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We’ve taught you that the earth is round,

That red and white make pink,

And something else that matters more –

We’ve taught you how to think.

-Dr. Seuss
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ABSTRACT

This thesis studies the Alon-Saks-Seymour Conjecture and the Rank-Coloring

Conjecture and their relationships to computer science. For a graph G, the chromatic

number, χ(G), is the minimum number of colors needed to properly color the vertices

of G. If A(G) is the adjacency matrix of G, then rank(A(G)) denotes its rank. The

biclique partition number, bp(G), is the minimum number of complete bipartite

subgraphs (bicliques) necessary to partition the edge set of G. The Rank-Coloring

Conjecture states that for any graph G, χ(G) ≤ rank(A(G)) and the Alon-Saks-

Seymour Conjecture states that for any graph G, χ(G) ≤ bp(G) + 1. Both of these

conjectures have been previously disproven.

In this thesis we construct an infinite family of graphs that are counterexam-

ples to both conjectures. This construction generalizes previous work of Razborov

and Huang and Sudakov. We discuss the relationship between these conjectures

and questions in theoretical computer science relating to communication complexity,

which is the amount of information that two parties need to exchange in order to

compute some objective boolean function. We also discuss a generalization of biclique

partitions to hypergraphs, where we consider the minimum number of complete r-

partite r-uniform hypergraphs necessary to partition the edge set of the complete

r-uniform hypergraph on n vertices.

viii



Chapter 1

INTRODUCTION

This thesis is about biclique partitions and their relationship to mathematics

and theoretical computer science. Specifically we discuss two conjectures in graph

theory, the Alon-Saks-Seymour Conjecture and the Rank-Coloring Conjecture, and

their relationship to communication complexity. We will start with some basic def-

initions. Our notation is standard, and the reader should refer to West [37] for any

missing definitions.

1.1 Definitions

A graph G = (V,E) consists of a vertex set V (or V (G)), a set E (or E(G))

of edges, and a mapping associating each e ∈ E(G) to an unordered pair of vertices

x and y. We say x and y are endpoints of e. If x and y are endpoints of some edge

e, we say x and y are adjacent, denoted x ∼ y. We can denote the edge as e = xy

and we say the e is incident with both x and y.

We say two graphs G1 and G2 are isomorphic if there is a bijective mapping

f : V (G1)→ V (G2) such that x ∼ y in G1 if and only if f(x) ∼ f(y) in G2.

The set of all vertices adjacent to a vertex x ∈ V (G) is called the neighbor-

hood of x and is denoted by N(x). The number of edges incident with a vertex x

is called the degree of x. If all the vertices of a graph have the same degree, we say

the graph is regular.
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If x 6= y for each xy ∈ E(G), we say that G is simple. All graphs discussed

from this point in this thesis will be simple unless otherwise noted.

A set of vertices I is called an independent set if x 6∼ y for all x, y ∈ I. A

graph is called bipartite if the vertex set can be partitioned into two independent

sets.

The complete graph on n vertices is the simple graph on n vertices that

contains all
(
n
2

)
possible edges, and is denoted by Kn. The cycle Cn on n vertices

is the graph whose vertex set is {1, ..., n} where i ∼ i + 1 for all 1 ≤ i ≤ n − 1 and

i1 ∼ in.

A complete bipartite graph (or biclique) Ka,b is a bipartite graph with

independent sets of size a and b and all ab possible edges between the independent

sets. Figure 1.1 shows a K4,3.

Figure 1.1: K4,3

A biclique partition of a graph G is a set of bicliques such that the edges of

the bicliques partition the edge set of G. The minimum number of bicliques necessary

for a biclique partition of G is called the biclique partition number of G and is

denoted bp(G).

The adjacency matrix of G, denoted A(G), has its rows and columns in-

dexed after the vertices of G and its (u, v)-th entry equals 1 if the vertices u and v

are adjacent in G and 0 otherwise. The rank of A(G) will be denoted by rank(A(G)).
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A proper coloring of a graph G is a function from the vertex set to a finite

set of colors such that the endpoints of every edge have distinct colors. More formally,

a proper coloring of a graph G is a function f : V (G) → N such that x ∼ y in G

implies f(x) 6= f(y). A proper k-coloring of a graph is a proper coloring of the

vertices using k colors. The chromatic number of a graph is the minimum natural

number k such that a proper k-coloring exists, and is denoted by χ(G).

If A is an alphabet of symbols, we can define a word of length n to be an

n−tuple of symbols from A. The Hamming Distance between two words of length

n is the number of positions at which the corresponding symbols are different. It

is the minimum number of letter substitutions necessary to change one word to the

other.

1.2 Loop Switching

Consider the problem of communication among computers. At Bell Labs,

J.R. Pierce proposed a scheme called “loop switching” [26] (see also [14]). Imagine

computer terminals on one-way communication loops (see Figure 1.2). “Local” loops

are connected by various switching points to one another as well as to other say

“regional loops” which are connected to each other as well as say a “national” loop.

If a message from one loop is sent to a terminal from another loop, it proceeds to a

suitable switching point where it may choose to enter a different loop. This process

continues until the message reaches its destination. The question that arises is how

does the message know which sequence of loops to follow? It would be desirable for

the message to have an “address” and for each switching point to be able to perform

a simple test on this address to determine which loop to send it on.

A useful tool is to think of a loop system as a graph, where each loop corre-

sponds to a vertex and two vertices are adjacent if and only if there is a switching
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point from one’s corresponding loop to the other’s. Figure 1.2 shows a loop system

and its equivalent graph.

Figure 1.2: A loop system and its graph

One idea is that a message is addressed by its destination, and each junction

decides where the message should go based on this simple test: the message will

go into the new loop if and only if it decreases the Hamming distance between the

current location and the destination. For example, label the two-dimensional cube

(isomorphic to C4) with addresses 00, 01, 10, and 11 where x ∼ y if and only if the

Hamming Distance between x and y is 1. Then if you want to send a message from

loop 10 to 11, the message will not take the exit from 10 to 00 if it reaches that

switching point first (because this would increase the Hamming distance). Rather,

it would exit into 11 when it reaches it (this is the only junction that will decrease

the Hamming distance).

This scheme seems to be the one we wish to follow. Each loop has an address

that is n bits long and a message makes an exit from one loop to the next if and

only if it decreases the Hamming distance between where it is and where it wants

to go. Then the number of loops traversed should be equal exactly to the Hamming
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distance between the sender and receiver since each loop switch decreases the Ham-

ming distance by 1. Consider for example, addressing the three dimensional cube as

below. To go from node 000 to node 011 would require exactly two loop switches

because this is the Hamming distance between the two. For example, it could follow

the path 000 to 001 to 011.

Figure 1.3: Addressing the cube

One immediate question is whether or not this scheme works for any loop

system and associated graph. After some experimentation, it is clear that difficulties

arise. For example, consider the loop structure that is represented by K3. In other

words, how can we address three mutually adjacent loops? In this scheme, we cannot.

In fact, using this scheme the only graphs that can be addressed properly are those

which can be isometrically embedded into the hypercube (see [23]). The solution

that Graham and Pollak [14] describe is to slightly generalize the binary address.

Instead of 1’s and 0’s, we may make n-tuples as words from the alphabet {1, 0, ∗} (to

actually realize this in a binary setting, we can represent 0 as 00, 1 as 01 and ∗ as

either 10 or 11, but this is not as important to the mathematics of the discussion).

The Hamming distance is then calculated by incrementing by 1 for every position

which one address has a 1 and the other a 0. For example, the Hamming distance

between 1 ∗ 011 and 10 ∗ 00 is 2 (coming from positions 4 and 5).
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It is important to note here that we still call this Hamming distance only out

of convention. The term Hamming distance makes sense when addressing with 1’s

and 0’s because it is a metric. In other words, if x, y and z are words/n-tuples,

then the Hamming distance between x and y is positive unless x = y in which case

it is 0, the Hamming distance between x and y is the same as between y and x,

and the Hamming distance between x and z is less than or equal to the sum of the

Hamming distances between x and y and y and z. When we address with 0, 1, ∗

instead and increment the “Hamming distance” only when one word has a 1 and

one has a 0 in the corresponding spot, it is no longer a metric because it no longer

satisfies the triangle inequality. For example, d(111, 000) = 3 while d(111, 1 ∗ 0) = 1

and d(1 ∗ 0, 000) = 1 implying that d(111, 000) > d(111, 1 ∗ 0) + d(1 ∗ 0, 000). But,

despite not being a metric, this notion of “distance” works in this situation. Now we

can address a K3 correctly, for example by 00, 10, and ∗1 (each pair of vertices has

Hamming distance 1) and the scheme can be used again. Consider the example in

Figure 1.2, which we can label as follows (figure and labeling from [14])

A− 1111∗

B − 001 ∗ ∗

C − 11 ∗ 0∗

D − 000 ∗ 1

E − 10 ∗ ∗0

F − 010 ∗ ∗.

In this example, the Hamming distance between any two addresses is exactly

the distance between nodes. The question is, can all loop systems be addressed with
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0’s, 1’s, and ∗’s in such a way that transferring between loops if and only if the

Hamming distance is decreased will take every message to its correct destination?

Further, if this is possible, how long must each address be? Graham and Pollak

show in their 1971 paper [14] that any loop system on n vertices can be addressed

in the way described, and that if s is the largest distance between two loops (i.e.

the diameter of the graph), then at most s(n− 1) coordinates must be used for each

address (see also [4, 22, 23]). In fact, we will see that addressing a graph is equivalent

to finding a biclique partition of the associated distance multigraph.

Graham and Pollak’s algorithm is as follows. Let the vertices be labeled

A1, ..., An. If B and C are disjoint sets of these vertices, we denote by B × C the

following process of adding a 1, 0, or ∗ to all n addresses. We add a 1 to Ai’s address

if Ai ∈ B, we add a 0 if Ai ∈ C and we add a ∗ if Ai is in neither B nor C. This will

increase the Hamming distance between Ai and Aj by exactly 1 if and only if Ai ∈ B

and Aj ∈ C or Ai ∈ C and Aj ∈ B. Now let Ai(k) denote the set of all vertices Aj

with j > i such that the (graph) distance between Ai and Aj is at least k. Then if s

is again diameter of the graph, addressing the loop system by

A1 × A1(1) + A1 × A1(2) + ....+ A1 × A1(s)

A2 × A2(1) + A2 × A2(2) + ...+ A2 × A2(s)

...

An−1 × An−1(1) + An−1 × An−1(2) + ...+ An−1 × An−1(s)

gives an addressing that has at most s(n−1) coordinates and the Hamming distance

between each is exactly the distance between the two vertices. Then the scheme

described where a message will enter a loop if and only if it decreases the Hamming

distance between its current position and its destination will work and will take

exactly the distance between sender and receiver number of loop switches to arrive.
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So any loop system can be addressed such that the scheme delivers correctly and

at most s(n − 1) coordinates are necessary. In fact, this scheme is equivalent to

partitioning the edges of the distance multigraph into stars.

Graham and Pollak conjectured [14] that the maximum number of coordinates

needed is actually n− 1 and not s(n− 1). Winkler confirmed this conjecture in 1983

[38].

Figure 1.4: Addressing the Petersen Graph

An addressing of the Petersen graph is shown in Figure 1.4. Note that the

authors use {a, b, 0} for {1, 0, ∗} respectively (figure from [11]). The paper [11] shows

that 6 coordinates are necessary to address the Petersen Graph, and Figure 1.4 shows

an optimal addressing.
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It is a natural question to ask what is the minimum number of coordinates

necessary. So let N be the number of coordinates necessary. Then the question is,

what is the minimum N such that we can address any loop system on n vertices by

N∑
α=1

(Aα,i1 , ..., Aα,iα)× (Aα,j1 , ...Aα,jα)?

If Ai and Aj are distance dij apart, they must appear on opposite sides of the

products exactly dij times. Consider the distance multigraph G with vertex set

{Ai}ni=1 obtained by putting dij edges between Ai and Aj and consider finding an

optimal biclique partition of this graph. Let the bicliques be denoted by

B1(U1, V1), ..., Bbp(G)(Ubp(G), Vbp(G)).

Then consider addressing the loop system as follows. In the k’th position, address

Ai with 1 if Ai ∈ Uk, with 0 if Ai ∈ Vk, and with ∗ otherwise. Then Ai and Aj will

have exactly dij positions in their addresses where one has a 1 and the other a 0, and

thus this addressing will produce the Hamming distance we require. Consider for any

correct addressing of the loop system, creating a graph as follows. For each position

k in the addresses, create a biclique with one partite set containing all vertices that

have a 1 in the k’th position of the address and one partite set containing all vertices

that have a 0 there. Vertices with a ∗ in the k’th position are not included in the

k’th biclique. Then it is clear that the union of these bicliques is a multigraph where

the number of edges between Ai and Aj is equal to dij. Thus, there is an equivalence

between addressing a loop system and finding a biclique partition of the distance

multigraph of that loop system.

Consider the special case where the loop system is represented by the complete

graph. Then we must find the minimum N such that for any i, j, Ai and Aj must

appear on opposite sides of the product exactly one time. This is equivalent to finding
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a biclique partition of the complete graph on n vertices. This case led Graham and

Pollak to the following result.

Theorem 1 (Graham-Pollak [14]). The edge-set of a complete graph on n vertices

cannot be partitioned into fewer than n− 1 bicliques.

This theorem is a consequence of the following result, attributed to Witsen-

hausen (see [6]).

Theorem 2. For any graph G on n vertices with adjacency matrix A, let n+(A)

and n−(A) denote the number of positive and negative eigenvalues of A respectively.

Then

bp(G) ≥ max{n+(A), n−(A)}.

Proof. Assume the edge set of a graph G is partitioned into bp(G) bicliques. If S is

a subset of the vertices of G, then the characteristic vector of S is the n-dimensional

(0, 1) column vector whose i-th position equals 1 if vertex i is in S and equals 0

otherwise. Denote by ui and vi the characteristic vectors of the partite sets of the i-

th biclique of our decomposition. Define Di = uiv
T
i +viu

T
i . Then Di is the adjacency

matrix of the i-th biclique as a subgraph of G, and A =
∑bp(G)

i=1 Di. Let

W = Span{w ∈ Rn|wTui = 0,∀1 ≤ i ≤ bp(G)}

P = Span{Eigenvectors of the positive eigenvalues of A}.

Since W is made up of n-dimensional vectors that are all orthogonal to bp(G)

vectors, we have that dim(W ) ≥ n− bp(G). On the other hand, since pTAp > 0 for

all nonzero p ∈ P , we have that W ∩ P = {0}. Therefore

dim(W ) ≤ n− dim(P ) = n− n+(A).
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It follows that n−bp(G) ≤ dim(W ) ≤ n−n+(A) which implies that bp(G) ≥ n+(A).

The argument for n−(A) follows similarly. Thus bp(G) ≥ max{n+(A), n−(A)}.

Since Kn has eigenvalue 1 with multiplicity n − 1, the Graham-Pollak The-

orem follows. Graham and Pollak’s addressing scheme can address a loop system

corresponding to the complete graph with n − 1 coordinates, and because this is

equivalent to a biclique partition of the complete graph, we see that bp(Kn) ≤ n−1.

With the Graham-Pollak Theorem, this tells us that bp(Kn) = n − 1. We call a

biclique a star when it is of the form K1,a. It is clear that the edge set of Kn can

be partitioned into n− 1 stars, but there are many decompositions of Kn into n− 1

bicliques. In fact, there are at least 2n−4 nonisomorphic decompositions of Kn into

n− 1 bicliques ([4] Example 1.4.5).

1.3 Conjectures

The chromatic number of Kn is n. This means that Theorem 1 can be restated

as χ(Kn) = bp(Kn)+1. Over the years, several proofs of the Graham-Pollak Theorem

have been discovered (see [25, 34, 35]). Until recently, only algebraic proofs were

known. However, recently the first counting proof has been discovered [36]. A

natural generalization of the Graham-Pollak Theorem is to ask if any graph G can

be properly colored with bp(G) + 1 colors. This question was first posed by Alon,

Saks, and Seymour (cf. Kahn [18]) .

Conjecture 3 (Alon-Saks-Seymour). For any simple graph G, χ(G) ≤ bp(G) + 1.

This conjecture was confirmed by Rho [30] for graphs G with n vertices and

bp(G) ∈ {1, 2, 3, 4, n−3, n−2, n−1} and by Gao, McKay, Naserasr and Stevens [13]

for graphs with bp(G) ≤ 9. The Alon-Saks-Seymour Conjecture remained open for
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twenty years until recently when Huang and Sudakov [17] constructed the first coun-

terexamples. Huang and Sudakov’s construction yields an infinite sequence of graphs

Gn with arbitrarily large biclique partition number such that χ(Gn) ≥ c(bp(Gn))6/5

for a fixed constant c > 0.

In 1976, van Nuffelen [24] (see also Fajtlowicz [12]) stated what became known

as the Rank-Coloring Conjecture.

Conjecture 4 (Rank-Coloring). For any simple graph G, χ(G) ≤ rank(A(G)).

The Rank-Coloring Conjecture was disproved in 1989 by Alon and Seymour

[3] when they constructed a graph with rank 29 and chromatic number 32. Razborov

[28] found counterexamples with a superlinear gap between χ(G) and rank(A(G)) by

constructing an infinite sequence of graphs Gn such that χ(Gn) ≥ c(rank(A(G))4/3

for some fixed constant c > 0. Other counterexamples were constructed from the

Kasami graphs by Roy and Royle [31]. Nisan and Wigderson’s construction from

[21] yields the largest gap between the chromatic number and the rank at present

time with a super polynomial gap between rank and chromatic number.

In the next chapter we construct an infinite family of counterexamples to both

conjectures. The graphs presented (see also [8]) contain and generalize both Huang

and Sudakov’s counterexamples and Razborov’s counterexamples. In Chapter 3, we

will discuss the applications of these graphs to open problems in computer science.

In Chapter 4 we will discuss a generalization of the Graham-Pollak Theorem. In

chapter 5, we will discuss open problems.
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Chapter 2

AN INFINITE FAMILY OF COUNTEREXAMPLES TO

THE ALON-SAKS-SEYMOUR AND RANK-COLORING

CONJECTURES

In this chapter, we construct infinitely many graphs that are counterexamples

to both the Alon-Saks-Seymour Conjecture and the Rank-Coloring Conjecture (The

results of this chapter have appeared in [8]). More precisely, we construct infinite

families of graphs G(n, k, r) with n2k+2r+1 vertices for all integers n ≥ 2, k ≥ 1, r ≥ 1

such that

χ(G(n, k, r)) ≥ n2k+2r

2r + 1
(2.1)

and for k ≥ 2

2k(2r + 1)(n− 1)2k+2r−1 ≤ bp(G(n, k, r)) < 22k+2r−1n2k+2r−1 (2.2)

and

2k(2r+1)(n−1)2k+2r−1 ≤ rank(A(G(n, k, r))) < 2k(2r+1)n2k+2r−1+(n−1)2k. (2.3)

These inequalities imply that for fixed k ≥ 2 and r ≥ 1 and n large enough, the

graphs G(n, k, r) are counterexamples to both the Alon-Saks-Seymour Conjecture

and the Rank-Coloring Conjecture. Our construction extends the constructions of

Huang and Sudakov [17] and Razborov [28]. Taking k = 2 and r = 1, we get
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Huang and Sudakov’s graph sequence from [17]. When k = 1 and r = 1, we obtain

Razborov’s construction from [28].

In Section 2.1, we describe the construction of the graphs G(n, k, r) and we

prove inequality (2.1) and the upper bound on bp(G(n, k, r)) from (2.2). In Section

2.2, we obtain the bounds (2.3) on the rank of the adjacency matrix of G(n, k, r) and

deduce the lower bound on bp(G(n, k, r)) from (2.2).

2.1 The graphs G(n, k, r)

Let Qn be the n-dimensional cube with vertex set {0, 1}n and two vertices x, y

in Qn adjacent if and only if they differ in exactly one coordinate. A k-dimensional

subcube of Qn is a subset of Qn which can be written as

{x = (x1, ..., xn) ∈ Qn | ∀i ∈ Bi withxi = bi} (2.4)

where B is a set of n− k fixed coordinates and each bi ∈ {0, 1}. We represent the all

ones and all zeros vectors as 1n and 0n respectively, and we define Q−n = Qn\{1n, 0n}.

For any integer n ≥ 1, we denote {1, . . . , n} by [n].

For given integers n ≥ 2, k ≥ 1, and r ≥ 1, we define the graph G(n, k, r) as

follows. Its vertex set is

V (G(n, k, r)) = [n]2k+2r+1 = {(x1, ..., x2k+2r+1) | ∀i ∈ [2k + 2r + 1], xi ∈ [n]}.

For any two vertices x = (x1, ..., x2k+2r+1), y = (y1, ..., y2k+2r+1) let

ρ(x, y) = (ρ1(x, y), ..., ρ2k+2r+1(x, y)) ∈ {0, 1}2k+2r+1 (2.5)

where ρi(x, y) = 1 if xi 6= yi and ρi(x, y) = 0 if xi = yi.

We define adjacency in G(n, k, r) as follows: the vertices x and y are adjacent

in G(n, k, r) if and only if ρ(x, y) ∈ S where

S = Q2k+2r+1 \ [(12k ×Q−2r+1) ∪ {02k × 02r+1} ∪ {02k × 12r+1}]. (2.6)
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We now prove the lower bound (2.1) for the chromatic number of G(n, k, r).

In the proofs in this chapter we will refer to G(n, k, r) as G.

Theorem 5. For n ≥ 2 and k, r ≥ 1, χ(G(n, k, r)) ≥ n2k+2r

2r+1
.

Proof. For x = (x1, . . . , x2k, x2k+1, . . . , x2k+2r+1) ∈ V (G), let f(x) = (x1, . . . , x2k) be

the projection to the first 2k coordinates of x and t(x) = (x2k+1, . . . , x2k+2r+1) be the

projection to the last 2r + 1 coordinates of x.

Let I be an independent set in G. Any two vertices x and y of G which

agree on one of the first 2k coordinates and satisfy f(x) 6= f(y) are adjacent in G.

This implies that any two distinct vectors in f(I) differ in all of the first 2k of their

coordinates and thus, |f(I)| ≤ n.

If for every u ∈ f(I), |f−1(u) ∩ I| ≤ 2r + 1, then |I| ≤ (2r + 1)n. Otherwise,

there is a β ∈ [n]2k and distinct x1, x2, ..., x2r+2 ∈ I such that f(xi) = β for 1 ≤

i ≤ 2r + 2. Then ρ(t(xi), t(xj)) = 12r+1 for any 1 ≤ i 6= j ≤ 2r + 2. From the

definition (2.6) of S, we know that any two vertices that differ in all 2k + 2r + 1

coordinates are adjacent in G. If there exists a z ∈ I such that f(z) and β differ on

every coordinate, then t(z) and t(xi) are equal in at least one coordinate for each

i. Thus at least two of x1, x2, ..., x2r+2 must agree in at least one coordinate of t(z),

contradicting that t(xi) must differ in every coordinate for distinct i. Thus, there

must be only one element in f(I). Again, the vertices in I must differ in all of the

last 2r + 1 coordinates, and thus |I| = |f(I)| ≤ n.

Thus, we proved that the independence number of G satisfies the inequality

α(G) ≤ (2r + 1)n. This fact and χ(G) ≥ |V (G)|
α(G)

complete our proof.

To prove the upper bound (2.2) on the biclique partition number of G(n, k, r),

we need some auxiliary lemmas.
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Lemma 6. The set Q−2k+1 can be partitioned into a disjoint union of 1-dimensional

subcubes for k ≥ 1.

Proof. We prove the lemma by induction on k.

In the base case when k = 1, we can write

Q−3 = {(0, 0, 1), (0, 1, 1)} ∪ {(0, 1, 0), (1, 1, 0)} ∪ {(1, 0, 0), (1, 0, 1)}. (2.7)

This proves the base case.

Assume now that Q−2k+1 can be partitioned into 1-dimensional subcubes. Then

Q2k+3 = (Q2k+1 × 1× 0) ∪ (Q2k+1 × 1× 1) ∪ (Q2k+1 × 0× 1) ∪ (Q2k+1 × 0× 0)

= (Q2k+1 × 1× 0)

∪ (Q−2k+1 × 1× 1 ∪ {12k+1 × 1× 1} ∪ {02k+1 × 1× 1})

∪ (Q−2k+1 × 0× 1 ∪ {12k+1 × 0× 1} ∪ {02k+1 × 0× 1})

∪ (Q−2k+1 × 0× 0 ∪ {12k+1 × 0× 0} ∪ {02k+1 × 0× 0}).

This implies

Q−2k+3 = (Q2k+1 × 1× 0)

∪ (Q−2k+1 × 1× 1 ∪ {02k+1 × 1× 1})

∪ (Q−2k+1 × 0× 1 ∪ {12k+1 × 0× 1} ∪ {02k+1 × 0× 1})

∪ (Q−2k+1 × 0× 0 ∪ {12k+1 × 0× 0})

which equals

(Q2k+1 × 1× 0) ∪ (Q−2k+1 × 1× 1) ∪ (Q−2k+1 × 0× 1) ∪ (Q−2k+1 × 0× 0)

∪{12k+1 × 0× 1, 12k+1 × 0× 0} ∪ {02k+1 × 1× 1, 02k+1 × 0× 1}.
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By induction hypothesis, it follows that Q−2k+3 can be partitioned into 1-

dimensional subcubes.

We use the previous lemma to prove that the set S defined in (2.6) can be

partitioned into 2-dimensional subcubes.

Lemma 7. For k ≥ 2 and r ≥ 1, the set

S = Q2k+2r+1 \ [(12k ×Q−2r+1) ∪ {02k × 02r+1} ∪ {02k × 12r+1}]

can be partitioned into 2-dimensional subcubes.

Proof. We claim that the following three sets form a partition of S:

S ′ = (02k−1 × 0×Q−2r+1) ∪ (02k−1 × 1×Q−2r+1) ∪ (Q−2k−1 × 1×Q−2r+1) (2.8)

S ′′ = (Q2k−1 × 1× 02r+1) ∪ (Q2k−1 × 1× 12r+1) (2.9)

and

S ′′′ = (Q2k−1 \ {02k−1})× 0×Q2r+1. (2.10)

To show this is a partition, we first prove S ⊆ S ′ ∪ S ′′ ∪ S ′′′. To see this,

consider the 2k-th coordinate of any vector s = (s1, ..., s2k+2r+1) in S. As before, let

f(s) = (s1, ..., s2k) and t(s) = (s2k+1, ..., s2k+2r+1). If s2k = 0, and f(s) 6= 02k, then

s ∈ S ′′′. If f(s) = 02k then s ∈ S ′. Now take s ∈ S such that s2k = 1. If t(s) = 12r+1

or t(s) = 02r+1, then s ∈ S ′′. Otherwise, s ∈ S ′. Thus S ⊆ S ′ ∪ S ′′ ∪ S ′′′. Since

S ′, S ′′, S ′′′ are disjoint subsets of S, they must partition S.

The set Q2r+1 can be partitioned into 2-dimensional subcubes. It follows

that for any β ∈ Q2k, the set β × Q2r+1 can also be partitioned into 2-dimensional

subcubes. For any x1 adjacent to x2 in Q2k, y1 adjacent to y2 in Q2r+1, the set

{(x1, y1), (x1, y2), (x2, y1), (x2, y2)} is a 2-dimensional subcube. By Lemma 6, Q−2r+1
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can be decomposed into 1-dimensional subcubes. This implies that for any x1 adja-

cent to x2 in Q2k, (x1×Q−2r+1)∪ (x2×Q−2r+1) can be decomposed into 2-dimensional

subcubes.

These remarks imply that S ′, S ′′, S ′′′ and thus S can be partitioned into 2-

dimensional subcubes.

Using the previous lemma, we are ready to prove the upper bound (2.2) for

the biclique partition number of the graph G(n, k, r).

Theorem 8. For n ≥ 2, k ≥ 2, r ≥ 1, bp(G(n, k, r)) < 22k+2r−1n2k+2r−1.

Proof. By Lemma 7, S = ∪ti=1Si, where t = 22k+2r+1−22r+1

4
= 22k+2r−1−22r−1 and each

Si is a 2-dimensional subcube. For 1 ≤ i ≤ t, let Gi be the subgraph of G such that

x, y ∈ V (Gi) = V (G) = [n]2k+2r+1 are adjacent if and only if ρ(x, y) ∈ Si. Then the

edge sets of the subgraphs G1, G2, . . . , Gt partition the edge set of the graph G. For

each Si there is a set Ti = {t1, ..., t2k+2r−1} ⊂ {1, ..., 2k+ 2r+ 1} of fixed coordinates

a1, ..., a2k+2r−1 ∈ {0, 1} so that Si = {(x1, ..., x2k+2r+1) | j ∈ [2k + 2r − 1], xtj = aj}.

Define G′i with vertex set [n]2k+2r−1 such that x′ and y′ adjacent in G′i if and

only if ρ(x′, y′) = (a1, ..., a2k+2r−1). Then Gi is an n2-blowup of G′i which means that

Gi can be obtained from G′i by replacing each vertex v of G′i by an independent set

Iv of n2 vertices and by adding all edges between Iu and Iv in Gi whenever u and

v are adjacent in G′i. Note that a partition of G′i into complete bipartite subgraphs

becomes a partition into complete bipartite subgraphs in any blowup of G′i. Thus

bp(Gi) ≤ bp(G′i) ≤ |V (G′i)|−1 ≤ n2k+2r−1−1. Since the edge set of G is the disjoint

union of the edge sets of G1, ..., Gt, we have that

bp(G) ≤
t∑
i=1

bp(Gi) ≤ (22k+2r−1 − 22r−1)(n2k+2r−1 − 1) < 22k+2r−1n2k+2r−1.
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2.2 The rank of A(G(n, k, r))

In this section, we obtain asymptotically tight bounds for the rank of the

adjacency matrix of G(n, k, r). We will use the following graph operation, called

NEPS (Non-complete Extended P-Sum), introduced by Cvetković in his thesis [9]

(see also [10], page 66).

Definition 1. For given B ⊂ {0, 1}t \ {0t} and graphs G1, . . . , Gt, the NEPS with

basis B of the graphs G1, ..., Gt is the graph whose vertex set is the cartesian product

of the sets of vertices of the graphs G1, ..., Gt and in which two vertices (x1, ..., xt)

and (y1, ..., yt) are adjacent if and only if there is a t-tuple (b1, ..., bt) in B such that

xi = yi holds exactly when bi = 0 and xi is adjacent to yi in Gi exactly when bi = 1.

Note that when all the graphs G1, . . . , Gt are isomorphic to the complete

graph Kn, then the NEPS with basis B of G1, . . . , Gt will be the graph whose vertex

set is [n]t with (x1, . . . , xt) ∼ (y1, . . . , yt) if and only if ρ((x1, . . . , xt), (y1, . . . , yt)) =

(b1, . . . , bt) for some (b1, . . . , bt) ∈ B.

Hence, the graph G(n, k, r) is the NEPS of 2k+2r+1 copies of Kn with basis

S = Q2k+2r+1 \ [(12k ×Q−2r+1) ∪ {02k × 02r+1} ∪ {02k × 12r+1}].

Another important observation is given below.

Proposition 9. ([10], Theorem 2.21)The adjacency matrix of the NEPS with basis

B of G1, . . . , Gt equals ∑
(b1,...,bt)∈B

A(G1)
b1 ⊗ · · · ⊗ A(Gt)

bt ,

where X ⊗ Y denotes the Kronecker (tensor) product of two matrices X and Y .
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Proof. In each of the graphs G1, ..., Gt, let the vertices be ordered arbitrarily. Lexi-

cographically order the vertices of G (ordered n-tuples of the vertices of G1, ..., Gt)

and form the adjacency matrix A(G) according to this ordering. The entries of A

are given by

A(x1,...,xt),(y1,...,yt) =
∑

(b1,...,bt)∈B

(A(G1)
b1)x1,y1 . . . (A(Gt)

bt)xt,yt .

By virtue of the lexicographic ordering, A(x1,...,xt),(y1,...,yt) equals 1 if and only if there

exists a (b1, . . . , bt) ∈ B with (A(Gi)
bi)xi,yi = 1 for i = 1, . . . , t

This means exactly that xi and yi are adjacent in Gi if bi = 1 and equal if

bi = 0 and this completes the proof.

This allows us to prove a theorem about the spectrum of a NEPS of graphs.

Proposition 10. ([10], Theorem 2.23) For i = 1, 2, ..., t, let Gi be a graph with ni

vertices and let λi1, . . . , λini be the spectrum of Gi. Then the spectrum of the NEPS

with basis B of G1, . . . , Gt consists of all possible values of Λi1...in where

Λi1...in =
∑

(b1,...,bt)∈B

λb11i1 . . . λ
bn
nin

Proof. Since Ai, the adjacency matrix of Gi, is symmetric, there exist vectors xij

such that Aixij = λijxij (i running from 1 to t, j running from 1 to ni). Consider

the vector

x = x1i1 ⊗ · · · ⊗ xtit .

Then applying properties of tensor products to the equation given in Proposition 9

gives us

Ax = Λi1,...,itx

which yields all n1 · n2 · · ·nt possible eigenvalues
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These facts will enable us to compute the eigenvalues of G(n, k, r) and to

obtain the bounds from (2.3) on the rank of the adjacency matrix of G(n, k, r).

Theorem 11. For n ≥ 2, k ≥ 1, r ≥ 1,

2k(2r + 1)(n− 1)2k+2r−1 ≤ rank(A(G(n, k, r))) < 2k(2r + 1)n2k+2r−1 + (n− 1)2k.

Proof. By Proposition 10 the spectrum of the adjacency matrix of G(n, k, r) has the

following form:

Λ(G) = {f(λ1, ..., λ2k+2r+1)|λ1, . . . , λ2k+2r+1 eigenvalues of Kn} (2.11)

where

f(x1, ..., x2k+2r+1) =
∑

(s1,...,s2k+2r+1)∈S

2k+2r+1∏
i=1

xsii . (2.12)

Using the definition of S, we can simplify f(x1, ..., x2k+2r+1) as follows

f(x1, ..., x2k+2r+1) =
2k+2r+1∏
i=1

(1+xi)−1−
2k∏
i=1

xi

[
2k+2r+1∏
i=2k+1

(1 + xi)− 1−
2k+2r+1∏
i=2k+1

xi

]
−

2k+2r+1∏
i=2k+1

xi.

(2.13)

Whenever the last 2r + 1 positions are −1, f evaluates as

f(x1, ..., x2k,−1, ...,−1) = −1−
2k∏
i=1

xi[−1− (−1)2r+1]− (−1)2r+1 = 0. (2.14)

Whenever the first 2k positions are −1 and not all of the last 2r+ 1 positions

are n− 1, f evaluates as

f(−1, . . . ,−1, x2k+1, . . . , x2k+2r) = −1− (−1)2k

[
−1−

2k+2r+1∏
i=2k+1

xi

]
−

2k+2r+1∏
i=2k+1

xi = 0.

(2.15)

Thus, we obtain 0 as an eigenvalue for G(n, k, r) when all of the last 2r + 1

positions are −1 or when the first 2k positions are −1 and at least one of the last
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2r + 1 positions is −1. The eigenvalues of Kn are n − 1 with multiplicity 1 and

−1 with multiplicity n − 1. We will make use of the following simple inequality:

nt − (n− 1)t < tnt−1 for any integers n, t > 1.

These facts imply that G(n, k, r) has eigenvalue 0 with multiplicity at least

n2k(n− 1)2r+1 + (n− 1)2k(n2r+1 − 1)− (n− 1)2k+2r+1

= n2k+2r+1 − (n2k − (n− 1)2k)(n2r+1 − (n− 1)2r+1)− (n− 1)2k

> n2k+2r+1 − 2kn2k−1 · (2r + 1)n2r+1−1 − (n− 1)2k

= n2k+2r+1 − 2k(2r + 1)n2k+2r−1 − (n− 1)2k

which shows that

rank(A(G(n, k, r))) < 2k(2r + 1)n2k+2r−1 + (n− 1)2k. (2.16)

To prove the lower bound, note that for fixed u ∈ {1, .., 2k} and v ∈ {2k +

1, .., 2k + 2r + 1}, evaluating f when xi = −1 for i 6= u, v (by using (2.13)), we get

f(−1, . . . , xu, . . . , xv, . . . ,−1) = −1 +xu(−1−xv)−xv = −(xu + 1)(xv + 1). (2.17)

If xu = xv = n − 1, we obtain f(−1, . . . , xu, . . . , xv, . . . ,−1) = −n2. Since Kn

has eigenvalue −1 with multiplicity n − 1, we deduce that G(n, k, r) has the nega-

tive eigenvalue −n2 with multiplicity at least
(
2k
1

)(
2r+1

1

)
(n − 1)2k+2r−1. This shows

rank(A(G(n, k, r))) ≥ 2k(2r + 1)(n− 1)2k+2r−1 and completes our proof.

Theorem 2 states that for any graph H

bp(H) ≥ max(n+(A(H)), n−(A(H))) (2.18)

where n+(A(H)) and n−(A(H)) denote the number of positive and the number of

negative eigenvalues of the adjacency matrix of H, respectively.
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From the last part of the proof of Proposition 11, we deduce that n−(A(G(n, k, r))) ≥

2k(2r + 1)(n− 1)2k+2r−1. This result and inequality (2.18) imply

bp(G(n, k, r)) ≥ 2k(2r + 1)(n− 1)2k+2r−1.

As bp(A(G(n, k, r))) ≤ 22k+2r−1n2k+2r−1, these inequalities determine the order of

bp(G(n, k, r)). More precisely, we say f(n) = Θ(g(n)) if there exist constants c1, c2 >

0, and n0 such that for any n ≥ n0, c1 · g(n) ≤ f(n) ≤ c2 · g(n). This shows that

bp(G(n, k, r)) = Θ(n2k+2r−1) for fixed k ≥ 2 and r ≥ 1.

2.3 Concluding remarks of the chapter

In this chapter, we constructed families of counterexamples to the Alon-Saks-

Seymour Conjecture and to the Rank-Coloring Conjecture. We computed the eigen-

values of the adjacency matrices of these graphs and obtained tight bounds for the

rank of their adjacency matrices. We used these results to determine the asymptotic

behavior of their biclique partition number. It would be interesting to determine

other properties of these graphs.

At the present time, Huang and Sudakov’s construction from [17] gives the

biggest gap between biclique partition number and chromatic number and Nisan and

Wigderson’s construction from [21] gives the biggest gap between rank and chromatic

number.

In the next chapter, we discuss applications of these graphs to questions in

computer science.
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Chapter 3

APPLICATIONS

An important application of graph theory thus far has been in computer

science. As we saw with the addressing problem, questions about communicating

between nodes (or computer terminals) can be reformulated into questions about

graphs. The overlap of computer science and graph theory is seen prominently in

the study of communication complexity (for example, see [28, 40]).

3.1 Communication Complexity

The deterministic model of communication complexity was considered by Yao

[40] in 1979. The basic model is that there are two parties (traditionally named Alice

and Bob), and two finite sets X and Y . The task is to evaluate a boolean function

f : X × Y → {0, 1}

where Alice is the only one who can see the input x ∈ X and Bob is the only one

who can see the input y ∈ Y . The objective is to find the protocol p in the set of all

protocols P which minimizes the amount of information exchanged between Alice and

Bob to evaluate the function. We define the “cost” of evaluating the function given a

protocol p, αp(x, y), to be the number of bits that are exchanged between Alice and

Bob before f(x, y) can be determined, and the two-way deterministic complexity of
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f , denoted C(f), to be the cost given the most expensive inputs computed with the

“best” protocol. More precisely

C(f) = minp∈Pmaxx∈X,y∈Y (αp(x, y)).

As noted by Razborov [29], a few things are left imprecise deliberately. For

example, is the length of each message fixed or can it vary? Does communication

end when one of the players knows the output or must both? These are left impre-

cise on purpose, as the details can be filled in according to the situation and the

mathematical theory remains the same.

An obvious question is how can we bound C(f). The first obvious answer is

that

C(f) ≤ dlog2 |X|e+ 1. (3.1)

The protocol to see this upper bound is simple. Alice encodes her input x

as a binary string of dlog2 |X|e bits using any injective map f1 : X → {0, 1}dlog2 |X|e

and sends it to Bob. Bob then computes f(x, y) and sends f(x, y) back to Alice. So

we see that upper bounds on C(f) are found by cooking up smart ways to exchange

information. For example, if g(x, y) ≡ x+y (mod 2), then there is a smarter protocol

than the one described above. Specifically, Alice can send 1 if her input is odd and

0 if it is even. Clearly, this is enough information for Bob to determine g(x, y) and

thus only 1 bit must be sent by Alice.

Now how do we determine lower bounds on C(f)? Here we see interesting

and beautiful algebraic methods used.

Definition 2. Let f be a boolean function on X × Y . We call S × T (where S ⊂ X

and T ⊂ Y ) a monochromatic rectangle if f is constant over S × T . We define a

1-rectangle to be a monochromatic rectangle where f evaluates to 1 for every x, y in
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the rectangle, and a 0-rectangle to be a monochromatic rectangle where f evaluates

to 0. A k-decomposition of f is a set

{S1 × T1, S2 × T2, ..., Sk × Tk}

of k disjoint monochromatic rectangles that partition X ×Y . We denote by d(f) the

minimum k such that a k-decomposition of f exists.

Theorem 12 (Yao [40]). C(f) ≥ log2 d(f).

Proof. We introduce a concept called a history or transcript (see [29]). By this we

mean the whole sequence (a1, b1, ..., at, bt) of messages exchanged by Alice and Bob

given a particular input. Again denoting by αp(x, y) the cost of the input (x, y)

for an optimal protocol p, we denote α(p) = max(x∈X,y∈Y )α(x, y). Then we observe

that there are at most 2α(p) possible histories since there are only that many binary

strings of length α(p). Given a fixed history h, we may form a set Rh consisting of

all inputs (x, y) that lead to the history h.

First we see that every input (x, y) leads to exactly one history. Letting H

denote the set of all histories, this means that we can write

X × Y =
⋃
h∈H

Rh.

Notice that this is a disjoint union. Since each Rh ends in the output of the function,

we see that each Rh is a monochromatic rectangle on f . So we have partitioned

X×Y into at most 2α(p) monochromatic rectangles on f . Since d(f) is the minimum

number of monochromatic rectangles needed to partition X × Y , we have

d(f) ≤ 2α(p)

for any protocol p. Since C(f) is the minimum α(p) over all protocols, we have

proved the theorem.
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A big breakthrough in the subject was the introduction of algebraic methods

by Mehlhorn and Schmidt [33]. Given any boolean function f : X × Y → {0, 1}, we

can arrange its values in the form of a matrix Mf . The rows of Mf are indexed by X

and the columns are indexed by Y and Mf (x, y) = f(x, y). The following theorem

shows the relation between combinatorics and algebra in this problem.

Theorem 13 (Mehlhorn and Schmidt [33]). d(f) ≥ rank(Mf ).

Proof. Define d0(f) to be the number of 0-rectangles necessary to partition the 0’s

of the matrix of some boolean function f and d1(f) to be the number of 1-rectangles

necessary to partition the 1’s. This means that d(f) = d0(f)+d1(f). LetR1, ..., Rd1(f)

be disjoint 1-rectangles covering all (x, y) with f(x, y) = 1. Let fi : X × Y → {0, 1}

be the characteristic function of Ri. That is, fi(x, y) = 1 if and only if (x, y) ∈ Ri,

and let Mi be the matrix associated with fi. Then rank(Mi) = 1 for all i, and

Mf =

d1(f)∑
i=1

Mi

which implies rank(Mf ) ≤
∑d1(f)

i=1 rank(Mi) = d1(f) ≤ d(f)

This theorem along with Theorem 12 gives us that

C(f) ≥ log2 rank(Mf ).

3.2 The Log-Rank Conjecture

In this section we will talk about how the graphs presented in Chapter 2 are

related to communication complexity. We saw in the previous section that

C(f) ≥ log2 rank(Mf ).

Lovaśz and Saks conjecture [19] that this bound is “almost” tight. This is given more

precisely in Conjecture 14.
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Conjecture 14. (Log-Rank Conjecture) There exists a constant k > 0 such that for

any function f

C(f) ≤ (log2 rank(Mf ))
k.

Next we will explain the relation between the Log-Rank Conjecture and the

Rank-Coloring conjecture described in Section 1.3. This relationship was first ex-

plained by Lovaśz and Saks [19].

Proposition 15. If the Log-Rank Conjecture is true, then there exists a constant

l > 0 such that for any graph G

log2 χ(G) ≤ (log2 rank(A(G)))l.

Proof. Assume the Log-Rank Conjecture is true. So there exists a fixed constant k

such that for any boolean function f associated with matrix Mf we have

C(f) ≤ (log2 rank(Mf ))
k.

Let G be an arbitrary graph, and define f : V (G) × V (G) → {0, 1} by the matrix

Mf = J − A(G). Then we notice that any 1-rectangle in f corresponds to an

independent set in G. Let d1(f) and d0(f) be the number of 1-rectangles and 0-

rectangles necessary to partition the 1’s and 0’s ofMf respectively. If we can partition

the 1’s of Mf with d1(f) 1-rectangles, we must be able to color G with d1(f) ≤

d(f) colors, which shows χ(G) ≤ d(f). Next we have that since Mf = J − A(G),

then rank(Mf ) ≤ rank(J) + rank(A(G)) = 1 + rank(A(G)). Combining these two

inequalities and the Log-Rank Conjecture, we have

log2 χ(G) ≤ log2 d(f) ≤ C(f) ≤ (log2 rank(Mf ))
k ≤ (log2(1 + rank(A(G)))k

which shows that there is a constant l such that for any graph G, log2 χ(G) ≤

(log2 rank(A(G)))l.
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Next we show that the converse is also true.

Proposition 16 (Lovász and Saks). If there exists a constant l > 0 such that for

any graph G

log2 χ(G) ≤ (log2 rank(A(G)))l,

then the Log-Rank Conjecture is true.

Proof. Recall that d(f) was defined to be the minimum number of monochromatic

rectangles that partition some boolean function f . We define t(f) to be the number

of monochromatic rectangles necessary to cover a boolean function f . That is, the

rectangles are allowed to overlap. This means that d(f) ≥ t(f) because any partition

of a function f is also a covering. It is known that C(f) ≤ c(log2(t(f))2 for some

positive constant c [1, 28].

We want to show that there exists a constant k so that for any boolean function

f with matrix Mf , C(f) ≤ (log2(rank(Mf )))
k. We show that for any function f , we

can construct a graph G such that

1. χ(G) = t(f)

2. rank(A(G)) ≤ (rank(Mf ) + 1)2 + (rank(Mf ))
2 + 1

These two facts along with the assumption that there exists a constant l > 0 such

that for any graph G log2 χ(G) ≤ (log2 rank(A(G)))l and the fact that C(f) ≤

c(log2(t(f))2 for some constant c will imply that the Log-Rank Conjecture holds for

any boolean function f .

Let f be a boolean function on X × Y . Then we construct a graph G as

follows. Its vertex set V (G) = X × Y and (x, y) ∼ (x1, y1) if and only if (x, y),

(x1, y1), (x, y1), and (x1, y) do not form a monochromatic rectangle in f . In other

words, if f(x, y) = f(x1, y) = f(x, y1) = f(x1, y1) then (x, y) 6∼ (x1, y1).
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First we discuss the chromatic number of G. Consider an independent set in

G, say I. Then for any (x, y), (x1, y1) in I we have that (x, y), (x, y1), (x1, y), and

(x1, y1) form a monochromatic rectangle in f which means that the vertices in an

independent set of G correspond to a monochromatic rectangle in f . Since χ(G) is

the minimum number of independent sets that cover the vertex set of G, this implies

that χ(G) = t(f).

Next we discuss the rank of A(G). The Hadamard product is the entrywise

product of two matrices A and B, denoted A ◦B. That is

(A ◦B)ij = Aij ·Bij.

The matrix A ◦ B is a submatrix of the tensor product of A and B and thus

has rank(A ◦ B) ≤ rank(A)rank(B) = rank(A ⊗ B). We write A(G) in terms of

Hadamard products of matrices. Let C1, D1, E1, F1 be |X||Y | by |X||Y | matrices

defined by

C1[(x, y), (x1, y1)] = 1 iff Mf (x, y) = 1,

D1[(x, y), (x1, y1)] = 1 iff Mf (x1, y1) = 1,

E1[(x, y), (x1, y1)] = 1 iff Mf (x, y1) = 1,

F1[(x, y), (x1, y1)] = 1 iff Mf (x1, y) = 1,

and C0, D0, E0, F0 similarly by

C0[(x, y), (x1, y1)] = 1 iff Mf (x, y) = 0,

D0[(x, y), (x1, y1)] = 1 iff Mf (x1, y1) = 0,

E0[(x, y), (x1, y1)] = 1 iff Mf (x, y1) = 0,

F0[(x, y), (x1, y1)] = 1 iff Mf (x1, y) = 0.
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Then C1 ◦ D1 ◦ E1 ◦ F1 + C0 ◦ D0 ◦ E0 ◦ F0 is J − A(G), which means that

rank(A(G)) ≤ rank(C1 ◦D1 ◦ E1 ◦ F1 + C0 ◦D0 ◦ E0 ◦ F0) + 1.

It is clear that C1, D1, C0 and D0 all have rank 1. For example, C1 is the

matrix whose rows are either all 0’s (if Mf (x, y) = 0) or all 1’s (if Mf (x, y) = 1).

If JY X is the |Y | by |X| matrix of all 1’s, then E1 = Mf ⊗ JY X and thus

rank(E1) = rank(Mf ). Similarly, if JXY is the |X| by |Y | matrix of all 1’s, then

F1 = JXY ⊗MT
f and rank(F1) = rank(Mf ). We also have E0 = (J −Mf )⊗ JY X and

F0 = JXY ⊗ (J −Mf )
T which means that rank(E0) = rank(F0) = rank(J −Mf ) ≤

rank(Mf ) + 1. So we see that

rank(C1 ◦D1 ◦ E1 ◦ F1 + C0 ◦D0 ◦ E0 ◦ F0) ≤ (rank(Mf ))
2 + (rank(Mf ) + 1)2

which completes the proof.

The next proposition shows that if one can construct a graph with a gap

between rank and chromatic number, then one has a corresponding gap between

rank and communication complexity of the associated function.

Proposition 17. For any graph G such that rank(A(G)) < χ(G), there is a corre-

sponding boolean function f : V (G)× V (G)→ {0, 1} such that

log2(rank(Mf )− 1) < C(f).

Proof. Let G be a graph such that χ(G) > rank(A(G)). Define a boolean function

f on V (G)× V (G) by Mf = J −A(G). Then, as before, any covering of f by d1(f)

1-rectangles corresponds to a coloring of G by d1(f) ≤ d(f) colors. Because Mf =

J − A(G) we have rank(Mf ) ≤ rank(A(G)) + 1. This implies rank(A(G)) < χ(G)

which yields

log2(rank(Mf )− 1) ≤ log2(rank(A(G))) < log2(χ(G)) ≤ log2(d(f)) ≤ C(f).
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Thus, we have shown a separation between the known lower bound for C(f) and the

actual deterministic complexity.

In Chapter 2, we constructed graphs G(n, k, r) such that

χ(G(n, k, r)) ≥ n2k+2r

2r + 1

and

rankA(G(n, k, r)) < 2k(2r + 1)n2k+2r−1 + (n− 1)2k.

As above, for each G(n, k, r) we create a boolean function defined by Mf = J −

A(G(n, k, r)) such that

log2(rank(Mf )− 1) ≤ log2(2k(2r + 1)n2k+2r−1 + (n− 1)2k) < log2(
n2k+2r

2r + 1
) ≤ C(f)

which means that we have constructed functions f that give

C(f) ≥ 2k + 2r

2k + 2r − 1
log2(rank(Mf ))− c

for a fixed constant c > 0. Thus, we have constructed examples where the determin-

istic communication complexity is a super-unitary constant term times the general

lower bound of log2(Mf ).

3.3 Clique vs. Independent Set Problem

The question about deterministic communication complexity can be applied

to many problems. One is called the clique vs. independent set problem, which was

introduced by Yannakakis [39] and is denoted CL − IS for short. In this problem,

there is a publicly known graph G. Alice gets a complete subgraph C of G and Bob

gets an independent set I of G. Let X be the set of all cliques in the graphs and

Y the set of all independent sets. Then the objective function f : X × Y → {0, 1}
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is given by f(C, I) = |C ∩ I|. This is clearly either 1 or 0, and thus this defines a

boolean function. If we denote the deterministic communication complexity of this

problem on the graph G by C(CL − ISG), we see a lower bound for it right away.

Let n be the number of vertices on the graph. If we consider that any single vertex

can be a clique or an independent set, then there are n sets of vertices that may be

given to either Bob or Alice (namely the n vertices). Then In is a submatrix of Mf .

Indeed, for these n indices, if Bob and Alice receive vertices vi and vj respectively,

then the corresponding entry of Mf will be 1 if i = j and 0 otherwise. Since, In is a

submatrix of Mf , we must have

rank(Mf ) ≥ rank(In) = n

which implies that C(CL− ISG) ≥ log2 rank(Mf ) ≥ log2 n. Surprisingly, this trivial

lower bound is the best bound known at the present time. Next we discuss the

connection between the clique vs. independent set problem and the Alon-Saks-

Seymour Conjecture.

Proposition 18 (Alon-Haviv [17]). For any graph G with χ(G) > bp(G) + 1, there

is a corresponding graph H with C(CL− ISH) > log2 |V (H)|.

Proof. During this proof, if f is a boolean function and Mf is its associated ma-

trix, we will use C(f) and C(Mf ) interchangeably. Similarly, we will use d(f) and

d(Mf ) interchangeably. Let G be a graph on vertex set [n] and bp(G) = m. Let

{B(Ui,Wi)}mi=1 be a partition of E(G) into bicliques. Define the characteristic vector

vi of each biclique vi = (vi1, ..., vin), the same way as in Graham and Pollak’s [14]
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addressing scheme (see Section 1.2); that is

vij =


0 j ∈ Ui

1 j ∈ Wi

∗ otherwise

Now we define a new graph H on the vertex set [m]. Two vertices i and i′ are

adjacent in H if there exists a j ∈ [n] such that vij = vi′j = 1 and nonadjacent if

there exists j′ ∈ [n] such that vij′ = vi′j′ = 0. In any other case, arbitrarily assign an

edge or non-edge. To show that H is well defined, we must show that there cannot

be a j and j′ such that vij = vi′j = 1 and vij′ = vi′j′ = 0. If this were the case, then

j ∈ Wi ∩Wi′ and j′ ∈ Ui ∩ Ui′ which is a contradiction because the edge jj′ would

be covered by two bicliques. So H is well defined.

Now we consider the CL − IS problem on H. For j ∈ [n], define Cj = {q ∈

[m] : vqj = 1} and Ij = {q ∈ [m] : vqj = 0}. Then the {Cj} are cliques and the {Ij}

are independent sets. Denote the matrix for CL− ISH by M and let M ′ denote the

n by n submatrix which has its rows indexed by {Cj} and columns indexed by {Ij}.

Then by the inequalities discussed previously, we have

C(M) ≥ C(M ′) ≥ log2 d(M ′).

Now assume that R1, ..., Rt are 0-rectangles that cover the diagonal entries of M ′.

If (p, q) is covered by Ri, then M ′
pq = M ′

qp = 0 and |Cp ∩ Iq| = |Cq ∩ Ip| = 0. If

pq were an edge in G, we would have an index i such that either vip = 0, viq = 1

or vip = 1, viq = 0, a contradiction. So pq is not an edge in G. This means that

R1, ..., Rt corresponds to a covering of the vertices of G by independent sets and in

particular χ(G) ≤ t. So we have

C(M) ≥ C(M ′) ≥ log2 d(M ′) ≥ log2(t) ≥ log2 χ(G).
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Then if bp(G) < χ(G), we have the existence of a graph H such that

C(CL− ISH) ≥ log2 χ(G) > log2 bp(G) = log2 |V (H)|.

This result shows that a separation between chromatic number and biclique

partition number yields a separation between the deterministic complexity of the

clique vs. independent set problem for some graph and the logarithm of the size of

that graph. It is not known if the converse is true. However, this tells us that a

graph that is a counterexample to the Alon-Saks-Seymour Conjecture leads to a cor-

responding graph H that has a linear gap (super-unitary) between its deterministic

complexity for the clique vs. independent set problem and log2 |V (H)|.

In Chapter 2, we constructed graphs G(n, k, r) such that

χ(G(n, k, r)) ≥ n2k+2r

2r + 1

and

bp(G(n, k, r)) < 22k+2r−1n2k+2r−1.

This means that these graphs correspond to graphs H = H(n, k, r) such that

C(CL− ISH) ≥ log2(
n2k+2r

2r + 1
) > log2(2

2k+2r−1n2k+2r−1) = log2 |V (H)|

which implies graphs H = H(n, k, r) with a constant c such that

C(CL− ISH) ≥ 2k + 2r

2k + 2r − 1
log2 |V (H)| − c.
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Chapter 4

THE GRAHAM-POLLAK THEOREM FOR

HYPERGRAPHS

4.1 Introduction

The question about partitioning graphs into bicliques can be generalized to

hypergraphs. In this problem, one is attempting to partition the edge set of a

hypergraph into complete multipartite subgraphs. If we consider the complete r

uniform hypergraph on n vertices, denoted K
(r)
n , we can ask how many complete

r-partite r-uniform subgraphs are necessary to partition the edge set of K
(r)
n . This is

a generalization of the Graham-Pollak Theorem. Indeed taking r = 2, the question

asks how many bicliques are necessary to partition the edge set of Kn. The value

for K
(r)
n is unknown for r ≥ 4. This question has applications to the complexity of

computing bilinear forms and symmetric polynomials [15, 16, 27] and to the tensor

rank computation of high dimensional arrays [27]. In this chapter we discuss the

problem.

First we explain hypergraph notation (see [5]). Let [n] denote the set {1, ..., n}

and [n](r) denote all r-subsets of [n]. If X1, ..., Xr are disjoint subsets of [n],
∏r

i=1Xi

denotes the set of subsets given by {(x1, ..., xr)|xi ∈ Xi}. The complete r-partite

r-uniform hypergraph with parts X1, ..., Xr is the r-uniform hypergraph with edge

set
∏r

i=1Xi. Given an r-uniform hypergraph G, fr(H) denotes the minimum number
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of complete r-partite r-uniform hypergraphs needed to partition the edge set of H.

We denote fr(K
(r)
n ) by fr(n).

The best known bound is given by Cioabă, Küngden, and Verstraëte [7] who

improved a result of Alon [2] and showed

2
(
n−1
k

)(
2k
k

) ≤ f2k(n) ≤
(
n− k
k

)
(4.1)

and

f2k(n− 1) ≤ f2k+1(n) ≤
(
n− k − 1

k

)
. (4.2)

4.2 The case n = r + 2

In this section, we determine fr(r+2) exactly. When n = r+2, each hyperedge

of K
(r)
n is an r-subset of [n], and thus its complement has size 2. Thus, the comple-

ment of each hyperedge can be seen as an edge of Kr+2 and we can consider Kr+2

as a complement graph. If we decompose K
(r)
r+2 into complete r-partite r-uniform

subgraphs, then the complements of each hyperedge will partition the complement

graph Kr+2. Partitioning the complete r-uniform hypergraph is equivalent to par-

titioning Kr+2 with certain graphs. Consider what an r-partite sub hypergraph of

K
(r)
r+2 can look like. It can have r partite sets of size 1, which induces a K2 in the

complement graph. It can have r − 1 partite sets of size 1 and 1 partite set of size

2, which induces a K1,2 in the complement graph. It can have r − 1 partite sets of

size 1 and 1 set of size 3, which induces a K3 in the complement graph. Finally,

it can have r − 2 partite sets of size 1 and 2 partite sets of size 2, which induces

a K2,2 = C4 in the complement graph. Since these are the only kinds of complete

r-uniform r-partite subgraphs possible for the case n = r+ 2, partitioning K
(r)
r+2 into

complete r-partite r-uniform subhypergraphs is equivalent to partitioning Kr+2 into

K2, K3, C4, or K1,2.
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Proposition 19. For any natural number r, f8r−1(8r + 1) = r(8r + 1).

Proof. From above, decomposing K
(8r−1)
8r+1 into complete 8r−1-partite 8r−1-uniform

hypergraphs is equivalent to decomposing K8r+1 into K2, K3, C4, or K1,2. K8r+1 has

4r(8r + 1) edges. Because 4|4r(8r + 1) and the number of vertices is odd, one can

partition K8r+1 into r(8r+1) copies of C4 (see [32]). Thus K
(8r−1)
8r+1 can be partitioned

into r(8r + 1) complete 8r − 1-partite 8r − 1-uniform hypergraphs with partite sets

of size {2, 2, 2, 1, 1, . . . , 1} and f8r−1(8r + 1) ≤ r(8r + 1). The lower bound follows

because each complement subgraph contains at most 4 edges.

Proposition 20. For k ≥ 2, d (k+1)(2k+3)
4

e ≤ f2k(2k + 2) ≤ (k+1)(k+2)
2

.

Proof. The upper bound is given by (4.2). Partitioning the hyperedge set K
(2k)
2k+2 with

complete 2k-partite 2k-uniform hypergraphs is equivalent to partitioning K2k+2 with

K2, K3, C4, and K1,2. Since each vertex of K2k+2 has odd degree, each vertex must

be incident with at least one of K2 or K1,2. Thus at least k + 1 graphs with at most

2 edges must be used. Then at least
(
2k+2

2

)
−2(k+ 1) = (k+ 1)(2k−1) edges remain

and at least d (k+1)(2k−1)
4

e graphs must be used. So the total number of graphs used

is at least d (k+1)(2k−1)
4

e+ k + 1 = d (k+1)(2k+3)
4

e.

Proposition 21. For any natural number r, f8r(8r + 2) = 8r2 + 5r + 1.

Proof. Consider K
(8r)
8r+2 and let v be an arbitrary vertex. Then each hyperedge

is an 8r-tuple that either contains v or does not. The hyperedges that contain

v can be partitioned into f8r−1(8r + 1) subgraphs. The hyperedges that do not

contain v can be partitioned into f8r(8r + 1) subgraphs. To partition K
(8r)
8r+1 into

complete 8r-partite 8r-uniform subgraphs, we can take the following complete 8r-

partite 8r-uniform hypergraphs with partite sets G1 = {1, 2}, {3}, {4}, ..., {8r +

1}, G2 = {1}, {2}, {3, 4}, ...,...,G4r = {1}, {2}, ...{8r − 1, 8r}, {8r + 1}, G4r+1 =
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{1}, {2}, ..., {8r}. Thus f8r(8r+ 1) ≤ 4r+ 1. By the Proposition 19, f8r−1(8r+ 1) =

8r2 + r. Because f8r(8r + 2) ≤ f8r(8r + 1) + f8r−1(8r + 1) we have f8r(8r + 2) ≤

8r2 + 5r + 1. The lower bound is given by Proposition 20.

Theorem 22. For k ≥ 2, f2k(2k + 2) = d2k2+5k+3
4
e

Proof. We prove by induction on k. For the base cases, it is known that f2(4) = 3.

Equation 4.2 gives f4(6) ≤ 6 and this is the lower bound given by Proposition 20. We

also have that f6(8) ≤ f7(9) = 9 by Proposition 19 and f6(8) ≥ 9 from Proposition

20. Now assume that f2k(2k + 2) = d2k2+5k+3
4
e. Then Proposition 20 gives us that

f2k+2(2k + 4) ≥ d2k
2 + 9k + 10

4
e.

Consider the following decomposition of K
(2k+2)
2k+4 . We look at it in terms of the

complement graph formed by the complements of the edges as before. So we want

to find a partition of K2k+4 into C4, K3, K2, and K1,2. Pick any two vertices of

K2k+4. Then consider an optimal decomposition into
⌈

2k2+5k+3
4

⌉
of the complete

graph induced by the other 2k+ 2 vertices. To complete the decomposition, we need

to cover all edges between the 2k+2 original vertices and the two remaining vertices,

and we need to cover the one edge between the two remaining vertices. We use a K2

to cover the edge between the two vertices. Then it is clear that we can use k + 1

copies of C4, each having the two remaining vertices and one of the k + 1 pairs of

vertices as its nodes. Thus, we can decompose K2k+4 into C4, K3, K2, and K1,2 by

d2k2+5k+3
4
e+ 1 + (k + 1) = d2k2+9k+11

4
e graphs. So we have that

d2k
2 + 9k + 10

4
e ≤ f2k+2(2k + 4) ≤ d2k

2 + 9k + 11

4
e.

These bounds are the same whenever k ≡ 0, 1 (mod 4). In the case that k ≡ 3

(mod 4), the result follows from Proposition 21. In the case that k ≡ 2 (mod 4), we
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are attempting to find f8r+6(8r+ 8) for some r. Note, however, that f8r+6(8r+ 8) ≤

f8r+7(8r + 9) = (r + 1)(8r + 9) by Proposition 19 and this completes our proof.

Theorem 23. For k ≥ 2, f2k+1(2k + 3) = d2k2+5k+3
4
e.

Proof. We have f2k+1(2k + 3) ≥ f2k(2k + 2) = d2k2+5k+3
4
e by (4.2). To prove the

upper bound we use a similar construction as in Theorem 22. For the induction

hypothesis assume that f2k−1(2k + 1) = d2k2+k
4
e. Consider decomposing K

(2k+1)
2k+3 .

This is equivalent to decomposing K2k+3 into C4, K3, K2, and K1,2. Pick any two

vertices of K2k+3. The other 2k+ 1 vertices induce a K2k+1 which can be partitioned

into
⌈

2k2+k
4

⌉
copies of C4, K3, K2, or K1,2. The remaining edges needed to be covered

are those between the two remaining vertices and the 2k + 1 vertices, and the single

edge between the two remaining vertices. Partition the 2k + 1 vertices into k pairs

and one single node. The edges between the two remaining vertices and the single

node, and the single edge between the two remaining vertices can be covered with

a K3. Then it is clear that the remaining edges can be covered by k copies of C4,

each with the two remaining vertices and one of the k pairs of vertices as its nodes.

This covers K2k+3 with d2k2+k
4
e+ 1 + k copies of C4, K3, K2, and K1,2, equivalent to

decomposing K
(2k+1)
2k+3 into d2k2+5k+4

4
e hypergraphs. This gives us that

d2k
2 + 5k + 3

4
e ≤ f2k+1(2k + 3) ≤ d2k

2 + 5k + 4

4
e

These bounds are the same when k ≡ 0, 1, 2 (mod 4). The case where k ≡ 3 (mod 4)

is handled by Proposition 19.

4.3 Improving the Upper Bound

Next we make an improvement on the upper bound in general. This is done

by recursive construction. We can obtain an upper bound for f2k(n) by considering
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the n vertices as a set of j vertices and a set of n−j vertices for some j. Then we can

use known upper bounds on the smaller sets to obtain an upper bound for f2k(n).

Lemma 24. Fix j, k. Then for any n ≥ j we have(
n− k
k

)
=

2k∑
i=0

(
j −

⌈
i
2

⌉⌊
i
2

⌋ )(
n− j −

⌈
2k−i

2

⌉⌊
2k−i

2

⌋ )
.

Proof. We prove by induction on n. We define
(
m
t

)
to be 0 is m < 0 and 1 if

m = t = 0. Then in the base case n = j the left hand side of the identity equals(
j−k
k

)
and the only nonzero term,

(
j−k
k

)
, of the right hand side is obtained when

i = 2k. Now

2k∑
i=0

(
j −

⌈
i
2

⌉⌊
i
2

⌋ )(
n− j −

⌈
2k−i

2

⌉⌊
2k−i

2

⌋ )

=
2k∑
i=0

(
j −

⌈
i
2

⌉⌊
i
2

⌋ )[(
n− j −

⌈
2k−i

2

⌉
− 1⌊

2k−i
2

⌋ )
+

(
n− 2− j −

⌈
2k−i

2
− 1
⌉⌊

2k−i
2

⌋
− 1

)]

By the induction hypothesis we have that this equals
(
(n−1)−k

k

)
+
(
(n−2)−(k−1)

k−1

)
which

equals
(
n−k
k

)
.

Lemma 25. For n ≥ 10 we have

f8(n) <

(
n− 4

4

)
− 1

20
n. (4.3)

Proof. Let j be the largest integer such that 10 · 2j ≤ n. We prove the lemma

by induction on j. For base case j = 0, we are attempting to find f8(n) where

10 ≤ n < 20. If we let n = 10 + r where 0 ≤ r < 10, we break the n vertices

into one part of size r and one part of size 10. Then a decomposition of K
(8)
n into

complete 8-partite 8-uniform hypergraphs can be obtained from a partition of K
(i)
10

into fi(10) complete i-partite i-uniform hypergraphs and a partition of K
(8−i)
r into
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f8−i(r) complete (8 − i)-partite (8 − i)-uniform hypergraphs, when i takes values

between 0 and 8. Thus

f8(n) ≤
8∑
i=0

fi(10)f8−i(r)

We bound everything above by (4.2) except for the term f8(10), where we use The-

orem 22. Using Lemma 24, this proves the base case.

If j > 0, we provide a recursive construction by breaking the n vertices into

two sets of size n
2

and find

f8(n) ≤
8∑
i=0

fi

(n
2

)
f8−i

(n
2

)
.

Using the upper bound given by (4.2), we have

f8(n) ≤
7∑
i=1

(n
2
−
⌈
i
2

⌉⌊
i
2

⌋ )(n
2
−
⌈

8−i
2

⌉⌊
8−i
2

⌋ )
+ 2f8

(n
2

)
.

Using Lemma 24 and the induction hypothesis we have that

f8(n) ≤
(
n− 4

4

)
− 2 · 1

20
· n

2
.

We find the improvement in general by constructing recursively and lowering

the upper bound by the improvement on the f8(n) terms.

Theorem 26. f2k(n) ≤
(
n−k
k

)
− n

20

(bn2 c−k+4

k−4

)
.

Proof. It suffices to show the case n even, so we assume this for convenience. Again,

a decomposition of K
(2k)
n into complete 2k-partite 2k-uniform hypergraphs can be ob-

tained from a decomposition of K
(i)
n
2

into fi(
n
2
) complete i-partite i-uniform subgraphs
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and a partition of K
(2k−i)
n
2

into f2k−i(
n
2
) complete (2k − i)-partite (2k − i)-uniform

hypergraphs, when i takes values from 0 to 2k. Thus

f2k(n) ≤ 2f8

(n
2

)
f2k−8

(n
2

)
+

∑
i 6=8,2k−8

fi

(n
2

)
f2k−i

(n
2

)
.

We bound each term of the previous sum from above by (4.2) for all fj(
n
2
) except

for when j = 8 where we use the bound given by Lemma 25. Then, using Lemma

24, we have

f2k(n) ≤
(
n− k
k

)
− 2 · 1

20
· n

2
·
(
n
2
− k + 4

k − 4

)
.
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Chapter 5

FUTURE WORK

In this Chapter we talk about open problems and future work.

5.1 The Alon-Saks-Seymour and Rank-Coloring Conjectures

Both the Alon-Saks-Seymour and Rank-Coloring Conjectures have been dis-

proven, but it remains an open question to see how large the gaps between parameters

can be. As seen in Chapter 3, if it can be shown that the logarithm of the chromatic

number of a graph cannot be bounded by a polynomial in the logarithm of the rank

of its adjacency matrix, then the Log-Rank Conjecture is false.

Open Question 1. Is the Log-Rank Conjecture true? Equivalently, does there exist

a constant k > 0 such that for all graphs G

log2 χ(G) ≤ (log2 rank(A(G)))k?

In terms of the Alon-Saks-Seymour Conjecture, it remains an open problem

to see how large the gap between the biclique partition number and the chromatic

number of a graph can be in general. Huang and Sudakov conjecture in [17] that

there exists a graph G with biclique partition number k and chromatic number at

least 2c log2 k, for some constant c > 0. In communication complexity it is a long-

standing open question to prove an Ω(log2N) lower bound on the complexity of the
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CL-IS problem for a graph on N vertices. The existence of the conjectured graph

would resolve this problem.

Open Question 2. Does there exist a graph G with biclique partition number k and

chromatic number at least 2c log2 k, for some constant c > 0?

5.2 The Graham-Pollak Theorem for Hypergraphs

Even with the improvement given in Chapter 4, the general bounds are still

given by
2
(
n−1
k

)(
2k
k

) ≤ f2k(n) ≤
(
n− k
k

)
− n

20

(⌊
n
2

⌋
− k + 4

k − 4

)
,

which are far apart.

Open Question 3. What is the correct value of f2k(n) and f2k+1(n)?

This is an interesting question to investigate. We notice that the way we went

about improving the bounds was by reducing the hypergraph question to a question

on normal graphs. To close the gap between the bounds, perhaps a different approach

is necessary.
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