ(x, y) defined on Σ, we have, for example,

∇Σφ =

∂φ
∂x

∂φ
∂y

 , ~∇Σ × φ =

 ∂φ
∂y

−∂φ
∂x

 .

Then we have the following Stoke’s identity:

Lemma 3.1.1 Let {um, λm}m≥0 and {vn, µn}n≥1 be eigenpairs to problem (E1) and

(E2) defined in Theorem 3.1.1 and Theorem 3.1.2, respectively. Then the following

Stoke’s identity holds:∫
Σ

λ2
mum vn dx =

∫
Σ

(∇Σum) · (∇Σvn) dx =

∫
Σ

(~∇Σ × um) · (~∇Σ × vn) dx. (3.8)

This identity also holds when vn is replaced by un or λm, um are replaced by µm, vm.

Proof : Obviously, ∫
Σ

λ2
mum vn dx = −

∫
Σ

∆Σum vn dx.

Using Stoke’s identities (B.16) and (B.17), we have∫
Σ

λ2
mum vn dx = −

∫
Σ

∇Σ · (∇Σum)vn dx

=

∫
Σ

(∇Σum) · (∇Σvn) dx−
∫
∂Σ

ν∂Σ · ∇Σum vn ds,

and ∫
Σ

λ2
mum vn dx =

∫
Σ

∇Σ × (~∇Σ × um)vn dx

=

∫
Σ

(~∇Σ × um) · (~∇Σ × vn) dx+

∫
∂Σ

τ∂Σ · ~∇Σ × um vn ds.

Note that ν∂Σ · ∇Σum = 0 and the identity (B.21) (or because vn = 0 on ∂Σ), we have

the desired identity (3.8). In a similar fashion, it is easy to see that the identity also

holds when vn is replaced by un or λm, um are replaced by µm, vm. This completes the

proof. �

Also we have the following lemma:
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Lemma 3.1.2 For a simply connected bounded Lipschitz domain Σ ⊂ R2, L2
T (Σ) ad-

mits an orthogonal basis given by {∇Σum}m≥1 and {~∇Σ× vn}n≥1 where um and vn are

defined from Theorem 3.1.1 and Theorem 3.1.2.

Proof : For any w ∈ L2
T (Σ), we have the following Helmholtz decomposition

w = ∇Σp+ ~∇Σ × q,

where p ∈ H1(Σ) and q ∈ H1
0 (Σ) (see Theorem 3.3 in [32] and Theorem 3.8 in [62]).

From Theorem 3.1.1 and Theorem 3.1.2, p and q can be written as series ex-

pansion in term of um and vn

p =
∞∑
m=0

αmum and q =
∞∑
n=1

βnvm,

where um and vn can be chosen such that ‖um‖2
L2(Σ) = 1, ‖vn‖2

L2(Σ) = 1.

Thus, since ∇Σu0 = 0, w can be written as

w =
∞∑
m=1

αm∇Σum +
∞∑
n=1

βn~∇Σ × vn.

Moreover, by Stokes identities (B.17) and (B.19),∫
Σ

(∇Σum) · (~∇Σ × vn) dx =

∫
Σ

(∇Σ × (∇Σum))vn dx−
∫
∂Σ

(τ∂Σ · ∇Σum)vn ds

= −
∫
∂Σ

(τ∂Σ · ∇Σum)vn ds.

Since vn = 0 on ∂Σ, we get ∫
Σ

(∇Σum) · (~∇Σ × vn) dx = 0.

Thus {∇Σum}m≥1 and {~∇Σ × vn}n≥1 form an orthogonal basis. �

With the eigenpairs introduced in Section 3.1.2.2, we are able to redefine the

spaces on cross sections Σ. From Theorem 3.1.1 and Theorem 3.1.2, we see that for

any function w ∈ L2(Σ), it can be expanded using {um}m≥0 or {vm}m≥0. Explicitly,

w =
∞∑
m=0

w(1)
m um, where w(1)

m =

∫
Σ

w um ds,
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or w =
∞∑
m=1

w(2)
m vm, where w(2)

m =

∫
Σ

w vm ds.

Then we can equivalently define the spaces Hs and Hs
0 such that

Hs(Σ) =

{
w =

∞∑
m=0

w(1)
m um

∣∣∣∣∣
∞∑
m=0

(1 + λ2
m)s|w(1)

m |2 <∞

}
,

Hs
0(Σ) =

{
w =

∞∑
m=1

w(2)
m vm

∣∣∣∣∣
∞∑
m=1

(1 + µ2
m)s|w(2)

m |2 <∞

}
,

equipped with equivalent norms

‖w‖2
Hs(Σ) =

∞∑
m=0

(1 + λ2
m)s|w(1)

m |2,

‖w‖2
Hs

0(Σ) =
∞∑
m=1

(1 + µ2
m)s|w(1)

m |2,

respectively.

By Lemma 3.1.2, for any tangential vector field w on Σ, it can be written as

w =
∞∑
m=1

αm∇Σum +
∞∑
n=1

βn~∇Σ × vn, (3.9)

then L2
T (Σ) can be redefined as:

L2
T (Σ) =

{
w =

∞∑
m=1

αm∇Σum +
∞∑
n=1

βn~∇Σ × vn

∣∣∣∣∣
∞∑
m=1

λ2
m|αm|2 +

∞∑
n=1

µ2
n|βn|2 <∞

}

equipped with norm

‖w‖2
L2
T (Σ) =

∞∑
m=1

λ2
m|αm|2 +

∞∑
n=1

µ2
n|βn|2.

We can also define Hs
T (Σ) as

Hs
T (Σ) =

{
w

∣∣∣∣∣
∞∑
m=1

λ2(s+1)
m |αm|2 +

∞∑
n=1

µ2(s+1)
n |βn|2 <∞

}

equipped with norm

‖w‖2
Hs
T (Σ) =

∞∑
m=1

λ2(s+1)
m |αm|2 +

∞∑
n=1

µ2(s+1)
n |βn|2.
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Also notice that, by Lemma 3.1.1 and the Stokes identities (B.18),(B.19), the

expansion (3.9) yields

∇Σ ·w =
∞∑
m=1

αmλ
2
mum,

∇Σ ×w =
∞∑
m=1

βmµ
2
mvm.

Thus, the trace spaces H̃−1/2(div,Σ) and H̃−1/2(curl,Σ) introduced in Section 3.1.3.1

(see also Section 3.5.3 in [48] and Section 5.4.1 in [51]) can be redefined as follows:

H̃−1/2(div,Σ) =
{

w ∈ H−1/2
T (Σ)

∣∣ ∇Σ ·w ∈ H−1/2(Σ)
}
,

H̃−1/2(curl,Σ) =
{

w ∈ H−1/2
T (Σ)

∣∣ ∇Σ ×w ∈ H−1/2(Σ)
}
,

equipped with equivalent norms

‖w‖2
H−1/2(div,Σ) =

∞∑
m=1

λ3
m|αm|2 +

∞∑
n=1

µn|βn|2,

‖w‖2
H−1/2(curl,Σ) =

∞∑
m=1

λm|αm|2 +
∞∑
n=1

µ3
n|βn|2.

3.1.3.3 Radiation Condition

Now, we first state what we mean by the radiation condition.

Definition 3.1.1 For all |z| sufficiently large, a solution U of Maxwell’s equation

satisfies the outgoing radiation condition if U ∈ Hloc(curl,W\D̄) can be written as

U =
∞∑
m=1

AmMm +BmNm

with coefficients {Am}, {Bm},m = 1, 2, . . . where

Mm = ∇× (ume
ihm|z|) and Nm =

1

k
∇×∇× (vme

igm|z|).

• Modes for which hm(or gm) are real are said to be traveling waves and traveling
modes satisfy a Sommerfeld type outgoing radiation condition along the axis of
the waveguide, for example, for z > 0,

∂Mm

∂z
− ihmMm = 0.
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• Modes for which hm(or gm) are imaginary are said to be evanescent and decay
along the axis of the waveguide. For example, for z > 0 and m large enough,

Mm = ∇× (ume
ihm|z|) = ∇× (ume

−|hm|z)→ 0 as z →∞.

3.1.3.4 Blocked Waveguide Problem

Before analyzing the well-posedness of the forward problem and other results in

the subsequent sections, we first consider a blocked waveguide problem in the absence

of scatterer (for example, domain ΩR or ΩL in Figure 3.2).

For simplicity, denote

∫
Σ

f · ḡ ds = 〈f ,g〉Σ. The following lemma shows the

well-posedness of the blocked waveguide problem:

Lemma 3.1.3 Given Q ∈ H̃−1/2(div,Σt), there exists a unique solution U ∈ Hloc(curl,W(t,∞))

to the following blocked waveguide problem

∇×∇×U− k2U = 0 in W(t,∞),

nΓ ×U = 0 on Γ(t,∞),

nΣ ×U = Q on Σt,

U satisfies the radiation condition as z → +∞,

(3.10)

where Γ(t,∞) = ∂Σ× (t,∞) and nΣ = ẑ.

Proof : From Section 3.1.2.1 and using the radiation condition in Definition 3.1.1, U

in W(t,∞) can be written as a superposition of two families of modal functions which

satisfy both the Maxwell’s equation and the boundary conditions on Γ(t,∞), that is

U =
∞∑
m=1

AmMm +
∞∑
n=1

BnNn.

Note that due to the radiation condition, we choose terms involving only eihz in (A.2)

(drop terms with e−ihz). Then, the explicit form of U for z > t can be written as

U =
∑
m

AmMm +
∑
n

BnNn

=
∑
m

Am∇× (ume
ihm(z−t)ẑ) +

∑
n

Bn
1

k
∇×∇× (vne

ign(z−t)ẑ)
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=
∑
m

Am




∂um
∂y

−∂um
∂x

0

 eihm(z−t)

+
∑
n

Bn
1

k




∂vn
∂x
ign

∂vn
∂y
ign

vnµ
2
n

 eign(z−t)


=

∑
m

Am

~∇Σ × um
0

 eihm(z−t)



+
∑
n

Bn
1

k


∇Σvn

0

 igne
ign(z−t) +


0

0

vn

µ2
ne
ign(z−t)

 .
On Σt, we have

nΣ ×U|Σt =
∑
m

Am

nΣ ×

~∇Σ × um
0



+
∑
n

Bn

nΣ ×
1

k


∇Σvn

0

 ign +


0

0

vn

µ2
n


 .

Using identities (B.11), (B.12) and nΣ ×


0

0

vn

 = ẑ×


0

0

vn

 = 0,

Q = nΣ ×U|Σt =
∑
m

Am

∇Σum

0

+
∑
n

−Bn
1

k

~∇Σ × vn
0

 ign

 . (3.11)

To obtain the unknown coefficients Am and Bn, by Lemma 3.1.2 and Theorem 3.1.1,

we have

am
4
=

〈
nΣ ×U|Σt ,

∇Σum

0

〉
Σt

=

〈
Q,

∇Σum

0

〉
Σt

= Amλ
2
m‖um‖2

L2(Σt)
= Amλ

2
m,

bn
4
=

〈
nΣ ×U|Σt ,

~∇Σ × vn
0

〉
Σt

=

〈
Q,

~∇Σ × vn
0

〉
Σt
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= −Bnµ
2
n‖vn‖2

L2(Σt)

ign
k

= −Bnµ
2
n

ign
k
.

Then the coefficients in (3.11) are

Am =
am
λ2
m

and Bn = − bn
µ2
n

k

ign
.

Thus the solution U in W(t,∞)is given by

U =
∑
m

am
λ2
m

~∇Σ × um
0

 eihm(z−t)



+
∑
n

− bn
µ2
n

k

ign

1

k


∇Σvn

0

 igne
ign(z−t) +


0

0

vn

µ2
ne
ign(z−t)


=

∑
m

am
λ2
m

~∇Σ × um
0

 eihm(z−t)



+
∑
n

− bn
µ2
n

∇Σvn

0

 eign(z−t)

− bn
ign




0

0

vn

 eign(z−t)

 . (3.12)

To show U ∈ Hloc(curl,W(t,∞)), consider a bounded segment of the waveguide

W(t,l) where t < l <∞. First we compute the L2 norm of U over W(t,l) which is given

by

‖U‖2
L2(W(t,l))

=
∑
m

|am|2
(

1

λ2
m

)
It,l,m +

∑
n

|bn|2
(

1

µ2
n

+
1

|gn|2

)
Jt,l,n,

where

It,l,m =

∫ l

t

∣∣eihm(z−t)∣∣2 dz =


l − t if λ2

m ≤ k2,

1

2|hm|

(
1− 1

e2|hm|(l−t)

)
if λ2

m > k2,

and

Jt,l,n =

∫ l

t

∣∣eign(z−t)∣∣2 dz =


l − t if µ2

n ≤ k2,

1

2|gn|

(
1− 1

e2|gn|(l−t)

)
if µ2

n > k2.
.
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To compute the L2 norm of ∇ × U over W(t,l), using relation (3.7), straightforward

calculation shows that

∇×U =
∑
m

Am


∂um
∂x
ihm

∂um
∂y
ihm

umλ
2
m

 eihm(z−t) +
∑
n

Bnk


∂vn
∂y

−∂vn
∂x

0

 eign(z−t)

=
∑
m

am

ihmλ2
m

∇Σum

0

+


0

0

um


 eihm(z−t)

+
∑
n

−βn
1

µ2
n

k2

ign

~∇Σ × vn
0

 eign(z−t). (3.13)

Thus, we get

‖∇ ×U‖2
L2(W(t,l))

=
∑
m

|am|2
(
|hm|2

λ2
m

+ 1

)
It,l,m +

∑
n

|bn|2
(

1

µ2
n

k4

|gn|2

)
Jt,l,n,

where It,l,m and Jt,l,n are defined the same as before.

So the H(curl,W(t,l)) norm of U is

‖U‖2
H(curl,W(t,l))

= ‖U‖2
L2(W(t,l))

+ ‖∇ ×U‖2
L2(W(t,l))

=
∑
m

|am|2
(

1

λ2
m

+
|hm|2

λ2
m

+ 1

)
It,l,m

+
∑
n

|bn|2
(

1

µ2
n

+
1

|gn|2
+

1

µ2
n

k4

|gn|2

)
Jt,l,n

=
∑
m

|am|2
(

1 + |hm|2 + λ2
m

λ2
m

)
It,l,m

+
∑
n

|bn|2
(
|gn|2 + µ2

n + k4

µ2
n|gn|2

)
Jt,l,n.

Breaking the terms into two parts where hm and gn are real or imaginary, respectively

and noting that

|hm|2 =

 k2 − λ2
m if λ2

m ≤ k2

λ2
m − k2 if λ2

m > k2
, |gn|2 =

 k2 − µ2
n if µ2

n ≤ k2

µ2
n − k2 if µ2

n > k2
,
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we get

‖U‖2
H(curl,W(t,l))

=

 ∑
λ2m≤k2

|am|2
(

1 + k2

λ2
m

)
(l − t)

+
∑
λ2m>k

2

|am|2
(

1 + 2λ2
m − k2

λ2
m

)
1

2
√
λ2
m − k2

(
1− 1

e2
√
λ2m−k2(l−t)

)
+

 ∑
µ2n≤k2

|bn|2
(

k2 + k4

µ2
n(k2 − µ2

n)

)
(l − t)

+
∑
µ2n>k

2

|bn|2
(

2µ2
n − k2 + k4

µ2
n(µ2

n − k2)

)
1

2
√
µ2
n − k2

(
1− 1

e2
√
µ2n−k2(l−t)

) .
Meanwhile, by Lemma 3.1.2, we have series expansion of Q on Σt written as

Q =
∑
m

αm(∇Σum) +
∑
n

βn(~∇Σ × vn)

=
∑
m

am
λ2
m

(∇Σum) +
∑
n

bn
µ2
n

(~∇Σ × vn).

Then

‖Q‖2
H−1/2(div,Σt)

=
∑
m

λ3
m|αm|2 +

∑
n

µn|βn|2

=
∑
m

λ3
m

∣∣∣∣amλ2
m

∣∣∣∣2 +
∑
n

µn

∣∣∣∣ bnµ2
n

∣∣∣∣2
=

∑
m

|am|2
1

λm
+
∑
n

|bn|2
1

µ3
n

.

As m,n→∞, we have(
1 + 2λ2

m − k2

λ2
m

)
1

2
√
λ2
m − k2

(
1− 1

e2
√
λ2m−k2(l−t)

)
= O

(
1

λm

)
,(

2µ2
n − k2 + k4

µ2
n(µ2

n − k2)

)
1

2
√
µ2
n − k2

(
1− 1

e2
√
µ2n−k2(l−t)

)
= O

(
1

µ3
n

)
.

Therefore, we can conclude that

‖U‖2
H(curl,W(t,l))

≤ C‖Q‖2
H−1/2(div,Σt)
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for some constant C > 0 independent ofm,n. Hence we can conclude U ∈ H(curl,W(t,l))

for any t < l <∞. Since l is arbitrary, we can conclude that U ∈ Hloc(curl,W(t,∞)).

Hence the proof for existence is done and it remains to show the uniqueness of

the solution, i.e. the solution to the problem with homogeneous boundary conditions

(Q = 0) is zero.

Since on any bounded segment of waveguide W(t,l) we have ‖U‖2
H(curl,W(t,l))

≤

C‖Q‖H−1/2(div,Σt). So U = 0 on W(t,l) if Q = 0. By unique continuation principle for

the Maxwell’s equations (Theorem D.0.8), we have U = 0 in W(t,∞). Therefore, the

proof is done. �

3.1.3.5 The “Dirichlet to Neumann” Map

Now we shall define an important operator, the analogue of the Dirichlet to Neu-

mann (DtN) map, denoted T , for our upcoming analysis. Specifically, given tangential

field nΣ ×U|Σ on Σ, T is defined as

T (nΣ ×U|Σ) = nΣ × (∇×U)|Σ, (3.14)

where U satisfies (3.10). A similar operator can be defined by considering the analogue

of (3.10) on Σ×(−∞, s) for some fixed s. The analysis of the two operators is identical,

so we will only give details for T on Σt and will find it useful to identify the operator

on specific cross section using subscript. For example, T+
t on Σt using Σ× (t,∞), T−s

on Σs using Σ× (−∞, s) and so on. For now, we take T = T+
t .

To derive a series representation of T using modal solutions derived in Sec-

tion 3.1.2.1, consider ΩR in Figure 3.2 and choose nΣ = ẑ. From (3.12) and (3.13)

in Lemma 3.1.3, the solution U to the Maxwell’s equation in ΩR and ∇ ×U can be

written in explicit form for z > t as

U =
∑
m

AmMm +
∑
n

BnNn

=
∑
m

am
λ2
m

~∇Σ × um
0

 eihm(z−t)
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+
∑
n

− bn
µ2
n

∇Σvn

0

 eign(z−t)

− bn
ign




0

0

vn

 eign(z−t)

 ,
so that

∇×U =
∑
m

Am(∇×Mm) +
∑
n

Bn(∇×Nn)

=
∑
m

am

ihmλ2
m

∇Σum

0

+


0

0

um


 eihm(z−t)

+
∑
n

−βn
1

µ2
n

k2

ign

~∇Σ × vn
0

 eign(z−t),

where as before

am
4
=

〈
nΣ ×U|Σ,

∇Σum

0

〉
Σ

= Amλ
2
m‖um‖2

L2(Σ) = Amλ
2
m,

bn
4
=

〈
nΣ ×U|Σ,

~∇Σ × vn
0

〉
Σ

= −Bnµ
2
n‖vn‖2

L2(Σ)

ign
k

= −Bnµ
2
n

ign
k
.

Thus, using identities (B.11), (B.12), we get

nΣ ×U|Σt =
∑
m

am
1

λ2
m

∇Σum

0

+
∑
n

bn
1

µ2
n

~∇Σ × vn
0

 ,

and

nΣ × (∇×U)|Σt =
∑
m

−am
ihm
λ2
m

~∇Σ × um
0

+
∑
n

−bn
1

µ2
n

k2

ign

∇Σvn

0

 .

In summary, we have that on Σt,

U =
∑
m

am
1

λ2
m

~∇Σ × um
0
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+
∑
n

−bn

 1

µ2
n

∇Σvn

0

+
1

ign


0

0

vn


 , (3.15)

∇×U =
∑
m

am

ihmλ2
m

∇Σum

0

+


0

0

um




+
∑
n

−βn
1

µ2
n

k2

ign

~∇Σ × vn
0

 ,

nΣ ×U =
∑
m

am
1

λ2
m

∇Σum

0

+
∑
n

bn
1

µ2
n

~∇Σ × vn
0

 , (3.16)

nΣ × (∇×U) =
∑
m

−am
ihm
λ2
m

~∇Σ × um
0

+
∑
n

−bn
1

µ2
n

k2

ign

∇Σvn

0

 . (3.17)

By making a comparison of (3.16) and (3.17), together with identity (3.8), we have the

following series representation of operator T given by

T (nΣ ×U|Σ) =
∑
m

〈
nΣ ×U|Σ,

∇Σum

0

〉
Σ

(
−ihm
λ2
m

)~∇Σ × um
0


+
∑
n

〈
nΣ ×U|Σ,

~∇Σ × vn
0

〉
Σ

(
− 1

µ2
n

k2

ign

)∇Σvn

0

 .(3.18)

To facilitate the analysis later on, we shall now derive some properties of the

operator T .

Lemma 3.1.4 T is a bounded operator from H̃−1/2(div,Σ) to H̃−1/2(div,Σ).

Proof : Let U ∈ X with its trace nΣ×U|Σ ∈ H̃−1/2(div,Σ). Using the form of T given

in (3.18), we have

T (nΣ ×U|Σ) =
∑
m

〈
nΣ ×U|Σ,

∇Σum

0

〉
Σ

(
−ihm
λ2
m

)~∇Σ × um
0
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+
∑
n

〈
nΣ ×U|Σ,

~∇Σ × vn
0

〉
Σ

(
− 1

µ2
n

k2

ign

)∇Σvn

0


=

∑
m

am

(
−ihm
λ2
m

)~∇Σ × um
0

+
∑
n

bn

(
− 1

µ2
n

k2

ign

)∇Σvn

0

 .

Then

‖T (nΣ ×U|Σ)‖2
H−1/2(div,Σ) =

∑
m

|am|2λm
∣∣∣∣−ihmλ2

m

∣∣∣∣2 +
∑
n

|bn|2µ3
n

∣∣∣∣− 1

µ2
n

k2

ign

∣∣∣∣2
=

∑
m

|am|2
|k2 − λ2

m|
λ3
m

+
∑
n

|bn|2
|k2|2

µn|(k2 − µ2
n)|
.

Meanwhile, from (3.16),

nΣ ×U|Σ =
∑
m

am
1

λ2
m

∇Σum

0

+
∑
n

bn
1

µ2
n

~∇Σ × vn
0

 ,

with norm

‖nΣ ×U|Σ‖2
H−1/2(div,Σ) =

∑
m

|am|2λ3
m

∣∣∣∣ 1

λ2
m

∣∣∣∣2 +
∑
n

|bn|2µn
∣∣∣∣ 1

µ2
n

∣∣∣∣2
=

∑
m

|am|2
1

λm
+
∑
n

|bn|2
1

µ3
n

.

As m,n→∞, we have

|k2 − λ2
m|

λ3
m

= O
(

1

λm

)
and

|k2|2

µn|(k2 − µ2
n)|

= O
(

1

µ3
n

)
.

Therefore,

‖T (nΣ ×U|Σ)‖2
H−1/2(div,Σ) ≤ C‖nΣ ×U|Σ‖2

H−1/2(div,Σ)

for some constant C > 0 independent of m,n and this completes the proof. �

Lemma 3.1.5 Let k = k∗ > 0 be any positive real wavenumber such that hm, gn 6= 0

for all m,n. Then there exists a neighborhood B of k∗ in which the operator T depends

analytically on the wavenumber k ∈ B.
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Proof : The proof is inspired from the proof of Lemma 2.4 in [2]. The numbers hm =√
k2 − λ2

m and gn =
√
k2 − µ2

n can be defined using the analytic extension of the

square root to the complex plane with branch cuts {bλm}m≥0 and {bµn}n≥0 in a sub-

domain of complex plane {z ∈ C,Rez ≥ 0, Imz ≤ 0} which end at the points λm and

µn, respectively. Explicitly, they are

bλm := [λm, λm − i∞) = {z ∈ C | Rez = λm, Imz ≤ 0} for m = 0, 1, . . . ,

bµn := [µn, µn − i∞) = {z ∈ C | Rez = µn, Imz ≤ 0} for n = 0, 1, . . . .

Then, hm and gn depend analytically on k in region of the complex plane except for

these branch cuts.

By definition of k∗, there exists an open ball B of radius r∗ centered at k∗ in

which hm and gn depend analytically on k. Moreover, since hm, gn 6= 0,
1

hm
and

1

gn
also depend analytically on k in B.

For U,V ∈ X, using series expansions (3.16) on Σ, we have

nΣ ×U|Σ =
∑
m

am
1

λ2
m

∇Σum

0

+
∑
n

bn
1

µ2
n

~∇Σ × vn
0

 ,

nΣ ×V|Σ =
∑
m

ãm
1

λ2
m

∇Σum

0

+
∑
n

b̃n
1

µ2
n

~∇Σ × vn
0

 .

Denote by VT = (nΣ × V|Σ) × nΣ. We show next that the boundary inte-

gral 〈T (nΣ ×U|Σ),VT 〉Σ converges absolutely and uniformly for k in B. Using series

expansion (3.17), we have

〈T (nΣ ×U|Σ),VT 〉

=

〈∑
m

−am
ihm
λ2
m

~∇Σ × um
0

+
∑
n

−bn
1

µ2
n

k2

ign

∇Σvn

0

 , (nΣ ×V|Σ)× nΣ

〉
Σ

.

Using identities (B.2) and (B.11),(B.12), we have

〈T (nΣ ×U|Σ),VT 〉Σ
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=

〈∑
m

−am
ihm
λ2
m

nΣ ×

~∇Σ × um
0

+
∑
n

−bn
1

µ2
n

k2

ign

nΣ ×

∇Σvn

0

 ,nΣ ×V|Σ

〉
Σ

=

〈∑
m

−am
ihm
λ2
m

∇Σum

0

+
∑
n

−bn
1

µ2
n

k2

ign

−
~∇Σ × vn

0

 ,

∑
m

ãm
1

λ2
m

∇Σum

0

+
∑
n

b̃n
1

µ2
n

~∇Σ × vn
0

〉
Σ

=
∑
m

〈am, ãm〉Σ
(
−ihm
λ2
m

)
+
∑
n

〈bn, b̃n〉Σ
(

k2

µ2
nign

)

=
∑
m

〈
am

1

λ
1/2
m

, ãm
1

λ
1/2
m

〉
Σ

(
− i

λm

)
hm +

∑
n

〈
bn

1

µ
3/2
n

, b̃n
1

µ
3/2
n

〉
Σ

(µn
i

) k2

gn
. (3.19)

Notice that ∣∣∣∣−ihmλm
∣∣∣∣ =

∣∣∣∣∣
√
k2 − λ2

m

λm

∣∣∣∣∣ =

∣∣∣∣∣
√
k2 − λ2

m

λ2
m

∣∣∣∣∣ ,∣∣∣∣k2µn
ign

∣∣∣∣ = |k|2
∣∣∣∣∣ µn√

k2 − µ2
n

∣∣∣∣∣ = |k|2
∣∣∣∣∣
√

µ2
n

k2 − µ2
n

∣∣∣∣∣ .
Since they are bounded for all m’s and n’s, we have

|〈T (nΣ ×U|Σ),VT 〉|

=

∣∣∣∣∣∑
m

〈
am

1

λ
1/2
m

, ãm
1

λ
1/2
m

〉
Σ

(
−ihm
λm

)
+
∑
n

〈
bn

1

µ
3/2
n

, b̃n
1

µ
3/2
n

〉
Σ

(
k2µn
ign

)∣∣∣∣∣
≤

∑
m

∣∣∣∣〈am 1

λ
1/2
m

, ãm
1

λ
1/2
m

〉
Σ

∣∣∣∣ ∣∣∣∣−ihmλm
∣∣∣∣+
∑
n

∣∣∣∣∣
〈
bn

1

µ
3/2
n

, b̃n
1

µ
3/2
n

〉
Σ

∣∣∣∣∣
∣∣∣∣k2µn
ign

∣∣∣∣
≤ C

(∑
m

∣∣∣∣〈am 1

λ
1/2
m

, ãm
1

λ
1/2
m

〉
Σ

∣∣∣∣+
∑
n

∣∣∣∣∣
〈
bn

1

µ
3/2
n

, b̃n
1

µ
3/2
n

〉
Σ

∣∣∣∣∣
)

≤ C

(√∑
m

|am|2
1

λm

√∑
m

|ãm|2
1

λm
+

√∑
n

|bn|2
1

µ3
n

√∑
n

|b̃n|2
1

µ3
n

)

≤ C

(√∑
m

|am|2
1

λm
+
∑
n

|bn|2
1

µ3
n

√∑
m

|ãm|2
1

λm
+
∑
n

|b̃n|2
1

µ3
n

)
.

for some constant C > 0 depending on radius r∗ of B but independent of k ∈ B.
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On the other hand,

‖nΣ ×U|Σ‖2
H−1/2(div,Σ) =

∑
m

∣∣∣∣am 1

λ2
m

∣∣∣∣2 λ3
m +

∑
n

∣∣∣∣bn 1

µ2
n

∣∣∣∣2 µn
=

∑
m

|am|2
1

λm
+
∑
n

|bn|2
1

µ3
n

,

‖nΣ ×V|Σ‖2
H−1/2(div,Σ) =

∑
m

|ãm|2
1

λm
+
∑
n

|b̃n|2
1

µ3
n

.

Thus, we get

|〈T (nΣ ×U|Σ),VT 〉| ≤ C‖nΣ ×U|Σ‖H−1/2(div,Σ)‖nΣ ×V|Σ‖H−1/2(div,Σ).

So the series for 〈T (nΣ ×U|Σ),VT 〉Σ in (3.19) converges absolutely and uniformly.

To show the analyticity of 〈T (nΣ ×U|Σ),VT 〉Σ for k in B. Note that − i

λm
and

µn
i

in (3.19) are independent of k and hm,
k2

gn
are analytic for k in B. Thus, exploiting

the uniform convergence of (3.19), we can conclude that the series in (3.19) is analytic

for k in B (see Theorem 1 in Chapter 5 of [1]).

Therefore, operator T is weakly analytic for k in B. By the equivalence of weak

and strong analyticity of a bounded linear operator (see Theorem VI.4 in [57]), T is

strongly analytic for k in B and the statement of the lemma follows. �

With the definition of operator T , as a corollary of Lemma 3.1.3, we have the

well-posedness of the bounded segment of waveguide in the absence of scatterer:

Corollary 3.1.1 For s < t and Q ∈ H̃−1/2(div,Σs), the following problem has a

unique solution U ∈ H(curl,W(s,t)) such that

∇×∇×U− k2U = 0 in W(s,t),

nΓ ×U = 0 on Γ(s,t),

nΣ ×U = Q on Σs,

nΣ × (∇×U) = Tt(nΣ ×U) on Σt.

(3.20)

where Γ(s,t) = ∂Σ× (s, t) and nΣ = ẑ.
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Proof : By Lemma 3.1.3, the blocked waveguide problem has a solution and its re-

striction to W(s,t) solves (3.20). But by the definition of the DtN map the solution of

(3.20) can be extended to a solution of (3.10), so the problems are equivalent and this

completes the proof. �

3.1.3.6 Weak Formulation on an Unbounded Domain

To further analyze the problem, we shall investigate the problem on an un-

bounded waveguide where the scatterer D is illuminated by point sources (imagine a

point source located far to the left away from D in the waveguide W as in Figure 3.1)

and then reduce it to a bounded domain (the sub-domain Ω in Figure 3.2 where the

point source is located outside Ω in ΩL).

First we consider solutions to the scattering problem (3.1) - (3.5) in a weak

sense. Formally multiplying (3.1) by the complex conjugate of a smooth test function

v and applying Green’s identity we have that∫
W\D̄

[
(∇× u) · (∇× v̄)− k2u · v̄

]
dx =

∫
W\D̄

F · v̄ dx, (3.21)

for all v ∈ (C∞0 (W\D̄))3 where (C∞0 (W\D̄))3 is the set of compactly supported smooth

vector functions in W\D̄.

The difficulty in using (3.21) to state the weak formulation is the presence of the

singular source term corresponding to the point source at x0. To avoid this difficulty,

we introduce a cut-off scalar function χ ∈ C∞(W\D̄) such that

• χ = 1 in a neighborhood of ∂D.

• χ = 0 in a neighborhood of Γ and for all x (x 6∈ D̄) with |x| > L where L is
chosen so that χ = 0 on Σs and Σt.

Then the (global) weak solution of the scattering problem reads as follows:

Definition 3.1.2 (Forward scattering problem) Given an incident field ui due to a

point source at x0, then us is a weak solution to the waveguide problem if us = w−χui

where
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• w ∈ Hloc,0(curl,W\D̄) and for any v ∈ (C∞0 (W\D̄))3,∫
W\D̄

[
(∇×w) · (∇× v̄)− k2w · v̄

]
dx = F̃ (v), (3.22)

where

F̃ (v) =

∫
W\D̄

[
(∇× (χui)) · (∇× v̄)− k2(χui) · v̄

]
dx.

• The field w satisfies the radiation condition. This will guarantee the radiation
condition in Definition 3.1.1 on us.

Note that F̃ is a bounded antilinear functional on Hloc(curl,W\D̄).

3.1.3.7 Variational Formulation on a Bounded Domain

Now we derive the variational formulation on Ω = W(s,t)\D̄ in Figure 3.2 where

the point source x0 is excluded (for example, x0 ∈ ΩL). On cross sections Σs and Σt, we

prescribe boundary conditions that enforce the radiation conditions in Definition 3.1.1

using DtN mappings T (see (3.14)). Then the full statement of the forward problem

for the total field u in Ω reads:

∇×∇× u− k2u = 0 in Ω, (3.23)

nD × u = 0 on ∂D, (3.24)

u = ui + us in Ω, (3.25)

nΓ × u = 0 on Γ(s,t), (3.26)

nΣ × (∇× us) = Ts(nΣ × us) on Σs, (3.27)

nΣ × (∇× us) = Tt(nΣ × us) on Σt, (3.28)

where ui is the incident field due to point source x0 outside Ω that satisfies (3.23) and

boundary condition (3.26) in Ω.
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Correspondingly, the forward problem for the scattered field us in Ω is

∇×∇× us − k2us = 0 in Ω,

nD × us = −nD × ui on ∂D,

nΓ × us = 0 on Γ(s,t),

nΣ × (∇× us) = Ts(nΣ × us) on Σs,

nΣ × (∇× us) = Tt(nΣ × us) on Σt.

To construct the variational formulation of this problem, we take dot product

of (3.23) with the complex conjugate of a test function v ∈ X and integrate over Ω.

Using integration by parts and the vector identity (B.2), we have

0 =

∫
Ω

(∇×∇× u− k2u) · v̄ dx

=

∫
Ω

(∇× u) · (∇× v̄) dx−
∫
∂Ω

nΩ · (v̄ ×∇× u) ds− k2

∫
Ω

u · v̄ dx

=

∫
Ω

(∇× u) · (∇× v̄) dx− k2

∫
Ω

u · v̄ dx−
∫
∂D

(nD ×∇× u) · v̄ ds

+

∫
Γ(s,t)

(nΓ ×∇× u) · v̄ ds+
∑
j=s,t

∫
Σj

(nΣ ×∇× u) · v̄ ds.

Since n× v = 0 on Γ(s,t) ∪ ∂D, we get∫
Ω

(∇× u) · (∇× v̄) dx− k2

∫
Ω

u · v̄ dx+
∑
j=s,t

∫
Σj

(nΣ ×∇× u) · v̄ ds = 0.

Furthermore, because us = u− ui, we see that∫
Σs

(nΣ ×∇× u) · v̄ ds

=

∫
Σs

(nΣ ×∇× (u− ui)) · v̄ ds+

∫
Σs

(nΣ ×∇× ui) · v̄ ds

=

∫
Σs

Ts(nΣ × (u− ui)) · v̄ ds+

∫
Σs

(nΣ ×∇× ui) · v̄ ds

=

∫
Σs

Ts(nΣ × u) · v̄T ds+

∫
Σs

[
(nΣ ×∇× ui)− Ts(nΣ × ui)

]
· v̄T ds,

where v̄T = (nΣ × v̄)× nΣ. A similar formula holds on Σt with operator Tt. Thus we

have ∫
Ω

(∇× u) · (∇× v̄) dx− k2

∫
Ω

u · v̄ dx+
∑
j=s,t

∫
Σj

Tj(nΣ × u) · v̄T ds

88



=
∑
j=s,t

∫
Σj

[
Tj(nΣ × ui)− (nΣ ×∇× ui)

]
· v̄T ds.

Therefore, the (local) variational formulation of the scattering problem reads as

follows:

Definition 3.1.3 (Truncated Forward scattering problem) Given an incident field ui

satisfying (3.23) and (3.26), u ∈ X is said to be a solution of the variational problem

in Ω if it satisfies∫
Ω

(∇× u) · (∇× v̄) dx − k2

∫
Ω

u · v̄ dx

+
∑
j=s,t

∫
Σj

Tj(nΣ × u) · v̄T ds = F̂ (ui,v), (3.29)

for all v ∈ X where

F̂ (ui,v) =
∑
j=s,t

∫
Σj

[
Tj(nΣ × ui)− (nΣ ×∇× ui)

]
· v̄T ds.

Before investigating the well-posedness of variational problem in Definition 3.1.3,

we want to point out the equivalence of weak formulation on unbounded domain and

variational formulation on bounded domain given by the following theorem:

Theorem 3.1.3 Suppose us is a weak solution of the (global) scattering problem in

the sense of Definition 3.1.2. Then u = w + (1 − χ)ui is a solution to the (local)

variational problem in Definition 3.1.3. Conversely, if u is a solution to the (local)

variational problem in Definition 3.1.3, setting w = u− (1− χ)ui, it can be extended

in a unique way to W\Ω and so that us as an extension of u−ui satisfies the (global)

scattering problem in Definition 3.1.2.

Proof : First we prove that the restriction of a solution of the global scattering problem

is a solution of the local scattering problem. Suppose w is a solution to the problem

described in Definition 3.1.2. From equation (3.22), for v ∈ (C∞0 (W\D̄))3, we have

F̃ (v) =

∫
W\D̄

[
(∇×w) · (∇× v̄)− k2w · v̄

]
dx

89



=

∫
Ω

[
(∇×w) · (∇× v̄)− k2w · v̄

]
dx

+

∫
ΩL∪ΩR

[
(∇×w) · (∇× v̄)− k2w · v̄

]
dx.

Denote W(−L̃,s) a bounded segment of ΩL where L̃ > s, using integration by parts and

the vector identity (B.2), we have∫
W(−L̃,s)

[
(∇×w) · (∇× v̄)− k2w · v̄

]
dx

=

∫
W(−L̃,s)

(∇×∇×w) · v̄ dx

+

∫
∂W(−L̃,s)

(∇×w) · (n× v̄) ds−
∫
W(−L̃,s)

k2w · v̄ dx

= −
∫

Σs

v̄ · (nΣ ×∇×w) ds+

∫
Σ−L̃

(∇×w) · (nΣ × v̄) ds

= −
∫

Σs

Ts(nΣ ×w) · v̄ ds+

∫
Σ−L̃

(∇×w) · (nΣ × v̄) ds.

By Cauchy-Schwarz inequality,∣∣∣∣∣
∫

Σ−L̃

(∇×w) · (nΣ × v̄) ds

∣∣∣∣∣ ≤ ‖(∇×w)T |Σ−L̃
‖H−1/2(div,Σ)‖nΣ × v̄|Σ−L̃

‖H−1/2(div,Σ).

Since w satisfies radiation condition and thus can be expanded as series of

outgoing and evanescent waves (bounded and convergent) for |x| > L, the series are

uniformly convergent for |x| ≥ L̃ > L. Together with v ∈ (C∞0 (W\D̄))3, as L̃ → ∞,

we have that∫
ΩL

[
(∇×w) · (∇× v̄)− k2w · v̄

]
dx = −

∫
Σs

Ts(nΣ ×w) · v̄ ds.

Notice that the outward normal nΣ = ẑ is with respect to ΩL. In view of the outward

normal to Ω, it should be nΣ = −ẑ and we get∫
ΩL

[
(∇×w) · (∇× v̄)− k2w · v̄

]
dx =

∫
Σs

Ts(nΣ ×w) · v̄ ds.

Similar result holds for ΩR.
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Hence, for any v ∈ (C∞0 (W\D̄))3, w ∈ Hloc,0(curl,W\D̄) satisfies

F̃ (v) =

∫
Ω

[
(∇×w) · (∇× v̄)− k2w · v̄

]
dx

+
∑
j=s,t

∫
Σj

Tj(nΣ ×w) · v̄ ds. (3.30)

On the other hand, since χ = 0 in ΩL ∪ ΩR, we have

F̃ (v) =

∫
W\D̄

[
(∇× (χui)) · (∇× v̄)− k2(χui) · v̄

]
dx

=

∫
Ω

[
(∇× (χui)) · (∇× v̄)− k2(χui) · v̄

]
dx. (3.31)

Define u = w+(1−χ)ui in Ω, then w = u−(1−χ)ui = u−ui+χui. Equating

(3.30),(3.31) and substituting w gives∫
Ω

[
(∇× (u− ui)) · (∇× v̄)− k2(u− ui) · v̄

]
dx

+
∑
j=s,t

∫
Σj

Tj(nΣ × (u− ui)) · v̄ ds

+

∫
Ω

[
(∇× (χui)) · (∇× v̄)− k2(χui) · v̄

]
dx

+
∑
j=s,t

∫
Σj

Tj(nΣ × (χui)) · v̄ ds

=

∫
Ω

[
(∇× (χui)) · (∇× v̄)− k2(χui) · v̄

]
dx.

Since χ = 0 on Σs and Σt, we get∫
Ω

[
(∇× (u− ui)) · (∇× v̄)− k2(u− ui) · v̄

]
dx

+
∑
j=s,t

∫
Σj

Tj(nΣ × (u− ui)) · v̄ ds = 0. (3.32)

Thus, rearranging equation (3.32), using integration by parts and the vector identity

(B.2) again, we have∫
Ω

[
(∇× u) · (∇× v̄)− k2u · v̄

]
dx+

∑
j=s,t

∫
Σj

Tj(nΣ × u) · v̄ ds

=
∑
j=s,t

∫
Σj

Tj(nΣ × ui) · v̄ ds+

∫
Ω

[
(∇× ui) · (∇× v̄)− k2ui · v̄

]
dx
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=
∑
j=s,t

∫
Σj

Tj(nΣ × ui) · v̄ ds

+

[∫
Ω

(∇×∇× ui − k2ui) · v̄ dx+

∫
∂Ω

(∇× ui) · (n× v̄) ds

]
=

∑
j=s,t

∫
Σj

[
Tj(nΣ × ui)− (nΣ × (∇× ui))

]
· v̄T ds.

Furthermore, note that

1. u ∈ X because

• u ∈ H(curl,Ω) since w ∈ Hloc,0(curl,W\D̄) and x0 6∈ Ω.

• n× u = 0 on Γ(s,t) ∪ ∂D since

– χ = 1 around ∂D, then u = w and n × u = n × w = 0 on ∂D since
w ∈ Hloc,0(curl,W\D̄).

– χ = 0 around Γ, then u = w + ui and n×u = n×w + n×ui = 0 on Γ
since w ∈ Hloc,0(curl,W\D̄) and boundary condition n× ui = 0 on Γ.

2. The space {ṽ | ṽ = v|Ω for some v ∈ (C∞0 (W\D̄))3} is dense in X (see Theorem
4.1 in [48] for a similar proof).

Therefore, u = w + (1− χ)ui is a solution to the (local) variational problem in

Definition 3.1.3.

Now we prove that a solution to the (local) variational problem can be extended

to a solution to the global scattering problem. Suppose u ∈ X is a solution of the

variational problem in Definition 3.1.3, which is equivalent to (3.32). Letting w =

u − (1 − χ)ui = u − ui + χui and reversing the steps starting from (3.32) we get the

form in (3.30). That is, for any v ∈ X, w ∈ X satisfies∫
Ω

[
(∇×w) · (∇× v̄)− k2w · v̄

]
dx+

∑
j=s,t

∫
Σj

Tj(nΣ ×w) · v̄ = F̃ (v),

where

F̃ (v) =

∫
Ω

[
(∇× (χui)) · (∇× v̄)− k2(χui) · v̄

]
.

Obviously this is also true for any v ∈ (C∞0 (W\D̄))3.

Extend w to ΩR by solving

∇×∇×wR − k2wR = 0 in ΩR,
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nΣ ×wR = nΣ ×w in Σt,

nΣ ×wR = 0 on Γ(t,∞),

wR satisfies radiation condition as z →∞,

where nΣ = ẑ in view of the outward normal to Ω. By Lemma 3.1.3, this extension

exists and is unique. A similar extension can be done for wL in ΩL.

Note that the extension

w̃ =


wL in ΩL,

w in Ω,

wR in ΩR.

belongs to space Hloc,0(curl,W\D̄) because

• w ∈ X in Ω.

• wL ∈ Hloc(curl,ΩL) and wR ∈ Hloc(curl,ΩR) as shown in Lemma 3.1.3.

• The tangential fields are continuous across Σs and Σt. Moreover, with definition
of operator T , we know

nΣ × (∇×w) = Tt(nΣ ×w) = nΣ × (∇×wR)

(the same result holds for wL on Σt) which makes the field w̃ satisfy the Maxwell’s
equation and be in Hloc(curl,W\D̄) overall.

In addition, by definition of operator Tt on Σt such that

Tt(nΣ ×w) = nΣ × (∇×wR) on Σt

(same result holds for Ts with wL on Σs) together with the compact support of test

function v ∈ (C∞0 (W\D̄))3, we are able to reverse the derivation starting from (3.30)

back to ∫
W\D̄

[
(∇× w̃) · (∇× v̄)− k2w̃ · v̄

]
= F̃ (v),

where

F̃ (v) =

∫
W\D̄

[
(∇× (χui)) · (∇× v̄)− k2(χui) · v̄

]
,
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which satisfies (3.22) in Definition 3.1.2.

Finally, from the construction of w̃, we have shown that w can be extended

uniquely to W\Ω and satisfies radiation condition. So us = w̃ − χui as an extension

of u− ui also satisfies the radiation condition and this completes the proof. �

3.2 Well-Posedness of the Forward Scattering Problem

In this section, we shall prove the well-posedness of the forward scattering prob-

lem on a bounded domain stated in Definition 3.1.3 by showing

1. The variational problem in Definition 3.1.3 may be reduced to an operator equa-
tion

(I − A)u = f

on a suitable space X+.

2. The operator A is compact and analytic for k in a suitable sub-domain of the
complex plane.

3. For k = ic with c > 0 small enough, the operator equation has at most one
solution.

Then the well-posedness of the problem can be proved by using the Fredholm Alter-

native, except for an at most countable set of real wave numbers.

For simplicity, let Γ = Γ(s,t) and for f ,g ∈ X, denote∫
Ω

f · ḡ dx = (f, g)Ω,

∫
Σj

f · ḡ ds = 〈f ,g〉Σj for j = s, t.

Then equation (3.29) can be written as, u ∈ X satisfies

(∇× u,∇× v)Ω − k2(u,v)Ω + 〈Ts(nΣ × u),vT 〉Σs

+ 〈Tt(nΣ × u),vT 〉Σt = F̂ (ui,v), (3.33)

for all v ∈ X.

To make further progress, we need to use a Helmholtz decomposition for func-

tions in X.
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3.2.1 Helmholtz Decomposition of the Function Space X

The function space X for the weak solution given in (3.33) is too large for the

direct analysis of (3.23) - (3.28). We need to factor out fields in the null space of the

curl operator. To this end, we define the following potential space S:

S := {p ∈ H1(Ω) | p = 0 on Γ ∩ Ω̄, p = constant on ∂D}.

First, we have ∇S ⊂ X since (n × ∇p) × n = (∇p)T = 0 on each piece of

boundary of Ω.

To understand the construction of the function space X+, write u = u+ +∇p ∈

X for some u+ ∈ X and p ∈ S. Substituting into (3.33), we get

(∇× (u+ +∇p),∇× v)Ω − k2((u+ +∇p),v)Ω

+
∑
j=s,t

〈Tj(nΣ × (u+ +∇p)),vT 〉Σj = F̂ (ui,v).

Since ∇×∇p = 0, we have

(∇× u+,∇× v)Ω − k2((u+ +∇p),v)Ω

+
∑
j=s,t

〈Tj(nΣ × (u+ +∇p)),vT 〉Σj = F̂ (ui,v).

Now choose v = ∇q ∈ ∇S to obtain

−k2((u+ +∇p),∇q)Ω +
∑
j=s,t

〈Tj(nΣ × (u+ +∇p)), (∇q)T 〉Σj = F̂ (ui,∇q).

After expansion, we get

−k2(u+,∇q)Ω +
∑
j=s,t

〈Tj(nΣ × u+), (∇q)T 〉Σj

−k2(∇p,∇q)Ω +
∑
j=s,t

〈Tj(nΣ ×∇p)), (∇q)T 〉Σj = F̂ (ui,∇q).

If we choose u+ such that −k2(u+,∇q)Ω +
∑
j=s,t

〈Tj(nΣ × u+), (∇q)T 〉Σj = 0, then we

must choose p ∈ S such that

− k2(∇p,∇q)Ω +
∑
j=s,t

〈Tj(nΣ ×∇p), (∇q)T 〉Σj = F̂ (ui,∇q) for all q ∈ S. (3.34)
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This motivates the following definition for X+ ⊂ X:

X+ :=

{
w ∈ X

∣∣∣∣∣ −k2(w,∇q)Ω +
∑
j=s,t

〈Tj(nΣ ×w), (∇q)T 〉Σj = 0 for all q ∈ S

}
.

Next, we shall prove that equation (3.34) has unique solution.

Lemma 3.2.1 There exists a unique solution p ∈ S such that

−k2(∇p,∇q)Ω +
∑
j=s,t

〈Tj(nΣ ×∇p), (∇q)T 〉Σj = F̂ (ui,∇q) for all q ∈ ∇S.

Proof : We shall prove the coercivity and boundedness of the following sesquilinear

form

B(p, q) = k2(∇p,∇q)Ω −
∑
j=s,t

〈Tj(nΣ ×∇p), (∇q)T 〉Σj .

Then by the Lax-Milgram Lemma (Theorem C.0.4), the existence and uniqueness of

p ∈ S such that B(p, q) = −F̂ (ui,∇q) for all q ∈ S holds and the proof is done.

To analyze 〈Ts(nΣ×∇p), (∇p)T 〉Σs , using identity (B.11), we have nΣ×(∇p)|Σ =

−~∇Σ × p. By Lemma 3.1.2, −~∇Σ × p can be written as series representation using

{~∇Σ × vl}l≥1, that is

−~∇Σ × p =
∑
l

p
(1)
l
~∇Σ × vl.

Applying the operator Ts, we get, on Σs

Ts(nΣ ×∇p) = Ts(−~∇Σ × p)

=
∑
m

〈(∑
l

p
(1)
l
~∇Σ × vl

)
,

∇Σum

0

〉
Σs

(
−ihm
λ2
m

)~∇Σ × um
0


+
∑
n

〈(∑
l

p
(1)
l
~∇Σ × vl

)
,

~∇Σ × vn
0

〉
Σs

(
− 1

µ2
n

k2

ign

)∇Σvn

0


= 0 +

∑
n

(
p(1)
n µ2

n

)(
− 1

µ2
n

k2

ign

)∇Σvn

0


=

∑
n

(
−p

(1)
n k2

ign

)∇Σvn

0

 .
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On the other hand, using identity (B.10), (∇p)T = ∇Σp. By Lemma 3.1.2 again,

it can be written as series representation using {∇Σum}m≥1, that is

(∇p)T = ∇Σp =
∑
m

p(2)
m ∇Σum.

Since p = 0 on ∂Σ, by Lemma 3.1.1, we have

〈Ts(nΣ ×∇p), (∇p)T 〉Σs

=

〈∑
n

(
−p

(1)
n k2

ign

)∇Σvn

0

 ,
∑
m

p(2)
m

∇Σum

0

〉
Σs

=

〈∑
n

−

〈
−~∇Σ × p,

~∇Σ × vn
0

〉
Σs

1

µ2
n

k2

ign

∇Σvn

0

 ,

∑
m

〈
∇Σp,

∇Σum

0

〉
Σs

1

λ2
m

∇Σum

0

〉
Σs

=

〈∑
n

−
〈
−p, µ2

nvn
〉

Σs

1

µ2
n

k2

ign

∇Σvn

0

 ,
∑
m

〈
p, λ2

mum
〉

Σs

1

λ2
m

∇Σum

0

〉
Σs

=

〈∑
n

−〈−p, vn〉Σs
k2

ign
vn,
∑
m

〈p, um〉Σs λ
2
mum

〉
Σs

= −

〈∑
n

〈p, vn〉Σs vn
ik2

gn
,
∑
m

〈p, um〉Σs umλ
2
m

〉
Σs

.

The same equality holds for Tt on Σt. Therefore,

B(p, p) = k2(∇p,∇p)Ω −
∑
j=s,t

〈Tj(nΣ ×∇p), (∇p)T 〉Σj

= k2(∇p,∇p)Ω +
∑
j=s,t

〈∑
n

〈p, vn〉Σj vn
ik2

gn
,
∑
m

〈p, um〉Σj umλ
2
m

〉
Σj

.

Note that p|Σ ∈ L2(Σ) and thus by Theorem 3.1.1 and Theorem 3.1.2, for j = s, t, it

has expansion

p|Σ =
∑
n

〈p, vn〉Σ vn or p|Σ =
∑
m

〈p, um〉Σ um.
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Also there there exists a finite number n∗ such that gn is real for n ≤ n∗ and imaginary

for n > n∗. Thus, using the Poincaré inequality (notice p = 0 on Γ ∩ Ω̄), we have

Re(B(p, p))
= k2(∇p,∇p)Ω ≥ C‖p‖2

H1(Ω) when n ≤ n∗,

≥ k2(∇p,∇p)Ω +
∑
j=s,t

‖p‖2
L2(Σj)

k2λ2
1 inf

{
1

|gn|

}
n>n∗

≥ C‖p‖2
H1(Ω) when n > n∗,

for some constant C > 0. So the sesquilinear form B(p, q) is coercive.

For the boundedness, we have

|B(p, q)| ≤ |k2(∇p,∇q)Ω|+

∣∣∣∣∣∑
j=s,t

〈Tj(nΣ ×∇p), (∇q)T 〉Σj

∣∣∣∣∣
≤ k2‖∇p‖L2‖∇q‖L2 +

∑
j=s,t

‖Tj(nΣ ×∇p)‖H−1/2(div,Σ)‖(∇q)T‖H−1/2(curl,Σ)

≤ k2‖∇p‖H(curl)‖∇q‖H(curl) +
∑
j=s,t

‖nΣ ×∇p|Σj‖H−1/2(div,Σ)‖(∇q)T‖H−1/2(curl,Σ)

≤ k2‖∇p‖H(curl)‖∇q‖H(curl) + C‖∇p‖H(curl)‖∇q‖H(curl)

≤ C‖∇p‖H(curl)‖∇q‖H(curl),

for some constant C > 0.

Thus, by the Lax-Milgram Lemma (Theorem C.0.4), there exists a unique solu-

tion p ∈ S to B(p, q) = −F̂ (ui,∇q) and this completes the proof. �

It is worth mentioning that this lemma asserts a unique solution p ∈ S to

B(p, q) = l(v) where l is any continuous linear functional of v = ∇q ∈ ∇S.

Now, similar to Lemma 10.3 in [48], we have the following Helmholtz decompo-

sition:

Lemma 3.2.2 (Helmholtz Decomposition) The space ∇S is a closed subspace of X,

and we may write the direct sum

X = ∇S ⊕X+.

Proof : The space ∇S in closed in X since S is closed in H1(Ω). To show the subspace

X+ is closed, we have for fixed q ∈ S, the linear functionals u 7→ (u,∇q)Ω and u 7→
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〈Tj(nΣ × u), (∇q)T 〉Σj(j = s, t) are bounded on H(curl,Ω). Since for u ∈ H(curl,Ω),

by Cauchy-Schwarz inequality, we have

|(u,∇q)Ω| ≤ ‖u‖H(curl)‖∇q‖H(curl) = ‖u‖H(curl)‖∇q‖L2 , (3.35)

and for j = s, t,

|〈Tj(nΣ × u), (∇q)T 〉Σj | ≤ ‖Tj(nΣ × u)‖H−1/2(div,Σ)‖(nΣ ×∇q)× nΣ‖H−1/2(curl,Σ)

≤ C‖nΣ × u‖H−1/2(div,Σ)‖(nΣ ×∇q)× nΣ‖H−1/2(curl,Σ)

≤ C‖u‖H(curl)‖∇q‖H(curl) = C‖u‖H(curl)‖∇q‖L2 , (3.36)

for some constant C > 0. Here we have used the boundedness of operator T (Lem-

ma 3.1.4), the boundedness of the trace operator from H(curl,Ω) to H̃−1/2(div,Σ) and

the boundedness of the trace operator from H(curl,Ω) to H̃−1/2(curl,Σ).

Consider a Cauchy sequence {un} ∈ X+ that converges strongly to some func-

tion u ∈ X, by definition of X+, we see that

0 = −k2(un,∇q)Ω +
∑
j=s,t

〈Tj(nΣ × un), (∇q)T 〉Σj

=

(
−k2(un − u,∇q)Ω +

∑
j=s,t

〈Tj(nΣ × (un − u)), (∇q)T 〉Σj

)

+

(
−k2(u,∇q)Ω +

∑
j=s,t

〈Tj(nΣ × u), (∇q)T 〉Σj

)
.

Letting n→∞ and using the fact that un → u in X together with inequalities (3.35),

(3.36), we have

−k2(u,∇q)Ω +
∑
j=s,t

〈Tj(nΣ × u), (∇q)T 〉Σj = 0.

Thus, u ∈ X+ as well and the space X+ is closed.

To show that X = ∇S ⊕X+, consider u ∈ X. By Lemma 3.2.1, there exists a

unique p ∈ S such that

−k2(∇p,v)Ω +
∑
j=s,t

〈Tj(nΣ ×∇p),vT 〉Σj
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= (∇× u,∇× v)Ω − k2(u,v)Ω +
∑
j=s,t

〈Tj(nΣ × u),vT 〉Σj ,

for all v = ∇q ∈ ∇S.

Define u+ = u−∇p, then u+ ∈ X+ is seen directly from the variational equation

above.

Finally, we have to show that ∇S ∩ X+ = 0. Suppose u = ∇p ∈ ∇S ∩ X+,

then for all q ∈ S, consider the variational form

0 = (∇× u,∇×∇q)Ω − k2(u,∇q)Ω +
∑
j=s,t

〈Tj(nΣ × u), (∇q)T 〉Σj

= −k2(∇p,∇q)Ω +
∑
j=s,t

〈Tj(nΣ ×∇p), (∇q)T 〉Σj .

Again, by Lemma 3.2.1, there exists a unique p ∈ S that solves the above equation.

Since p = 0 is obviously a solution, it is the only one. This completes the proof. �

3.2.2 Variational Analysis of the Forward Scattering Problem

Given the Helmholtz decomposition (Lemma 3.2.2), every solution u ∈ X of

equation (3.33) can be written as u = ∇p + u+ where ∇p ∈ ∇S and u+ ∈ X+.

Plugging the expansion for u in (3.33), we have

(∇× u+,∇× v)Ω − k2((u+ +∇p),v)Ω +
∑
j=s,t

〈Tj(nΣ × (u+ +∇p)),vT 〉Σj = F̂ (ui,v).

Therefore, we get, for every v ∈ X,

(∇× u+,∇× v)Ω − k2(u+,v)Ω +
∑
j=s,t

〈Tj(nΣ × u+),vT 〉Σj

= F̂ (ui,v) + k2(∇p,v)Ω −
∑
j=s,t

〈Tj(nΣ ×∇p),vT 〉Σj .

Note that p can be determined by solving the variational equation in Lemma 3.2.1.

Thus we have derived a variational equation for u+ ∈ X+. That is, the function

u+ ∈ X+ is such that for all v ∈ X+, it satisfies the variational problem

(∇× u+,∇× v)Ω − k2(u+,v)Ω +
∑
j=s,t

〈Tj(nΣ × u+),vT 〉Σj = G(ui,v), (3.37)
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where

G(ui,v) = F̂ (ui,v) + k2(∇p,v)Ω −
∑
j=s,t

〈Tj(nΣ ×∇p),vT 〉Σj .

To continue, we shall now prove some useful lemmas:

Lemma 3.2.3 The function space X+ is compactly embedded in (L2(Ω))3.

Proof : Consider the definition of a compact embedding, we shall show that for any

bounded sequence un ∈ X+, there exists a subsequence again denoted by un and

u0 ∈ X+ such that un strongly converges to u0 in (L2(Ω))3.

Since un ∈ X+, we have, for all q ∈ S

− k2(un,∇q)Ω +
∑
j=s,t

〈Tj(nΣ × un), (∇q)T 〉Σj = 0. (3.38)

By choosing q ∈ H1
0 (Ω) ⊂ S, then (∇q)T = ∇Σq = 0. Applying integration by parts,

we get

−k2(un,∇q)Ω = k2(∇ · un, q)Ω = 0.

So ∇ · un = 0.

Now we extend un to ΩR by solving

∇×∇× uRn − k2uRn = 0 in ΩR,

nΣ × uRn = nΣ × un on Σt,

nΓ × uRn = 0 on Γ,

uRn satisfies radiation condition as z →∞,

where nΣ = ẑ in view of the outward normal to Ω. Of course ∇ ·uRn = 0 by taking the

divergence of the Maxwell’s equation above.

In a similar fashion, we can do the same thing in ΩR to obtain uRn and ∇·uRn = 0

with matching tangential field on the interface Σt.

Define ũn as

ũn =


uLn in ΩL,

un in Ω,

uRn in ΩR.
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Similar to the reasoning in the proof of Theorem 3.1.3, we have ũn ∈ Hloc(curl,W\D̄).

Next, we show that the normal component on the cross sections Σs and Σt also

matches. By applying integration by parts to (3.38), we get

−k2

(
−(∇ · un, q)Ω +

∑
j=s,t

〈nΣ · un, q〉Σj

)
+
∑
j=s,t

〈Tj(nΣ × un),∇Σq〉Σj = 0.

Using Stokes identity (B.16), note that q = 0 on ∂Σ, we have

−k2
∑
j=s,t

〈nΣ · un, q〉Σj −
∑
j=s,t

〈∇Σ · T (nΣ × un), q〉Σj = 0.

This implies, on Σt

−k2nΣ · un = ∇Σ · Tt(nΣ × un).

Using definition of T obtained from (3.14), we get

−k2nΣ · un = ∇Σ · Tt(nΣ × uRn ) = ∇Σ ·
(
nΣ × (∇× uRn )

)
.

Using series representation given by (3.17) on Σt, we have

nΣ × (∇× uRn ) =
∑
m

−am
ihm
λ2
m

~∇Σ × um
0

+
∑
n

−bn
1

µ2
n

k2

ign

∇Σvn

0

 .

By Stokes identity (B.18), we get

∇Σ ·
(
nΣ × (∇× uRn )

)
= 0 +

∑
n

−bn
1

µ2
n

k2

ign
(−µ2vn) =

∑
n

bn
k2

ign
vn.

Meanwhile, using series representation given by (3.15) on Σt, we have

−k2nΣ · uRn = −k2nΣ ·

∑
m

am
1

λ2
m

~∇Σ × um
0



+
∑
n

−bn

 1

µ2
n

∇Σvn

0

+
1

ign


0

0

vn
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= −k2
∑
n

−bn
1

ign

nΣ ·


0

0

vn




=
∑
n

βn
k2

ign
vn.

Thus, we obtain

−k2nΣ · un = ∇Σ ·
(
nΣ × (∇× uRn )

)
= −k2nΣ · uRn ,

that is,

nΣ · un = nΣ · uRn .

In a similar fashion, we can also conclude nΣ · un = nΣ · uLn on Σt.

This means that the normal component also matches on the cross sections Σs,Σt

and consequently ũn ∈ Hloc(div,W\D̄) and ∇ · ũn = 0. Hence, we can conclude that

ũn ∈ YW\D̄ := {v ∈ Hloc(curl,W\D̄) ∩Hloc(div,W\D̄) |

nΓ × v = 0 on Γ,nD × v = 0 on ∂D,∇ · v = 0 in W\D̄}.

Now, choose a smooth cut-off scalar function χ such that

χ =

 1 in Ω,

0 in W\D̄ when |z| > l > max{|s|, |t|}.

Consider the sequence {χũn} ⊂ XW(−l,l)\D̄. We have the following facts:

‖χũn‖L2(W(−l,l)\D̄) < ∞,

‖∇ × (χũn)‖L2(W(−l,l)\D̄) < ∞,

‖∇ · (χũn)‖L2(W(−l,l)\D̄) < ∞,

n× (χũn) = 0 on ∂W(−l,l)\D̄.

Then by the standard compactness result of H0(curl)∩H(div0) in (L2)3 (see Corollary

3.49 in [48]), there exists a subsequence again denoted by {χũn} that strongly conver-

gence to a function ũ ∈ (L2(W(−l,l)\D̄))3. With restriction to Ω, we have (χũn)|Ω = ũn
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converges strongly to ũ|Ω in (L2(Ω))3 and the proof of compactly embedding of X+ to

(L2(Ω))3 is done. �

The next lemma gives a decomposition of the operator T :

Lemma 3.2.4 Operators Tj for j = s, t in (3.37) can be written as Tj = T 0
j +T cj where

T 0
j is positive and T cj is a compact perturbation.

Proof : Consider the operator Tt on Σt. We separate Tt into two parts, using series

expansion of T from (3.18),

Tt(nΣ × u+|Σt) = T1t(nΣ × u+|Σt) + T2t(nΣ × u+|Σt)

=
∑
m

〈
(nΣ × u+|Σt),

∇Σum

0

〉
Σt

(
−ihm
λ2
m

)~∇Σ × um
0


+
∑
n

〈
(nΣ × u+|Σt),

~∇Σ × vn
0

〉
Σt

(
− 1

µ2
n

k2

ign

)∇Σvn

0

 .

We analyze each part individually. For operator T1t, first notice that there exists

a finite number m∗ such that hm is real for m ≤ m∗ and imaginary for m > m∗. Let

h̃m =

 0 if m ≤ m∗,

|hm| if m > m∗.

Define operator T̃1t as follows:

T̃1t(nΣ × u+|Σt) =
∑
m

〈
(nΣ × u+|Σt),

∇Σum

0

〉
Σt

(
h̃m
λ2
m

)~∇Σ × um
0

 .

Then, we have

(T1t − T̃1t)(nΣ × u+|Σt) =
m∗∑
m=0

〈
(nΣ × u+|Σt),

∇Σum

0

〉
Σt

(
−ihm
λ2
m

)~∇Σ × um
0

 .

Since Tt : H̃−1/2(div,Σt) 7→ H̃−1/2(div,Σt) is bounded (Lemma 3.1.4), so is T1t − T̃1t.

Also, T1t − T̃1t is linear and of finite rank, so T1t − T̃1t is a compact operator (see

Theorem 8.1-4 in [44]).
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Next we show that operator T̃1t is positive. Specifically, using identities (B.2)

and (B.12), we have〈
T̃1t(nΣ × u+|Σt), (u+)T

〉
Σt

=

〈∑
m

〈
(nΣ × u+|Σt),

∇Σum

0

〉
Σt

(
h̃m
λ2
m

)~∇Σ × um
0

 , (u+)T

〉
Σt

=
∑
m

〈
(nΣ × u+|Σt),

∇Σum

0

〉
Σt

(
h̃m
λ2
m

)〈~∇Σ × um
0

 , (nΣ × u+|Σt)× nΣ

〉
Σt

=
∑
m

〈
(nΣ × u+|Σt),

∇Σum

0

〉
Σt

(
h̃m
λ2
m

)〈
nΣ ×

~∇Σ × um
0

 ,nΣ × u+|Σt

〉
Σt

=
∑
m

〈
(nΣ × u+|Σt),

∇Σum

0

〉
Σt

(
h̃m
λ2
m

)〈∇Σum

0

 ,nΣ × u+|Σt

〉
Σt

=
∑
m

∣∣∣∣∣∣
〈

(nΣ × u+|Σt),

∇Σum

0

〉
Σt

∣∣∣∣∣∣
2

h̃m
λ2
m

=
∑
m>m∗

∣∣∣∣∣∣
〈

(nΣ × u+|Σt),

∇Σum

0

〉
Σt

∣∣∣∣∣∣
2

|hm|
λ2
m

> 0.

For operator T2t, we shall show that it is already a compact operator. Consider

a bounded sequence {u+
n } ⊂ X+, then for each u+

n , we have

T2t(nΣ × u+
n ) =

∑
n

〈
(nΣ × u+

n |Σt),

~∇Σ × vn
0

〉
Σt

(
− 1

µ2
n

k2

ign

)∇Σvn

0

 ,

and then

‖T2t(nΣ × u+
n )‖2

H−1/2(div,Σ) =
∑
n

µ3
n

∣∣∣∣∣∣
〈

(nΣ × u+
n |Σt),

~∇Σ × vn
0

〉
Σt

(
− 1

µ2
n

k2

ign

)∣∣∣∣∣∣
2

=
∑
n

1

µn

∣∣∣∣∣∣
〈

(nΣ × u+
n |Σt),

~∇Σ × vn
0

〉
Σt

(
− k

2

ign

)∣∣∣∣∣∣
2

.
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Meanwhile, since

u+
n |Σt =

∑
m

am
1

λ2
m

~∇Σ × um
0

+
∑
n

−bn

 1

µ2
n

∇Σvn

0

+
1

ign


0

0

vn


 ,

we get

nΣ · u+
n |Σt = 0 +

∑
n

−bn

0 +
1

ign
nΣ ·


0

0

vn




=
∑
n

−bn
1

ign
vn

=
∑
n

〈
nΣ × u+

n |Σt ,

~∇Σ × vn
0

〉
Σt

(
− 1

ign

)
vn,

and then

‖nΣ · u+
n ‖2

H−1/2(Σ) =
∑
n

1√
1 + µ2

n

∣∣∣∣∣∣
〈

nΣ × u+
n |Σt ,

~∇Σ × vn
0

〉
Σt

(
− 1

ign

)∣∣∣∣∣∣
2

.

Because
1√

1 + µ2
n

= O
(

1

µn

)
as n→∞ and k is a constant, using the bound-

edness of trace operator from H(div,Ω) to H−1/2(Σ), we have that

‖T2t(nΣ × u+
n )‖2

H−1/2(div,Σ) ≤ C‖nΣ · u+
n ‖2

H−1/2(Σ)

≤ C‖u+
n ‖H(div,Ω) = C

(
‖u+

n ‖L2(Ω) + ‖∇ · u+
n ‖L2(Ω)

)
= C‖u+

n ‖L2(Ω),

for some constant C > 0.

Therefore, there exists a strongly convergent sequence in H̃−1/2(div,Σt). Since

X+ is compactly embedded in (L2(Ω))3 (Lemma 3.2.3), T2t is compact.

Overall, we see that

Tt = T1t + T2t = T̃1t + (T1t − T̃1t) + T2t,

where T 0
t = T̃1t > 0 and T ct = (T1t − T̃1t) + T2t is compact. Similar result holds for Ts

on Σs and the proof is done. �
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3.2.3 Existence and Uniqueness

With Lemma 3.2.4, we can rewrite (3.37) as finding u+ ∈ X+ such that

G(ui,v) = (∇× u+,∇× v)Ω − k2(u+,v)Ω +
∑
j=s,t

〈Tj(nΣ × u+),vT 〉Σj

= (∇× u+,∇× v)Ω + (u+,v)Ω +
∑
j=s,t

〈T̃1j(nΣ × u+),vT 〉Σj

−(k2 + 1)(u+,v)Ω

+
∑
j=s,t

〈(T1j − T̃1j)(nΣ × u+),vT 〉Σj +
∑
j=s,t

〈T2j(nΣ × u+),vT 〉Σj ,

for all v ∈ X+.

Define the following sesquilinear form:

a(u+,v) = (∇× u+,∇× v)Ω + (u+,v)Ω +
∑
j=s,t

〈T̃1j(nΣ × u+),vT 〉Σj .

Clearly a(u+,v) is coercive because T̃1 is positive and we have, for all u+ ∈ X+,

a(u+,u+) ≥ (∇× u+,∇× u+)Ω + (u+,u+)Ω = ‖u+‖2
H(curl).

Also, a(u+,v) is bounded because by Cauchy-Schwarz inequality

|a(u+,v)| ≤ |(∇× u+,∇× v)Ω|+ |(u+,v)Ω|+
∑
j=s,t

|〈T̃1j(nΣ × u+),vT 〉Σj |

≤ C‖u+‖H(curl)‖v‖H(curl) +
∑
j=s,t

‖T̃1j(nΣ × u+)‖H−1/2(div,Σ)‖vT‖H−1/2(curl,Σ)

≤ C‖u+‖H(curl)‖v‖H(curl) +
∑
j=s,t

‖T1j(nΣ × u+)‖H−1/2(div,Σ)‖vT‖H−1/2(curl,Σ)

≤ C‖u+‖H(curl)‖v‖H(curl) +
∑
j=s,t

‖Tj(nΣ × u+)‖H−1/2(div,Σ)‖vT‖H−1/2(curl,Σ)

≤ C‖u+‖H(curl)‖v‖H(curl) +
∑
j=s,t

‖nΣ × u+‖H−1/2(div,Σ)‖vT‖H−1/2(curl,Σ)

= C‖u+‖H(curl)‖v‖H(curl),

for some constant C > 0.

Next we shall show the equivalence of (3.37) to an operator equation. First

define the operator A : X+ 7→ X+ such that for all f ∈ X+, Af ∈ X+ satisfies

a(Af ,v) = −(k2 + 1)(f ,v)Ω +
∑
j=s,t

〈(T1j − T̃1j)(nΣ × f),vT 〉Σj
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+
∑
j=s,t

〈T2j(nΣ × f),vT 〉Σj for all v ∈ X+. (3.39)

By the Lax-Milgram Lemma (Theorem C.0.4), this problem is well-posed and operator

A is well defined and bounded.

Similarly, we can define g ∈ X+ such that

a(g,v) = G(ui,v).

Thus, the variational form (3.37) can be rewritten as a problem of finding u+ ∈ X+

such that

a(u+ + Au+ − g,v) = 0 for all v ∈ X+.

This implies that

(I + A)u+ = g in X+. (3.40)

To further analyze this operator equation, we have the following lemma

Lemma 3.2.5 The map A : X+ 7→ X+ is compact.

Proof : Let {u+
n } be a bounded sequence in X+. Hence there exists a subsequence,

denoted again by {u+
n }, which converges weakly to u0 ∈ X+. Then, by Cauchy-Schwarz

inequality, we have

‖A(un − u0)‖2
H(curl) ≤ a (A(un − u0), A(un − u0))

= −(k2 + 1)(un − u0, A(un − u0))Ω

+
∑
j=s,t

〈(T1j − T̃1j)(nΣ × (un − u0)), (A(un − u0))T 〉Σj

+
∑
j=s,t

〈T2j(nΣ × (un − u0)), (A(un − u0))T 〉Σj

≤ (k2 + 1) |(un − u0, A(un − u0))|Ω

+
∑
j=s,t

∣∣∣〈(T1j − T̃1j)(nΣ × (un − u0)), (A(un − u0))T 〉Σj
∣∣∣

+
∑
j=s,t

∣∣〈T2j(nΣ × (un − u0)), (A(un − u0))T 〉Σj
∣∣
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≤ (k2 + 1)‖un − u0‖L2‖A(un − u0)‖L2

+
∑
j=s,t

‖(T1j − T̃1j)(nΣ × (un − u0))‖H−1/2(div,Σ)‖A(un − u0)‖H−1/2(curl,Σ)

+
∑
j=s,t

‖T2j(nΣ × (un − u0))‖H−1/2(div,Σ)‖A(un − u0)‖H−1/2(curl,Σ)

≤ C‖un − u0‖L2‖A(un − u0)‖H(curl)

+C
∑
j=s,t

‖(T1j − T̃1j)(nΣ × (un − u0))‖H−1/2(div,Σ)‖A(un − u0)‖H(curl)

+C
∑
j=s,t

‖T2j(nΣ × (un − u0))‖H−1/2(div,Σ)‖A(un − u0)‖H(curl),

for some constant C > 0.

Thus, we have

‖A(un − u0)‖H(curl) ≤ C‖un − u0‖L2

+C
∑
j=s,t

‖(T1j − T̃1j)(nΣ × (un − u0))‖H−1/2(div,Σ)

+C
∑
j=s,t

‖T2j(nΣ × (un − u0))‖H−1/2(div,Σ),

for some constant C > 0.

Since X+ is compactly embedded in (L2(Ω))3 (Lemma 3.2.3), and T1j− T̃1j and

T2j are compact operators for j = s, t, we can conclude that Aun converges strongly

to Au0 and therefore A is compact. �

Moreover, we need the following uniqueness result:

Theorem 3.2.1 There exists at most one solution to the variational problem in Defi-

nition 3.1.3 for pure imaginary wavenumber k with Im(k) > 0 being small.

Proof : We shall show that solution to (3.33) with incident field ui = 0 is zero. By

choosing test function v = u, we have

(∇× u,∇× u)Ω − k2(u,u)Ω +
∑
j=s,t

〈Tj(nΣ × u), uT 〉Σj = F̂ (0,v) = 0.

Since k is purely imaginary,

(∇× u,∇× u)Ω + |k|2(u,u)Ω +
∑
j=s,t

〈Tj(nΣ × u),uT 〉Σj = 0.
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For the term involving operator T , using identities (B.2) and (B.11),(B.12), we

have

〈T (nΣ × u),uT 〉Σ

= 〈T (nΣ × u), (nΣ × u)× nΣ〉Σ

=

〈∑
m

〈
(nΣ × u|Σ),

∇Σum

0

〉
Σ

(
−ihm
λ2
m

)~∇Σ × um
0

 , (nΣ × u)× nΣ

〉
Σ

+

〈∑
n

〈
(nΣ × u|Σ),

~∇Σ × vn
0

〉
Σ

(
− 1

µ2
n

k2

ign

)∇Σvn

0

 , (nΣ × u)× nΣ

〉
Σ

=

〈∑
m

〈
(nΣ × u|Σ),

∇Σum

0

〉
Σ

(
−ihm
λ2
m

)nΣ ×

~∇Σ × um
0

 ,nΣ × u

〉
Σ

+

〈∑
n

〈
(nΣ × u|Σ),

~∇Σ × vn
0

〉
Σ

(
− 1

µ2
n

k2

ign

)nΣ ×

∇Σvn

0

 ,nΣ × u

〉
Σ

=

〈∑
m

〈
(nΣ × u|Σ),

∇Σum

0

〉
Σ

(
−ihm
λ2
m

)∇Σum

0

 , (nΣ × u)

〉
Σ

+

〈∑
n

〈
(nΣ × u|Σ),

~∇Σ × vn
0

〉
Σ

(
− 1

µ2
n

k2
µn

ihn

)−
~∇Σ × vn

0

 ,nΣ × u

〉
Σ

=
∑
m

〈
(nΣ × u|Σ),

∇Σum

0

〉
Σ

(
−ihm
λ2
m

)〈∇Σum

0

 , (nΣ × u)

〉
Σ

+
∑
n

〈
(nΣ × u|Σ),

~∇Σ × vn
0

〉
Σ

(
1

µ2
n

k2

ign

)〈~∇Σ × vn
0

 ,nΣ × u

〉
Σ

=
∑
m

∣∣∣∣∣∣
〈

(nΣ × u|Σ),

∇Σum

0

〉
Σ

∣∣∣∣∣∣
2(
−ihm
λ2
m

)

+
∑
n

∣∣∣∣∣∣
〈

(nΣ × u|Σ),

~∇Σ × vn
0

〉
Σ

∣∣∣∣∣∣
2(

1

µ2
n

k2

ign

)
.
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Choosing k such that 0 < |k|2 < min{ {λ2
m}m≥1, {µ2

n}n≥1 }, we get

〈T (nΣ × u),uT 〉Σ =
∑
m

∣∣∣∣∣∣
〈

(nΣ × u|Σ),

∇Σum

0

〉
Σ

∣∣∣∣∣∣
2(
−
i i
√
|k|2 + λ2

m

λ2
m

)

+
∑
n

∣∣∣∣∣∣
〈

(nΣ × u|Σ),

~∇Σ × vn
0

〉
Σ

∣∣∣∣∣∣
2(

1

µ2
n

k2

i i
√
|k|2 + µ2

n

)

=
∑
m

∣∣∣∣∣∣
〈

(nΣ × u|Σ),

∇Σum

0

〉
Σ

∣∣∣∣∣∣
2(√

|k|2 + λ2
m

λ2
m

)

+
∑
n

∣∣∣∣∣∣
〈

(nΣ × u|Σ),

~∇Σ × vn
0

〉
Σ

∣∣∣∣∣∣
2(

1

µ2
n

|k|2√
|k|2 + µ2

n

)
> 0,

unless u = 0. Therefore, there exists at most one solution. �

Now, we shall prove the following existence result

Theorem 3.2.2 Consider the variational problem: find u ∈ X+ such that equation

(3.37) holds for all v ∈ X+. Then, for any real k except possibly for a discrete set of

real wavenumber k(j) such that k(j) →∞ as j →∞, this problem is uniquely solvable.

Proof : First, we have shown that the variational form (3.37) is equivalent to the op-

erator equation (3.40). Moreover, by Lemma 3.1.5 and variational form (3.39), the

compact operator A depends analytically on the wavenumber k in an open connected

sub-domain C of complex plane C except a series of branch cuts as described in Lem-

ma 3.1.5 for operator T . Then, by Theorem C.0.6, except possibly for a countable set

of points, the operator equation

(I + A)u+ = 0

has the same number of linearly independent solutions in C.

Choose the wavenumber k = ic for some constant c > 0 small enough such

that k ∈ C. Note that the uniqueness result (Theorem 3.2.1) also holds for variational

problem (3.37) in X, thus there exists at most one solution to equation (I +A)u+ = 0

in C. Because the trivial function u+ = 0 solves this equation, it is the only one.
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Therefore, by Fredholm Alternative (Theorem C.0.7), the inhonmogeneous operator

equation (3.40) is uniquely solvable and so is equation (3.37).

Finally, wavenumbers excluded for the well-posedness of this problem are iso-

lated points from Theorem C.0.6 and λm’s and µn’s described in Lemma 3.1.5 such

that hm = 0, gn = 0 which form a discrete set without accumulation points less than

infinity. �

Together with Lemma 3.2.1, we have the following result as a corollary of The-

orem 3.2.2,

Corollary 3.2.1 The variational problem problem described in Definition 3.1.3 is u-

niquely solvable for any real k except possibly for a discrete set of real wavenumbers

k(j) such that k(j) →∞ as j →∞.

Also, as a direct result of Theorem 3.1.3, we have

Corollary 3.2.2 The unique solution u given in Corollary 3.2.1, by setting w = u−

(1− χ)ui, can be extended in a unique way to W\Ω and such that us as an extension

of u− ui satisfies the (global) scattering problem in Definition 3.1.2.

3.3 Inverse Problem

In this section, we shall provide a theoretical basis for the inverse problem in the

waveguide geometry. The inverse problem we consider here is to identify the boundary

∂D of scatterer D using the scattering data (near field data) from D illuminated by

point sources located far away from it. Specifically, there are two important results:

the uniqueness of the scatterer and the justification of the Linear Sampling Method

(LSM) to the reconstruction of the shape of scatterer.

3.3.1 Dyadic Green’s Function

To initiate the analysis, we need to understand the background Green’s function

due to the waveguide. From Chapter 4 in [61], for electromagnetic waves, the Green’s

functions are dyadic functions with appropriate boundary conditions on Γ. In R3,
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a dyadic function is a second order tensor that can be written as a 3 × 3 matrix.

Specifically, there are electric and magnetic Green’s functions with each satisfying

PEC condition and magnetic wall condition, respectively, on the boundary Γ of the

waveguide. Denote by the electric type Green’s function with subscript “e” and the

magnetic type Green’s function with subscript “m”. For our analysis, we need the

electric type dyadic Green’s function with PEC condition on Γ, that is,

∇x ×∇x ×Ge(x,y)− k2Ge(x,y) = Iδ(x− y),

with boundary condition

nΓ ×Ge(x,y) = 0 on Γ,

where x = (x, y, z) represents an arbitrary point in R3 and y = (x′, y′, z′) a point

source; I is 3× 3 identity matrix; δ(x− y) = δ(x− x′)δ(y − y′)δ(z − z′).

An explicit representation of the dyadic Green’s functions can be written using

the modal solutions defined in Section 3.1.2.1. To facilitate our analysis, we modify the

notation for the modal solutions M and N with superscript “+” and “-” as follows:

M+ = M and N+ = N,

∇×M+ = ∇×M and ∇×N+ = ∇×N,

M− = M |z=−z and N− = N |z=−z ,

∇×M− = (∇×M)|z=−z and ∇×N− = (∇×N)|z=−z .

Here we see that superscript “-” means replacing z by −z. For example, for

∇×M = ∇×∇× (ueihzẑ) =


∂u
∂x
ih

∂u
∂y
ih

uλ2

 eihz,

we have

∇×M− =
(
∇×∇× (ueihzẑ)

)∣∣
z=−z =


∂u
∂x
ih

∂u
∂y
ih

uλ2

 e−ihz.

With this notation, we have Ge in the following form:
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• For z > z′,

Ge(x,y) = − 1

k2
ẑẑT δ(x− y)

+
∞∑
m=1

[
cmM

+
m(x)M−

m(y)
T
]

+
∞∑
n=1

[
dnN

+
n (x)N−n (y)

T
]
, (3.41)

• For z < z′,

Ge(x,y) = − 1

k2
ẑẑT δ(x− y)

+
∞∑
m=1

[
cmM

−
m(x)M+

m(y)
T
]

+
∞∑
n=1

[
dnN

−
n (x)N+

n (y)
T
]
, (3.42)

where cm, dn (m,n = 1, 2, . . .) are coefficients depending on the eigenvalues of surface

Laplacian on Σ and also the geometric shape of Σ. The terms ẑẑT , M+
m(x)M−

m(y)
T

,

N+
n (x)N−n (y)

T
, etc. are understood as column-row multiplication. For example, if

a = (a1, a2, a3)T ,b = (b1, b2, b3)T , then

abT =


a1

a2

a3

(b1 b2 b3

)
=


a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

 .

Note 3.3.1 The electric dyadic Green’s functions defined above is symmetric (Ge(x,y) =

Ge(y,x)) and can be separated into parts consisting of a singular matrix, non-zero sub-

matrices and full matrices as follows:

Ge = − 1

k2
δ(x− y)


0 0 0

0 0 0

0 0 1

+
∑
m

cm


∗ ∗ 0

∗ ∗ 0

0 0 0

+
∑
n

dn


∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

 .

Here the singular term − 1

k2
δ(x − y) contributes only when x = y. It arises from

the discontinuity of the magnetic dyadic Green’s function across a cross section Σ

containing point source y (see Section 5.8 in [61]). However, this singular term will

not affect our analysis.
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Note 3.3.2 It is worth mentioning that the governing equation for the magnetic type

dyadic Green’s function is

∇x ×∇x ×Gm(x,y)− k2Gm(x,y) = ∇x × [Iδ(x− y)] ,

and the two dyadic Green’s functions are related as follows (see Section 4.3 in [61])

∇x ×Ge(x,y) = Gm(x,y),

∇x ×Gm(x,y) = Iδ(x− y) + k2Ge(x,y).

In particular, the series representation for Gm satisfying magnetic wall condition

nΓ × (∇x ×Gm(x,y)) = 0 on Γ

is given by the following form:

• For z > z′,

Gm(x,y) =
∞∑
m=0

[
cm
(
∇×M+

m(x)
)
M−

m(y)
T
]

+
∞∑
n=0

[
dn
(
∇×N+

n (x)
)
N−n (y)

T
]
,

• For z < z′,

Gm(x,y) =
∞∑
m=0

[
cm
(
∇×M−

m(x)
)
M+

m(y)
T
]

+
∞∑
n=0

[
dn
(
∇×N−n (x)

)
N+
n (y)

T
]
.

3.3.1.1 Decomposition of Green’s function

To facilitate the analysis of factorization of the near field operator in the sequel,

denote G = Ge unless stated otherwise and we shall show that G = G0+J where J is an

infinitely differentiable remainder dyadic function so that the integral form with kernel

J has well behaved properties which will allow us to employ the theory for integral

form with kernel G0 to analyze that of G.

Explicitly, G0 is the well-known free space dyadic Green’s function given by

G0(x,y) = Φ(x,y)I+
1

k2
∇y∇yΦ(x,y), (x 6= y) (3.43)
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where I is a 3× 3 identity matrix and ∇y∇yΦ(x,y) is the Hessian matrix for Φ where

Φ =
exp(ik|x− y|)

4π|x− y|
. Note that the ith column G0i, i = 1, 2, 3 of G0 satisfies the

Maxwell’s equation

∇y ×∇y ×G0i − k2G0i = eiδx in R3,

where ei is the unit vector along the ith coordinate axes, that is, x̂ or ŷ or ẑ.

The major component of our analysis using dyadic Green’s function is the con-

tinuity properties of layer potentials in the vicinity of the boundary of D. In turn, we

consider the properties of layer potential with kernel J in a segment of the waveguide

W enclosing D and bounded by cross sections Σl,Σ−l, denote Ωl. Then we have the

following lemma:

Lemma 3.3.1 The dyadic Green’s function G for the waveguide W can be decomposed

into two parts G = G0 + J in a bounded segment Ωl = W(−l,l) of the waveguide includ-

ing the scatterer D where G0 is the dyadic Green’s function for the free space (3.43)

and the remainder dyadic function J is infinitely differentiable in Ωl, particularly, the

neighborhood of ∂D.

Proof : Since J(x,y) = G(x,y)−G0(x,y), for a point source at y ∈ Ωl, J satisfies the

Maxwell’s equation in Ωl and nΓ × J = nΓ × (G − G0) on Γ(−l,l). Moreover, we can

impose the following impedance boundary condition on Σl and Σ−l:

(∇× J)× nΣ − ikJT = (∇× (G−G0))× nΣ − ik(G−G0)T on Σl and Σ−l.

With an analysis analogous to Section 12.2.1 in [48], the solution to Maxwell’s

equation in a bounded domain Ωl with impedance boundary condition on part of the

boundary ∂Ωl = Σl ∪Σ−l ∪ Γ̄(−l,l) is uniquely solvable in H(curl,Ωl), thus J exists and

by uniqueness J = G − G0 on ∂Ωl. From the proof of Theorem 9.2 in [48], we have

that components of J are smooth functions in a sub-domain of Ωl away from ∂Ωl but

including D, moreover they are analytic by Theorem D.0.9. Therefore, we have the

desired smoothness of J in the neighborhood of ∂D. �
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3.3.2 Uniqueness Result

In order to prove the uniqueness result, first we have the following two lemmas:

Lemma 3.3.2 (Representation Formula) Let us be the solution of the following for-

ward problem in W\D̄,

∇×∇× us − k2us = 0 in W\D̄,

nΓ × us = 0 on Γ,

nD × us = F on ∂D,

nΣ × (∇× us) = Ts(nΣ × us) on Σs,

nΣ × (∇× us) = Tt(nΣ × us) on Σt,

(3.44)

where F ∈ H−1/2(div, ∂D) and nD is the inward normal to ∂D. Then for all x ∈ W\D̄,

we have the representation formula

us(x) =

∫
∂D

us(y) · (nD × [∇y ×G(x,y)])− (nD × [∇× us(y)]) ·G(x,y) ds(y)

where “·” is understood as vector-matrix or matrix-vector multiplication depending on

the position of dyadic and vector functions.

Note 3.3.3 There exist a unique solution to the forward problem stated in Lemma 3.3.2

above. Because this forward problem is well-posed in Ω = W(s,t)\D̄ (Corollary 3.2.1),

then by the definition of operators Ts, Tt and the uniqueness of solution in the blocked

waveguide (Lemma 3.1.3), the solution can be extended uniquely to W\D̄.

Proof : The proof is inspired from the proof of Lemma 2 in [9]. We analyze the problem

in two regions:

First, we consider a point source at x ∈ W\D̄. Let r > 0 be such that B(x, 2r) ∈

W\D̄ where B(x, 2r) is the ball of radius 2r about x. Define two new dyadic functions

as follows

G̃x(y) =

 0 for y ∈ B(x, r) (close to the point source),

−G(x,y) for y 6∈ B(x, r) (away from the point source),
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and

Gx(y) = G̃x(y) +G(x,y)

=

 G(x,y) for y ∈ B(x, r) (close to the point source),

0 for y 6∈ B(x, r) (away from the point source).

In fact, Gx(y) is the same as G(x,y) around the neighborhood of x and zero outside

of B(x, r), G̃x(y) is non-zero outside of B(x, r).

Now take a test function v ∈ (C∞0 (W\D̄))3. In the sense of distribution on

W\D̄, we have ∫
W\D̄

(∇×∇× G̃x(y)− k2G̃x(y)) · v(y) dy

=

∫
W\D̄

(
G̃x(y)

)T
· (∇×∇× v(y)− k2v(y)) dy

= −
∫

(W\D̄)\B(x,r)

G(x,y)T · (∇×∇× v(y)− k2v(y)) dy

= −
∫

(W\D̄)\B(x,r)

(∇×∇× v(y)− k2v(y)) ·G(x,y) dy.

Since ∇y × ∇y × G(x,y) − k2G(x,y) = 0 for y 6∈ B(x, r), applying vector-dyadic

identity (B.34), we have∫
W\D̄

(∇×∇× G̃x(y)− k2G̃x(y)) · v(y) dy

=

∫
(W\D̄)\B(x,r)

v(y) · (∇y ×∇y ×G(x,y)− k2G(x,y))

−(∇×∇× v(y)− k2v(y)) ·G(x,y) dy

=

∫
(W\D̄)\B(x,r)

v(y) · (∇y ×∇y ×G(x,y))− (∇×∇× v(y)) ·G(x,y) dy

= −
∫
∂((W\D̄)\B(x,r))

n∂((W\D̄)\B(x,r)) · (v(y)× [∇y ×G(x,y)] + [∇× v(y)]×G(x,y)) ds(y).

Since v = 0 in the neighborhood of Γ and ∂D, using dyadic identity (B.22), we have∫
W\D̄

(∇×∇× G̃x(y)− k2G̃x(y)) · v(y) dy

= −
∫
∂B(x,r)

n∂B(x,r) · (v(y)× [∇y ×G(x,y)]) + n∂B(x,r) · ([∇× v(y)]×G(x,y)) ds(y)
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=

∫
∂B(x,r)

v(y) ·
(
n∂B(x,r) × [∇y ×G(x,y)]

)
−
(
n∂B(x,r) × [∇× v(y)]

)
·G(x,y) ds(y),

where n∂B(x,r) is the unit inward normal to B(x, r). Notice that∫
W\D̄

(∇y ×∇y ×G(x,y)− k2G(x,y)) · v(y) dy

=

∫
W\D̄

(Iδ(x− y)) · v(y) dy = v(x),

we obtain, for any v ∈ (C∞0 (W\D̄))3,∫
W\D̄

(
∇×∇×Gx(y)− k2Gx(y)

)
· v(y) dy

=

∫
W\D̄

(
∇×∇× G̃x(y) +∇y ×∇y ×G(x,y)− k2(G̃x(y) +G(x,y))

)
· v(y) dy

=

∫
∂B(x,r)

v(y) ·
(
n∂B(x,r) × [∇y ×G(x,y)]

)
−
(
n∂B(x,r) × [∇× v(y)]

)
·G(x,y) ds(y) + v(x).

The above relation still holds when v is replaced by us, the solution to Maxwell’s

equation. Because from the proof of Theorem 9.2 in [48], we have that, for us ∈

Hloc(curl,W\D̄) and a compact subset of W\D̄ including B(x, 2r) in its interior, its

components are smooth functions when x is away from the boundary of that compact

subset. By Theorem D.0.9, they are analytic and thus us ∈ (C∞(B(x, 2r)))3.

Define a cut-off function χ ∈ C∞0 (B(x, 2r)) such that χ = 1 on B(x, r), then

χus ∈ (C∞0 (W\D̄))3 and since supp(Gx(y)) ⊂ B(x, r),∫
W\D̄

(
∇×∇×Gx(y)− k2Gx(y)

)
· us(y) dy

=

∫
W\D̄

(
∇×∇×Gx(y)− k2Gx(y)

)
· χus(y) dy

=

∫
W\D̄

Gx(y) ·
(
∇×∇× (χus(y))− k2(χus(y))

)
dy

=

∫
B(x,r)

Gx(y) ·
(
∇×∇× (χus(y))− k2(χus(y))

)
dy

= 0.

Therefore, we obtain

0 =

∫
∂B(x,r)

us(y) ·
(
n∂B(x,r) × [∇y ×G(x,y)]

)
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−
(
n∂B(x,r) × [∇× us(y)]

)
·G(x,y) ds(y) + us(x). (3.45)

For the regions excluding the singularity, we consider a sub-domain ΩB =

Ω\B(x, r) ⊂ Ω. Note that ∇y ×∇y ×G(x,y)− k2G(x,y) = 0 in ΩB since B(x, r) is

excluded and ∇×∇× us(y)− k2us(y) = 0 since us satisfies the Maxwell’s equation.

By applying vector-dyadic identity (B.34) on ΩB, we have

0 =

∫
ΩB

us(y) ·
(
∇y ×∇y ×G(x,y)− k2G(x,y)

)
−
(
∇×∇× us(y)− k2us(y)

)
·G(x,y) dy

= −
∫
∂ΩB

n∂ΩB · [us(y)× (∇y ×G(x,y)) + (∇× us(y))×G(x,y)] ds(y)

= −
[∫

Γ

nΓ · [us(y)× (∇y ×G(x,y)) + (∇× us(y))×G(x,y)] ds(y)

+
∑
j=s,t

∫
Σj

nΣj · [us(y)× (∇y ×G(x,y)) + (∇× us(y))×G(x,y)] ds(y)

+

∫
∂B(x,r)

n∂B(x,r) · [us(y)× (∇y ×G(x,y)) + (∇× us(y))×G(x,y)] ds(y)

+

∫
∂D

nD · [us(y)× (∇y ×G(x,y)) + (∇× us(y))×G(x,y)] ds(y)

]
= −(I + II + III + IV).

Investigating term by term,

• Using vector-dyadic identity (B.22), we have

I =

∫
Γ

(nΓ × us(y)) · (∇y ×G(x,y))− (∇× us(y)) · (nΓ ×G(x,y)) ds(y).

Since nΓ × us = 0 and nΓ ×G(x,y) = 0, we get I = 0.

• For the integral on Σt, using vector-dyadic identity (B.22) again, we have

II =

∫
Σt

(nΣ × us(y)) · (∇y ×G(x,y)) + (nΣ × (∇× us(y))) ·G(x,y) ds(y).

Without the loss of generality, assume z > z′ = t. Using series expansion of
functions (3.16) and (3.17) on cross section Σt and explicit forms of G = Ge

(3.41), we have, on Σt

(nΣ × us(y)) · (∇y ×G(x,y))
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=

(∑
m

am
1

λ2
m

(
∇Σum

0

)T
+
∑
n

bn
1

µ2
n

(
~∇Σ × vn

0

)T)
(y)

·

(∑
m

[
cmM

+
m(x)(∇×M−

m(y))T
]

+
∑
n

[
dnN

+
n (x)(∇×N−n (y))T

])

=

(∑
m

am
1

λ2
m

(
∇Σum

0

)T
+
∑
n

bn
1

µ2
n

(
~∇Σ × vn

0

)T)
(y)

·

∑
m

cm

[(
~∇Σ × um

0

)
eihmz

]
(x)

(∇Σum
0

)T
ihm +

 0
0

umλ
2
m

T
 (y)

+
∑
n

dn

1

k

(∇Σvn
0

)
ign +

 0
0

vnµ
2
n

 eignz

 (x)

[
k

(
~∇Σ × vn

0

)T]
(y)


=

∑
m

cm

[(
~∇Σ × um

0

)
eihmz

]
(x)amihm +

∑
n

dn

[(
∇Σvn

0

)
igne

ignz

]
(x)bn.

On the other hand, on Σt

(nΣ × (∇× us(y))) ·G(x,y)

=

(∑
m

−am
ihm
λ2
m

(
~∇Σ × um

0

)T
+
∑
n

−bn
1

µ2
n

k2

ign

(
∇Σvn

0

)T)
(y)

·

(∑
m

[
cmM

+
m(x)M−

m(y)
T
]

+
∑
n

[
dnN

+
n (x)N−n (y)

T
])

=

(∑
m

−am
ihm
λ2
m

(
~∇Σ × um

0

)T
+
∑
n

−bn
1

µ2
n

k2

ign

(
∇Σvn

0

)T)
(y)

·

(∑
m

cm

[(
~∇Σ × um

0

)
eihmz

]
(x)

[(
~∇Σ × um

0

)T]
(y)

+
∑
n

dn

1

k

(∇Σvn
0

)
ign +

 0
0

vnµ
2
n

 eignz

 (x)

1

k

(∇Σvn
0

)
ign +

 0
0

vnµ
2
n

 (y)


=

∑
m

cm

[(
~∇Σ × um

0

)
eihmz

]
(x)(−amihm) +

∑
n

dn

[(
∇Σvn

0

)
igne

ignz

]
(x)(−bn).

Therefore, II = 0 on Σt for z > z′ = t. Same results hold on Σt for z < z′ = t
and on Σs by similar derivations.
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• Using vector-dyadic identity (B.22) and equation (3.45), we have

III =

∫
∂B(x,r)

−us(y) ·
(
n∂B(x,r) × [∇y ×G(x,y)]

)
+
(
n∂B(x,r) × [∇× us(y)]

)
·G(x,y) ds(y)

= us(x).

Here n∂B(x,r) is the unit inward normal to B(x, r).

Thus, we get III = −IV, that is

us(x) = −
∫
∂D

nD · (us(y)× [∇y ×G(x,y)] + [∇× us(y)]×G(x,y)) ds(y)

=

∫
∂D

us(y) · (nD × [∇y ×G(x,y)])− (nD × [∇× us(y)]) ·G(x,y) ds(y).

Here nD is the unit inward normal to D. This completes the proof. �

Note 3.3.4 If nD represents the unit outward normal, the representation formula be-

comes

us(x) =

∫
∂D

(−us(y)× nD) · [∇y ×G(x,y)] + (nD × [∇× us(y)]) ·G(x,y) ds(y)

=

∫
∂D

[∇y ×G(x,y)]T · (nD × us(y)) +G(x,y)T · (nD × [∇× us(y)]) ds(y).

Lemma 3.3.3 (Reciprocity) Denote by usz(x) the solution of the forward problem in

Lemma 3.3.2 with F = −nD × (G(x, z)p), i.e. the incident wave is due to a point

source at z ∈ W\D̄ with polarization p (|p| = 1). Then for all x, z ∈ W\D̄, we have

usz(x) = usx(z).

Proof : First, by using the representation formula in Lemma 3.3.2, we have

usz(x) =

∫
∂D

usz(y) · (nD ×∇y ×G(x,y)p)

− (nD ×∇× usz(y)) ·G(x,y)p ds(y). (3.46)

Interchanging the role of x and z, i.e. F = −nD × (G(z,x)p) (with point source at

x ∈ W\D̄), gives

usx(z) =

∫
∂D

Ux(y) · (nD ×∇y ×G(z,y)p)
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− (nD ×∇× usx(y)) ·G(z,y)p ds(y). (3.47)

Besides, by Green’s second identity, we have, for x, z 6∈ D̄,∫
∂D

G(x,y)p · (nD ×∇y ×G(z,y)p)− (nD ×∇y ×G(x,y)p) ·G(z,y)p ds(y)

= −
∫
∂D

nD · [G(x,y)p× (∇y ×G(z,y)p)−G(z,y)p× (∇y ×G(x,y)p)] ds(y)

=

∫
D

G(x,y)p · (∇y ×∇y ×G(z,y)p)−G(z,y)p · (∇y ×∇y ×G(x,y)p) dy

=

∫
D

G(x,y)p ·
(
∇y ×∇y ×G(z,y)p− k2G(z,y)p + k2G(z,y)p

)
−G(z,y)p ·

(
∇y ×∇y ×G(x,y)p− k2G(x,y)p + k2G(x,y)p

)
dy

= 0

where the last equality follows from the fact that y ∈ D and x, z 6∈ D. Thus, we obtain

0 =

∫
∂D

G(x,y)p · (nD ×∇y ×G(z,y)p)

− (nD ×∇y ×G(x,y)p) ·G(z,y)p ds(y). (3.48)

Now, integrating instead over Ω = W(s,t)\D̄, and using the similar argument as

for evaluation of (II) in Lemma 3.3.2, we can also show that

0 =

∫
∂D

usx(y) · (nD ×∇× usz(y))− (nD ×∇× usx(y)) · usz(y) ds(y). (3.49)

Note that instead of having ∇×∇×Gp− k2Gp = pδ, we use ∇×∇×us− k2us = 0

here.

Denote by ũsβ(α) = usβ(α)+G(α, β)p. Using the symmetry of the dyadic Green’s

function G(α, β)p = G(β, α)p, we add (3.47) and (3.48) and obtain, for x, z 6∈ ∂D,

usx(z) =

∫
∂D

(usx(y) +G(x,y)p) · (nD ×∇y ×G(z,y)p)

− [nD ×∇y × (usx(y) +G(x,y)p)] ·G(z,y)p ds(y)

=

∫
∂D

(usx(y) +G(y,x)p) · (nD ×∇y ×G(z,y)p)

− [nD ×∇y × (usx(y) +G(y,x)p)] ·G(z,y)p ds(y)

=

∫
∂D

ũsx(y) · (nD ×∇y ×G(z,y)p)
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− (nD ×∇× ũsx(y)) ·G(z,y)p ds(y). (3.50)

Similarly, subtracting (3.49) from (3.46) will give us

usz(x) =

∫
∂D

usz(y) · (nD ×∇× ũsx(y))− (nD ×∇× usz(y)) · ũsx(y) ds(y). (3.51)

Using these expressions, subtracting (3.51) from (3.50), we obtain

usx(z)− usz(x)

=

∫
∂D

ũsx(y) · (nD ×∇× ũsz(y))− (nD ×∇× ũsx(y)) · ũsz(y) ds(y)

=

∫
∂D

(ũsx(y)× nD) · (∇× ũsz(y))− (∇× ũsx(y)) · (ũsz(y)× nD) ds(y).

Since by assumption,

ũsx(y)× nD = [G(y,x)p + usx(y)]× nD = 0,

and

ũsz(y)× nD = [G(y, z)p + usz(y)]× nD = 0,

we can conclude that usx(z)− usz(x) = 0. �

Next, we shall prove the following uniqueness theorem:

Theorem 3.3.1 Assume that D1 and D2 are two perfect electric conducting scatterers

in the waveguide away from its boundary. For a fixed wave number k, if the tangential

components of the scattered fields us1(·,y) and us2(·,y) for scatterers D1 and D2 respec-

tively coincide on a cross section Σ for all incident fields G(·,y)q with y ∈ Σ and all

polarizations q, then D1 = D2.

Note 3.3.5 When the measurement is in the far field, this theorem is not true because

the evanescent waves will die out before reaching infinity, leaving only a finite number

of propagating modes (see [7] for a discussion in a 2D acoustic waveguide).

Proof : The proof is a modification of the proof of Theorem 5.6 in [19]. Denote D =

W\(D1 ∪ D2), suppose nΣ × us1(·,y) = nΣ × us2(·,y) for all y ∈ Σ and polarization
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q. Let w(x,y) = us1(x,y) − us2(x,y), then nΣ × w = 0 on Σ, due to the uniqueness

of solutions in the blocked waveguide problem (Lemma 3.1.3), we have w = 0 on the

left of Σ, by the unique continuation principle (Theorem D.0.8), w(x,y) = 0 for every

x ∈ D, y ∈ Σ ⊂ D which means us1(x,y) = us2(x,y) and so is us1(y,x) = us2(y,x) by

reciprocity relation (Lemma 3.3.3).

Now assume D1 6= D2. Then, without the loss of generality, there exists x∗ ∈ D

such that x∗ ∈ ∂D1 and x∗ 6∈ D̄2. Let

zn = x∗ +
1

n
n(x∗) ∈ D, n = 1, 2, . . .

for n big enough. Here n(x∗) is the unit outward normal to ∂D1 at x∗.

Imagine zn as a point source on a cross section Σn, then the scattered field

us1,n(x, zn) = us2,n(x, zn) for every x ∈ D. In particular, us1,n(x∗, zn) = us2,n(x∗, zn).

Let wn = us2,n(x, zn), replace x by x∗, then

lim
n→∞

nΣ ×wn(x∗, zn) = lim
n→∞

nΣ ×wn(zn,x
∗) = nΣ ×wn(x∗,x∗),

which is bounded due to the well-posedness of the forward problem for D2 with point

source at x∗ 6∈ D̄2.

On the other hand, we have that wn = us1,n(x, zn), replace x by x∗ ∈ ∂D1, then

lim
n→∞

nΣ ×wn(x∗, zn) = lim
n→∞

−nΣ ×G(x∗, zn)q =∞.

Clearly, this contradicts with us1,n(x∗, zn) = us2,n(x∗, zn) and therefore D1 = D2. �

3.3.3 The Near Field Operator and its Factorization

First, assume that k2 is not a Maxwell eigenvalue in D so that the well-posedness

holds for the forward problem in D, that is ∇×∇×U−k2U = 0 in D with boundary

data nD ×U|∂D on ∂D.

Next we introduce the near field operator:

Definition 3.3.1 For h ∈ L2
T (Σ), define the operator N : L2

T (Σ) 7→ L2
T (Σ) by

N(h)(x) :=

∫
Σ

nΣ(x)× us(x,y,h(y)) ds(y),
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where us represents the scattered field in the presence of D. It is called the Near Field

Operator (NFO).

With this definition, we can further introduce the Near Field Equation (NFE):

Consider a point source y on a cross section Σ away from its boundary ∂Σ with

measurement at the same location. We seek a function g ∈ L2
T (Σ) such that for

∀x ∈ Υ,

N(g)(x) = nΣ(x)×
∫

Σ

us(x,y,g(y)) ds(y) = nΣ(x)×G(x, z)q|Σ. (3.52)

Here

• Σ represents a surface where incident fields are generated (location of point
sources) and Υ represents a surface where the receivers are located. For sim-
plicity, as is usual with the LSM, we choose Υ = Σ.

• us(x,y,p) is the scattered field due to the incident field generated by a point
source at y with polarization p in the presence of D. Moreover, it is a linear
function of p. So if g = g1x̂+g2ŷ, then us(x,y,g) = us(x,y, x̂)g1 +us(x,y, ŷ)g2.

• z is a sampling source point inside and in the vicinity of D.

• q is an artificial polarization with |q| = 1 associated with the sampling point z.

The integral equation (3.52) is called the Near Field Equation (NFE).

Note that although the trace of an H(curl) function on a cross section Σ is in

H̃−1/2(div,Σ), we can define the near field operator from L2
T (Σ) to L2

T (Σ) on cross

sections away from D due to the following lemma:

Lemma 3.3.4 Given Q ∈ H̃−1/2(div,Σt), the tangential component of solution to the

blocked waveguide problem (3.10) on any cross section Σl where t < l <∞ is in L2
T (Σ).

Proof : Since Q ∈ H̃−1/2(div,Σt), by Lemma 3.1.2, it has the following representation

Q =
∑
m

αm∇Σum +
∑
n

βn~∇Σ × vn, (3.53)

such that

‖Q‖2
H−1/2(div,Σ) =

∑
m

λ3
m|αm|2 +

∑
n

µn|βn|2 <∞.
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From Lemma 3.1.3, for z > t, the solution U to the blocked waveguide problem

in W(t,∞) is given by (3.12), that is,

U =
∑
m

am
λ2
m

~∇Σ × um
0

 eihm(z−t)



+
∑
n

− bn
µ2
n

∇Σvn

0

 eign(z−t)

− bn
ign




0

0

vn

 eign(z−t)

 ,
where, using (3.53),

am = 〈Q,∇Σum〉Σt = αmλ
2
m,

bn = 〈Q, ~∇Σ × vn〉Σt = βnµ
2
n.

Thus, we have

U =
∑
m

αm

~∇Σ × um
0

 eihm(z−t)



+
∑
n

−βn

∇Σvn

0

 eign(z−t)

− βnµ
2
n

ign




0

0

vn

 eign(z−t)

 ,
and on Σl, using identities (B.11),(B.12),

nΣ ×U|Σl =
∑
m

αm

∇Σum

0

 eihm(l−t)


+
∑
n

βn

~∇Σ × vn
0

 eign(l−t)

 .
So,

‖nΣ ×U|Σl‖2
L2
T (Σ) =

∑
m

λ2
m

∣∣αmeihm(l−t)∣∣2 +
∑
n

µ2
n

∣∣βneign(l−t)∣∣2
=

∑
m

λ3
m|αm|2

∣∣∣∣eihm(l−t)
√
λm

∣∣∣∣2 +
∑
n

µn|βn|2
∣∣√µneign(l−t)∣∣2 .
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Since there exists finite numbers m∗, n∗ such that hm, gn are real for m ≤ m∗, n ≤ n∗

and imaginary for m > m∗, n > n∗, respectively, we have

• For m > m∗∣∣∣∣eihm(l−t)
√
λm

∣∣∣∣2 =
e−2
√
λ2m−k2(l−t)

λm
=

1

λme
2
√
λ2m−k2(l−t)

→ 0 as m→∞.

• For n > n∗∣∣√µneign(l−t)∣∣2 = µne
−2
√
µ2n−k2(l−t) =

µn

e2
√
µ2n−k2(l−t)

→ 0 as n→∞.

Therefore, by Abel’s test, we have

‖nΣ ×U|Σl‖2
L2
T (Σ) =

∑
m≤m∗

λ3
m|αm|2

∣∣∣∣eihm(l−t)
√
λm

∣∣∣∣2 +
∑
n≤n∗

µ2
n|βn|2

∣∣√µneign(l−t)∣∣2
+
∑
m>m∗

λ3
m|αm|2

∣∣∣∣eihm(l−t)
√
λm

∣∣∣∣2 +
∑
n>n∗

µ2
n|βn|2

∣∣√µneign(l−t)∣∣2
=

∑
m≤m∗

λ3
m|αm|2

∣∣∣∣eihm(l−t)
√
λm

∣∣∣∣2 +
∑
n≤n∗

µ2
n|βn|2

∣∣√µneign(l−t)∣∣2
+
∑
m>m∗

λ3
m|αm|2

1

λme
2
√
λ2m−k2(l−t)

+
∑
n>n∗

µ2
n|βn|2

µn

e2
√
µ2n−k2(l−t)

<∞,

which implies nΣ ×U|Σl ∈ L2
T (Σl). �

In order to facilitate the factorization of the operator N , we shall define several

more operators:

Definition 3.3.2 For g ∈ H−1/2(div, ∂D), define the operator B : H−1/2(div, ∂D) 7→

L2
T (Σ) by

B(g)(x) := nΣ ×w|Σ,

where w satisfies

∇×∇×w − k2w = 0 in W\D̄,

nD ×w|∂D = g on ∂D,

nΣ ×w|Γ = 0 on Γ,

w satisfies the radiation condition as z → ±∞.
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Definition 3.3.3 For h ∈ L2
T (Σ), define the operator H : L2

T (Σ) 7→ H−1/2(div, ∂D)

by

H(h)(x) := nD(x)×
[∫

Σ

G(x,y) · (nΣ(y)× h(y)) ds(y)

]
∂D

,

where “ · ” is understood as matrix-vector multiplication.

Choosing g = −H(h) when the scatterer D is a perfect electric conductor and

by superposition, we have the following relation (also see Figure 3.3):

N = −BH.

Figure 3.3: Illustration of superposition of the operators B and H.

Definition 3.3.4 For ξ ∈ H−1/2(curl, ∂D), let v(x) =

∫
∂D

G(x,y)·(nD(y)×ξ(y)) ds(y),

define the operator F : H−1/2(curl, ∂D) 7→ L2
T (Σ) by

F (ξ)(x) := nΣ(x)× v|Σ

= nΣ(x)×
[∫

∂D

G(x,y) · (nD(y)× ξ(y)) ds(y)

]
Σ

,

where we note that v satisfies Maxwell’s equations in W\D̄ and the radiation condition.

Remark 3.3.1 Note that G = G0 + J (Lemma 3.3.1), then v is the electric field

potential operator for the waveguide that consists of the usual electric field potential
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operator in R3 (see Section 6.3 in [19]) and a smooth perturbation. This can be seen

using integration by part on the ∇y∇y term in definition of G0 (3.43).

Definition 3.3.5 For ξ ∈ H−1/2(curl, ∂D), let v to be the same as in Definition 3.3.4,

define the operator S : H−1/2(curl, ∂D) 7→ H−1/2(div, ∂D) by

S(ξ)(x) := nD × v|∂D

= nD(x)×
[∫

∂D

G(x,y) · (nD(y)× ξ(y)) ds(y)

]
∂D

.

Remark 3.3.2 Since v is the electric potential operator for the waveguide, S is just

the electric field integral operator for the waveguide on ∂D.

Again, choose g = nD × v|∂D, by superposition, we have the following relation

(also see Figure 3.4):

F = BS.

Figure 3.4: Illustration of the superposition of the operators B and S.

Thus, provided S is an isomorphism, we have B = FS−1 and N has the following

factorization (also see Figure 3.5):

N = −BH = −FS−1H.

With all the operators defined above, we have the following lemmas regarding

to their properties:
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Figure 3.5: Illustration of the factorization of the operator N .

Lemma 3.3.5 The operator S is an isomorphism if k2 is not a Maxwell eigenvalue

for D and k2 is such that the forward problem in W\D̄ is well posed.

Proof : First, from Lemma 3.3.1, the dyadic Green’s function G has the decomposition

G = G0 + J where J is smooth in the neighborhood of D.

Define operator S0 as operator S with kernel replaced by G0, that is

S0(ξ)(x) = nD(x)×
[∫

∂D

G0(x,y) · (nD(y)× ξ(y)) ds(y)

]
∂D

.

This is the standard electric field boundary operator. Then the operator S − S0 given

by

(S − S0)(ξ)(x) = nD(x)×
[∫

∂D

J(x,y) · (nD(y)× ξ(y)) ds(y)

]
∂D

has smooth kernel and is thus continuous (see Theorem 8.7-5 in [44]).

Thus we can use the properties of S0 to prove the desired properties of S (in-

jectivity and surjectivity) as follows:

First we prove the injectivity of S. Suppose S(ξ) = 0, denote A and A0 the

vector potentials with kernel G and G0, respectively, that is

A(ξ)(x) =

∫
∂D

G(x,y) · (nD(y)× ξ(y)) ds(y), x /∈ ∂D,

A0(ξ)(x) =

∫
∂D

G0(x,y) · (nD(y)× ξ(y)) ds(y), x /∈ ∂D.
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From the discussion at the end of Section 6.3 in [19], A0(ξ) defines two functions from

H−1/2(curl, ∂D) to u−0 ∈ H(curl, D) and u+
0 ∈ Hloc(curl,R3\D̄). By the continuity of

A0 (see Theorem 6.12 in [19]), as x approaches ∂D, we have

nD × u−0 |∂D = nD × u+
0 |∂D = nD × A0(ξ)|∂D.

This implies thatA(ξ) defines two functions u− ∈ H(curl, D) and u+ ∈ Hloc(curl,W\D̄)

with

nD × u−|∂D = nD × u+|∂D = nD × A(ξ)|∂D = S(ξ) = 0.

From the uniqueness of the forward problem in D (since k2 is not a Maxwell eigenvalue)

and the assumption of the well-posedness of the forward problem in W\D̄, we obtain

the lifting u− = u+ = 0 and then

nD × (∇× u−)|∂D = nD × (∇× u+)|∂D = 0.

To complete the proof of injectivity, we use the jump relation of nD× (∇×A0) on ∂D

(see Theorem 6.12 of [19]) which implies that

nD × ξ = nD × (∇× u−0 )|∂D − nD × (∇× u+
0 )|∂D

= nD × (∇× u−)|∂D − nD × (∇× u+)|∂D

= 0.

Thus, ξ = 0 since nD · ξ = 0 (because ξ ∈ H−1/2(curl, ∂D)).

To show the surjectivity of S, let g ∈ H−1/2(div, ∂D), then there are liftings

u−,u+ that satisfy the Maxwell’s equation in D and Ω = W(s,t)\D̄ (using the DtN

maps on Σs,Σt as in (3.44)) with boundary data

nD × u−|∂D = nD × u+|∂D = g.

Denote by ξ ∈ H−1/2(curl, ∂D) such that

nD × ξ = nD × (∇× u+)|∂D − nD × (∇× u−)|∂D,
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and define

a(x) =

∫
∂D

G(x,y) · (nD(y)× ξ(y)) ds(y), x /∈ ∂D,

with the corresponding functions a− and a+ in D and W\D̄. Obviously, a+ satisfies

the radiation condition.

Using the continuity of the vector potential a (see Theorem 6.12 of [19]), we

have

nD × a+|∂D − nD × a−|∂D = 0. (3.54)

Using the jump relation of nD × (∇× a) on ∂D (see Theorem 6.12 of [19]), we have

nD × (∇× a+)|∂D − nD × (∇× a−)|∂D = nD × ξ. (3.55)

Notice that the functions u− and u+ satisfy the same relationship (3.54),(3.55)

as a− and a+ on ∂D. Define

u =

 u− in D,

u+ in Ω.
and a =

 a− in D,

a+ in W\D̄.

By the definition of DtN maps on Σs,Σt and the well-posedness of blocked waveguide

problem (Lemma 3.1.3), u+ can be extended uniquely to W\D̄. Since a also solves the

problems in D and W\D̄, we can conclude that u = a in the entire waveguide. Hence,

we obtain

nD × u|∂D = nD × a|∂D = nD ×
[∫

∂D

G(x,y) · (nD(y)× ξ(y)) ds(y)

]
∂D

.

Therefore, we get g = S(ξ) and this completes the proof. �

Lemma 3.3.6 The operators H,F and N defined in Definition 3.3.3, 3.3.4 and 3.3.1

are compact operators, they are also injective with dense range if k2 is not a Maxwell

eigenvalue for D and k2 is such that the forward problem in W\D̄ is well posed.

Proof : Recall the operator H : L2
T (Σ) 7→ H−1/2(div, ∂D) is such that, for h ∈ L2

T (Σ),

H(h)(x) = nD(x)×
[∫

Σ

G(x,y) · (nΣ(y)× h(y)) ds(y)

]
∂D

.
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To prove compactness, since G is smooth for (x,y) ∈ ∂D×Σ, we see that H is

compact because integral operator with smooth kernel is compact (see Theorem 8.7-5

in [44]).

For injectivity, for h ∈ L2
T (Σ), consider

vh(x) =

∫
Σ

G(x,y) · (nΣ(y)× h(y)) ds(y).

Suppose that on ∂D, nD × vh|∂D = 0 ∈ H−1/2(div, ∂D), then vh solves Maxwell’s

equation in D with vanishing boundary data on ∂D. Because k2 is not a Maxwell

eigenvalue, vh vanishes in D and then in the waveguide W with the help of the unique

continuation theorem (Theorem D.0.8). In particular, nΣ × vh|Σ = 0. With the series

representation of h on Σ,

0 = nΣ × h =
∑
m

am
1

λ2
m

∇Σum

0

+
∑
n

bn
1

µ2
n

~∇Σ × vn
0

 ,

and the orthogonality of ∇Σum and ~∇Σ× vn, we see that all the coefficients αm, βn are

zeros which proves the injectivity of H.

To prove the denseness of the range, we shall prove that the adjoint operator

H∗ : H−1/2(curl, ∂D) 7→ L2
T (Σ) is injective. For ξ ∈ H−1/2(curl, ∂D) and h ∈ L2

T (Σ),

using identity (B.2), we have

〈ξ,H(h)〉∂D =

〈
ξ(x),nD(x)×

[∫
Σ

G(x,y) · (nΣ(y)× h(y)) ds(y)

]
∂D

〉
∂D

=

〈
ξ(x)× nD(x),

[∫
Σ

G(x,y) · (nΣ(y)× h(y)) ds(y)

]
∂D

〉
∂D

.

Using Fubini’s theorem to interchange the integral over Σ and ∂D, we obtain

〈ξ,H(h)〉∂D =

〈[∫
∂D

(ξ(x)× nD(x))T ·G(x,y) ds(x)

]
Σ

,nΣ(y)× h(y)

〉
Σ

.

Note that the Fubini’s theorem is applicable here since

ξ × nD = ∇∂Dα + ~∇∂D × β,

with α ∈ H3/2(∂D) and β ∈ H1/2(∂D) (see Theorem 3.8 in [62]). Of course ∇∂Dα ∈

L2
T (∂D) and so Fubini’s theorem applies directly. For the other term, because ~∇∂D×β ∈
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{v ∈ (H−1/2(∂D))3 | nD ·v = 0 a.e. on ∂D} and L2
T (∂D) is dense in this space, Fubini’s

theorem also applies.

Using the identity (B.2) again, we have

〈ξ,H(h)〉∂D =

〈[∫
∂D

(ξ(x)× nD(x))T ·G(x,y) ds(x)

]
Σ

× nΣ(y),h(y)

〉
Σ

=

〈
nΣ(y)×

[∫
∂D

(nD(x)× ξ(x))T ·G(x,y) ds(x)

]
Σ

,h(y)

〉
Σ

.

Using identity (B.27) and symmetry of G(x,y), we obtain

〈ξ,H(h)〉∂D =

〈
nΣ(y)×

[∫
∂D

G(x,y)
T
· (nD(x)× ξ(x)) ds(x)

]
Σ

,h(y)

〉
Σ

=

〈
nΣ(y)×

[∫
∂D

G(x,y) · (nD(x)× ξ(x)) ds(x)

]
Σ

,h(y)

〉
Σ

=

〈
nΣ(y)×

[∫
∂D

G(y,x) · (nD(x)× ξ(x)) ds(x)

]
Σ

,h(y)

〉
Σ

.

Thus, we see that H∗ is defined by

H∗(ξ)(y) = nΣ(y)×
[∫

∂D

G(y,x) · (nD(x)× ξ(x)) ds(x)

]
Σ

= F (ξ)(y).

Interchanging x and y gives

H∗(ξ)(x) = nΣ(x)×
[∫

∂D

G(x,y) · (nD(y)× ξ(y)) ds(y)

]
Σ

= nΣ(x)×
[∫

∂D

G(x,y) · (nD(y)× ξ(y)) ds(y)

]
Σ

= F (ξ̄)(x).

If H∗(ξ) = 0, using the series representation of the dyadic Green’s function for z > z′

(3.41), we get

G(x,y) =
∑
m

[
cmM

+
m(x)M−

m(y)
T
]

+
∑
n

[
dnN

+
n (x)N−n (y)

T
]
.

Here the singular term vanishes since (x,y) ∈ Σ× ∂D. Then we have

〈M−
m(y),nD(y)× ξ(y)〉∂D = 0,
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〈N−n (y),nD(y)× ξ(y)〉∂D = 0,

which implies that the integrand of matrix vector multiplication is zero for x with z > z′

and then for all x ∈ W\D̄ by using the unique continuation theorem (Theorem D.0.8).

By applying the trace theorem from Hloc(curl,W\D̄) onto H−1/2(div, ∂D), we have

that

nD(x)×
[∫

∂D

G(x,y) · (nD(y)× ξ(y)) ds(y)

]
∂D

= 0 (= S(ξ̄)).

Because operator S is an isomorphism, we have ξ̄ = 0 and thus ξ = 0 which completes

the proof of injectivity of H∗.

For the operator F , as we have shown that F (ξ) = H∗(ξ), this proves that it is

compact, injective with dense range since the operator H has the same property.

For the operator N , using the factorization N = −FS−1H, we see that it is

compact, injective with dense range as well by noticing that F,H are compact, injective

with dense range and S is an isomorphism. This completes the proof. �

3.3.4 Justification of the Linear Sampling Method

To provide a justification of the LSM for the waveguide, first we have the fol-

lowing lemma:

Lemma 3.3.7 nΣ(·)×G(·, z)q|Σ ∈ B(H−1/2(div, ∂D)) if and only if z ∈ D.

Proof : The proof follows the lines of Lemma 7.20 in [19]. First note that B = FS−1

where S is an isomorphism and F is compact, injective with dense range.

If z ∈ D, then B (−nD ×G(·, z)q|∂D) = nΣ ×G(·, z)q|Σ.

If z ∈ W\D̄ and assume that there exists c ∈ H−1/2(div, ∂D) such that B(c) =

nΣ × G(·, z)q|Σ. Then by the uniqueness of forward problem in W\D̄, the scattered

field w ∈ Hloc(curl,W\D̄) corresponding to the boundary data c and the incident field

due to G(·, z)q coincide in (W\D̄)\{z}. However, since G = G0 + J away from Γ, and

G0q is not locally integrable in H(curl), this leads to a contradiction. �

Now, the main theorem we shall prove is the following:
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Theorem 3.3.2 Assume that k2 is not a Maxwell eigenvalue for D and k2 is such

that the forward problem is well-posed. Let N be the Near Field Operator defined in

Definition 3.3.1 for scattering from a perfect electric conductor, then the following

holds:

• For z ∈ D and a given ε > 0 there exists a function gεz ∈ L2
T (Σ) such that

‖N(gεz)− nΣ(x)×G(x, z)q|Σ‖L2
T (Σ) < ε (3.56)

and the vector potential field Ugεz =

∫
Σ

G(x,y) ·gεz(y) ds(y) with density function

gεz converges to the solution of Maxwell’s equation with boundary condition nD×
[U +G(x, z)q] = 0 in H(curl, D) as ε→ 0.

• For z 6∈ D, every gεz ∈ L2
T (Σ) that satisfies (3.56) for a given ε > 0 is such that

lim
ε→0
‖gεz‖L2

T (Σ) =∞.

Proof : The proof follows the lines of Theorem 7.21 in [19]. Under the assumption of

k we have the well-posedness of the interior Maxwell problem in H(curl, D). Given

ε > 0, since H : L2
T (Σ) 7→ H−1/2(div, ∂D) is compact, injective with dense range, we

can choose gεz = nΣ × hεz ∈ L2
T (Σ) such that

‖H(hεz) + nD ×G(·, z)q‖H−1/2(div,∂D) <
ε

‖B‖
,

where ‖B‖ is the standard induced norm of B. Then, recalling that N = −BH, we

have

ε > ‖H(hεz) + nD ×G(·, z)q|∂D‖H−1/2(div,∂D)‖B‖

≥ ‖B(H(hεz) + nD ×G(·, z)q|∂D)‖L2
T (Σ)

= ‖N(gεz)−B (nD ×G(·, z)q|∂D) ‖L2
T (Σ)

= ‖N(gεz)− nΣ ×G(·, z)q|Σ‖L2
T (Σ).

Now if z ∈ D, then by the well-posedness of interior Maxwell problem, the convergence

of H(hεz) + nD ×G(·, z)q|∂D → 0 as ε→ 0 in H−1/2(div, ∂D) implies the convergence

Ugεz → U as ε → 0 in H(curl, D) where U solves the interior Maxwell equation with
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boundary condition nD × [U +G(x, z)q] = 0. Thus, we are done with the proof of the

first statement.

For the second statement, for z 6∈ D, assume that there exists a sequence {εn}

with εn → 0 and corresponding vector potentials Un with kernel gn := gεnz such that

‖Un‖H(curl,D) is bounded. Further we assume weak convergence Un ⇀ U ∈ H(curl, D)

as n→∞.

Denote by Us ∈ Hloc(curl,W\D̄) the solution to the exterior Maxwell problem

with nD × Us|∂D = nD × U|∂D on ∂D with boundary data nΣ × Us|Σ on Σ. Since

N(gn) gives the boundary data of exterior problem on Σ due to the incident field

−nD × Un|∂D on ∂D, then from (3.56) we can conclude that there exists a function

gz ∈ L2
T (Σ) corresponding to the density function of U such that N(g) = −nΣ ×

G(x, z)q|Σ and therefore nΣ × G(x, z)q|Σ ∈ B(H−1/2(div, ∂D)). But this contradicts

with Lemma 3.3.7, and the proof of the second statement is done. �

3.4 Numerical Simulation

In this section, we shall describe some numerical simulations of the reconstruc-

tion of scattering objects in order to investigate the practical use of the Linear Sampling

Method (LSM) inside the waveguide. Specifically, we use the Method of Fundamental

Solutions (MFS) to generate synthetic scattering data to be collected at the receivers

located on a cross section of the waveguide away from the scatterer. Because Theo-

rem 3.3.2 shows that the near field equation is ill-posed, we shall use a regularization

approach to solve a discrete version of the near field equation.

3.4.1 The Method of Fundamental Solutions

The basic idea of the Method of Fundamental Solutions (MFS) is that, by using

the fields due to a finite number of point sources located inside the scatterer D (see,

e.g., {o1,o2, . . . ,oM} in Figure 3.6), we aim to simulate the scattered field us due to an

incident field ui outside of D. In particular, we match the field due to points sources

inside D to the incident field on the boundary ∂D.
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Figure 3.6: Illustration of the basic idea of the Method of Fundamental Solutions.

To further explain the rationale of this method, consider a closed surface S in-

side the scatterer D and a tangential vector field g ∈ L2
T (S), then from Definition 3.3.3

and an extension of Lemma 3.3.6, we know that H(g) is injective with dense range

in H−1/2(div, ∂D). Thus, given a tangential field on ∂D representing the perfect con-

ducting data generated by an incident field, it can be approximated by

H(g)(x) = nD(x)×
[∫

S

G(x,y) · g(x) ds(y)

]
∂D

. (3.57)

If the incident field is denoted as usual by ui, then there exists g ∈ L2
T (S) such that

H(g) ≈ −nD×ui|∂D to any tolerance. Then we are able to use

∫
S

G(x,y) · g(y) ds(y)

to approximate scattering data us away from ∂D.

In numerical simulations, we can discretize the integral in (3.57) and still ap-

proximate −nD×ui|∂D. To describe more in detail the implementation of the MFS for

the waveguide, as shown in Figure 3.6, let {o1,o2, . . . ,oM} be a set of M grid points

inside D where a sequence of point sources are located. We also choose the polarization

for each source. Then the field generated by these point sources in the waveguide is

given using sums of Green’s functions as follows:

uMFS(x) =
M∑
m=1

3∑
j=1

αmjG(x,om)pj, (3.58)

where

om : Themth point source (grid point) inside D where m = 1, 2, . . . ,M,
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G(x,om) : Dyadic Green’s function Ge due to point source at om,

pj : Polarization of the point source at ym where j = 1, 2, 3 and |pj| = 1,

αmj : Undetermined scalar coefficient corresponding to

the mth grid point and jth polarization,

uMFS(x) : Electric field at an arbitrary point x ∈ W\D̄.

Here pj can be chosen as an orthonormal basis of R3, for example, x̂, ŷ, ẑ. Note that the

representation (3.58) can be considered as a discretized version of the surface integral

in (3.57).

Of course the MFS solution exactly satisfies Maxwell’s equation in the waveg-

uide, the boundary condition in the waveguide, and the radiation condition. Here only

the boundary condition on ∂D needs to be approximated.

In order to correctly simulate the scattered field, we consider the following min-

imization problem:

{αmj} = argmin
{
‖nD × uMFS + nD × ui‖2

L2(∂D) + ‖∇∂D · (nD × uMFS + nD × ui)‖2
L2(∂D)

}
.

Here we would prefer to use the H−1/2(div, ∂D) norm but use the H(div, ∂D)

norm instead because it is very challenging to use the H−1/2 norm.

Now, using the identity (see, e.g. (6.43) in [19])

∇∂D · (nD ×U) = −nD · (∇×U),

we are equivalently minimizing the following quantity

{αmj} = argmin
{
‖nD × uMFS + nD × ui‖2

L2(∂D) + ‖nD · (∇× uMFS +∇× ui)‖2
L2(∂D)

}
.

(3.59)

In practice, we also approximate the surface of D using a triangular gird and

approximate the norms on each triangular element by using a quadrature at a single

quadrature point at the centroid of each element to approximate the integral. Since

the number of triangular elements is much greater than the number of undetermined
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coefficients αmj, we actually minimize the norms in the Least-Square sense as show in

(3.59). For numerical implementation, we use the truncated singular value decompo-

sition (SVD) to solve for the linear system.

Specifically, if the number of triangular element for the surface of D is NT , then

the resulting linear system is given by Bα = c and if p = 2NT , q = 3M, p � q, then

α is a q × 1 vector consisting of all the unknown αmj’s, c is a p × 1 column vector

due to the incident field ui (that is, −nD × ui|∂D and −nD × (∇× ui)|∂D), and B is a

p×q matrix. Given the Singular Value Decomposition (SVD) of B = UΛV ∗ where “*”

represents the conjugate transpose, the normal equation BB∗α = B∗c can be written

as

V Λ∗ΛV ∗α = B∗c = V Λ∗U∗c.

Therefore, the optimal α is given by α = V Λ†U∗c where “†” represents the pseudoin-

verse.

In choosing the parameters, we shall take into the consideration the following:

• Number of terms truncated in the series expansion of the dyadic Green’s function
in ui and uMFS:

Since the problem is to collect the near field but far away from the scatterer, we
shall include at least all the propagating modes, that is, all the m,n such that
hm =

√
k2 − λm > 0 and gm =

√
k2 − µ2

m > 0. Also, we shall include more
evanescent modes in order that (3.58) represents a better approximation. But
the number of terms should be controlled since otherwise the whole problem will
be very computationally expensive.

• Truncated SVD for solving Least-Square problem for obtaining coefficients {αmj}:
To solve for the coefficients α = V Λ†U∗c, we shall arrange the singular values in
Λ, denote {θl}l≥1, in decreasing order and truncate at l = l∗ when θ1/θl∗ > b� 0,
for example b = 1014.

• Number of grid points {om}Mm=1 and their locations inside D:

Choosing the grid points inside the scatterer D requires additional work. Al-
though it seems plausible to increase the number of grid points M inside D in
(3.58) for a more accurate solution {αmj} in the Least-Square sense, this is not
for free in a practical implementation since, for instance, (3.58) is used to ap-
proximate a compact operator using finite dimensional approximation and thus
the condition number of the problem will grow rapidly as M increases (see, e.g.,
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Section 4.1 in [19], [3]). For the choice of locations of grid points, denote by
d(S, ∂D) = inf{|x − y|} where x ∈ S,y ∈ ∂D. On one hand, if d(S, ∂D) is
small, the kernel G becomes highly peaked which needs fine discretization. On
the other hand, if d(S, ∂D) is big, G becomes smoother and this amplifies the the
condition number for the problem. We shall use some heuristic ways to choose
the number and location of grid points {om}Mm=1. For example, using a uniform
distribution of points on a smaller sphere if D is a sphere or using a cube for the
location of grid points if D is a cube.

As a further remark, although the drawback of MSF concerning the choice of grid

points and the expense of including more terms in the series representation of dyadic

Green’s function hinders us from improving the results easily, this idea can serve for the

generation of synthetic scattering data for the forward problem as it can be computed

by using series representations which greatly reduces the computational complexity

compared with traditional Galerkin-based methods such as the finite element method.

3.4.2 The Near Field Equation

With the synthetic data generated by using MFS in hand, we next consider

the near field equation (3.52) in order to solve for the indicator function g for each

sampling point z.

For numerical simulations, instead of considering only the tangential field on

cross section Σ, we incorporate more data by including all components of scattering

data at measurements by solving the following integral equation: find g ∈ (L2(Σ))3

such that

Ñ(g)(x) :=

∫
Σ

us(x,y,g(y)) ds(y) = G(x, z)q|Σ. (3.60)

Since the scattered field us is a linear function of the vector function g =

g1e1 + g2e2 + g3e3 where e1 = x̂, e2 = ŷ, e3 = ẑ, the left hand side of the integral

euqation (3.60) may be equivalently written as∫
Σ

us(x,y,g(y)) ds(y) =

∫
Σ

us(x,y, g1e1 + g2e2 + g3e3) ds(y)

=

∫
Σ

[
3∑

k=1

us(x,y, ek)gk

]
ds(y).
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Componentwise, we have

∫
Σ


3∑

k=1


us1(x,y, ek)

us2(x,y, ek)

us3(x,y, ek)

 gk

 ds(y) =


(G(x, z)q)1

(G(x, z)q)2

(G(x, z)q)3


∣∣∣∣∣∣∣∣∣
Σ

. (3.61)

To evaluate the integral numerically, we discretize the integral by applying a quadrature

rule the choice of which depends on the cross section Σ of the waveguide. For example,

we can use the Gauss-Jacobi quadrature rule for a cylindrical waveguide and the tensor

product composite Midpoint rule for a rectangular waveguide.

Let yj, j = 1, 2, . . . , n be n point sources at quadrature points on Σ and xi, i =

1, 2, . . . ,m be m receivers also on Σ. In fact, we take m = n and yj = xj, 1 ≤ j ≤

n. We loop through point sources (yj’s) at all the quadrature points with all three

polarizations p = e1, e2 or e3 and collect measurements at all the receivers (xi’s). Then

by collecting measurement at all the receivers (xi’s) due to a sampling point z with

polarization p = e1, e2 or e3, the equation (3.61) can be reduced to a linear system

A3m×3n(gz)3n×1 = (bz)3m×1,

where the matrix A3m×3n consists of mn 3 × 3 blocks and each block records the

measurement at the ith receiver due to the jth point source associated with weight of

the quadrature point wij. For instance, the structure of (ij)th block can be written as

follows:

wij


us1(xi,yj, e1) us1(xi,yj, e2) us1(xi,yj, e3)

us2(xi,yj, e1) us2(xi,yj, e2) us2(xi,yj, e3)

us3(xi,yj, e1) us3(xi,yj, e2) us3(xi,yj, e3)

 .

The column vector (gz)3n×1 consists of a number of n 3 × 1 blocks with each block

corresponding to the indicator function for the jth point source. Lastly, the column

vector (bz)3m×1 consists of a number of m 3× 1 blocks with each block corresponding

to the measurements of the dyadic Green’s function G(x, z)q at the ith receiver due to

sampling point z with polarization q = e1, e2 or e3.
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Since there are three polarizations for each sampling point, we use the average

of the discrete l2 norms of indicator function g for each of these three polarizations for

identification of the shape of the scatterer.

3.4.3 Numerical Results: Cylindrical Waveguide

For numerical results, we use a cylindrical waveguide. In particular, consider

a cylindrical waveguide with cross section Σ a disk of radius a. From the discussion

in Section 6.1 and 6.2 in [61], using cylindrical coordinates (x, y, z) → (r, φ, z), two

families of modal solutions M and N exist having double indices:

Mmn = ∇× (umn(r, φ)eihmnzẑ), for m ≥ 1, n ≥ 0,

Nmn =
1

k
∇×∇× (vmn(r, φ)eigmnzẑ), for m ≥ 1, n ≥ 0,

where

umn(r, φ) = Jn(µmnr)e
inφ, µmn =

qmn
a
,

vmn(r, φ) = Jn(λmnr)e
inφ, λmn =

pmn
a
.

Here qmn represents the mth root of the derivative of the nth order of Bessel function

Jn(x) and pmn represents the mth root of the nth order of Bessel function Jn(x).

Correspondingly, the coefficients cmn and dmn in the dyadic Green’s function Ge

in (3.41) and (3.42) are:

cmn =

∫ a

0

J2
n(µmnr)r dr =

a2

2µ2
mn

(
µ2
mn −

n2

a2

)
J2
n(µmna),

dmn =

∫ a

0

J2
n(λmnr)r dr =

a2

2λ2
mn

[
∂Jn(λmnr)

∂r

]2

r=a

.

The parameters related to the waveguide are listed as follows:

• Wave number: k = 2π so the wavelength is 1.

• Radius of the circular pipe: a = 1

• Location of cross section for point source/receiver: Σ× {z = 0}
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Figure 3.7: Illustration of generic distribution of point sources/receivers on a cross
section of typical circular waveguide.

• Mesh on the cross section for point source/receiver: 10× 10 mesh in polar coor-
dinates with uniform distribution on [0, 2π] in the angular direction and located
at Gauss-Jacobi quadrature points along the radial direction.

• Number of terms kept in dyadic Green’s function: N = 15 in order to include all
propagating modes.

– Number of propagating mode due to k = 2π: 11

– Number of evanescent mode: N − 11 = 4

• Region of sampling points: a box of size 0.5× 0.5× 2 centered at (0, 0, 20).

Parameters for the scattering object D are listed below:

• Location and shape of D: a sphere of radius 0.2 centered at (0, 0, 20).

• Location of grid points for MFS: on surface of a concentric sphere of radius 0.16.

• Distribution of grid points for MFS: 30 points distributed on six latitude circles
with degrees ±75o (3 points on each cicle), ±45o (5 points on each circle) and
±15o (7 points on each circle) (see Figure 3.8 for a generic illustration).

• Noise on scattering data: no noise

The reconstruction of D by using Tikhonov regularization combined with Mo-

rozov discrepancy principle is given in Figure 3.9 (note that the positive z-axis in the

plot is pointing upward).
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Figure 3.8: Illustration of generic distribution of grid points on a sphere.

If we keep more terms in dyadic Green’s function (N = 25) and use more

grid points for MFS (66 points uniformly distributed on a sphere of radius 0.17), the

reconstruction can be improved (see Figure 3.10).

From the plot, we are able to reconstruct the scatterer in a reasonable sense by

using LSM. Note that only one sided data is used.

As a further test, we also show the results for the reconstruction of a cube (with

non-smooth boundary) in this waveguide for reference. Parameters for the scattering

object D are listed below:

• Location and shape of D: a cube of side length 0.4 centered at (0, 0, 20).

• Location of grid points for MFS: on surface of a concentric cube of side length
0.32.

• Distribution of grid points for MFS: 56 points uniformly distributed on six faces,
four edges and eight vertices (see Figure 3.11 for a generic illustration)

• Noise on scattering data: no noise

Using the same inverse technique, the reconstruction of D is given in Figure 3.12.
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Figure 3.9: Left: Plot of original scattering object (sphere of radius 0.2). Right:
Reconstruction of object with isosurface value 0.75.

Figure 3.10: Left: Plot of original scattering object (sphere of radius 0.2). Right:
Reconstruction of object with isosurface value 0.4.
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Figure 3.11: Illustration of generic distribution of grid points on a cube.

Figure 3.12: Left: Plot of original scattering object (cube of side length 0.4). Right:
Reconstruction of object with isosurface value 0.1.
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Chapter 4

CONCLUSION AND FUTURE WORK

In this thesis we have investigated problems arisen from scattering and inverse

scattering theory with special characteristics in the background media, in particular,

the presence of geometrical settings with prescribed material properties. We have

shown the discreteness and existence of transmission eigenvalues and identified the

first few real transmission eigenvalues for PEC backed scattering objects which may be

useful for obtaining their material properties. We also justified the Linear Sampling

Method (LSM) applied for the reconstruction of PEC objects inside a PEC waveguide.

For each problem, we have developed methods that cater to the presence of structure

in the background and have proved the standard scattering theory can be applied with

proper modifications.

Meanwhile, there are still many interesting questions and future research op-

portunities based on the work in this thesis. To name a few, we have

1. Enlightened from the investigation of transmission eigenvalues, we can also con-
sider the reconstruction of dielectric scattering objects in a 3D waveguide and
look for the corresponding transmission eigenvalues. Furthermore, we can inves-
tigate the scattering and inverse scattering in a 3D waveguide where a dielectric
scattering object sits on the wall of the waveguide.

2. There have been studies on transmission eigenvalues for objects with defects
inside. The study can be then extended to the investigation of transmission
eigenvalues for PEC backed scattering objects with defects. This will create
mathematical difficulties if the defects are located on the interface between the
object and conducting substrate. Also, one can study the problem where non-
perfect conducting regions are present in the PEC substrate.

3. In Section 3.4, we discussed the advantages and drawbacks of implementation of
ideas from Method of Fundamental Solutions. As an alternate, it will be very
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beneficial to develop other forward solvers using Galerkin-based methods. We are
currently studying on the theory and numerical approach on Ultra Weak Vari-
ational Formulation (UWVF) [37] for the waveguide and this will also serve for
fields generation for other inverse scattering problems in electromagnetic theory.

4. The specialty of this thesis is to study the scattering and inverse scattering prob-
lem pertaining to non-standard backgrounds. As a problem of the same type,
we have investigated an inverse scattering problem involving the design and use
of a device called a “Hyperlens”. This device has been suggested by physicists
[38]. It consists of a sequence of concentric thin layers of dielectric and metallic
material with a hole inside used to enclose the unknown scatterer. The expecta-
tion is that this “lens” will enhance remote measurements of the scattered field
in order to help identify the shape of objects placed in the lens better than in
its absence. The goal is to provide a microscope with enhanced resolution. We
have conducted various numerical simulations for imaging scatterers of different
shapes in the cavity of the lens illuminated by incoming plane waves from multi-
ple directions as well as new configurations by using multiple point sources close
to the lens and collect data outside the lens. Future work could be the study
of influence of material property of this “lens” on reconstruction of the scatterer
and the justification of qualitative methods applied to this problem (e.g. LSM).
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Appendix A

DERIVATION OF MODAL SOLUTIONS FOR THE WAVEGUIDE

Here we present some details of modal solutions to the governing Maxwell’s

equation in (3.6), that is,

∇×∇× us − k2us = 0. (A.1)

In particular, we use separation of variable to decompose solution to (A.1) into

the two families of modes.

By taking the divergence of (A.1) we have ∇·us = 0. Using the vector identity

(B.8), (A.1) can be written as the vector Helmholtz equation

∆us + k2us = 0.

Let usj = Aj(x, y)θj(z), j = 1, 2, 3. Then for each component,

(Aj)xxθj + (Aj)yyθj + (Aj)θ
′′
j + k2(Aj)θj = 0.

If ∆xy = ( ∂
∂x

)2 + ( ∂
∂y

)2, a standard separation of variables argument shows that

∆xy(Aj) + λ2(Aj) = 0 and θ′′j + (k2 − λ2)θj = 0.

For λ ≥ 0, let

h =


√
k2 − λ2 if λ ≤ k,

i
√
λ2 − k2 if λ > k.

Then we have θ(z) = αeihz+βe−ihz for some constants α, β. The choice of α, β depends

on whether we are to the left or the right of the scatterer D. Consider θj(z) = eihjz,

then one mode of us is given by

U =


A1(x, y)eih1z

A2(x, y)eih2z

A3(x, y)eih3z

 =


A1(x, y)

0

0

 eih1z +


0

A2(x, y)

0

 eih2z +


0

0

A3(x, y)

 eih3z.
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We now show that we can assume that h1 = h2 = h3 = h so that U has the

form

U =


A1(x, y)

A2(x, y)

A3(x, y)

 eihz. (A.2)

Of course the same conclusion holds for e−ihz.

Note A.0.1 For the solvability results of our analysis, we will assume h 6= 0 (or

k2 6= λ2).

Let c1 = ih1, c2 = ih2, c3 = ih3, then ∇ ·U = 0 implies

A1,xe
c1z + A2,ye

c2z + A3c3e
c3z = 0.

Fix x, y, let a1 = A1,x, a2 = A2,y, a3 = A3c3 = A3ih3, then for any z, we have

a1e
c1z + a2e

c2z + a3e
c3z = 0.

Set z = 0, so that a1 + a2 + a3 = 0. Hence a3 = −(a1 + a2) and so

a1e
c1z + a2e

c2z − (a1 + a2)ec3z = 0. (A.3)

Taking the first derivative of (A.3) above and setting z = 0 gives

a1c1 + a2c2 − (a1 + a2)c3 = 0,

so that

a1(c1 − c3) + a2(c2 − c3) = 0.

Taking the second derivative of (A.3) and setting z = 0 gives

a1c
2
1 + a2c

2
2 − (a1 + a2)c2

3 = 0,

or

a1(c1 − c3)2 + a2(c2 − c3)2 = 0.

157



Combining these equations, we have linear system 1 1

c1 + c3 c2 + c3

a1(c1 − c3)

a2(c2 − c3)

 = 0.

The determinant of the matrix is c2 − c1. We discuss the solutions case by case:

1. Suppose c2 6= c1, then a1(c1 − c3) = 0 and a2(c2 − c3) = 0.

• Suppose a1, a2 6= 0, then c1 = c3 = c2 which is a contradiction.

• Suppose a1 = 0 and a2 6= 0, then a3 = −a2 so that A3c3 = −A2,y. Also
we have c2 = c3 but c3 6= c1. This implies h2 = h3 and h3 6= h1. But
a1 = A1,x = 0 for all x, y. Hence A1 = A1(y). This gives

U =

 A1(y)eih1z

A2(x, y)eih2z

A3(x, y)eih2z

 =

A1(y)
0
0

 eih1z +

 0
A2(x, y)
A3(x, y)

 eih2z.

A short calculation shows that both

A1(y)
0
0

 eih1z and

 0
A2(x, y)
A3(x, y)

 eih2z

satisfy the Maxwell’s equations. Hence U can be separated into two modes
of the required form (A.2).

• In the same way, if a1 6= 0 and a2 = 0, we have

U =

A1(x, y)eih1z

A2(x)eih2z

A3(x, y)eih1z

 =

 0
A2(x)

0

 eih2z +

A1(x, y)
0

A3(x, y)

 eih1z.

Again, both

 0
A2(x)

0

 eih2z and

A1(x, y)
0

A3(x, y)

 eih1z satisfy the Maxwell’s e-

quation and then U can be separated into two modes of the required form
(A.2).

• Suppose a1, a2 = 0 so that a3 = 0. Hence A3c3 = 0 and c1 6= c2. If
c1, c2, c3 6= 0, then a1 = A1,x = 0, a2 = A2,y = 0, A3 = 0 for all x, y, or
A1 = A1(y), A2 = A2(x), A3 = 0. This gives

U =

A1(y)eih1z

A2(x)eih2z

0

 .

This is ruled out since ∇×∇×U− k2U = 0 implies A′′1 − c2
1A1 = 0. But

since A′′1 − (c2
1 + k2)A1 = 0, this gives A1 = 0, and in the same way A2 = 0.
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2. Suppose c2 = c1, then (a1 + a2)(c1 − c3) = 0.

• Either a1 + a2 6= 0 so that c2 = c1 = c3 and then h2 = h1 = h3. This gives,
as desired,

U =

A1(x, y)
A2(x, y)
A3(x, y)

 eih1z.

• Alternatively, a1 + a2 = 0 which implies a3 = 0, so A3c3 = 0. If c3 6= 0, then
A3 = 0 for all x, y. This gives

U =

A1(x, y)
A2(x, y)

0

 eih1z.

In summary, we have shown the claimed form (A.2) for U.

To further analyze the decomposition of U, since U satisfies Maxwell’s equation

(A.1), we have

k2U = ∇×∇×

AT eihz
0

+∇×∇× (A3e
ihzẑ),

where AT =

A1

A2

. Then

∇×∇×

AT eihz
0

 = ∇×



−A2ih

A1ih

A2,x − A1,y

 eihz



=


A2h

2

A1h
2

(A1,x + A2,y)ih

 eihz +∇× ((A2,x − A1,y)e
ihzẑ).

By the divergence free condition, ∇ ·U = A1,x + A2,y + ihA3 = 0, we have

∇×∇×

AT eihz
0

 =


A2h

2

A1h
2

A3h
2

 eihz +∇× ((A2,x − A1,y)e
ihzẑ)
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= h2U +∇× ((A2,x − A1,y)e
ihzẑ).

Thus,

k2U = h2U +∇× ((A2,x − A1,y)e
ihzẑ) +∇×∇× (A3e

ihzẑ).

So under our assumption that k2 − h2 6= 0,

U =
1

k2 − h2
∇× ((A2,x − A1,y)e

ihzẑ) +
1

k2 − h2
∇×∇× (A3e

ihzẑ)

=
1

λ2
∇× ((A2,x − A1,y)e

ihzẑ) +
1

λ2
∇×∇× (A3e

ihzẑ).

The Maxwell’s equation (A.1) is derived from the Maxwell’s system ∇× E− ikH = 0,

∇×H + ikE = 0,

where E and H are electric field and magnetic field, respectively.

If E = U =


A1(x, y)

A2(x, y)

A3(x, y)

 eihz, then H =


B1(x, y)

B2(x, y)

B3(x, y)

 eihz, where A2,x − A1,y =

ikB3(x, y) and therefore, U can be written as

U =
ik

λ2
∇× (B3e

ihzẑ) +
1

λ2
∇×∇× (A3e

ihzẑ),

where λ2 = k2 − h2. Let u = B3
ik

λ2
and v = A3

k

λ2
, then we have derived the following

representation for U:

U = ∇× (ueihzẑ) +
1

k
∇×∇× (veihzẑ).

Here u and v are called generating functions for U and ẑ is called the pilot vector.
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Appendix B

IDENTITIES IN VECTOR CALCULUS

B.1 Vector Identities

Assume a,b, c are vectors,

a× b = −b× a, (B.1)

a · (b× c) = b · (c× a) = c · (a× b). (B.2)

B.2 Differential Identities

Assume u,v are vector functions and p, φ are scalar functions,

∇× (∇p) = 0, (B.3)

∇ · (∇× v) = 0, (B.4)

∇ · (φv) = ∇φ · v + φ∇ · v, (B.5)

∇× (φv) = φ∇× v + (∇φ)× v, (B.6)

∇× (u× v) = u(∇ · v)− (u · ∇)v + (v · ∇)u− v(∇ · u), (B.7)

∇× (∇× u) = ∇(∇ · u)−∆u, (B.8)

∇ · (u× v) = v · ∇ × u− u · ∇ × v. (B.9)

In the (B.8), ∆u = (∆u1,∆u2,∆u3) in Cartesian coordinates only.

B.3 Differential Identities and Integral Theorems on a Surface

Let S ⊂ R3 be a smooth surface with unit normal n and let v and p be smooth

functions defined in a neighborhood of S. The following identities hold:

∇Sp = (n×∇p|S)× n, (B.10)
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~∇S × p = −n×∇Sp, (B.11)

n× (~∇S × p) = ∇Sp, (B.12)

∇S × v = −∇S · (n× v), (B.13)

∇S · v = ∇S × (n× v), (B.14)

∇S · (n× v) = −n · (∇× v)|S. (B.15)

Theorem B.3.1 [Theorem 2.5.19 in [51] and Corollary 3.21 in [48]] Let S ⊂ R2 be

a bounded simply connected Lipschitz domain with unit outward normal ν and unit

tangent τ to ∂S. For u ∈ C1(S̄) and v ∈ (C1(S̄))2, the following Stokes identities

hold: ∫
S

u∇S · v dx = −
∫
S

(∇Su · v) dx+

∫
∂S

ν · v u ds, (B.16)∫
S

u∇S × v dx =

∫
S

(~∇S × u · v) dx+

∫
∂S

τ · v u ds, (B.17)

and

∇S · (~∇S × u) = 0, (B.18)

∇S × (∇Su) = 0. (B.19)

Moreover, on ∂S, we have that

ν · ~∇Σ × u = τ · ∇Σu, (B.20)

τ · ~∇Σ × u = −ν · ∇Σu. (B.21)

B.4 Dyadic Identities

For dyadic function G written as 3 × 3 matrix, denote by gl the lth column of

G and define ∇·G to be the matrix with lth column ∇·gl and ∇×G to be the matrix

with lth column ∇× gl.

Assume a,b, c are vector functions and A,B,C are dyadic functions,

a · (b× C) = −b · (a× C) = (a× b) · C, (B.22)
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a× (b× C) = b · (a× C)− (a · b)C, (B.23)

∇ · (∇× A) = 0, (B.24)

∇× (∇× A) = ∇(∇ · A)−∆A, (B.25)

a× B = −
[
BT · a

]T
, (B.26)

a · B = BT · a, (B.27)

CT · (a× B) = −(a× C)T · B, (B.28)

(also see Section 1-3 in [61]).

B.5 Integral Theorems

Let Ω ⊂ R3 be a bounded Lipschitz domain with boundary ∂Ω and unit outward

normal n∂Ω.

• If ξ ∈ C1(Ω̄) and u ∈ (C1(Ω̄))3, then∫
Ω

∇ · u ξ dx = −
∫

Ω

u · ∇ξ dx+

∫
∂Ω

n∂Ω · u ξ ds. (B.29)

• (First Green’s identity) If ξ ∈ C1(Ω̄) and η ∈ C2(Ω̄), then∫
Ω

∆η ξ dx = −
∫

Ω

∇η · ∇ξ dx+

∫
∂Ω

∂η

∂n∂Ω

ξ ds. (B.30)

• (Second Green’s identity) If ξ ∈ C2(Ω̄) and η ∈ C2(Ω̄), then∫
Ω

(∆η ξ − η∆ ξ) dx =

∫
∂Ω

(
∂η

∂n∂Ω

ξ − ∂ξ

∂n∂Ω

η

)
ds. (B.31)

• Suppose u and φ are in (C1(Ω̄))3, then∫
Ω

∇× u · φ dx =

∫
Ω

u · ∇ × φ dx+

∫
∂Ω

n∂Ω × u · φ ds. (B.32)

Assume p,q are vector functions and P,Q are dyadic functions, then

• First vector-dyadic Green’s identity∫
Ω

[(∇× p) · (∇×Q)− p · (∇×∇×Q)] dx

=

∫
∂Ω

n∂Ω · [p×∇×Q] ds, (B.33)
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• Second vector-dyadic Green’s identity∫
Ω

[(∇×∇× p) ·Q− p · (∇×∇×Q)] dx

=

∫
∂Ω

n∂Ω · [p×∇×Q+ (∇× p)×Q] ds, (B.34)

• First dyadic-dyadic Green’s identity∫
Ω

[
(∇×Q)T · (∇× P)− (∇×∇×Q)T · P

]
dx

=

∫
∂Ω

(∇×Q)T · (n∂Ω × P) ds, (B.35)

• Second dyadic-dyadic Green’s identity∫
Ω

[
(Q)T · (∇×∇× P)− (∇×∇×Q)T · P

]
dx

=

∫
∂Ω

[
(∇×Q)T · (n∂Ω × P) + (Q)T · (n∂Ω ×∇× P)

]
ds. (B.36)
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Appendix C

THEOREMS IN FUNCTIONAL ANALYSIS

Theorem C.0.1 [Theorem 3.8-4 in [44]] (Riesz Representation) Let H1, H2 be

Hilbert spaces, K = R or C and

h : H1 ×H2 −→ K

a bounded sesquilinear form. Then h has a representation

h(x, y) = 〈Sx, y〉

where S : H1 −→ H2 is a bounded linear operator. S is uniquely determined by h and

has norm

‖S‖ = ‖h‖.

Theorem C.0.2 [Corollary 8.23 in [19]] Let H1 and H2 be two Banach spaces and

denote by L(H1, H2) the Banach space of bounded linear operators mapping H1 into

H2. Let D be a domain in C and let A : D → L(H1, H2) be an operator valued function

such that for each ϕ ∈ H1 the function Aϕ : D → H2 is weakly holomorphic. Then A

is strongly holomorphic.

Theorem C.0.3 [Theorem 8.25 in [19]] Every analytic function is holomorphic and

vice versa.

Theorem C.0.4 [Theorem 5.2.3 in [36]] (Lax-Milgram Lemma) Let a continuous

sesquilinear form a(u, v) be coercive on the Hilbert space H, that is, a(u, v) satisfies

|a(v, v)| ≥ α0‖v‖2
H for all v ∈ H
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with α0 > 0. Then to every bounded continuous linear functional l(v) on H, there

exists a unique solution u ∈ H of the following variational equation

a(u, v) = l(v) for all v ∈ H.

Furthermore,

‖u‖H ≤
1

α0

‖l‖H∗ .

where “∗” represents the dual space.

Theorem C.0.5 (Theorem 2.1 in [16]) Let τ 7→ Aτ be a continuous mapping from
(0,∞) to the set of self-adjoint and positive definite bounded linear operators on X and
let B be a self-adjoint and non-negative compact bounded linear operator on X. We
assume that there exists two positive constant τ0 > 0 and τ1 > 0 such that

(1). Aτ0 − τ0B is positive on X,

(2). Aτ1 − τ1B is non-positive on an m dimensional subspace of X.

Then each of the equations λj(τ) = τ for j = 1, . . . ,m, has at least one solution in

[τ0, τ1] where λj(τ) is the jth eigenvalue (counting multiplicity) of Aτ with respect to

B, i.e. ker(Aτ − λj(τ)B) 6= {0}.

Theorem C.0.6 [Theorem 3.6 in [2]] Let X denote a Hilbert space. Assume that

C ⊂ C is an open connected set and that Ak : X 7→ X is a compact linear operator for

all k ∈ C that depends analytically on k. Then, for all k ∈ C except possibly for some

isolated points, the equation

(I − Ak)u = 0

has the same number of linearly independent solutions.

Theorem C.0.7 [Theorem 2.33 in [48]] (Fredholm Alternative) Let B : X → X
be a bounded linear operator where X is a Hilbert space. Suppose B = I +A, where A
is a compact operator and I is the identity operator. Then either

1. The homogeneous equation Bu = 0 has only the trivial solution u = 0 in X. In
this case, for every f ∈ X, the inhomogeneous equation Bu = f has a unique
solution depending continuously on f ; or

2. The homogeneous equation Bu = 0 has exactly p linearly independent solutions
for some finite integer p > 0.
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Appendix D

THEOREMS IN ELECTROMAGNETIC THEORY

Theorem D.0.8 [simplified version of Theorem 9.3 in [19]] (Unique Continuation

Principle) Let G be a domain in R3 and let E,H ∈ C1(G) be a solution of

∇× E− ikH = 0, ∇×H + ikE = 0

Suppose E,H vanishes in a neighborhood of some x0 ∈ G. Then E,H is identically

zero in G.

Theorem D.0.9 [Theorem 6.3 in [19]] Any continuously differentiable solution to the

Maxwell equations has analytic cartesian components.
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