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ABSTRACT 

Literature on predicting species presence contains numerous methodological 

recommendations that reduce bias associated with imperfect detection of individuals, 

measurement scale of model variables, model selection uncertainty, and spatial 

autocorrelation. My objective was to incorporate and test recent modeling advances to 

predict potential habitat occupancy of northern bobwhite.  From 15 May – 15 August, 

2008 and 2009, I conducted repeat-visit surveys at 360 sites within Delaware to sample 

the presence of bobwhite. I randomly selected half the data to model the scale-

dependent relationships of bobwhite presence with metrics of site scale (500 m radius) 

and landscape scale habitat composition and configuration. At the site scale, bobwhite 

presence was negatively related to interspersion and juxtaposition of early successional 

and agriculture habitat, early successional to forest edge density, and agriculture to 

forest edge density. At the landscape scale, bobwhite presence was negatively related to 

cohesion of human development within 2.5 km, positively related to cohesion of early 

successional habitat within 2.0 km, and positively related to percentage of shrub habitat 

within 1.0 km. The habitat occupancy model fit the validation dataset moderately well 

with an area under the receiver operating characteristic curve value of 0.631. I applied 

my habitat occupancy model to map the predicted presence of breeding bobwhite within 

the Delmarva Peninsula, USA. The modeling results and distribution map will be used 

to guide future habitat management efforts. I also hope my methodology can serve as a 

basis for future habitat modeling of bobwhite and other grassland species across their 

range. 



 ix 

I then tested the efficacy of a broadcast caller for estimating density and 

occupancy of northern bobwhite. Density estimates while using a broadcast caller were 

higher and increasing passive listening survey duration from 3 to 7 min did not change 

density estimates. However, increasing survey duration or using a broadcast caller led to 

a higher detection probability. Use of a broadcast caller is inappropriate for determining 

density estimates through distance sampling, but may be appropriate for determining 

occupancy under limited conditions. 

Finally, I tested if a habitat occupancy model could predict the change in 

occupancy of Breeding Bird Survey (BBS) routes over time in the Delmarva Peninsula, 

USA. I used 50 stop BBS data to calculate the percentage of stops occupied by bobwhite 

during 1992, 1996, 2001 and 2005. I then calculated the probability of breeding-season 

bobwhite occupancy at each BBS stop for each time period using the occupancy model 

applied to National Oceanic and Atmospheric Organization Coastal Change and 

Analysis Program (NOAA CCAP) land cover data. The average change in observed 

occupancy per year was -8.7% (± SE 1.3%) while the average predicted change in 

occupancy was 1.0% (± SE 0.8%). Predicted route occupancy was not related to 

observed route occupancy across sampling periods. Change in predicted occupancy and 

observed occupancy were also not related. I consider two broad reasons why observed 

results did not correlate to my predictive model. The first is methodological (low 

predictive success of model, error from applying model from one year to other years, 

and imperfect detection of bobwhite during BBS surveys) while the second is biological 

(slack in habitat configurations, differential habitat use between breeding and 

nonbreeding season, impact of predation and hunting, and impact of agricultural 

chemicals). Biologists should use caution when applying a static multi-scale occupancy 

model to large scale temporal habitat-population processes. 



 

Chapter 1 

AN IMPROVED APPROACH TO MODELING HABITAT OCCUPANCY OF 

NORTHERN BOBWHITE (COLINUS VIRGINIANUS) 

Introduction 

Although declines of northern bobwhite (Colinus virginianus) populations have 

occurred range-wide, populations at the northern end of the species’ range, including those in the 

Mid-Atlantic, have experienced especially sharp declines.  For example, populations in Delaware 

and Maryland have been declining by over 5% annually from 1966–2007 compared to 3% range 

wide (Sauer et al. 2008).  Habitat loss is considered the primary cause of these declines (Brennan 

1991, Williams et al. 2004, Veech 2006).  Unfortunately the loss and fragmentation of bobwhite 

habitat is occurring at multiple scales, and at scales greater than those at which traditional 

research and management have focused on.  Therefore, a paradigm shift has been recommended 

to focus research efforts to incorporate broader scale impacts (Williams et al. 2004).  

Knowledge of multi-scale habitat relationships and the landscape scale distribution 

of habitat are important for improving bobwhite management.  Models that link a species to 

remotely-sensed environmental variables are a common way to map potential habitat for species 

and have a wide use of applications (Manel et al. 2001).  Methods for constructing such models 

vary and continue to evolve to account for biases associated with survey methods, measurement 

scale of independent variables, model selection, spatial autocorrelation, and model evaluation 

(Manel et al. 2001, Rushton et al. 2004, MacKenzie et al. 2006).  Despite these advances, four 

limitations exist with past modeling of bobwhite habitat relationships.  
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First, there have been few studies modeling potential landscape scale bobwhite 

habitat relationships; with none published for the Mid-Atlantic region (Burger et al. 2006a,b,c, 

Twedt et al. 2006, Roseberry and Sudkamp 2008). Recently, Burger et al. (2006a,b,c) modeled 

habitat suitability using Breeding Bird Survey (BBS) data for Mississippi, the Central 

Hardwoods Bird Conservation Region (BCR) and the Southeast Coastal Plain BCR. However, 

because vegetative communities among general habitat types and land use vary between regions 

and states, these models may not provide accurate predictions of bobwhite presence for the Mid-

Atlantic region (Peterson et al. 2002). 

Second, there are well-recognized limitations to the use of data for habitat modeling 

from surveys that only visit a site once per season (e.g. Burger et al. 2006 a,b,c analysis of BBS 

data) (MacKenzie et al. 2006).  Multiple visits to a site per season allow for the estimation of a 

detection probability to account for the error associated with not detecting a species at a site even 

though it may have been present (Mackenzie et al. 2002).   

Third, the scales at which habitat variables are measured are often not biologically 

appropriate for the species or phenomenon being studied (McGarigal and McComb 1995, Flather 

and Sauer 1996, Lichstein et al. 2002). The magnitude of a species response to landscapes will 

vary at different scales (Roland and Taylor 1997, Holland et al. 2004, Holland et al. 2005). 

Therefore, measuring variables at the wrong scale can lead to under- or over-estimation of the 

importance of a variable in relation to other variables (Girvetz and Greco 2009). Holland et al. 

(2004) developed a method that measures the strength of a variable’s relationship with a species 

at increasing landscape sizes. This can identify the scale at which the landscape variable is most 

strongly related to a species or phenomenon.  

Fourth, in addition to recognizing the proper scale at which a species responds to a 

variable, it is also critical to recognize that habitat use patterns are influenced by variables 

operating simultaneously at multiple scales (Johnson 1980, Wiens 1989). Therefore models that 
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predict habitat use should also incorporate multiple scales. While many research efforts have 

investigated site scale characteristics of bobwhite habitat use (e.g. Roseberry and Klimstra 1984, 

Wilkins and Swank 1992, Kopp et al. 1999, Taylor et al. 1999, Williams et al. 2000) and others 

at the landscape scale (Burger et al. 2006a,b,c, Twedt et al. 2006, Roseberry and Sudkamp 2008), 

to date there has not been an effort to integrate variables at multiple scales to predict bobwhite 

abundance or occupancy.  

My objective was to integrate recent modeling methodology to predict potential 

habitat occupancy using northern bobwhite in the Delmarva Peninsula, USA. More robust 

identification of potential habitat can be used by managers to better focus available conservations 

resources.  

Methods 

From 15 May – 15 August, 2008–2009, I conducted three replicate roadside surveys 

per year at 360 points (180 in 2008 and 180 in 2009) to sample the presence of bobwhite within 

Delaware (Figure 1.1). Although surveys were conducted primarily in Delaware for logistic and 

funding reasons, the model results were used to build a predictive occupancy map for bobwhite 

in the entire Delmarva Peninsula (which includes Delaware, parts of Maryland and Virginia), 

because land cover and vegetation types are similar across this region. 

All survey points were placed at least one kilometer apart and adjacent to early 

successional and agriculture habitat along non-primary roads. No points were placed inside 

forests, wetlands, or developed lands as these were considered unsuitable breeding habitat.  I 

surveyed nine points that comprised one survey route per morning from 15 minutes before 

sunrise until two hours after sunrise on precipitation-free days with wind speeds below 6.5 

km/hr.  Each point survey lasted 10 min.  I randomly generated the order that routes were 

surveyed and alternated the order that points were surveyed within a route during replicate visits.  
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I listened passively during the first 7 min and then broadcast four to five recorded female 

bobwhite calls approximately every 10 sec at 90dB in the four cardinal directions during the last 

3 min (following Guthery et al. 2001).  I recorded the location of every individual bobwhite 

detected onto an aerial photo of the survey point and recorded the time period (passive listening 

vs broadcast call) when birds were first detected. After the first season, I decided to only survey 

the area in Delaware that is in the Mid Atlantic Coastal Plain Physiographic Region. Points that 

were outside of this region during the first season were not used for analysis (18 points) (Figure 

1.1). 

I reclassified the 22 land use/land cover types of the 2005National Oceanic and 

Atmospheric Administration Coastal Change and Analysis Program (NOAA CCAP) dataset into 

a reduced set of 8 habitat types including High Intensity Development (HDEV), Low Intensity 

Development (LDEV), Agriculture (AG), Grassland (GRASS), Forest (FOR), Shrub (SHRUB), 

Emergent Wetland (WET), and Other (Table 1.1). I considered SHRUB and GRASS as early 

successional habitat and HDEV and LDEV as development. To quantify habitat composition, I 

measured the proportion of each habitat type (excluding Other); transforming proportion 

measures using the logit function to normalize the data. I also quantified habitat configuration by 

measuring patch cohesion of early successional habitat, a measure of how connected patches 

were, (ECOHES), patch cohesion of development (DCOHES), and the interspersion and 

juxtaposition index (IJI) of early successional habitat, a measure of how interspersed early  

successional with other habitat types, according to MacGarigal et al. (2002). Patch cohesion 

ranges from 0 to 100 and measures the physical connectedness of the patches. The IJI ranges 

from 0 to 100 and measures the adjacency of a patch type with other patches. I also measured the 

density (km/hectare) of forest to early successional habitat edge (EEDGE), and forest to 

agriculture edge (AGEDGE).  I quantified all habitat composition and configuration variables at 

the survey site and landscape scales (24 variables; subscript S indicates site scale and subscript L 
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indicates landscape scale). Lastly, I measured the distance (km) of each survey point to the 

nearest divided highway (DIST) and normalized the data with a square-root transformation. This 

provided 25 candidate explanatory variables for the habitat modeling analysis. I liberally defined 

the “survey site” as the area within 500 m of an observation point, which is the 90th percentile of 

my observed detection distances and the detection distance threshold for bobwhite reported by 

Wellendorf and Palmer (2005).  For each variable measured at the landscape scale, I determined 

the buffer radius around the site at which each variable was most strongly correlated to bobwhite 

presence among the set of buffer radii ranging from 0.5 km to 9.5 km (1 km to 10 km from 

survey point) at 500 m increments (sensu Holland et al. 2004) for a randomly selected subset of 

half (n =171) of the sites.  I used bootstrapping to obtain Spearman’s Rank Correlation 

Coefficients on 10,000 random samples of 10 points at least 10 km apart for each buffer distance. 

I used Student’s t-test to identify groups of ranges that were statistically similar to the range that 

exhibited the strongest correlation. The smallest radius within that range was used as the scale for 

measuring that landscape variable (e.g. Figure 1.2). Using the shortest distance was intended to 

reduce the overlap of landscape buffer between points.  

I estimated site occupancy and detection probability using the modeling approach of 

Mackenzie et al. (2002), which accounts for the probability of an individual occupying the site 

and being detected during a survey. I used Akaike’s Information Criterion (AIC) to evaluate and 

select models (Burnham and Anderson 2002) and performed analysis using the program 

PRESENCE (Hines et al. 2006). Because I considered any variation in detection probability a 

nuisance parameter, I first used logistic regression to model detection probability among survey 

points considering explanatory variables of time of day, temperature, and wind speed, as well as 

constant detection probability. I selected a best model from that analysis to control for detection 

probability for subsequent modeling of bobwhite occupancy. I modeled bobwhite occupancy 

using logistic regression with the 25 covariates of site and landscape scale metrics using a 
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randomly selected subset of data from 50% (n = 171) of the survey points. The remaining 50% of 

the data was used to validate model-predicted occupancy.  

I limited the total number of the candidate models to 40 in an iterative step-wise 

manner according to the following criteria: 

Each model included 1–3 site-scale and 1–3 landscape-scale covariates (totaling 2–

6). I selected a maximum of three variables at each scale to prevent the development of highly 

complex models. Models were not required to have the same number of site and landscape 

covariates. DIST was not considered a site or landscape scale so some models may have had 7 

covariates. 

Covariates that were correlated (|r| ≥ 0.5) were not used in the same model. 

All covariates were used at least once. Some covariates were used more than others 

because they repeatedly appeared in high-ranked models. Covariates that consistently appeared in 

low-ranked models were used less often. Additional covariates were individually added to high-

ranked models to determine their effect on the model. Covariates that did not improve the log-

likelihood estimate of the model by a value of more than two were removed.  

Within the set of candidate models, I also included a global model of all 25 

covariates, a global site-scale model of the 12 site-scale covariates, a global landscape-scale 

model of the 12 landscape-scale covariates, and a null model in which occupancy was held 

constant. 

I calculated the small-sample-corrected information criterion AICc for all 40 models 

(Hurvich and Tsai 1989) because sample size was small with respect to the number of parameters 

(K) in the analyses.  I performed multiple-model averaging to predict occupancy using those 

models that had substantial support for fitting the data given the candidate set of models to 

address model selection uncertainty (Burnham and Anderson 2002). To determine the direction 

and magnitude of effect sizes for covariates, I calculated the mean standardized partial regression 
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coefficient across all the models containing the variable of interest, and estimated precision using 

an unconditional variance estimator that incorporates model selection uncertainty (Burnham and 

Anderson 2002, p. 162).   

I tested for spatial autocorrelation of the model-averaged residual values using 

Moran’s I to test the assumption that independence of errors was met.  Commonly, ecological 

covariates alone may be sufficient to explain spatial autocorrelation in species distributions.  

However, ignoring spatial autocorrelation tends to overestimate habitat effects and may reduce 

prediction success (Betts et al. 2006).  

I validated the accuracy of my best-fit occupancy model by generating predicted 

occupancy values for the remaining 50% of data not used for fitting models. I used a receiver 

operating characteristic (ROC) curve to measure model accuracy. The ROC curve describes the 

relationship between model sensitivity (number of true positive predictions) and specificity 

(number of false positives) (Hanley and McNeil 1982). The area under the ROC curve (AUC) is 

an index of classification accuracy that is independent of species prevalence and arbitrary 

threshold effects (Manel et al. 2001). Models are considered to have low accuracy with AUC 

values of 0.5–0.7, medium accuracy with values of 0.7–0.9 , and  high accuracy with values >0.9  

(Manel et al. 2001).  

I also determined an optimal threshold value for assigning occupancy (sensu Pereira 

and Itami 1991) and measured the predictive success of the model at that value. The optimum 

threshold value is the value at which the percent improvement over random is largest. This is 

calculated using one minus specificity subtracted from the percent correctly classified as 

occupied at each cut off value. I then applied my model within a Geographic Information System 

(GIS) to produce both continuous and discrete maps of predicted bobwhite presence for the 

Delmarva.  
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Results 

Bobwhites were detected at 74 of the 360 sites (20.6%) across both years (54 of the 

180 sites [30%] in summer 2008 and at 20 of the 180 sites [11%] in summer 2009) (Figure 1.1). 

The time of day and temperature model was the highest ranked model for measuring the variation 

in detection probabilities. However, nine of the eleven detection models had ∆AICc ≤ 2, 

including a null model where detection was held constant (Table 1.2). Because the evidence ratio 

for the top model was not strong relative to the null model (1.66), I used the null detection model 

in conjunction with the habitat modeling.  

The scale at which landscape variables were used to model bobwhite occupancy 

ranged from 1 km to 2.5 km from the survey location (Table 1.3). The average distance was 1.6 

km (± SE 0.7 km). Fifteen combinations of variables were correlated (Appendix A).  

Of the 40 tested habitat occupancy models, the top-ranked model included two site 

scale covariates and two landscape scale covariates; early successional edge density at the site, 

interspersion and juxtaposition index at the site, cohesion of development at the landscape, and 

cohesion of early successional habitat at the landscape (Table 1.4). The next two highest-ranked 

models also had substantial support (Model 2: early successional edge density at the site, 

interspersion and juxtaposition index at the site, percent of shrub habitat in the landscape, and 

cohesion of development at the landscape; Model 3: interspersion and juxtaposition index at the 

site, agriculture edge density at the site, cohesion of development at the landscape, and cohesion 

of early successional habitat at the landscape). The second-ranked model is very similar to the 

first and percentage of shrub habitat and cohesion of early successional habitat were highly 

correlated (0.69). Therefore, I used model averaging on the top three models. At the site scale, 

bobwhite presence was negatively related to interspersion and juxtaposition index, early 

successional edge density (range = 334 m/hectare to 584 m/hectare), and agriculture edge density 

(range = 416 m/hectare to 1000 m/hectare). At the landscape scale, bobwhite presence was 
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negatively related to the cohesion of development within 2.5 km, positively related to cohesion of 

early successional habitat within 2.0 km, and positively related to percent of shrub habitat within 

1.0 km.  

The standardized coefficients for the variables in the top models and found cohesion 

of developement, cohesion of early successional habitat and early successional edge density had 

strong effects (95% confidence intervals not including zero), though of small relative magnitude 

(Figure 1.3). All other variables had negligible effects due to large unconditional variance. 

Because of these relationships, I also post hoc analyzed additional models with only site or 

landscape scale variables using the variables in the top three models. However, the smallest 

∆AICc among this post hoc set of models compared to the top model of the a priori model set 

was 11.15 for the model of cohesion of development and cohesion of early successional habitat. 

Thus, single scale models performed poorly relative to multi-scale models. 

The AUC for model-averaged predicted occupancy of the validation dataset was 

0.631 (Figure 1.4). The optimum threshold value for assigning presence of bobwhite was 0.5 

(Figure 1.5). At this value the model correctly predicted the occupancy status at 65.5% of sites. 

However, the model predicted areas where bobwhite were not detected (68.7%) better than where 

bobwhite were detected (55.8%). Additionally, bobwhite were detected at 41% of the sites that 

were predicted occupied, and were only detected in 22% of the sites that were predicted 

unoccupied. There was no evidence of spatial autocorrelation in model residuals (Moran’s I= -

0.02, P=0.14). I produced a map that predicted where bobwhite would be present using the 

optimal threshold value for the Delmarva Peninsula (Figure 1.6). 

Discussion 

The final averaged occupancy model incorporated both site and landscape variables 

but had moderately weak predictive performance possibly due to data deficiencies, an imbalance 
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of species distributions with the environment, and model misspecification. Although multi-scale 

models consistently performed better than single scale models, incorporation of model selection 

uncertainty indicated site scale variables exhibited weak to moderate effects while landscape-

scale variables had the greatest effects on occupancy. Assessing the scale at which to measure 

landscape variables showed there was variability among metrics, but those that had the strongest 

effects on occupancy were rather consistent in scale. 

Guthery (1997) suggested that habitat management for bobwhites should maximize 

the amount of habitat used by bobwhite in both time and space. Characteristics of a habitat patch 

that reduces the usable space would also lower the quality of a site and the probability of the site 

being occupied.  I was not able to measure micro-scale habitat characteristics of patches 

(vegetation structure and composition) that directly affect habitat quality. Although important 

variables at the site scale may be indirect measures of micro-scale habitat quality, it is still 

notable that these variables had moderate to weak effects on occupancy compared to landscape 

variables. 

 The negative relationship between edge density and occupancy at the site scale 

may be related to the reduction of useable space due to fragmentation of suitable habitat caused 

by high edge densities. The transition from forested habitat to agriculture or grassland habitats 

(woody edge) can provide the close proximity of grassy areas to shrubby areas favored by 

bobwhite. For this reason, edge habitat is considered necessary for prime bobwhite habitat 

(Stoddard 1931, Leopold 1933). Leopold (1933) predicted that density of edge-benefitted species 

would increase with increasing edge. However, above a certain density, edge becomes redundant 

and may have a negative effect by fragmenting the habitat (Guthery and Bingham 1992). This 

seems plausible for my sampling sites where the edge densities ranged from 6-10 times the 

threshold edge density of 60 m/ha suggested by Roseberry and Sudkamp (1998), below which 

bobwhite have a positive relationship with edge density.  
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Not all edge types have the same influence. For example, Twedt et al. (2006) found 

bobwhite abundance was positively related to forest edge but was negatively related to grass edge 

and total edge. Forest edge was likely positive because it would provide woody escape cover for 

bobwhite. Grass habitat provides nesting cover (Roseberry and Klimstra 1984, Taylor et al. 

1999), so increasing edge would fragment and reduce the amount of breeding habitat available. 

Total edge may also have been a measure of fragmentation in the landscape. 

The limited dispersal capabilities of bobwhite could explain both the strong effects 

of landscape configuration on bobwhite occupancy over landscape composition and the scale at 

which bobwhite appear to respond to these important landscape characteristics. The cohesion of 

early successional habitats and human development had stronger effects on occupancy than the 

simple amount. This agrees with Shumaker (1996) who found that cohesion had a higher 

correlation with simulated dispersal success than the amount of habitat. For example, it may be 

that more cohesive development acts as a stronger barrier to dispersal of bobwhite than an 

equivalent amount of development that is less cohesive. Human development is known to limit 

dispersal in terrestrial animals (e.g. juvenile cougars, Puma concolor [Beier 1995] and isolated 

populations of bobcats, Lynx rufus, and coyotes, Canis latrans [Riley et al. 2006]). Bobwhites 

may experience similar or more severe dispersal limitation because they have relatively restricted 

mobility and do not fly or disperse long distances (Kassinis and Guthery 1996, Townsend II et al. 

2003, although limited exceptions can occur, see Lohr et al. 2010). Cohesion of early 

successional habitat and development were most correlated to occupancy at similar landscape 

sizes (2 km and 2.5 km radius respectively). These distances fall within the range of average 

dispersal distances of bobwhite reported by others; 2.8 km for adults, 3.4 for juveniles 

(Townsend et al. 2003), 2.1 km for adults, 1.7 for juveniles (Cook et al. 2006), and the average 

maximum dispersal distance of juveniles of 1.7 km (Fies et al. 2002).   
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The negative relationship between bobwhite occupancy and the cohesion of 

development can also be explained by other effects of development. First, the most immediate 

consequence is the reduction in the amount and quality of habitat through conversion to 

development. Urban environments have greater amounts of non-native shrubs and plants that are 

associated with lower nesting success for open-cup nesting songbirds relative to native plants 

(Borgmann and Rodewald 2004). Urban areas can also harbor greater densities of meso-predators 

(Jokimaki and Huhta 2000, Kays and DeWan 2004, Lepczyk et al. 2003 Lohr et al. 2010) which 

can reduce nest success of bobwhite (Rollins and Carroll 2001) and increase mortality of 

individuals (Lohr et al. 2010).  

Despite efforts to reduce modeling errors, predictive performance of the model was 

moderately weak. This may have been due to several factors. First, the land cover data was 

collected 2–3 years prior to the collection of the occupancy data. During this time period, early 

successional habitats may have advanced to a later successional stage. Other land uses such as 

logging, development, or allowing agricultural field to go fallow could have also changed the 

land cover. Error in land cover data could have been corrected by constructing my own land 

cover map for the study area during the time of the surveys. However the time and effort that 

would have been needed to build these maps and test the accuracy was not practical or feasible. 

Timing future surveys and modeling efforts with expected updates in land cover data should 

eliminate temporal error. 

All variables used in my model were macro-scale (e.g. agriculture, grassland, forest, 

etc.) measurements of habitat. Other models predicting occupancy of bobwhite with macro-scale 

variables do not provide a measure of model fit. So it is unknown how well our model performs 

compared to others. However, Mitchell et al. (2001) found coarse resolution landscape variables 

were most important to migrating habitat specialist migrating species. Since bobwhite are non-

migratory it may be difficult to predict occupancy using these variables. Additionally, Betts et al. 
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(2006) found coarse-resolution variables (e.g. age of stand and cover type) calculated using aerial 

photos were able to predict occupancy of forest birds as well as fine-resolution variables (e.g. 

diameter base height and canopy cover) measured on the ground, they warned that as landscapes 

become more fragmented, the predictive success of coarse resolution variables will decline. For 

example, fencerows are considered prime escape cover and brood rearing habitat. Their loss due 

clean farming is believed to be a primary reason for bobwhite declines (Brennan 1991). 

However, I was not able to measure most of these areas because the resolution of the land cover 

data was not fine enough. The inability to measure fencerows or other fine-resolution features 

likely contributed to error in the model.  

Species distribution models assume that the population is in equilibrium, which only 

occurs when colonization is greater than extinction (Levins 1969), and that the species can occur 

in all potential suitable habitat (Barry and Elith 2006). However, six limitations could prevent 

equilibrium or reduce the ability of bobwhite to occupy potential habitats. First, because 

bobwhite populations in the Delmarva have been declining (Sauer et al. 2008), colonization is 

not higher than extinction. Second, Vuilleumier and Possingham (2006) found the number of 

unoccupied patches can increase in heterogeneous landscapes due to asymmetrical colonization, 

which is common. Therefore, patches of habitat that may be suitable may not be occupied during 

a survey season. Third, because adult mortality of bobwhites is high, the probability of local 

extinction is also high, thereby increasing the number of high quality sites that are naturally 

unoccupied (Tyre et al. 2001). Fourth, Watson et al. (1984) found density dependent dispersal in 

the red grouse (Lagopus lagopus) and noted that when populations are low, unoccupied suitable 

sites may never be colonized. Fifth, if there is a time lag in the response of bobwhite population 

to landscape change, local populations can still persist even when surrounded by an inhospitable 

landscape. Sixth, Tyre et al. (2001) suggested poor habitats near high quality habitat may have a 

higher probability of being occupied than an isolated patch of good habitat. Therefore, bobwhite 
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may be present in areas with a low predicted probability of occupancy. However, false positive in 

predicted occupancy would increase bias more than this false negative predicted occupancy (Tyre 

et al. 2001). Additionally, Tyre et al. (2001) found that even under perfect conditions (e.g., no 

measurement error, known habitat associations, and large sample size) predictive models cannot 

account for all aspects of metapopulation dynamics and can produce AUC values as low as 0.80. 

I recommend that error related to meta-population dynamics might be reduced through long-term 

surveys which can account for factors affecting colonization and extinction.  

Other sources of error include not accounting for interactions of variables and non-

linear relationships of a variable with occupancy. I avoided models that included interactions 

among variables because it is impractical to account for all of them and some could lead to 

spurious results. However, some interactions in variables may have been important for predicting 

occupancy of bobwhite. Additionally, non-linear responses to variables cannot easily be 

accounted for using logistic regression.  

Overall, this research produced important insights into the breeding habitat 

occupancy of bobwhite within the Mid-Atlantic Coastal Plain. I provide evidence of the 

importance for using factors at multiple scales when modeling habitat relationships of a species. 

The variation in the scales at which occupancy was related to individual landscape features 

supports the need to objectively assess the measurement scale of landscape features based on the 

data and the biology of the species rather than subjectively selecting a static or arbitrary scale.  

My model can also be a useful tool for conservation planning because it predicts potential 

locations of bobwhite and lays the groundwork for future habitat occupancy modeling efforts 

throughout the bobwhite range. Huxel and Hasting (1999) simulated restoration success with 

spatial arrangement of restored areas and found restoration adjacent to occupied habitat patches 

was more successful than random placement of restored areas. Increasing cohesion of habitat 

may be especially important because the wide areas of unoccupied habitat between the occupied 
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patches may be beyond the dispersal range of bobwhite. Connecting these occupied patches can 

increase dispersal success leading to increased colonization of empty patches and immigration 

from other populations, which can increase the number of occupied habitat patches (Dunning et 

al. 1995). Additionally, my model predicted unoccupied sites with almost 70% accuracy, and the 

percentage of sites bobwhite were detected was almost two times higher where they were 

predicted to occur. Therefore, focusing management resources to areas where bobwhite are 

predicted to occur should be more efficient than randomly allocating management resources.  
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Table 1.1. Original and reclassified land cover types based on National Oceanic and 

Atmospheric Administration’s (NOAA) Coastal Change Analysis Program (CCAP) 

dataset to model northern bobwhite occupancy in Delaware, USA, from 15 May – 

15 August, 2008–2009. 

Reclassified Land Cover 

Type 

Original CCAP Land Cover Type (and 

associated code) 

% of Delmarva 

Peninsula 

Development, High 

Intensity 

Developed, High Intensity (2) 
1.8 

Developed, Medium Intensity (3) 

   

Development, Low 

Intensity 

Developed, Low Intensity (4) 
7.1 

Developed, Open Space (5) 

   

Agriculture 
Cultivated Crops (6) 

44.8 
Pasture/Hay (7) 

   

Grassland Grassland/Herbaceous (8) 0.5 

   

Forest 

Deciduous Forest (9) 

32.0 

Evergreen Forest (10) 

Mixed Forest (11) 

Palustrine Forested Wetland (13) 

Estuarine Forested Wetland (16) 

   

Shrub 

Scrub/Shrub (12) 

4.9 Palustrine Scrub/Shrub Wetland (14) 

Estuarine Scrub/Shrub Wetland (17) 
   

Emergent Wetland 
Palustrine Emergent Wetland (15) 

10.8 
Estuarine Emergent Wetland (18) 

   

Other 

Unconsolidated Shore (19) 

Not Included 
Barren Land (20) 

Open Water (21) 

Palustrine Aquatic Bed (22) 
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Table 1.2. Summary of model-selection procedure examining variables affecting the 

probability of detection of northern bobwhites in Delaware, USA, from 15 May – 15 

August, 2008–2009. I report Akaike’s Information Criterion (AICc), the relative 

difference in AIC values compared to the top-ranked model (∆ AIC), the AIC model 

weight (W), and the number of parameters in the model (K).  

Model ∆ AICc W K 

TIME, TEMPERATURE 0 0.15 3 

WIND 0.26 0.13 2 

WIND, TEMPERATURE 0.38 0.12 3 

WIND, TIME, TEMPERATURE 0.68 0.11 4 

TEMPERATURE 0.69 0.11 2 

NULL 1.01 0.09 2 

OBSERVER 1.26 0.08 2 

TIME 1.28 0.08 2 

WIND, OBSERVER 1.61 0.07 3 

GLOBAL 2.79 0.04 5 

TIME,OBSERVER 3.33 0.03 3 

AIC value of top model = 739.46 
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Table 1.3. Scale at which variables were measured within the landscape and mean Spearman's 

Rank Correlation Coefficient (r) between landscape-scale variable and northern 

bobwhite presence in Delaware, USA, from 15 May – 15 August, 2008–2009 based 

on 10,000 bootstrapped samples. The standard error for all coefficients was 0.01. 

 

Variable  

Distance from survey point 

(km) r  

HDEV 1 -0.29 

GRASS 1 -0.11 

WET 1 -0.1 

AG 1 0.04 

SHRUB 1 0.05 

FOR 1 0.13 

AGEDGE 1.5 -0.07 

ECOHES 2 0.2 

LDEV 2.5 -0.3 

DCOHES 2.5 -0.27 

IJI 2.5 -0.15 

EEDGE 2.5 0.09 
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Table 1.4. Summary of model-selection analysis of variables affecting the probability of 

occupancy of northern bobwhite in Delaware, USA, from 15 May – 15 August, 

2008–2009. I report Akaike’s Information Criterion (AICc), the relative difference 

in AIC value compared to the top-ranked model (∆ AIC), the AIC model weight 

(W), and the number of parameters in the model (K). Variables are described in 

Table 1.1. Variable subscripts denote measurement scale  measurement; site = S, 

landscape = L. 

Model
a
 ∆ AICc W K Rank 

EEDGES, IJIS, DCOHESL, ECOHESL 0 0.49 6 1 

EEDGES, IJIS, SHRUBL, DCOHESL 2.38 0.15 6 2 

IJIS, AGEDGES, DCOHESL, ECOHESL 2.39 0.15 6 3 

AGEDGES, IJIS, DCOHESL 3.35 0.09 5 4 

EEDGES, IJIS, ECOHESL, LDEVL 4.59 0.05 6 5 

IJIS, DCOHESL 5.29 0.03 4 6 

ECOHESS, AGEDGES, DCOHESL 7.11 0.01 5 7 

AGEDGES, DCOHESL 8.05 0.01 4 8 

AGEDGES, FORS, DCOHESL, ECOHESL 8.38 0.01 6 9 

AGEDGES, AGL, DCOHESL, SHRUBL 10.68 0 6 10 

AGEDGES, ECOHESL, LDEVL 11.2 0 5 11 

ECOHESS, EEDGES, IJIS, IJIL 12.26 0 6 12 

SHRUBS, DCOHESL, ECOHESL, EEDGEL 14.53 0 6 13 

EEDGES, AGEDGES, EEDGEL, AGEDGEL 16.16 0 6 14 

LDEVS, LDEVL 16.56 0 4 15 

ECOHESS, SHRUBS, DCOHESL, SHRUBL 18.27 0 6 16 

SHRUBS, EEDGEL, ECOHESL, HDEVL 19.37 0 6 17 

IJIS, WETS,AGL, IJIL 19.99 0 6 18 

IJIS, FORL 20.96 0 4 19 

SHRUBS, AGEDGES, IJIL 22.22 0 5 20 

HDEVS, HDEVL 22.33 0 4 21 

EEDGES, GRASSS, HDEVS, EEDGEL, 

HDEVL 22.63 0 7 22 

AGEDGES,FORL, DIST 23.09 0 5 23 

LDEVS, FORS, IJIL,WETL 23.33 0 6 24 
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a
AIC value of top model = 343.51 

 

Table 1.4. (continued) 

     

Model
a
 ∆ AICc W K Rank 

GlobalL 24.19 0 14 25 

HDEVS, FORS, GRASSL, HDEVL 26.31 0 6 26 

NULL 26.73 0 2 27 

WETS, WETL 28.8 0 4 28 

GRASSS, GRASSL 30.19 0 4 29 

AGEDGES, AGL, DCOHESL, ECOHESL 101.37 0 6 30 

ECOHESS, EEDGES, IJIS ECOHESL, 

DCOHESL 101.97 0 7 31 

ECOHESS, DCOHESL 102.38 0 4 32 

ECOHESS, ECOHESL, 114.21 0 4 33 

ECOHESS,AGEDGEL 115.92 0 4 34 

EEDGES, DCOHESL, ECOHESL, SHRUBL 902.16 0 6 35 

ECOHESS, DCOHESS, ECOHESL, 

DCOHESL 977.75 0 6 36 

ECOHESS, IJIS, DCOHESL, ECOHESL, 

GRASSL 980.81 0 8 37 

AGEDGES, DCOHESS, ECOHESS, 

EEDGEL, SHRUBL, DIST 982.08 0 8 38 

GlobalS 989.62 0 14 39 

GlobalL,S 1002.58 0 27 40 

a
AIC value of top model = 343.51 
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Figure 1.1. Locations of all survey sites and whether northern bobwhite were detected 

within Delaware USA, from 15 May – 15 August, 2008–2009. 
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Figure 1.2. Mean and 95% confidence intervals of Spearman’s Rank Correlation 

Coefficient between northern bobwhite presence and explanatory 

variables measured within buffers of 0.5 km to 9.5 km in 0.5 km 

increments around the site. Black points indicate distances statistically 

similar to the buffer distance with the strongest correlation. Arrows 

indicate distance used. 
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Figure 1.3. Direction and relative effect size (standardized model-averaged partial 

regression coefficient) for variables in the top models. Error bars denote 

95% confidence intervals of effects size based on unconditional variance 

estimate. 
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Figure 1.4. Receiver operating characteristic (ROC) curve for validation survey points 

of northern bobwhite breeding season occupancy within early successional 

habitats of Delaware, USA, from 15 May – 15 August, 2008–2009. 
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Figure 1.5. Percent improvement in accuracy of site occupancy classification using 

predictive habitat model over random classification across threshold 

values ranging from 0-1. 
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Figure 1.6. Predicted probability of breeding season occupancy of northern bobwhite 

within early successional habitats of the Delmarva Peninsula, USA, from 

15 May – 15 August, 2008–2009. 
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Figure 1.7. Predicted breeding season occupancy of northern bobwhite within early 

successional habitats of the Delmarva Peninsula, USA, from 15 May – 15 

August, 2008–2009. 
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Chapter 2 

EFFECTS OF BROADCAST CALLER ON ESTIMATING DENSITY AND 

OCCUPANCY OF NORTHERN BOBWHITE 

Introduction 

Northern bobwhite (Colinus virginianis) are experiencing steep range-wide 

declines (Sauer et al. 2008). These declines have led to the formation of the Northern 

Bobwhite Conservations Initiative (NBCI) whose goal is to restore bobwhite 

populations to 1980 levels. A standardized and cost-effective large-scale monitoring 

protocol that estimates a biologically meaningful population size is needed to determine 

when or if this goal is met (Bill Palmer, personal communication). 

Call count surveys of whistling northern bobwhite are a common method 

for surveying bobwhite populations to estimate relative abundance (Fowler 1988, Curtis 

et al. 1989, Hansen and Guthery 2001). These surveys may provide an accurate 

assessment of population trends if rigorous sampling protocols are followed (e.g. repeat 

visits to sites during peak calling periods and good weather conditions). However, they 

are not useful for estimating population size (Hansen and Guthery 2001) and may not 

always provide accurate trend estimates despite rigorous sampling protocol (Thompson 

2002).  

Unbiased estimates of bird density can be obtained using distance sampling, 

which allows for modeling distance-related changes in detection if certain assumptions 

are met (Buckland et al. 2001). These include 1) all individuals at zero distance from the 

observer are detected, 2) detectability declines monotonically with distance from the 

observer, 3) individuals do not move before they are detected, and 4) distance to the 

individual is estimated accurately. However, the relatively low detectability of bobwhite 
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due to their cryptic coloration, secretive behavior, and low abundance pose a logistical 

problem for obtaining a minimum sample size of 75-100 detections to reliably model a 

detection function (Buckland et al. 2001).  

Broadcasting a female bobwhite call during surveys may improve the 

detection of males by eliciting a courtship behavior response (e.g. whistling) (Coody 

1991). Broadcast calls do increase the number of detections of marsh birds (Gibbs and 

Melvin 1993, Conway and Gibbs 2005), western burrowing owls (Athen cunicularia 

hypugaea) (Conway and Simon 2003), and band-tailed pigeons (Patagioenas fasciata) 

(Kirkpatrick et al 2007). However, Hansen and Guthery (2001) found the caller did not 

increase the number of detected male bobwhite. Additionally, broadcasting a female 

bobwhite call has been shown to increase movement of penned male bobwhite (Coody 

1991), which suggests that the assumption of no movement prior to detection could be 

violated if the caller induces free-ranging males to move before being detected. Thus, 

rigorous distance sampling to produce density estimates may not be possible when using 

broadcast calls. 

Surveying site occupancy does not rely on detecting all individuals and may 

reduce bias due to imperfect detection associated with call count surveys. Surveys that 

estimate the number of sites occupied can also be less expensive and easier to conduct 

than distance sampling surveys (Mackenzie et al. 2002). Estimating occupancy of a site 

relies on repeat visits to reduce the probability of not detecting an individual when a site 

is actually occupied and to model changes in probability of detection (P(D)). Occupancy 

surveys can accommodate movement prior to detection, therefore a broadcast caller may 

be useful for improving P(D) and occupancy estimates. Past surveys using broadcast 

callers for marsh birds (Gibbs and Melvin 1993, Conway and Gibbs 2005), western 

burrowing owls (Conway and Simon 2003), and band-tailed pigeons (Kirkpatrick et al. 
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2007) did increase the number of sites considered occupied. However, it is not known 

how a caller would affect the number of sites that bobwhite are detected.  

Increasing survey duration can also increase the number of detections and 

probability of detecting an individual if the site is occupied (Dettmers et al. 1999, 

Hansen and Guthery 2001, Gooch et al. 2006). Gooch et al. (2006) found longer surveys 

had a higher number of Anurans detected per site, but 87% of detections occurred in the 

first 3 min. Dettmers et al. (1999) found predictive habitat models for forest birds with 

low detection probability performed better with longer surveys. However, when 

detection probability was high, increased survey time did not improve their habitat 

models. Hansen and Guthery (2001) found 6 min surveys had 0.57-0.92 more singing 

males than 3 min surveys. Although increased survey duration may increase detection 

probability, there are two potential negative consequences.  First, increased survey time 

may allow bobwhites to move prior to detection.  Second, the number of sites that can 

be surveyed within a given amount of time will be reduced. Therefore, it is important 

biologists consider the costs and benefits of survey duration when monitoring a 

population. 

I tested the null hypothesis that the use of broadcast callers and increased 

survey duration do not affect detection probability, estimated density, and estimated 

occupancy of breeding bobwhite. Results from my study are important for improving 

the accuracy of large-scale surveys to monitor bobwhite populations. 

Methods 

From 15 May - 15 Aug 2009, I conducted 3 replicate roadside surveys at 

180 points to sample the presence and density of bobwhite within Delaware. I conducted 

9 point count surveys, within one survey route, per morning from 15 min before sunrise 
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until 2 hr after sunrise on precipitation-free days when the wind speed was below 6.5 

km/hr. Each point survey lasted 10 min. I randomly generated the order that routes were 

surveyed and alternated the order that points were surveyed within a route during 

replicate visits. Surveys were split into three time periods that were 3 min, 4 min, and 3 

min in duration. I listened passively for bobwhite during the first 7 min (first and second 

time periods) and then broadcast 4 – 5 recorded female bobwhite calls approximately 

every 10 sec at 90dB in the four cardinal directions during the last 3 min (third time 

period) (following Guthery et al. 2001).  I recorded the location of every individual 

bobwhite detected onto an aerial photo of the survey point and recorded the time period 

when each individual was detected. All bobwhite detected in the third time period were 

recorded even if they had been detected previously.  

I digitized bobwhite locations from aerial photos into a Geographic 

Information System to determine the detection distance (to the nearest meter) of each 

bobwhite from the observation point. I used program DISTANCE (Thomas et al. 2005) 

to estimate the effective detection distance and density of bobwhite for the passive and 

broadcast call surveys. I compared effective detection distance and density for the first 

and third time period to ensure even effort between passive and broadcast caller periods 

and between the 3 min and 7 min passive surveys to determine the effect of increased 

survey duration. I therefore had three treatments: 3 min of passive listening, 7 min of 

passive listening, and 3 min of broadcast caller. I grouped observations into 10 equal 

distance bands from 0 - 600 m. I selected this number of distance bands to provide 

enough detail to model the detection curve and to prevent spurious spikes in the 

detection function that result from heaping or inaccurate distance measurements 

(Buckland et al 2001). I selected 600 m as the maximum distance so all detections were 
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included; however, I truncated the furthest 10% of detections. I determined the fit of the 

model based on distance bands using the chi-square goodness of fit test (α = 0.05).  

I used Akaike’s Information Criterion for small samples (AICc) to compare 

detection function models where detection was held constant or allowed to vary across 

treatments. For all models I fit the half normal, half normal + cosine expansion, half 

normal + simple polynomial expansion, half normal + Hermite polynomial expansion, 

uniform, and uniform + cosine expansion key functions. I then used Student’s t-test to 

determine if effective detection distance and estimated densities were significantly 

different. If results were not significant I ran a power analysis to determine the sample 

size needed to detect a difference, if one existed. 

I estimated separate detection probabilities for each survey treatment by 

analyzing occupancy histories using multi-method analysis (Nichols et al. 2008) in 

program PRESENCE (Hines 2006) where I considered each treatment as a different 

method. I used AICc to rank models of the P(D) and weigh the probability of each 

model being the best-fit model given the data and set of candidate models. The model 

with the lowest AICc value was considered the best model. Models with ∆ AICc ≤ 2 

were considered to have substantial support. 

Results 

I detected 48 bobwhite across 23 (Appendix B) sites during the 3 min 

passive listening survey, with 30 additional bobwhite detections and 7 additional sites 

with detections during the full 7 min passive listening survey. I detected 75 bobwhite at 

28 sites during the 3 min broadcast calling survey. I found 92% concordance of overall 

site occupancy between the 3 min passive listening and 3 min broadcast calling 

treatments, with 61% (17 out of 28) overlap of occupied sites among those with 
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detections during either survey treatment. I found 94% concordance of overall site 

occupancy between the 7 min passive listening and 3 min broadcast calling treatments; 

with 73% (22 out of 30) overlap of occupied sites among those with detections during 

either survey treatment.  Detection rates of bobwhite were 0.09 bobwhite/visit for the 3 

min passive survey, 0.14 bobwhite/visit for the 7 min passive survey and 0.14 for the 

broadcast caller survey. Bobwhite were observed flying toward the observer and some 

bobwhite were only detected because of these movements. 

Separating survey treatments to model density fit the data better than 

pooling treatments (ΔAIC=7.82). The uniform key with a cosine function was the best 

function to model detection for the 3 and 7 min passive listening surveys and fit the 

distribution of the detections (χ
2
= 8.55, 3.28, df=6 for both and P =0.20, 0.77 

respectively) (Figure 2.1). The half normal key with cosine expansion function was the 

best function to model detection during the broadcast call survey; however, it did not fit 

the distribution of detections (χ
2
 = 18.81 df = 6 and P < 0.01). 

The maximum distance a bobwhite was detected in the passive surveys was 

573 m and 508 m for the broadcast period. The effective detection distance was higher 

during the 3 min passive listening survey (326 ± 39 m) and 7 min passive listening 

survey (331 ± 31 m) than the broadcast call survey (174 ± 14 m) (P < 0.001 for both) 

but was not different between passive listening surveys (P = 0.91). The estimated 

density of bobwhite was 7.08 times higher based on the broadcast call survey (4.127 ± 

0.668 quail/km
2
) than the 3 min passive listening survey (0.649 ± 0.156 quail/km

2
) (P < 

0.001) and 3.75 times higher than the 7 min passive listening survey (1.012 ± 0.192 

quail/km
2
) (P < 0.001). The density in the 7 min passive survey was 1.66 times higher 

than the 3 min passive survey but was not significantly different (P = 0.15). A sample 
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size of 326 and 665 was needed to detect an effect size of double the estimate with a 

power of 0.5 and 0.8, respectively. 

Testing for the effect of treatment on occupancy modeling among 5 models, 

I found that separating detection probabilities among all treatments was the top ranked 

model with a model weight of 0.92. Constant detection among all treatments and visits 

was the second best model (ΔAICc = 6.73, w = 0.03), grouping passive listening 

surveys and separating the broadcast caller survey was the third model (ΔAICc =7.52, w 

= 0.02), variable detection probability by time and method was the fourth model (ΔAICc 

=7.92, w = 0.02) and variable detection probability among visits with constant detection 

between methods was the lowest ranked model (ΔAICc = 8.82, w = 0.01). The detection 

probability for bobwhite during a single visit was 0.52 ± 0.07 during 3 min of passive 

listening, 0.79 ± 0.06 for 7 min of passive listening, and 0.74 ± 0.06 using the broadcast 

call. The cumulative probability of detecting a bobwhite (Pdc) in at least one of the three 

surveys if the site was occupied was 0.88 for 3 min of passive listening, 0.99 for 7 min 

of passive listening, and 0.98 when using the broadcast call. This was calculated using 

the formula: Pdc=1-(1- P(D))
3
. 

Discussion 

Use of a broadcast caller increased detections and distance-based density 

estimates of bobwhites compared to passive listening. However, evidence from my 

study suggests that density estimates derived from caller surveys were biased high (i.e. 

3-7 times that estimated from passive listening) because of movement prior to detection. 

Although Buckland et al. (2001) suggest random and slow movements relative to the  

observer and prior to detection do not cause large biases in line transect sampling, I 

often observed bobwhites running on the ground or flying directly toward the observer 
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when using the broadcast caller. These visual detections occurred in close proximity to 

the observer, producing an excess number of detections in the first distance band. 

Consequently, the broadcast caller detection function fit poorly to the data and dropped 

more steeply as distance from the observer increased as compared to passive listening. 

Additionally, the effective detection distance for broadcast caller surveys was also 

shorter. Alternatively, the loud volume of the broadcast caller could have limited my 

ability to detect bobwhite vocalizations at long distances. However, the call was not 

played constantly; therefore its impact on detection was likely low.  

My results indicate increasing the duration of surveys may be a better way 

to increase number of detections rather than using a broadcast caller because it does not 

appear to violate any assumptions of distance sampling. The 7 min passive survey had 

greater precision of the effective detection distance while not affecting the value of the 

effective detection distance, the estimated density, or the precision of the density 

estimate. Increasing survey duration will increase the probability of random movement 

of individuals. Because random movements are more likely to be detected when the 

individuals are near the observer, increasing survey duration will lead to an upward bias 

in the density estimate (Buckland et al. 2001). In contrast, short duration surveys can 

miss detections near the observer which will bias density estimates low (Buckland 

2006). I did not have the power to detect a difference between the 3min and 7min 

passive survey periods, and true density was also unknown. However, the 7 min passive 

survey’s detection function had a better fit than the other two methods while also 

obtaining the recommended sample size of Buckland et al. (2001). Therefore, I believe 

if bias in the density estimate of the 7min passive surveys exists it is minimal when 

compared to the 3 min passive survey. However, the detection rate and survey duration 



46 

 

without bias from movement will likely vary by study and should be tested using a pilot 

study. 

In addition to testing survey duration and caller effects on density estimates, 

I was also interested in measuring their effect on determining occupancy. Increasing the 

probability of detection at a site reduces bias of not detecting present individuals (Gu 

and Swihart 2004). Methods that increase detection probability (e.g., broadcasting 

female call) should therefore increase the predictive performance of an occupancy 

model. However, broadcasting calls may produce false positive occupancy by attracting 

a bird into a sampling area that it normally wouldn’t occupy; a violation of occupancy 

modeling (MacKenzie et al. 2006, Royle and Link 2006).  

Broadcasting calls may also create error because the effective response 

distance of birds to the broadcast caller is unknown and the sampling area cannot be 

accurately defined. Positive responses from bobwhite, while using a caller, have been 

observed up to 200 m (Coody 1991). However, it is likely effective at greater distances. 

For example, I observed bobwhite responding to the caller from up to ~ 300 m.  I 

suspect that the effective distance of the caller was not greater than 350 m because site 

occupancy based on caller surveys was similar to that of passive listening surveys, in 

which birds were effectively detected out to ~350 m. Further research should be 

conducted to determine the effective distance of a broadcast caller. This will allow 

researchers to know the area that is sampled when using a caller. 

Calling intensity of bobwhite may be lower for small populations (Coody 

1991, Wellendorf and Palmer 2005). Passive listening surveys may only be detecting 

bobwhites that are vocal and/or close to the observer, therefore biasing occupancy low. I 

encourage future researchers to further investigate the potential effects of variable 
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bobwhite densities on calling intensity and whether the benefits of a caller will outweigh 

their costs to improve occupancy estimation. 

Management Implications 

Use of a broadcast caller is inappropriate for determining bobwhite density 

estimates through distance sampling. Additionally, increasing the number of sampling 

sites or duration of surveys is more appropriate for increasing the number of detections 

for distance sampling than broadcasting calls. However, increasing survey duration may 

lead to biased density estimates. It is important to identify potential sources of bias for 

each survey. A broadcast caller may, however, improve occupancy estimates under 

certain conditions. First, a caller may also be useful for increasing calling rates for a 

small population by giving the illusion of more conspecifics in the area. Second, use of 

a caller may also be acceptable when funding or logistical constraints limit survey 

effort. I recommend using a caller at sampling sites located more than 500 m from the 

edge of a study area or more than1 km from another sampling site.  
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Figure 2.1. Histograms of observed detection probability with distance from observer 

for the a) 3 min passive listening, b) 7 min passive listening, and c) 

broadcast caller surveys. Lines depict modeled detection probabilities 

using the uniform key with cosine function for the passive listening 

surveys and the uniform key + cosine expansion function for the broadcast 

caller survey. 

 



49 

 

Chapter 3 

LINKING LONG-TERM HABITAT CHANGES TO NORTHERN BOBWHITE 

POPULATIONS: ASSESSING THE PREDICTIVE POWER OF A STATIC 

MULTI-SCALE OCCUPANCY MODEL 

Introduction 

Broad-scale habitat loss is believed to be the primary cause of declining 

northern bobwhite (Colinus virginianus) populations (Brennan 1991, Williams et al. 

2004). However, past research and management have not focused on habitat loss at this 

scale (Williams et al. 2004). Information gained from research at fine scales cannot 

necessarily be extrapolated to the landscape scale (McCarty 1956) where habitat loss 

and fragmentation is occurring. Thus, bobwhite declines associated with fine-scale 

habitat loss or degradation cannot necessarily be used as evidence that habitat loss at a 

broad scale is the primary cause of population declines.  

Although several studies have addressed bobwhite population dynamics at 

large scales (e.g. Church et al. 1993, Lusk et al. 2002, Peterson et al. 2002, Williams et 

al. 2003), only a few studies have attempted to examine the relationship of landscape 

scale habitat loss to population changes. Twedt et al. (2006) analyzed the landscape 

around Breeding Bird Survey (BBS) routes in 1980 and 1992 to predict bobwhite 

abundance in the West Gulf Coastal Plain. They further applied their 1992 model to 

2004 land cover data and found predicted abundance was more correlated to observed 

abundance of bobwhite than random predictions. This result implied land cover changes 

may relate to population changes, but this relationship was not directly tested. Veech 

(2006) also analyzed the landscape around increasing, decreasing, and extinct 

populations of bobwhite using BBS data and National Resource Inventory land cover 

data from 1997 across the bobwhite distributional range. He found the amounts of forest 
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and unsuitable habitat for bobwhite were higher in decreasing and extinct populations. 

Although this evidence linked landscape characteristics with population changes, 

landscape change was not explicitly measured. Consequently, data quantifying both 

long-term trends of bobwhite populations and land cover changes are needed to directly 

assess the relationship of landscape change with population change.  

The BBS provides the longest duration and broadest spatial extent dataset of 

breeding bird populations in North America. However, there are some obstacles for 

using the dataset. BBS survey sites are visited only once per breeding season, and bird 

abundance data from a single visit are unreliable because variation in detection cannot 

be accounted for (Hansen and Guthery 2001, Mackenzie et al. 2002). Alternatively, 

occupancy of BBS routes may be more useful because it does not require all individuals 

to be detected. However, occupancy estimates are still not adjusted for probability of 

detection and can be biased (MacKenzie et al. 2006). If these limitations are to be 

addressed, repeat site visits are required to measure variability in detection and model 

factors affecting it.  

The relationships between bobwhite populations and landscape 

characteristics are complex, and best measured using multi-variable models (Roseberry 

and Sudkamp 1998, Burger et al. 2006 a,b,c, Twedt et al. 2006, Duren 2010). Therefore, 

change in any one variable may not predict landscape scale effects on bobwhite 

population change; however, changes in a suite of variables through time may have a 

stronger relationship. Measuring changes in the landscape by predicted change in a 

multivariate model through time may show a stronger relationship with bobwhite 

populations. 

Bobwhite populations in the Mid-Atlantic have experienced some of the 

steepest declines in the country (Sauer et al. 2008) while experiencing increased landuse 
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development (Long and Williams 2010).  Therefore this system has the potential to 

provide an important case study for measuring the impacts of changing habitat 

availability on bobwhite occupancy. Specifically, I tested if a previously established 

static multi-scale habitat-based occupancy model for bobwhite (Duren 2010) could 

predict the change in occupancy of BBS routes over time in the Delmarva Peninsula, 

USA. This information could be useful for scaling habitat management to a landscape 

scale (Williams et al. 2004) and assisting future conservation efforts. 

Study Area 

The Delmarva Peninsula is entirely located in the Mid-Atlantic Coastal 

Plain physiographic region and is comprised mostly of row crop agriculture and oak 

(Quercus spp.), poplar (Populus spp.) and maple (Acer spp.) forest in the north and 

areas of pine (Pinus spp.) forest in the south (Table 3.1). Between 1992 and 2005, high-

density development had the greatest relative increase and grassland habitat had the 

greatest relative decrease in area. However, the absolute change in area among land 

use/cover types was minor, with low density development having the largest increase of 

5,040 ha. 

Methods 

BBS Route Occupancy 

I estimated observed occupancy for BBS routes in the Delmarva Peninsula 

for two year periods surrounding NOAA CCAP data sets estimated for 1992, 1996, 

2001, and 2005. BBS surveys are 39.4 km long routes with stops every 0.8 km. 

Surveyors record every bird heard or seen within 0.4 km radius of the point for 3 min. 
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Each survey starts one-half hour before sunrise and last about 5 hours. I averaged the 

probability of occupancy for each of the fifty stops (sites) within routes. Each year was 

considered a repeat visit. The first year in the primary sampling period started the year 

before the land cover data or the year of the land cover data depending on availability of 

BBS data. Whenever possible, I was consistent with the start of the primary sampling 

period relative to year of the land cover data within routes. I pooled stop data across all 

time periods for modeling detection probability using the change in temperature 

(TEMP), change in sky cover (SKY), end time of survey (TIME), presence of a second 

observer (OBS), and wind speed (WIND) at the beginning of the survey as covariates. I 

used model averaging on all detection probability models with a ΔAICC ≤ 2 to estimate 

the number of sites occupied for each route and sampling period. I estimated the number 

of BBS route stops occupied using multi-year occupancy modeling in program 

PRESENCE (Hines 2006).  

Predictive Habitat Occupancy Model 

Duren (2010) modeled 2008–2009 breeding-season bobwhite occupancy 

across the Delmarva Peninsula, USA, based on 2005 land cover data from the National 

Oceanic and Atmospheric Organization Coastal Change and Analysis Program (NOAA 

CCAP). The model predicted bobwhite occupancy based on habitat variables at the 

survey site and surrounding landscape scales. The composite model incorporated the 

influence of six habitat variables averaged among three individual models. At the site 

scale, bobwhite presence was negatively related to interspersion and juxtaposition index 

of early successional and agriculture habitat (IJIS [where subscript S indicates site level]) 

in all models, early successional to forest edge density (EEDGES) in two models and 

agriculture to forest edge density (AGEDGES) in one model. At the landscape scale, 
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bobwhite presence was negatively related to cohesion of development (DCOHESL 

[where subscript L indicates landscape level]) within a 3.0 km radius around sites in all 

models, positively related to cohesion of early successional habitat (ECOHESL) within a 

2.0 km radius around sites in two models, and positively related to percentage of shrub 

habitat (SHRUBL) within a 1.5 km radius around sites in one model. Each variable 

measured at the landscape scale was determined as the buffer radius around the site at 

which each variable was most strongly correlated to bobwhite presence among the set of 

buffer radii ranging from 0.5 km to 9.5 km (1 km to 10 km from survey point) at 500 m 

increments (sensu Holland et al. 2004). Further analysis of effect size of the 

standardized coefficients for these 6 variables found DCOHESL, ECOHESL and 

EEDGES had the strongest effects.   

I used this predictive habitat occupancy model to estimate the change in 

occupancy between time periods for individual BBS routes in the Delmarva Peninsula. 

First, I produced 30-m-resolution raster grid surfaces of the predicted probability of 

occupancy for each year of historic land cover data. I used Global Positioning System 

(GPS) coordinates, if they were available, to identify the locations of stops within 

routes. When GPS coordinates were missing, I used 50 equally-spaced points along a 

route for stop locations. I then averaged the probability of occupancy among grid cells 

that coincided with 50 stop locations within routes.  

 

Data Analysis 

Using linear regression ( ≤ 0.05), I assessed the relationships between a) 

predicted and observed route occupancy pooled across years, b) changes in predicted 

and observed route occupancy between each successive time period (~ 4 years) pooled 

across all time intervals, c) changes of each of the 6 predictive occupancy model 
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covariates and changes in observed route occupancy between time periods pooled across 

all time intervals and d) changes of each of the 6 predictive occupancy model covariates 

and changes in observed route occupancy between 1992-2005.  Last, to see how long-

term change in habitat was related to long-term trends in occupancy I compared change 

in predicted occupancy to change in observed occupancy between 1992 to 2005 (17-year 

interval) using linear regression ( ≤ 0.05).  

Results 

I used data from 15 BBS routes in 1992, 19 in 1996, 24 in 2001 and 22 in 

2005 to obtain 57 measures of observed occupancy change during any two consecutive 

time periods from 1992-2005 and 14 measures of observed occupancy change during 

1992 -2005 (Fig. 3.1). Observed bobwhite route occupancy declined sharply over time 

while predicted occupancy based on multi-scale habitat characteristics was stable (Fig. 

3.2). Observed route occupancy among years ranged from 2.2% in 2005 to 100% in 

1992 and the average change in observed occupancy per year was -8.7% (± SE 1.3%). 

The relationships between change in observed occupancy and the 6 variables of the 

model pooled across all time intervals were all poor and none were significant (Fig 3.3). 

However, change in SHRUB and EEDGE from 1992-2005 were significantly related to 

change in occupancy, both were negative, and all other variables were not (Figure 3.4). 

Additionally, change in observed occupancy was large, especially when compared to the 

percent change in the variables of the model (Fig 3.5) 

Predicted route occupancy among years ranged from 3.6% in 1996 to 53.9% 

in 2001 and the average change in predicted occupancy was 1.0% (± SE 0.8%). 

Predicted route occupancy for each time step was not related to observed route 

occupancy across sampling periods (F1,56 = 0.34, P = 0.56, r
2 

= 0.004) (Fig. 3.6). 
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Additionally, changes in predicted and observed occupancy were not related (F1,56 = 

0.16 P = 0.69 r
2 

= 0.003) (Fig. 3.7). Lastly, predicted change in occupancy was not 

related to observed change in occupancy from 1992-2005 (F1,13 = 1.69 P = 0.22, r
2 

= 

0.12) (Fig. 3.8). 

Discussion 

The static multi-scale occupancy model of Duren (2010) failed to predict 

change of occupancy through time. I consider two broad types of reasons why I did not 

find significant results and discuss how future researchers may be able to improve this 

modeling effort. First I will discuss potential methodological reasons including a) an 

inaccurate or imprecise predictive occupancy model, b) changes in patch occupancy not 

at equilibrium, and c) biased occupancy estimates from Breeding Bird Survey data.  

Second, I discuss potential biological relationships that may be causing observed 

occupancy declines even if habitat changes are nominal including: a) slack in habitat 

configurations, b) differential habitat use between breeding and nonbreeding seasons, c) 

high predation and harvest rates, and d) possible reduction in food supply from 

agricultural chemicals. 

Methodologically, the ability to detect a relationship between observed and 

predicted occupancy relies on the accuracy and precision of the predictive model. 

Unfortunately, Duren (2010) found the predictive ability of the model was moderately 

low (which in itself can be attributed to potential methodological and biological biases). 

Thus, model uncertainty may have introduced enough error (noise) to obscure the signal 

in the data I was looking to detect. 

Second, a static occupancy model constructed from data at one time point 

may not be appropriate to apply at other time points because of dynamic metapopulation 
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processes affecting occupancy (Clinchy et al. 2001). For example, Twedt et al. (2006) 

found the percent grass, the amount of clumping of agricultural habitat, total edge, and 

grass edge were important variables for predicting bobwhite abundance in 1980. 

However, in 1992 percent grass and forest edge were the most important variables for 

predicting bobwhite abundance. Peterson et al. (2002) also found the strength of the 

relationship of bobwhite abundance from BBS surveys to land cover variables changed 

through time. These results may be evidence that the relationship of landscape 

characteristics with occupancy may change through time or could have risen from 

methodological problems (e.g. imperfect detection of bobwhite). Regardless they 

illustrate how applying a static landscape scale occupancy model to data from other 

years may create error.  

Third, confounding the possibility of inaccurately predicting change in 

occupancy, the estimates of route occupancy for the BBS routes may be biased. Repeat 

visits to a site are necessary to reduce detection error. Additionally, the population 

should be closed to emigration or immigration between repeat visits (MacKenzie et al 

2006). This is not possible using BBS data because points are only surveyed once a 

year. I attempted to use repeat visits for the BBS data by assuming the site occupancy 

status would not change in a year. This assumption may have been violated because 

births and deaths would have occurred between surveys, especially for bobwhite which 

have high reproductive output and annual mortality (Sandercock et al. 2007). 

Colonization or extinction events between visits would bias the probability of detection 

low, reducing the precision of the observed occupancy of the route. The survey length 

also likely reduces the probability of occupancy. Duren (2010) found the probability of 

detection was 0.52 for 3 min surveys. Additionally, for analysis of the BBS data, I did 

not meet the 3-4 repeat visits to sites per season recommended by MacKenzie and Royle 
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(2005). These factors would further reduce the precision of the estimated occupancy of a 

route. While using three years of BBS data as repeat visits would have been preferable, 

it would have increased the probability of violating the closed population assumption 

and reduced the number of routes that could be analyzed. Finding a relationship between 

change in occupancy and change in two of the individual variables is evidence of a 

flawed methodology. The results are not consistent, with landscape change showing a 

relationship with occupancy change only in two variables. A good methodology should 

reveal more consistent results. 

There are also biological explanations of the poor association between 

predicted and observed occupancy change assuming methodological problems were 

minor. My predictive occupancy was based on macro-scale habitat configuration, 

therefore change in the predicted occupancy is a surrogate measure of landscape change 

from 1992-2005. Additionally, I measured changes in variables considered important for 

predicting bobwhite occupancy (Duren 2010). Landscape change, according to the 

model and the individual variables, was small relative to the change in bobwhite 

occupancy for the same time period. In addition, changes in the predicted occupancy 

and the variables tested were not closely related to change in occupancy of bobwhite. 

Betts et al. (2002) found that macro-scale variables were able to predict habitat as well 

as micro scale variables. However, they suggest this would not happen in fragmented 

landscapes where a disconnect between measures of habitat quantity and configuration 

and habitat quality can exist. Therefore, changes in macro-scale habitat variables that I 

measured may not reflect changes in micro-scale habitat variables that may be driving 

population declines.   

Additionally, the relationship of bobwhite occupancy to landscape variables 

may be flexible. This is supported by the idea of “slack” in bobwhite habitat which 
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occurs when the interactive effects of multiple habitat configurations still provide 

optimum bobwhite habitat (Guthery 1999). Therefore, some change in patch 

configuration can occur while not reducing the overall quality of the landscape for 

bobwhite.  

My results that large-scale habitat changes were not related to bobwhite 

declines do not necessarily contradict the ideas of Brennan (1991) and Williams et al. 

(2004) or the useable space hypothesis of Guthery (1999). Changes to the micro scale 

characteristics of the land cover would not have been quantified using the model 

because of the coarse resolution of land cover data. Changes in these characteristics of a 

land cover will directly affect availability and quality of habitat for bobwhite. For 

example, changes in farming and silviculture practices that reduce the quality of 

agricultural fields but do not affect the quantity of habitat available would not have been 

measured. These may be more critical to bobwhite declines (Brennan,1991 and 

Williams et al. 2004) and grassland bird populations (Murphy 2003). Additionally, 

Dures and Cumming (2010) found diversity of birds across an urban gradient were 

closely related to micro-scale characteristics of a patch and not related to any macro-

scale habitat metrics.  

A second potential biological bias could have occurred because of a slight 

differential use of habitat use between breeding and nonbreeding seasons (Roseberry 

and Klimstra 984).  I used a breeding season habitat model to predict changes in 

occupancy of bobwhite. The Delmarva Peninsula is near the northern extent of bobwhite 

range making it more vulnerable to winter weather catastrophes (Brennan 1999). 

Therefore, changes in winter escape cover may be more of a limiting factor of useable 

space for bobwhite, but was not measured in this study. 
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Third, predation and hunting were the greatest sources of mortality in 

Missouri (Burger et al. 1995) and Oklahoma (DeMaso et al. 1998). Brennan (1991) 

suggested bobwhite evolved with a variety of predators and if habitat needs are met then 

bobwhite populations should be able to withstand predator and hunting pressure. 

However, Rollins and Carrol (2001) suggest a modern landscape may change the impact 

of predators on bobwhite populations. These changes may be a result of increased 

predator populations and changes in predator community composition and predator 

search efficiency. Similarly, search efficiency of hunters may also increase in modern 

landscapes. Williams et al. (2000) found harvest mortality was higher for coveys that 

selected more woody cover in a rangeland study area. This area had fewer patches of 

woody cover than an agricultural study area where harvest mortality was not influenced 

by cover type selection. They suggest that hunters were able to target areas where 

bobwhite would be easier when there is less escape cover. This can lead to overharvest 

and sharp declines in populations, especially if natural mortality factors are also higher. 

Fourth, although the effects of predation and harvest are well documented 

and known for bobwhite, the effects of agriculture chemicals on bobwhite survival are 

less known. Organophosphates are commonly used agriculture chemicals that are highly 

toxic and have negative short term effects on bobwhite (Brennan 1991). Additionally, 

White (1990) suggests organophosphates may be a possible source of mortality. Indirect 

effects of chemicals on bobwhite are even less understood than direct effects. Pesticides 

and herbicides are used to reduce insects and weedy plants that would inhibit crop 

growth. Weedy plant seeds are an important source of energy for bobwhite in winter 

(Robel et al. 1979) and insects are an important source of protein for bobwhite (Palmer 

et al 2001). Additionally, Lochmiller et al. (1993) found reduced growth rates in 

bobwhite chicks when their diet consisted of <15% protein. Factors affecting bobwhite 
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chick survival are unknown but wild turkey (Meleagris gallapovo) chick survival 

increased when they were able to fly and avoid predators (Spears et al. 2005). Therefore, 

slower growth rates from a low quality diet could decrease survival.  

Management Implications 

Based on my approach, I was unable to detect a relationship between short-

term landscape changes and bobwhite occupancy. Therefore I encourage future 

researchers and managers to use caution when considering the use of a single predictive 

habitat occupancy model to predict temporal relationships. Improving the accuracy and 

precision of predictive models and accounting for changes in associations between 

bobwhite occupancy and landscape features through time could improve this 

methodology. Specifically, I encourage use of within-season replicated population 

surveys instead of relying on BBS and use of finer scale land-use cover maps (as is 

sometimes available at state levels). However, if my results reflect truth about quail 

biology, researchers and managers should focus on other factors influencing population 

declines such as predators, over-harvesting, agricultural chemicals, or additive effects of 

these with habitat loss, rather than focus solely on habitat change.   
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Table 1. Total hectares (%) of habitat types in the Delmarva Peninsula, USA during 1992, 1996, 2001, and 2005. 

 Year 
% change 

1992– 2005 

 1992 1996 2001 2005  

Low Density 

Development 
71,114 (4.8) 73,705 (5.0) 75,669 (5.1) 76,154 (5.1) 7.1 

High Density 

Development 
24,169 (1.6) 24,893 (1.7) 25,791 (1.7) 26,938 (1.8) 11.5 

Forest 477,261 (32.2) 475,827 (32.1) 473,991 (32) 473,240 (32.0) -0.8 

Wetland 162,952 (11.0) 161,504 (10.9) 160,668 (10.8) 160,123 (10.8) -1.7 

Shrubland 68,367 (4.6) 71,210 (4.8) 72,374 (4.9) 72,587 (4.9) 6.2 

Agriculture 667,586 (45.0) 665,891 (44.9) 668,108 (45.1) 662,930 (44.8) -0.7 

Grassland 10,544 (0.7) 9,026 (0.6) 5,106 (0.3) 7,770 (0.5) -26.3 
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Figure 3.1. Location and name of all Breeding Bird Survey routes in the Delmarva 

Peninsula, USA. 
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Figure 3.2. Percent of BBS stops observed and predicted to be occupied (± SE), in the 

Delmarva Peninsula, USA, 1992-2005. 
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Figure 3.3. Percent change of each variable in the model and change in observed 

occupancy of northern bobwhite in BBS routes in the Delmarva 

Peninsula, USA, 1992-2005. Data pooled across intervals 1992-1996, 

1996-2001 and 2001-2005. 
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Figure 3.4. Percent change of each variable in the model and change in observed 

occupancy of northern bobwhite in BBS routes  in the Delmarva 

Peninsula, USA, 1992-2005. Data pooled from 1992, 1996, 2001, and 

2005. 
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Figure 3.5. Boxplot of percent change of each variable in the model and predicted 

change in occupancy of northern bobwhite in BBS routes in the Delmarva 

Peninsula, USA, Data pooled across intervals 1992-1996, 1996-2001 and 

2001-2005. 
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Figure 3.6. Predicted and observed percent of occupied sites of northern bobwhite in 

BBS routes in the Delmarva Peninsula, USA. Data pooled from 1992, 

1996, 2001, and 2005. 
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Figure 3.7.  Predicted and observed percent change in occupancy of northern 

bobwhite in BBS routes in the Delmarva Peninsula, USA. Data pooled 

across intervals 1992-1996, 1996-2001 and 2001-2005.  

 



69 

 

Figure 3.8. Predicted and observed percent change in occupancy of northern bobwhite 

in BBS routes in the Delmarva Peninsula, USA, 1992-2005.  
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Appendix A 

CORRELATIONS BETWEEN EXPLANATORY VARIABLES. CORRELATIONS > |0.5| ARE HIGHLIGHTED. 

  LDEVS HDEVS FORS SHRUBS AGS GRASSS WETS DCOHESS ECOHESS IJIS 

LDEVS 1          

HDEVS 0.43 1         

FORS 0.08 0.03 1        

SHRUBS 0.17 0.2 0.42 1       

AGS -0.24 -0.18 -0.64 -0.57 1      

GRASSS 0.3 0.35 0.13 0.28 

-

0.27 1     

WETS -0.09 -0.17 0.18 0.19 

-

0.23 -0.01 1    

DCOHESS 0.52 0.42 -0.13 0.1 

-

0.29 0.22 -0.04 1   

ECOHESS 0.03 0.04 0.3 0.71 

-

0.44 0.18 -0.04 -0.04 1  

IJIS -0.03 -0.08 -0.15 -0.02 0.01 0.07 -0.22 0.39 -0.11 1 

AGEDGES -0.18 -0.11 -0.52 -0.42 0.53 -0.21 -0.24 0.14 -0.21 0.15 

EEDGES 0.13 0.12 0.06 0.44 

-

0.13 0.19 -0.17 0.04 0.49 

-

0.03 

LDEVL 0.39 0.38 0 0.02 

-

0.09 0.23 -0.01 0.52 -0.04 0.04 
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  LDEVS HDEVS FORS SHRUBS AGS GRASSS WETS DCOHESS ECOHESS IJIS 

HDEVL 0.42 0.47 -0.01 0 

-

0.01 0.18 -0.22 0.39 0.07 0.07 

FORL 0.06 0.19 0.21 0.09 

-

0.02 0.08 -0.37 -0.16 0.22 

-

0.08 

SHRUBL 0.14 0.22 0.22 0.43 

-

0.36 0.35 -0.03 0.12 0.44 

-

0.03 

AGL -0.13 -0.1 -0.03 -0.05 0.29 -0.2 -0.34 -0.22 -0.06 

-

0.07 

GRASSL 0.1 0.26 0.07 0.24 

-

0.12 0.4 -0.11 0.14 0.3 0.07 

WETL 0.06 -0.11 0.07 0.12 

-

0.31 0.03 0.32 -0.05 -0.12 0.14 

DCOHESL 0.25 0.26 -0.01 -0.05 

-

0.01 0.11 0.01 0.35 -0.1 0.01 

ECOHESL -0.05 -0.01 0.05 0.14 

-

0.17 0.13 -0.08 -0.15 0.34 0 

IJIL 0.29 0.15 -0.14 -0.01 -0.1 0.06 0.24 0.4 -0.21 0.07 

AGEDGEL -0.13 -0.09 -0.18 -0.17 0.21 -0.16 -0.07 -0.11 -0.13 0 

EEDGEL -0.02 0.04 0 0.18 

-

0.14 0.16 -0.18 -0.02 0.32 

-

0.01 

DIST -0.21 -0.22 0.09 0.07 0.04 -0.12 0.14 -0.36 -0.02 

-

0.03 
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  AGEDGES EEDGES LDEVL HDEVL FORL SHRUBL AGL GRASSL WETL DCOHESL 

AGEDGES 1          

EEDGES -0.13 1         

LDEVL -0.03 0.00 1        

HDEVL -0.09 0.05 0.51 1       

FORL 0.00 0.25 -0.05 0.18 1      

SHRUBL -0.19 0.34 0.13 0.22 0.33 1     

AGL 0.09 0.05 -0.20 -0.08 0.46 -0.22 1    

GRASSL -0.08 0.30 0.17 0.17 0.26 0.40 -0.08 1   

WETL -0.01 -0.08 -0.10 -0.19 -0.53 -0.13 -0.33 -0.13 1  

DCOHESL 0.01 -0.04 0.88 0.39 -0.04 0.02 -0.10 0.10 -0.08 1 

ECOHESL -0.08 0.25 -0.12 0.04 0.28 0.69 -0.19 0.32 -0.11 -0.12 

IJIL -0.01 -0.18 0.66 0.28 -0.60 -0.18 -0.41 -0.08 0.41 0.60 

AGEDGEL 0.06 -0.20 -0.15 -0.11 -0.22 -0.36 0.11 -0.24 0.06 -0.10 

EEDGEL -0.08 0.31 -0.04 0.11 0.22 0.72 -0.17 0.25 -0.09 -0.12 

DIST -0.08 -0.07 -0.49 -0.39 0.08 -0.02 0.09 -0.10 -0.09 -0.46 
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  ECOHESL IJIL AGEDGEL EEDGEL DIST 

ECOHESL 1     

IJIL -0.29 1    

AGEDGEL -0.13 0.14 1   

EEDGEL 0.75 -0.25 -0.16 1  

DIST -0.05 -0.45 0.01 -0.10 1 
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Appendix B 

TOTAL BIRD SPECIES DETECTED DURING BREEDING SEASON POINT 

COUNT SURVEYS THROUGHOUT THE STATE OF DELAWARE IN 2008 

AND 2009.  SURVEYS CONDUCTED THREE TIMES EACH YEAR AMONG 

360 SITES. 

Common Name  Scientific Name 

Number 

Detected 

American Crow Corvus brachyrhynchos 260 

American Goldfinch Spinus tristis 456 

American Redstart
1
 Setophaga ruticilla  3 

American Robin Turdus migratorius 1251 

American Tree Sparrow Spizella arborea  16 

Bald Eagle
1
 Haliaeetus leucocephalus 7 

Baltimore Oriole
2
 Icterus galbula 3 

Barn Swallow Hirundo rustica  404 

Barred Owl
2
 Strix varia 3 

Black Vulture Coragyps atratus  55 

Black-and-White Warbler
2
 Mniotilta varia  2 

Black-bellied Plover
2
 Pluvialis squatarola 20 

Blue Grosbeak Passerina caerulea  555 

Blue Jay Cyanocitta cristata 44 

Blue-gray gnatcatcher Polioptila caerula 2 

Bobolink
2
 Dolichonyx oryzivorus  11 

Brown Thrasher
2
 Toxostoma rufum  36 

Brown-headed Cowbird Molothrus ater 123 

Canada Goose Branta canadensis  255 

Carolina Chickadee Poecile carolinensis 42 

Carolina Wren Thryothorus ludovicianus  170 

Cattle Egret
2
 Bubulcus ibis  56 

Cedar Waxwing Bombycilla cedrorum  38 

Chimney Swift
2
 Chaetura pelagica  17 

Chipping Sparrow Spizella passerina  366 
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Common Grackle Quiscalus quiscula  1498 

Common Yellowthroat Geothlypis trichas 307 

Cooper's Hawk
1
 Accipiter cooperii 2 

Dickcissel Spiza americana 5 

Downy Woodpecker Picoides pubescens 5 

Eastern Bluebird Sialia sialis  130 

Eastern Kingbird
2
 Tyrannus tyrannus 91 

Eastern Meadowlark Sturnella magna  42 

Eastern Phoebe Sayornis phoebe  14 

Eastern Towhee
2
 Pipilo erythrophthalmus 42 

Eastern Wood-pewee Contopus virens 24 

European Starling Sturnus vulgaris  1804 

Field Sparrow
2
 Spizella pusilla 403 

Fish Crow Corvus ossifragus  34 

Glossy Ibis
2
 Plegadis falcinellus  11 

Grasshopper Sparrow
2
 Ammodramus savannarum  317 

Gray Catbird Dumetella carolinensis  118 

Great Blue Heron
2
 Ardea herodias  40 

Great Crested Flycatcher Myiarchus crinitus 42 

Greater Yellowlegs
2
 Tringa melanoleuca  2 

Green Heron Butorides virescens  11 

Great Egret Ardea alba  19 

Hairy Woodpecker Picoides villosus  3 

Horned Lark Eremophila alpestris 464 

House Finch Carpodacus mexicanus  40 

House Sparrow Passer domesticus  201 

House wren Troglodytes aedon  26 

Indigo Bunting Passerina cyanea 1243 

Killdeer Charadrius vociferus 116 

Laughing Gull Larus atricilla  96 

Little Blue Heron
2
 Egretta caerulea  7 

Mallard Anas platyrhynchos  53 

Marsh Wren
2
 Cistothorus palustris  62 

Mourning Dove Zenaida macroura  636 

Northern Bobwhite
2
 Colinus virginianus 701 

Northern Cardinal Cardinalis cardinalis 703 

Northern Flicker
2
 Colaptes auratus  13 
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Northern Mockingbird Mimus polyglottos 548 

Orchard Oriole Icterus spurius  45 

Osprey
1
 Pandion haliaetus  4 

Ovenbird Seiurus aurocapillus 1 

Pileated Woodpecker Dryocopus pileatus 5 

Pine Warbler Dendroica pinus  10 

Prairie Warbler Dendroica discolor 37 

Purple Martin Progne subis  812 

Red-bellied Woodpecker Melanerpes carolinus 34 

Red-eyed Vireo Vireo olivaceus  68 

Red-headed Woodpecker
1
 Melanerpes erythrocephalus 1 

Red-tailed hawk Buteo jamaicensis  21 

Red-winged Blackbird Agelaius phoeniceus 920 

Ring-billed Gull Larus delawarensis  10 

Ring-necked Pheasant Phasianus colchicus 4 

Rock Pigeon Columba livia  123 

Rose-breasted Grosbeak Pheucticus ludovicianus  10 

Ruby-throated Hummingbird Archilochus colubris  19 

Sanderling Calidris alba  4 

Scarlet Tanager
2
 Piranga olivacea  3 

Seaside Sparrow
1
 Ammodramus maritimus  5 

Snowy Egret
2
 Egretta thula  5 

Song Sparrow Melospiza melodia 302 

Tree Swallow Cathartes aura 360 

Tufted Titmouse Baeolophus bicolor 60 

Turkey Vulture Tachycineta bicolor  108 

Vespers Sparrow Pooecetes gramineus  21 

White-breasted Nuthatch Sitta carolinensis  2 

Wild Turkey Meleagris gallopavo  8 

Willet
2
 Catoptrophorus semipalmatus  4 

Wood Thrush
1
 Hylocichla mustelina  31 

Yellow Warbler Dendroica petechia  74 

Yellow-breasted Chat
2
 Icteria virens  56 

1
 Tier 1 species of conservation concern in Delaware. 

2
 Tier 2 species of conservation concern in Delaware.  

 


