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ABSTRACT

The Sparse Fast Fourier Transform (sFFT) is a recent algorithm developed by

Hassanieh et al. at MIT for Discrete Fourier Transforms on signals with a sparse

frequency domain. A reference implementation of the algorithm exists and proves that

the sFFT can be faster than modern FFT libraries for signals of sparse nature. The

algorithm has been parallelized using multiple approaches, such as over multicore by

Cheng et al. over GPGPUs using CUDA by Cheng et al. and optimized for serial

execution using SSE intrinsics by Schumacher et al.

While the increase in number of cores and memory bandwidth on modern archi-

tectures provide an opportunity to improve performance through sophisticated parallel

algorithm design, the sFFT is inherently complex, embarrassingly parallel, and nu-

merous challenges need to be addressed to deliver the optimal performance. In this

Masters Thesis, we employ a high-level directive-based parallel programming model,

OpenACC to create a performance portable sFFT code. We call our implementation,

ACCsFFT. Our implementation can target heterogeneous platforms consisting of x86

or Power Processors integrated with GPUs. The performance of our implementation

is compared against existing parallel implementations that have used either low-level

or proprietary software on CPUs and GPUs.

Several optimizations are proposed and implemented in ACCsFFT. The perfor-

mance is also compared against the highly optimized parallel FFTW library. We also

target GPUs from different families, old to the most modern hardware, to verify if the

algorithm is performance portable, scalable and reproducible across generations.

We deliver a high-level parallel sparse FFT library capable of running one version

of the code in a serial manner on CPU or in parallel on multicore, GPGPUs and other

x



architectures that OpenACC currently supports. A programmer would only need to

change input parameters of the algorithm for the different runs.
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Chapter 1

INTRODUCTION

1.1 Motivation

Discrete Fourier Transform (DFT) is one of the most fundamental methods

used in a wide variety of disciplines including audio, communication, and cryptogra-

phy. FFT (Fast Fourier Transform) is the most widely used and popular algorithm for

DFT. FFT is the fastest algorithm based on divide-and-conquer approach. The time

complexity of FFT is O(nlogn) time.

FFT has been universal importance in scientific and engineering applications

for a long time. But many applications now have input which are sparse in nature,

i.e. most of the data in the input signal is zero or corrupted and the significant data

points or coefficients are spread across the input signal. FFT on a sparse signal is

computationally expensive, as most of the signals computed is unnecessary, depending

on the sparsity value k for a signal size n.

Sparse signal FFT is needed in a variety of applications, ranging from DNA

sequencing, to Nuclear magnetic resonance, Seismic imaging, Audio and video com-

pressions, to GPS. More examples will be described in detail in Chapter 3. There

arises a need to have an algorithm which can target sparse input signal and perform

FFT on it which would not be as computationally expensive as performing, general

FFT. Hassanieh et al.[31] developed an algorithm for the same known as Sparse FFT,

which reduced the time complexity of performing FFT on a sparse input signal to

O(logn
√
nklogn).
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With the emergence of big data problems, the input size grows significantly, so

does the computation time needed to compute the FFT of the same, even when using

the sparse FFT for sparse algorithms. The sFFT is inherently a parallel algorithm,

which has stages of execution which are good candidates for parallelization. Sparse

FFT does pose challenges for parallelization, as it is an irregular algorithm, the com-

putation is directly proportional to the size of the input signal n and the sparsity value

k. More on the challenges of parallelization will be discussed in later sections and

chapters.

Parallelization enables a better time complexity of the algorithm and opens up

a new dimension of the application of the algorithm. With parallelization, a larger

input signal size can be used and can support a large amount of sparsity factor. These

are important in terms of real world applications like that of DNA sequencing, GPS,

Seismic processing, etc. A parallelized Sparse Fast Fourier (sFFT) algorithm can be

sped up to more than 10x of the serial version. This is a significant improvement

and can improve the practicality of the algorithm for the community which want to

use sFFT for real world applications. That is the main motivation behind this thesis,

which we are going to approach.

1.2 Fourier Transform: An Overview

The Fourier Transform is an important and well-known mathematical method

with a variety of applications in many scientific disciplines. In its discrete (DFT) form

it can be formulated as

x̂ = DFTn · x (1.1)

where x and x̂ are n-dimensional complex input and output vectors. There

are many applications for the DFT; for example in signal processing, DNA sequenc-

ing, seismic imaging, radio astronomy, nuclear magnetic resonance, noise filtering or

numerical solution of PDEs, amongst others.
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A straightforward evaluation of equation 1.1 involves O(n2) operations. Since

the DFT is such a useful tool for many applications, there is a need for fast algorithms.

The most well-known fast algorithm for DFTs is the Fast Fourier Transform (FFT),

originally described by Cooley and Tukey in [25]. The asymptotic runtime of this FFT

is O(nlogn) and it is therefore much faster than the straightforward algorithm.

FFT reduced the runtime of the original DFT algorithm, which was revolu-

tionary. it was voted as the top 10 algorithm of the 20th century[26]. Though many

optimizations were offered in multiple papers to make the asymptotic runtime of FFT

better, none were successful. It is possible to make better algorithms by adding con-

straints on the input- and output-vectors x and x̂ though. The sparse FFT proposed

by Hassanieh et al.[31] is one such algorithm.The sFFT can be applied to signals x ε Cn

with a sparse frequency domain x̂, i.e. only k < n unknown elements of x̂ are nonzero

and while the time domain signal x is still dense.

Besides the algorithmic improvements, new computer architectures are con-

stantly developed and improved. Modern general purpose CPUs feature multi-level

caches, instruction level parallelism or vector instruction sets. Additionally, acceler-

ator technologies like GPUs or FPGAs can be used to boost program performance.

Parallelism is becoming increasingly important, as modern desktop CPUs typically

package multiple cores, or computers can be connected to compute clusters. With this

variety of target platforms it is hard for compilers to generate optimal machine code

that makes use of all features and runs at high performance. Thus, manually optimized

libraries for specific target platforms are being written for all kinds of algorithms.
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The original Cooley/Tukey-FFT and similar algorithms have been implemented

in such high-performance libraries like FFTW [28] or CUFFT [9]. These implementa-

tions make use of modern computer architecture features and are carefully designed to

deliver the highest possible performance.

Similarly the sFFT algorithm have been implemented on these architectures,

like sFFT library[35] which uses SSE intrinsics and other optimizations for x86, Par-

allel sparse FFT (PsFFT) for Multicore using OpenMP[42] and CUDA sparse FFT

(cusFFT) for GPGPUs[43], both by Cheng et al. Unlike OpenMP which is a directive

based programming language which can allow the same code to be used as serial or over

multiple cores, based on the compiler options, CUDA code base cannot be run serially,

and you need to have a GPGPU to utilize it. And although there exists a library, sFFT

library, they only contain the serial implementations of version 1.0,2.0,3.0 and not of

any parallel code base.

In this thesis we are using OpenACC to port sFFT 1.0/2.0 implementation,

which will have one code base for both the Multicore and GPGPU architecture ,also

support more architectures which will be discussed in the later sections.

1.3 Evolution of hardware architectures

Computer system architectures have always been greatly influenced by under-

lying trends of hardware and software technologies. We have come a great way from

single core processor architecture and beyond the time when stacking processors and

communicating using message passing system to create distributed systems, were the

only possibility to have something close to a parallel architecture and to run an algo-

rithm faster or in parallel. In this section we will quickly introduce various hardware

4



of the past, the present and some of the architectures which may become future tech

and how we have moved past and left Moore’s Law behind.

Single Core:

Processors are chipsets with a single CPU (one processing unit) inside it. Mi-

croprocessors have inherently been a single core processor since their inception in the

early 1970’s and previous focus was to create a faster single core processor which can

execute more instruction per clock cycle. This trend went on till the inception of the

early dual core/ multicore processors.

Multicore:

After the turn of the century, post 2000, chipsets with two or more CPUs started

emerging. Dual core microprocessors is a single chip which has two distinct CPUs that

work simultaneously. IBM introduced the first dual core chipsets in its Power 4 chips.

And the first x86 based chips were introduced in the year 2005. Dual core systems may

use the same or a little bit more energy, but achieve approximately an 80% increase

in processing power over single core CPU chips. A chipset that contain more than one

CPUs comes under multicore. At one point the industry realized that instead of trying

to get a single core to speedup by cramming in more and more transistors, it would

be more practical to have multiple cores in a single chip. Since then all applications

were updated to support Symmetric Multiprocessing (SMP) which helps the operating

system to work on one core and the applications on others. This also paved the path for

virtual machines, where one chip can handle multiple operating systems and multiple

applications of those operating system at the same time, having essentially 2 or more

machines on a single chip.

Coprocessor:

Is a secondary computer processor which helps the main processing chip with

functions. Generally, the operations performed by coprocessor are graphics, signal
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processing, floating point arithmetics, etc. Coprocessor acts like a accelerator for com-

putationally intensive tasks and accelerate system performance.

Graphic Processing Unit (GPU):

Is an accelerator, which consists of thousands of Arithmetic Logic Units (ALUs)

which does computations similar to a processor and coprocessors. GPUs were essen-

tially created to do computations for computer graphics and image processing. But it

was later accessed to help a processor do all the computationally heavy tasks, similar

to a coprocessor. GPUs also have a bigger memory making them ideal for applications

related to deep learning, machine learning, etc.

FPGA:

Field Programmable Gate Array Is an integrated circuit, which is designed to

be configurable according to the need of a developer. It consists of many logic blocks

which can be reconfigured and interconnected to create many different combinations.

This makes it ideal for a wide variety of application, from high-volume applications to

state of the art products. Can be used for embedded memory operations, digital signal

processing, etc.

1.4 Thesis objective

At the time of writing this thesis, 3 different sFFT algorithm versions were

implemented, 3rd was optimized using SSE, and the first two were ported to par-

allel architectures. The first reference implementation, sFFT Version 1 and 2, were

published[17]. The third version was published on the as a part of the sparse FFT

library[18]. The reference implementations are written in standard C++ code, single

threaded and without any hardware-specific modifications. The FFTW library is used

for internal DFT computations.
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The goal of this thesis is to take the sFFT reference implementations, port

them to various heterogeneous architectures and have a single code base for multiple

architectures, and optimize it to obtain a high performance library. Optimizations

include, asynchronous operation, atomicity, reductions, improved cache locality, etc.

1.5 Challenges

1.5.1 Parallelism

Sparse FFT is irregular algorithm. The algorithm grows computationally as the

size of the input signal grows and the memory access pattern becomes more and more

irregular. There are a lot of loop carried dependencies present in the algorithm which

hinders optimal parallelism. Thread synchronization is among the main concerns when

it comes to parallelism. Since multiple threads/kernels need to be involved and they will

be accessing shared resources at the same time, the need to be careful and implement

thread synchronization, such as mutex locks, critical sections, asynchronous access and

movements, etc. , mechanism comes into play. These should be placed carefully and

minimally otherwise will hinder the parallelism process and will result in less efficiency.

1.5.2 Porting sFFT to diverse architectures

In our work, we aim to develop parallel sFFT implementations for Multicore

CPUs and GPGPUs using directive based programming and letting the compiler do

all the work for efficient porting of the algorithm to the different architectures.

Modern multicore CPUs are optimally designed for operations needing for low-

latency. That is, modern CPUs strongly favor lower latency of operations with clock

cycles in the nanoseconds, and we need to build techniques which can exploit these low

latencies very well.

GPUs, on the other hand, are throughput-oriented architecture. They work best on

the problem sets which can be ideally solved by using massive fine-grained parallelism,
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using thousands or even tens of thousands of threads. Graphics processing is one such

area with massive computational requirements, but where each of the tasks is relatively

small, and often a set of operations are performed on data in the form of a pipeline.

The throughput of this pipeline is more important than the latency of the individual

operations.

Different architectures may lean toward diverse parallelization and performance op-

timization techniques. For instance, efficient GPU programming typically requires

careful scheduling of data movement between host CPUs and GPUs, and manipulating

a kernel function to exploit the fine-grained massive parallelism by mapping threads to

thousands of GPU cores. These are usually not the case for shared-memory multicore

CPU architectures.

An optimal implementation to exploit both of these architectures is more than chal-

lenging, so for the purpose of this thesis we will be designing the algorithm as optimally

as possible for both, favoring more towards GPGPUs and relying on the compiler tech-

nology to optimize the same code efficiently for multicore CPU architecture.

1.5.3 Reproducibility

The most important thing to keep in mind while creating a library is that you

have to make sure it is reproducible across various conditions and architecture. For

the purpose of that i have selected OpenACC directive based programming model for

making sure that the reference and the implementation created by me is reproducible

and working. Also, a configuration file is created for fetching the required configuration

for the library and a docker image of the same will be uploaded to the website of the

implementation done by me, so as to make sure that it is reproducible by all.

1.6 Thesis organization

The thesis, starts off with mentioning the current state of the art algorithm in

FFT and sFFT, in chapter 2 and describes the optimizations and parallelizations done

until now. Chapter 3 describes the sFFT algorithm in detail and provides analysis of

8



it. Chapter 4 begins with an overview of parallelism and then describes the OpenACC

programming model along with an example. The parallelization approach taken by

me along with the challenges we faced and the profiling of the algorithm is shown in

chapter 5. We finally conclude and provide our future vision in chapter 6.
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Chapter 2

STATE OF THE ART

2.1 FFT implementation

There are many optimized implementation of the original Cooley/Tukey FFT

algorithm, among others. They have been optimized for many platforms. Some of the

libraries include, CUFFT for GPUs, AMD Core Math Library [2], FFTW for serial

and multi threading compatible to multiple x86 - based architectures, and Intel Math

Kernel Library (MKL) for Intel processors[4].

FFT is a memory dependent, as it is memory bound algorithm, and depends on the

memory subsystem designed and how to utilize and exploit it.

2.1.1 FFTW library

FFTW is an optimized library for multiple x86 - based architectures. The

computation in FFTW works by, executor that comprises of optimized, decomposable

blocks of code known as codelets. which is a specialized piece of code which computes

part of the transform[27].

A FFTW plan is a data structure which contains combination of codelets applied

by the executor. The plan is determined at the runtime by dynamic programming,

before the actual computation begins. The planner is responsible to reduce the final

execution time and not the number of floating point operations. Finally the planner

measures the run time of many execution plans and decides on the fastest one, this is

only if the right option is selected for it.
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2.2 cuFFT

CUDA is a low level programming language created by NVIDIA to perform

actions and manipulate instructions on the cores available on an NVIDIA GPU. Each

GPU has compute cores which are effectively known as CUDA cores. These cores

perform operations specified by the program on data available on the GPU. CUDA

toolkits have a no of highly optimized libraries to run various functions. One of them

is cuFFT[9]. The NVIDIA CUDA Fast Fourier Transform (cuFFT) library provides in-

terface for computing FFTs on input data up to 10x faster than serial FFT algorithm.

cuFFT uses hundreds and thousands of CUDA cores available by a GPU to deliver

floating-point performance without the need to create your own GPU FFT version.

cuFFT uses the Cooley-Tukey [25] and the Bluestein[40, 23] algorithm to com-

pute DFT of complex and real valued input data.

2.3 Other Parallel FFT algorithms

There are many algorithms available since the inception of the original Cooley-

Tukey FFT algorithm. Because FFT inherently is a parallel algorithm which can easily

be manipulated to do the same. Without going into deep into each of the large amount

of algorithms available, here are a few, radix-2 FFT, IFFT [39], parallel FFT on an

MIMD machine [22], etc.

2.4 Sparse FFT (sFFT)

Sparse FFT algorithm was created specifically to target sparse data and ap-

plications requiring the same. it has two main stages. First is the estimation stage

where the input signal is broken down and only the large most significant portion of

the signal is kept. Second is the location stage, where the now sorted and estimated

signal coefficients is located and recovered. The original implementation of the Sparse

FFT had two versions, 1.0 and 2.0, created in MIT. the differences between them was
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the kind of filter used for estimating and locating the significant coefficients from the

sparse input signal. More about the functioning and about 1.0/2.0 version of the sFFT

algorithm will be described in the next chapter.

2.5 Recent Developments in Sparse FFT

2.5.1 sFFT 3.0

Version 3 of the algorithm is a high performance optimized version. The main

idea of version 3 of sFFT from ETH Zurich is same as version 1 and 2, It features two

major improvements.

The first improvement is based on the observation that once a frequency co-

efficient of the signal was found and estimated, it can be removed from the signal.

This can help reduce the computational effort for the algorithm done in the next steps.

Although updating all of the signals would require O(n) operations [36]. Although

according to the author it is not, necessary to update the input signal, instead it is

sufficient enough to update the B-Dimensional output of a measurement (application

of filter, DFT and sub-sampling). This way the removal of the effects can be done in

O(B) time.

The second major improvement was the scheme for finding the signals sig-

nificant frequency coordinates using individual measurements. In the original ver-

sion1 and version 2, multiple location loops were run and their results combined in

order to get correct candidate coordinate at a high probability. But according to

the paper [30], it is noticed by the author that two distinct measurements (calls to

HashToBins) are enough. This helps in loop unroll and provides more parallelism.
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2.5.2 sFFT 4.0

Version 4 of the sFFT algorithm uses the same ideas as version 3, but eliminates

the restriction that only exact k-sparse signals can be used. It does this by using the

same scheme for finding candidate coordinates as version 3, but allowing again more

than two distinct measurements and reconstructing a finite number of bits of the coor-

dinates in each measurement. This approach is similar to a binary search, in each step

the region of a frequency is further reduced, even if it is allowed to perform adaptive

sampling. The details of this algorithm are very complex, and at the time of this writing

no implementation of sFFT v4 exists. The details of the algorithm are described in [30]

2.5.3 Parallel Sparse FFT

Parallel Sparse FFT (PsFFT) is an OpenMP optimized code base of version

1 and version 2 of sFFT. PsFFT was the first successful attempt at parallelizing the

sFFT code for multicore architecture using OpenMP. It resulted in approximately 5x

speedup as compared to the serial sFFT versions.

The authors converted the original code from C++ to C before implementing

it. This was done for two reasons. First, they used flat arrays and structs where data

is stored sequentially. It leads to better cache utilization. Second, a simpler code

structure in C makes it easier to parallelize and performs better also for low embedded

systems. It also helps compilers to exploit code optimization techniques.

Some of the optimizations done in PsFFT include:

Index Coalescing

Instead of using critical sections in sections which has loop carried dependence,

as it can cause a large performance penalty if no parallelization occurs in the loop, in-

dex coalescing approach is used which eliminates the loop carried dependence. When
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updating the index value, instead of waiting for its previous result, the basic idea of the

index coalescing approach was to directly map the index with each of the loop iterations.

Data affiliated loops

When multiple iterations are running in parallel, there is a chance that same

memory is updated by different threads causing collisions. It was avoided by having two

separate iterations which were collision free. A two layered iteration space is created

where the inner layer is collision-free and suitable for a data-parallel mechanism, such

as OpenMP. However, the global synchronization impedes the complete loop to be fully

parallelized. It also causes large large overhead when the number of threads increases.

To address this problem, enhanced data affiliated loops approach was introduced, where

unlike the basic approach where the data is only affiliated within an inner loop iteration;

the enhanced design will ensure the data be affiliated between each round as well. That

is, the data chunks hashing into the same bucket will always affiliate to the same thread.

Blocking Techniques

Most of the time consuming part of the algorithm is memory bounded with

poor spatial locality. The authors realized the importance of enhancing the memory

hierarchy utilization and to properly redesign the data usage of the algorithm. They

did so by keeping the data in cache or registers therefore reducing memory bandwidth

pressure.

Cache Blocking: The data is divided up and bucketed into cache sized blocks,

after it is filtered. and the operations are carried out on these. This helps in avoiding

repeated fetching of data from the main memory. Accessing the buckets and filter is
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Figure 2.1: Parallel Sparse FFT result compared to serial implementation and
FFTW. K = 1000, is kept constant here.[19]

straightforward since they are unit stride. Conversely, accessing the signal itself is ir-

regular due to the large-stride memory access pattern and leads to poor spatial locality.

TLB Blocking: Translation Look-aside Buffer blocking is required to avoid sig-

nificant amount of page faults associated with the algorithm. The approach is to divide

the signal, filter and buckets in blocks of page size. Therefore, the number of blocks is

the minimum number of pages that data reside in. This leads to the minimum number

of compulsory TLB misses.

Register Blocking: Then next step to avoid collision is to reorganize the data

into small dense block sizes, the size of a register of the machine it is being computed

on. This eliminates the loads and stores by reusing values that are in registers, and

also by avoiding spilling.
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Using these optimizations and more, the authors created a parallel OpenMP

based algorithm for multicore. They achieved about 4.5X speedup using 8 threads

on an Intel Sandy Bridge 8-core multiprocessor. Figure 2.1 shows a result compared

to the original serial MIT version of sFFT and the highly optimized FFTW library.

Parallelizing the serial implementation of the Sparse FFT algorithm enables us to

use a signal of a higher size with more sparsity value. In real world applications the

signal size n and the sparsity value k is generally large and the Parallel Sparse FFT

implementation can compute the result 4-5x faster than the serial version.

2.5.4 CUDA Sparse FFT

Sparse FFT is an algorithm which is irregular in nature, as the computation

depends on the size of the signal and the sparsity value. It also has parts which are

memory bounded. GPUs have a large amounts of cores and memory to accompany an

irregular algorithm like Sparse FFT. It allows us to improve the performance through

optimized parallel algorithm design, but porting it to GPUs is not as easy as multicore,

there are multiple challenges involved. If optimizations are not done properly, it will

adversely affect the algorithm, and in some cases make it even slower than the serial

algorithm version.

At first the serial sFFT, used to create the OpenMP version of Parallel sparse

FFT, is profiled. Profiling the sequential sFFT shows time distribution for each of the

steps when the signal size n increases and sparsity factor k is fixed and vice versa. It

is depicted in figure 2.3.

Left image shows the profiling results when sparsity (k) is fixed and the signal

size (n) varies. The right hand size shows the profiling results when sparsity (k) is

varying and the signal size (n) is fixed.
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Figure 2.2: CUDA Sparse FFT result compared to serial implementation and
FFTW.[43]

The thread management, also scheduling, synchronization and creation of differ-

ent threads are completely autonomous i.e. it is managed by the hardware. To achieve

the maximum performance on the GPU hardware, requires a deeper understanding

of the memory hierarchy and the execution model of the GPU. Various optimizations

were made to the algorithm to work efficiently.

Asynchronous Data Layout Transformation

The first two stages of the algorithm permutes the input signal and hashes them

into smaller bins. The index number generated for the same is largely non comparable

and causes irregularity. This irregular memory access pattern leads to non-coalesced

memory global memory access, which in turn creates memory traffic increasing latency

and cause bottleneck for achieving optimal performance.
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Figure 2.3: Asynchronous data layout transformation[43]

The compiler can be used in cases where the algorithm behaves this way to de-

tect the irregularities and reorders the computations at the compile time. But Sparse

FFT is a runtime based algorithm where the input is unknown till runtime and even

changes during computation. So it is of no help, as the index is randomly generated

and the access pattern is dynamic in nature.

To coalesce the memory access the asynchronous data layout approach was cho-

sen, that can reorder the data dynamically. The original non-coalesced kernel is split

into two kernels: one performs the data layout transformation while the other one

accesses the ordered data. In order to hide the overhead of data layout transforma-

tion, we take advantage of CUDA concurrent kernel executions where multiple kernels

execute concurrently on different CUDA streams.

This method happens in two kernels, first creates a second array data structure

which contains the coalesced data. The new order is created based on a desirable map-

ping technique between threads and data locations. For loop iteration i,

A′[i] = A[index]
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where A us the original input signal of size n.

Second kernel, computes the original program but directly accesses the reordered

data A. The chunk size is empirically chosen to be the bucket size B. So after reordering

a chunk of B-size data, the second kernel launches a number of B threads that computes

the B elements in a batch.

Fast K-selection Algorithm

In sparse FFT after binning is done of the permuted and filtered signals, we

take only the K-largest frequency coefficients out of them. This is done by the cutoff

step. It basically sorts all the lists of bins and then selects the k largest elements from

the sorted lists.

This is not going to be a problem if the signal size i small, but as the signal

grows, the amount of data grows and sorting the lists becomes more and more ex-

pensive. The cost would be typically, for a bin of size B, BlogB for a typical sorting

algorithm. For an sFFT algorithm most of the bins are almost empty and only few are

large.

IN the fast k-selection algorithm created and described by the authors of cusFFT,

they assign B threads and each thread processes one element in the bin. If the values

in the bin is larger than the threshold, the element is chosen and index is stored. It is

important to note that the threshold values here to be chosen is of utmost importance.

If it is too small, many small coefficients will be picked up and falsely treated as large.

On the other hand, if the threshold is too large, some useful large coefficients will be

lost[41].
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2.5.5 Summary

To summarize, this section overviews the existing work in FFT implementation

in terms of High performance versions. this section also highlights the various tech-

niques used by others to solve an irregular algorithms over different architectures. The

problems they faced, and the approach to solution they took.

sFFT is an NP-complete problem to find an optimal data layout with minimum

cache misses in general. It is cumbersome to look for an optimal algorithm which

can have both task and data parallelism and to get the optimal performance out of

the system and making it reproducible across various architectures, having a better

memory layout, either with or without hardware extensions, through data reordering,

computation transformation, or their combinations

In this thesis work, we gather all the information and approaches used for creat-

ing an optimal algorithm, and use a new programming model and better optimizations

to create a scalable parallel sparse FFT algorithm, which we will later describe in

chapter 4.
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Chapter 3

SPARSE FAST FOURIER TRANSFORM : AN OVERVIEW

3.1 Overview

In this section we breakdown the original Sparse FFT (sFFT) algorithm into

several stages and explain the working of the algorithm. Then highlight the computa-

tional aspect of the algorithm, analyze them and finally show the differences in terms

of sFFT 1.0, 2.0 and 3.0.

3.2 Sparse FFT

Discrete Fourier Transform (DFT) is a numerical algorithm used to convert time

domain to frequency domain, the transform operates on discrete data, in our cases a

signal whose interval often has units of time. DFT has lots of applications like, Wave

simulations, audio/video compressions, cryptography, etc. FFT [28] [24] is a faster

divide and conquer approach to DFT. It computes DFT of a signal of size n from time

to frequency domain and vice versa with a computational complexity of O(nlogn).

DFT is a computationally expensive algorithm. FFT was a boon for computing

DFT faster at O(nlogn) time and was voted as the 10 best algorithm of the 20th cen-

tury,cipra2000best. But today the size of the signals computed grows bigger and bigger,

so the time to compute FFT also increases. So regardless of the input size, sparsity,

structure the computation time does not increase O(nlogn). But many applications

have input data signals which are sparse in nature i.e. most of the Fourier coefficients

in the transformed domain are negligibly small or close to zero while only a few of

them are significant and important.
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This results in the algorithm being sub-optimal, because O(nlogn) operations

on n input data points lead to only a few number of k non-zero significant outputs,

where k << n, while the rest of (n− k) coefficients are zero/negligible small. Here, n

is the signal size and k is the sparsity factor.

There are many applications which have sparse input data signals, such as

Nuclear magnetic resonance[21], Seismic imaging[19], GPS[20, 32, 33, 29], DNA se-

quencing, biomedical signals[38], medical images[37], audio/video compressions, social

graphs, financial graphs and many more. Sparse Fast Fourier Transform addresses all

these applications and provides a solution. FFT computes the entire input data with

size n, whereas sFFT it filters out the input data and works on a small set of the

original which has more significant coefficients which needs to be computed. It finds

the k-largest output coefficients out of a small compressed FFT computation. This

results in substantial performance improvements.

To find the relevant part of the input data which is not empty or corrupt, sFFT

employs filters and permutes the signals into small sets of buckets/bins. The filters

depending on the version uses Gaussian filter for getting the largest coefficients towards

the center of the bucket and Dolph-Chebyshev/Mansour filter for better heuristic es-

timations. Since the signal is sparse in the frequency domain, each bucket is likely

to contain only one large Fourier coefficient, of which the location and magnitude can

then be precisely determined. The sFFT achieves a runtime of O(logn
√
nklogn), which

is faster than FFT for k up to O(n/logn).

3.3 Computational stages of sFFT

For a time-domain x ε Cn signal of size n, the Fourier spectrum x̂, will have

k non zero Fourier coefficients. G is the flat window function whereas Ĝ denotes its

spectrum in the frequency domain. The algorithm for the same is given in Figure 3.4.
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Figure 3.1: sFFT algorithm Version 1.0

sFFT Version 1.0, consists of multiple executions. They are classified into two

types. Location loop and Estimation loop. Location loop creates a list of coefficients

which have a probability of being indices of one of the k nonzero coefficients in x̂. This

loop runs a number of times, the more it runs, the better the probability of locating

the k nonzero coefficients in x̂. Estimation loop are used to determine the frequency

coefficients from the now selected coefficients from x̂ to get

x̂i ∈ I

where I is the given set of coordinates from the location loop.

There are 6 main stages of Sparse FFT. Random spectrum permutation, Flat

window function, Sub-sampled FFT, Cutoff, Reverse hash function for location recov-

ery, Magnitude estimation. These are explained in detail below.
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Stage 1: Random Spectrum Permutation

sFFT algorithm begins by dividing a large set of Fourier coefficients into smaller

size buckets by using convolution method with filter(s), which will be discussed in de-

tail in the next section. There are many challenges in this stage, how to deal with

input data where two or more large coefficients are located too close to each other, and

this cannot be easily segregate via bucketing. To make sure each of the buckets have a

single large Fourier coefficient, the algorithm employs random permutation to the input

signal so that the nearby large Fourier coefficients in the frequency domain are evenly

separated. The distance between the original location and permuted location should

be large enough so that two large close coefficients are not placed into the same bucket.

The sFFT employs a hashing-based spectrum permutation method to address

issue. Specifically, it defines a hash function that maps indices of the original signal

spectrum to the permuted locations so that the original locations can then be recovered

at the end of the algorithm.

The random permutation stage of the algorithm is used to get different results

in subsequent location loop runs, because of two reasons. First iteration of the random

permutation loop is only going to contain the correct k non zero coefficients at a

constant probability. Second iteration results in many coordinates to be mapped to

the same bin. Using multiple runs of this stage with different random permutation

helps in reducing the probability of a non significant, very small coefficient or zero, to

be mapped into one of the nonzero bins J each time and is therefore falsely considered

as one of the candidate coefficient.

Stage 2: Flat Window Function

The Flat window function is used as a filter to extract a certain set of coeffi-

cients in x, as sFFT is a sublinear time algorithm, only part of the input data is used

to compute FFT. Like discussed in the section above, we need to separate them into
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Figure 3.2: Gaussian filter, a Flat Window Function in time (top) and frequency
(bottom) domain. Here in this example, the window size n = 256

buckets, having a single large frequency coefficient, we can then recover the frequency

individually from the buckets. It leads to the sample complexity and the execution

time is directly proportional to the number of buckets, which is lower bounded by the

signal sparsity k.

The algorithm is then filtered to smoothen out the curves. Gaussian filter is

used here. Due to the nature of Gaussian filter, it positions the largest frequency co-

efficients towards the center and positions the smaller or empty part of the spectrum

towards its edges in the time domain.

Along with the Gaussian filter, Dolphstartsh-Chebyshev filter G, depicted in

Figure 3.2 is also used. They are both used together because Gaussian and Dolphstartsh-

Chebyshev filter together concentrates the signal both in time and frequency resulting

in G being close to zero, and the Fourier transform of the same Ĝ is negligible except
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Figure 3.3: Subsampled FFT (top) and Cutoff function (bottom). This example has
the parameter k = 4 , i.e., we select the top 4 largest samples

for a fraction of the coefficients with an exposed tail outside of it.

Stage 3: Sub-sampled FFT

In this stage, the permuted and now filtered input coefficients x gets the rate of

B sampled and is hashed into a set of B bins. Now instead of computing N-dimensional

FFT, it can compute the subsampled B-dimensional FFT, where B is the number of

bins. This is done in O(BlogB) time. So now, x is subsampled, summed up and a

B-dimensional FFT is performed on it (Figure 3.3). Each bin has at most one non-

negligible coefficient.

Stage 4: Cutoff

After Stage 3, we get the number of B buckets at frequency domain. Each bucket

contains at most one potential large coefficient. In the k-sparse signal spectrum where

k B, it is still highly likely that many of the buckets are close to zero. Furthermore,
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the algorithm guarantees that each large coefficient has a low probability of being

missed if we select the top O(k) samples. Therefore, in this step the size of the data

to be processed is further reduced by selecting only the top k coefficients of maximum

magnitude. It can be done effectively through a quick selection algorithm which can

select the top k largest elements from a set of B buckets

Stage 5: Reverse Hash Function For Location Recovery

After most of the sparse non-significant coefficients are removed in the previous

stage, the rest of the coefficients which were selected as the candidate coefficients have

to be reconstructed back by finding the original locations in the frequency domain and

estimating the magnitudes.

The purpose of estimation loops, the second type of loops in sFFT version

1, is to reconstruction the exact coefficient values given a set of coordinates I. The

implementation of estimation loops is similar to location loops: they share the first 3

steps.

The previous stages define a hash function

hσ : [n]→ [B]

that maps size of n input data to the number of B buckets. The hash functions has to

be reversed by removing the phase changes that happened in the previous steps to get

back the original locations in the frequency domain. this is done by computing reverse

hash function hr

These stages run for L = O(logn)locationloops with different permutation pa-

rameters σ and τ , and return the L sets of locations of candidate coefficients I1, ..., IL.

For each output of the location inner loop Ii, it counts the number si of occurrences

of each found coefficient i, that is si = |r|i ∈ Ir|, and only keep the coefficients which

occurred in at least twice in the location loops. I ′ = i ∈ I1 ∪ ... ∪ IL|si > L/2.

27



Stage 6: Magnitude Estimation

In this final stage, given the locations I’ and frequencies x̂rI′ , from location loops,

it estimates each frequency coefficient x̂i as x̂i = median(sri |r ∈ 1, ...L). The median

is taken in real and imaginary components separately.

Outer Loop

sFFT has two main loops, outer an inner. The outer loops executes all of the

stages above. As described above, by running the inner loop multiple times, we increase

the probability of finding the locations and recover the magnitude of the large Fourier

coefficients. Algorithm 3.1 shows the iteration of the outer loop. And flow diagrams

of the same is shown in Figure 3.4.

When multiple frequencies hash to the same bin, a hash collision occurs and the

estimation fails. To compensate this, the value of x̂i can be set to the median of the

corresponding outputs of all estimation loops

3.4 Sparse FFT Version 2.0

sFFT version 2.0 is similar to the 1.0 version. The main difference is that sFFT

2.0 applies Mansour filter [34], which helps in getting better heuristics in the location

recovery stage which is the stage 5 above (Reverse Hash Function and location recov-

ery). This helps in finding out the Fourier coefficients which are large effectively and

quickly. This is done by the Mansour Filter by restricting the location of the large

Fourier coefficients. The algorithm for sFFT version 2.0 is shown in Figure 3.5

Unlike the other filters which have been mentioned in the Flat Window subsec-

tion above, there is no spectral leakage in Mansour Filter. Since this results in lower

error rate, Mansour Filter needs fewer iterations to get the result thus the execution
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time is reduced. There are drawbacks to using Mansour Filter though, the permuta-

tions cannot be used to resolve hash collisions, since only the offset is random. However

according to [31] this is not an issue in practical algorithms.

3.5 Sparse FFT Version 3.0

sFFT version 3.0 was part of the high performance Sparse Fast Fourier Trans-

form library created by Jorn Schumacher as part of his thesis at the ETH Zurich [35].

The sFFT 3.0 is similar to the version 1 and 2, but it has two major improvements.

The first improvement was based on the observation that frequency coefficients

which were located and estimated based of the sFFT stages mentioned above, are re-

peated again for another iteration, so they can be safely removed so as to reduce the

computation. this helps even more in reducing the amount of work to be done in later

stages. However updating the whole signal requires O(n) operation and is therefore

expensive. But there is no need to update the input signal, only B-Dimensional output

of a measurement (filtered, DFT and subsampling) is enough. This results in O(B)

operations.

The second improvement made in version 3 is an improved method of locating

the large frequency coefficients using individual measurements. In sFFT v1.0 and sFFT

2.0, as described above,runs multiple location loops and the results are combined to

get higher probability [30] of locating large coefficients. proves that two distinct calls

are enough.

The idea here is to perform the measurements with similar permutations that

only differ in the phase-altering parameter. Permutations have two parameters τ and

σ. The two calls to HashToBins are performed with the same σ, but one time with

τ = 0 and one time with τ = 1.
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When no hash collision occurs only a single nonzero frequency coefficient maps

to a bin. Since the phase change in the second measurement also depends on the

bins coordinate, the coordinate can be reconstructed out of the phase difference of the

two measurements[36]. The drawback of this approach is that it is only applicable to

exact k-sparse signals, i.e. k-sparse signals which are not affected by any noise. The

algorithm for the same is shown at Figure 3.6. And the flow diagram is shown in Figure

3.7.

3.6 Analysis of sFFT

Asymptotic runtime

In this section, asymptotic runtime bounds for the Sparse Fast Fourier Trans-

form algorithms are derived. Table 5.5

Algorithm Version Cost

sFFT v1 O(logn
√
nklog(n))

sFFT v2 O((logn 3

√
nk2log(n))

sFFT v3 O(klogn)
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Figure 3.4: sFFT 1.0 Flow diagram
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Figure 3.5: sFFT algorithm Version 2.0
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Figure 3.6: sFFT algorithm Version 3.0
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Figure 3.7: sFFT 3.0 Flow diagram[36]
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Chapter 4

OVERVIEW OF GPU PARALLELISM AND OPENACC

4.1 Intro to Parallelism

Parallelism in computing is a term coined to denote that multiple execution of

processes or computations run simultaneously in parallel. Parallelism is growing rapidly

now days due to the slow growth of frequency scaling, preventing serial processes to

increase in speed. There are many hardwares now which are used for achieving paral-

lelism, such as multicore CPUs, GPGPUs (General Purpose Graphic Processing Unit),

DSP, FPGA, coprocessor etc. These when combined and programmed to achieve par-

allelism are called heterogeneous systems. they operate by communicating with each

other. All of these hardware have pros and cons, and functionality which are specific

to them. For example, a coprocessor can compile its own set of program to run in

parallel. Whereas a GPU is used as a form of accelerator for computation purposes.

FPGA’s on the other hand can be configured according to the need of a developer and

consumer to achieve the functionality which will be beneficial.

When trying to parallelize algorithms, four different types of parallelism which

we should know of. They are Bit-level, Instruction level, Task and Data parallelism.

For the purpose of this thesis, we will only be explaining task based and data based

parallelism. Task Parallelism is used for distributing and parallelizing computational

tasks in an algorithm across multiple parallel threads of execution. A simple way of

the same is pipelining tasks of an algorithm. The main idea behind Task parallelism

is to make sure that tasks execute, concurrently or parallely, independent from other

tasks, ideally having their own data sets to work upon. Tasks can execute the same

35



Figure 4.1: Task Based Parallelism, each of the task are handled by an independent
thread of execution, often passing messages/data to each other[41].

or different portion of the code and communicate by passing data from one thread of

execution to the other, as seen in the figure 4.1. Often, depending on the algorithm,

the results are combined after all the threads are done with their function, otherwise

the results are written separately in another data structure chosen by the programmer.

Data parallelism focuses on distributing data across different threads of exe-

cution or nodes. These threads or threads of executions operate on different sets of

data in parallel. Each of these threads run operations on the data serially. By using

multiple threads of execution, an algorithm can make use of parallel architectures such

as multicore processors and massively parallel GPUs. This helps make an algorithm

makes faster as multiple threads will be running on parallel.

Parallelizing algorithms is not as easy as it sounds, there are a lot of factors to

be considered before parallelizing an algorithm. Some algorithms are inherently par-

allel, where as some are absolutely non-parallel in nature. if you try to run in parallel

an algorithm which is not parallelizable, it will detrimental to the performance. In

terms of applications being parallel in nature, they are divided into three classifica-

tions, fine-grained, coarse-grained and embarrassingly parallel. Fine grained are those

where the subtasks communicate with each other many times a second. Coarse grained
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Figure 4.2: Data Parallelism, the data gets divided into different concurrent threads
of execution, which in turn results in a faster parallel execution of
operations[41].

parallelism are those where subtasks do not communicate that often. Embarrassingly

parallel don not communicate at all or rarely do. These are easiest to parallelize as they

rarely need synchronizations. There are many things to be aware of also when trying to

parallelize an algorithm, such as race conditions, mutual exclusions, synchronizations,

and parallel slowdown.

4.2 Introduction to GPUs

Parallel processors such as GPUs are the cornerstone of parallel programming.

They have many numerical applications. The computations that arise in these appli-

cations lend themselves naturally to efficient parallel implementations. GPGPUs is

being increasingly adopted as a general-purpose computing platform to accelerate a

vast majority if scientific and engineering applications. For the purpose of the thesis,

we have selected NVDIA’s GPGPU for our accelerator based architecture to describe.

The algorithm implemented by me, theoretically works on varying accelerators from

other manufacturers as well.
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There are a lot of accelerator architectures available by NVIDIA and they come

in wide variety of configurations, we are focusing on Kepler GK100[12] and Pascal

GP100 based architectures[10] as a testbed. A full Kepler based configuration consists

of an array of 15 Streaming Multiprocessors (SM), each of which features 192 single-

precision CUDA cores, and each core has a fully pipelined floating-point and inter

arithmetic logic units. Each SM could access up to 65536 registers. A full Pascal based

configuration consists of an array of Graphics Processing Clusters (GPCs), Streaming

Multiprocessors (SMs), and memory controllers. A full GP100 consists of 6 GPCs, 60

Pascal SMs, and eight 512-bit memory controllers (4096 bits total). Each of the GPC

has 10 SMs and each of those SMs has 64 CUDA cores.

All of the thread managements, scheduling, synchronization, and management

are managed by the hardware, so essentially the overhead is minimum. The SM sched-

ules threads in groups of 32 parallel threads called warp. Each SM has a warp , one per

processing block each with dual instruction dispatch units, so that they can be issued

and executed concurrently.

4.2.1 GPU Programming Challenges

To get maximum and optimal performance on a accelerator based GPGPU plat-

form, in a lot of cases it requires a deep understanding of the memory hierarchy and the

model of the hardware. For instance, it is very important to follow the right memory

access pattern to the global memory failing which performance can be affected. All

threads of a warp should read/write global memory in a coalesced way, non coalesced

memory access (meaning that it strides across memory lines in the global memory)

could lead to more memory transactions than necessary. Because a global memory

transaction incurs hundreds of cycles of latency, non-coalesced memory access could

significantly degrade the effective throughput of GPUs. An additional challenge is to

find an effective way to partition the workload evenly among the hundreds or even
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thousands of CUDA cores. Parallelism if too fine-grained can result in insufficient bal-

ance of work per thread, on the other hand, if a thread has too much workload, this

may over-pressure the registers per core and incur more register spilling behaviors.

It is very difficult to design an effective sFFT algorithm that can achieve a high

level of parallelism at the same time maximize utilization on the GPU. Parallelizing the

algorithm is even more challenging due to loop-carried dependencies in the most time-

consuming kernel. The algorithm being heavily memory-bound leads to the relatively

small amount of workload per thread, this is yet another performance barrier. For the

rest of the chapter, we will highlight potential solutions to these major challenges.

4.3 OpenACC: A Directive Based Programming Model

OpenACC is a directive based portable high-performance parallel programming

model, designed to port codes and algorithms to a wide variety of heterogeneous plat-

forms and targeting multiple hardware architectures[14]. All the while making pro-

gramming less tiresome and giving the programmer control over the code, with less

effort than a lower level model like CUDA.

OpenACC is useful to provide hints to the compiler about parallelization pos-

sibilities and movement of data from the host to device and back from device to host,

although this heavily depends on the kind of architecture OpenACC is targeting. Pro-

grammers use directives or pragmas to work along with the compiler to parallelize,

tune and finally optimize parallel codes to achieve performance.

It is a portable model, and targets a wide variety of architectures to create

one solution for all parallelization needs. This helps in making parallelization possible

for multiple architectures and heterogeneous platforms by coding once optimally and
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reusing it in multiple platforms.

The current architectures which are currently supported by OpenACC are,

GPGPUs, NVIDIA and AMD, multicore, IBM power systems, eg. Power8, and cur-

rently support for many others are underway like ARM, Knights Landing, etc.

4.3.1 OpenACC Language Features

Parallel Constructs: Parallel constructs launches a number of parallel gangs

in parallel, and each one of them have multiple workers which in turn have vector or

SIMD operations. Clauses for this constructs are defined below in Loop Constructs

Kernels Construct: gives the compiler flexibility to decide the way the code

segment should be parallelized, how the threads should be managed, synchronized for

the targeted device. It also lets the compiler decide if it is safe to parallelize the code

segment in the first place. Parallel construct on the other hand told the compiler

explicitly that the section is safe to parallelize. It has clauses like async, wait, vec-

tor length, etc.

Data Constructs: a device data constructs hints the compiler about the move-

ment of data relevant for parallelization. It also defines the region of the program within

which data is accessible by the device. It has clauses like, create, copyin, copyout, etc.

Host Data Construct: makes the address of the device data available for the

host. It has clauses, use device.

Loop Constructs: a loop constructs applies to the immediately following loop

or nested loops, and describes the type of device parallelism to be used to execute the

iterations of the loop. It has clauses like async, wait, reduction, gang, worker, vector,
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collapse, etc.

4.3.2 Examples

Here we will discuss an example of how OpenACC will parallelize Jacobi Iter-

ation code and port it to a GPU. We will only show a part of the algorithm in snippets.

Jacobi Iteration: is an iterative algorithm for finding a solution to a standard

diagonal linear system of equations.

Below is the main part of the Jacobi Iteration algorithm in C++ code. This

is the serial version. The outer while loops is in constant iteration till the solution of

the system is found and is converged. The first nested for loop, applies a 2D Laplace

operator at each element of a 2D grid[15]. The next nested inner loop copy the output

result back as the input for the next iteration.

We first start applying a kernels directive on the loop we want to parallelize.

This tells the compiler to run the loop till the end of scope on a targeted architecture,

in our case here its on a GPU. Kernels directive creates parallel accelerator CUDA

kernels on an NVIDIA GPU and runs them on parallel.

Post the kernels directive, we can insert additional directive which give us more

control over the parallelism, like data movement clauses and specifying to the compiler

which loop are safe to be run independently and can be parallelized more. The code

with OpenACC directives is shown below.

Here in Table 4.2 the loop independent directive specifies which loops can be

run independently.
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Table 4.1: Jacobi iteration serial

while ( e r r o r > t o l && i t e r < i t e r max ) {
e r r o r = 0 . f ;

{
for ( int j = 1 ; j < n−1; j++) {

for ( int i = 1 ; i < m−1; i++ ) {

Anew [ j ∗m+i ] = 0 .25 f ∗ ( A[ j ∗m+i +1] + A[ j ∗m+i −1]
+ A[ ( j−1)∗m+i ] + A[ ( j +1)∗m+i ] ) ;

e r r o r = fmaxf ( e r ro r , f a b s f (Anew [ j ∗m+i ]−A[ j ∗m+i ] ) ) ;
}

}
for ( int j = 1 ; j < n−1; j++) {

for ( int i = 1 ; i < m−1; i++ ) {
A[ j ∗m+i ] = Anew [ j ∗m+i ] ;

}
}

}
i f ( i t e r % 100 == 0) p r i n t f ( ”%5d ,%0.6 f \n” , i t e r , e r r o r ) ;

i t e r ++;
} \\end o f while loop
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Table 4.2: Jacobi iteration parallel with OpenACC

while ( e r r o r > t o l && i t e r < i t e r max ) {
e r r o r = 0 . f ;

#pragma acc k e r n e l s
{

#pragma acc loop independent
for ( int j = 1 ; j < n−1; j++) {

for ( int i = 1 ; i < m−1; i++ ) {
Anew [ j ∗m+i ] = 0 .25 f ∗ ( A[ j ∗m+i +1] + A[ j ∗m+i −1]

+ A[ ( j−1)∗m+i ] + A[ ( j +1)∗m+i ] ) ;
e r r o r = fmaxf ( e r ro r , f a b s f (Anew [ j ∗m+i ]−A[ j ∗m+i ] ) ) ;

}
}
#pragma acc loop independent
for ( int j = 1 ; j < n−1; j++) {

for ( int i = 1 ; i < m−1; i++ ) {
A[ j ∗m+i ] = Anew [ j ∗m+i ] ;

}
}

}
i f ( i t e r % 100 == 0) p r i n t f ( ”%5d , %0.6 f \n” , i t e r , e r r o r ) ;
i t e r ++;

}
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This algorithm achieves almost 20x of speedup compared to a serial run, and

you can notice that none of the lines from the original code is changed and only by

adding few directives, which a compatible compiler can read and others can ignore, we

can achieve parallelism.

4.3.3 Advantages and Disadvantages

There are a lot of advantages of OpenACC compared to other parallel program-

ming models. The strengths, mentioned below, enabled OpenACC to be selected as

the high-performance parallel programming model to be chosen for parallelization of

Sparse Fast Fourier Transform

• OpenACC is portable and can be used with a wide variety of architectures

• OpenACC can be combined with other parallel models like CUDA, OpenMP,
MPI, etc

• As it can be combined with CUDA, allows us to develop grammar using Ope-
nACC’s higher level directives and implement complex functions

• Directive based programming also allows compilers which does not recognize
OpenACC model to ignore the directives and compile the code serially

• OpenACC is simpler to use as you don’t need to change the source code and just
provide hints to the compiler as where the parallelization is possible and how
data can be moved

• It does not require significant amount of writeup/changes in an algorithm, so the
number of lines of code is lesser than that of CUDA.

OpenACC is gaining a lot of momentum in the scientific community. It is

being used in various domains of science, such as computational hydrodynamics[3],

astrophysics[3], climate weather Oceans[6]. computational fluid dynamics[1], quantum

chemistry[8], computational electromagnetics[5], medical imaging[7], etc.
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Chapter 5

PARALLELIZING SFFT USING OPENACC

In this chapter we present a high performance parallel algorithm for computing

sFFT on GPGPUs and multicore, namely ACCsFFT, using OpenACC directive based

programming model. We will also discuss the sequential implementation of the code

we are going to use and the profiling of the same.

Before parallelizing any code, the first thing that anyone should do is profile the

code which they are trying to parallelize. The reason for so is to find the hot spots

of the algorithm, which tells us how the code works and if it can be run on paral-

lel. Algorithms which have spread out hot spots (computation time) are difficult to

be made parallel as compared to the ones which have concentrated hot spots. it also

helps us decide if the code can be run on an accelerator or a multicore architecture.

There are multiple profiling programs available, Gnu-Prof(gprof), Tau, Vampir, PGI

prof (pgprof), Nvidia prof (nvprof), etc.

5.1 Sequential Implementation and Profiling

Here we discuss the sequential implementation and performance evaluation of

the original implementation of sFFT by MIT which will serve as a starting point for

the parallel implementations. The version used here for parallelization is based on the

reimplementation done in [42] of the original MIT version and was dubbed, UH sFFT.

MIT and the UH implementation differed on the following points.
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First, the MIT implementation employed C++ STL (Standard Library) and

is a sequential only implementation without taking inherent advantage of parallelism

inherently present in the algorithm. Some of the data structures used are not thread

safe, and certain code structures carry on loop-carried dependencies. This makes par-

allelizations of the MIT implementation non-trivial.

Second, the MITs implementation does not take any advantage of modern com-

puter architectures. So it does not deliver the highest possible performance. On the

other hand, many other high-performance standard FFT libraries such as FFTW and

cuFFT are highly optimized to exploit the modern computer architectures.

The UH version is implemented in C instead of C++, and consists of data

structures which can easily be used for data parallelism and removed loop carried de-

pendencies. Sparse FFT suffers from low compute to memory ratio, as well as indirect

and irregular memory access patterns. Achieving higher performance on modern com-

puter architecture requires choosing a compact data structure which can best exploit

the memory hierarchy. However, the original MITs implementation largely utilizes

C++ standard collection-based data structures such as containers. While those data

structures provide more flexibility and simplicity, it comes at the cost of space over-

head. Moreover, it creates additional levels of indirection, which suffers from inefficient

cache utilization.

Also a simpler code structure is compiler friendly in C. It makes the compiler

easier to exploit its code optimization techniques, which is particularly important for

achieving high performance on modern massively parallel architectures such as GPG-

PUs
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Figure 5.1: Serial sFFT Profiled stages

Performance Evaluation

In this subsection, we profile the sequential UH sFFT implementation and study

the time distribution and computation of the major stages of the sFFT.

Figure 5.1, shows the various stages, discussed in the previous chapter, of Sparse

Fast Fourier Transforms. This is the post profiled image of the serial Sparse Fast Fourier

Transform reference algorithm. After profiling the algorithm we notice that the ones

highlighted in orange are the most time consuming, computational sections of the al-

gorithm, and are good candidates for parallelization. These are the sections which we

will be focusing for parallelization in this thesis.

Figure 5.2 shows the time distribution by varying signal size n from 218to227

with signal sparsity k fixed to 1000. The time taken on the stages of permutation and

filtering, stages 1 and 2, denoted as perm+filter in the figure, increases rapidly as the

signal size increases. Towards the end of the figure you can even notice that it becomes

the most predominant part of the algorithm when the signal size is high. Although

if you notice that the estimation stage of the algorithm goes down as the signal size
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Figure 5.2: Profiling results for main steps of sFFT with sparsity constant and vary-
ing signal value

increases.

Figure 5.3 shows the time distribution of the sFFT when the sparsity value k

changes and the signal size n remains constant. the k sparsity value ranges from 2,000

to 10,000 while the signal size n is fixed at 227. Even in this case, the Perm +filter

dominates the overall execution time with changing level of sparsity. And as expected

the estimation time also increases as the sparsity increases in a signal, this is due to the

fact that as relative sparsity increases estimation and recovering the correct coefficients

takes more and more time and is difficult inherently.

In summary, since the perm+filter stage is the most time-consuming part of the

sFFT algorithm, we will mainly outline optimizing this function when we present our

parallel algorithms. Nevertheless, we still parallelize the entire sFFT algorithm instead

of just the perm+filter stage. The major purpose is to avoid the data transfer overhead
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Figure 5.3: Profiling results for main steps of sFFT with signal constant and varying
sparsity value

due to bulk volume data transfers between host CPUs and accelerators.

In the next few sections, we will discuss ACCsFFT algorithm, a parallel algo-

rithm for computing the sFFT on GPUs, how it was parallelized and the final result

of the parallelization. Here we have parallelized only three stages of the algorithm as

shown in sFFT profile Figure shown in chapter. These are the most computationally

intensive parts of the algorithm. Some of the optimizations are reused from the cusFFT

algorithm discussed in chapter 2, like the Fast k-selection algorithm.

5.2 Challenges

For this thesis we will be mainly focusing on achieving maximum performance

on a GPU, as well as compare the same code on multicore using OpenACC to Parallel

sFFT described in chapter 2. To port an algorithm and achieve optimum performance

on an architecture, it requires a lot of understanding of the same. In case of GPU,

it requires an understanding of the memory hierarchy and the execution model of the
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GPU. It is important to follow the right memory access pattern to the global memory,

otherwise it may cause performance bottleneck and hindrance.

One of the challenges that a programmer faces is an effective way of making

threads run concurrently. We must find an effective way to partition the workload

evenly among the hundreds or even thousands of CUDA cores available on an NVIDIA

GPU. The work load should be divided as such that all threads can run independently

and there is not a lot of data movements, specially from the host to device and back.

If the parallelism is too fine grained , it can result in insufficient balance of work per

thread, on the other hand, if a thread has too much workload, this may over pressure

the registers per core and incur more register spilling behaviors

PCIe bus is not very efficient in transferring data, in fact it is slower as com-

pared to the speed of instructions. So one thing we must always avoid is redundant

transfer of data. To achieve a good performance threads should be updating data on

the device itself and transfer back to the host when that process is complete. Of course

it does depend on the algorithm a lot. But that is the ideal scenario. The data should

ideally be present in the GPU global memory in a coalesced form, as a non coalesced

memory access can lead to more transaction than necessary.

It is very difficult to design an effective sFFT algorithm that can achieve a high

level of parallelism at the same time maximize utilization on the GPU. Parallelizing the

algorithm is even more challenging due to loop-carried dependencies in the most time-

consuming kernel. The algorithm being heavily memory-bound leads to the relatively

small amount of workload per thread, this is yet another performance barrier.

5.3 Parallelization Stage 1: Analyze

Analyze is the first step towards parallelization. First we need to profile the

code to figure out the hot spots of the algorithm, that is the parts of the algorithm
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with the most computation. This part of the algorithm is the one which should be a

candidate for being parallel, as the algorithm spends most of its time there, so that

we can divide the work and make it faster. We have to identify the important loops,

functions, and data structures in an algorithm to know where to start and what to

offload to the massively parallel GPU.

We also need to know if there are existing libraries which are parallel and highly

optimized, available to us. For example, if we already have a Fourier transform library

which targets a GPU and parallelizes the computation we do not need to write that

part of the code or re-implement it. This way, we can just call the library and used

the optimized feature available to us.

We will be using the PGI community edition [16] as our compiler of choice for

parallelization with OpenACC, and it comes with several math accelerated libraries

inbuilt into it. If we need to use dense or sparse linear algebra, then we would be using

cuBLAS or cuSPARSE accelerated library. If FFT is needed then we would be using

cuFFT. We should be looking at the existing libraries which we are using and check

whether there are already existing parallelized library.

We already did this in the first section of this chapter. The hot spots identified

in this algorithm can be seen in Figure 5.1. We use a profiler to check which portion

of the code is taking the most computation time in the code. Post that we check that

portion of the code to understand when and where the time consumption is happening.

This is to help us to identify the accelerating region. Its a good rule of thumb to also

check what optimizations the compiler is actually performing on the existing code.

Most of the profilers such as pgprof will provide us with that information. This will

tell us whether the compiler, generated vector SSE code for the loops we are trying

to parallelize, the intensity of the loop, how many instructions were prefetched, how

many alternate versions were created for the same, etc. All these information will be
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useful when performing the next step that is parallelize.

From our profiling data, we came to realize that the most time consuming parts

of the Sparse Fast Fourier Transform algorithm is in the 1st, 2nd and 3rd stage. That

is in the location loop for the first two stage and the estimation loop for the last

stage. Details of the stages is explained in Chapter 3. We also come to know from our

profiling, that the compiler has auto vectorized many loops and created SSE codes for

the same. Also, it has generated multiple versions of the existing loops in the all of

these stages. This information will be helpful for the next stage.

Programming Best Practices for Stage 1: Analyze

Do’s:

• Always begin with compiling and profiling the code

• Its always good to know how the compiler is currently trying to optimize the
existing code

• Multiple profilers is always useful, it give a better perspective

• Check the libraries currently being used, and if the optimized parallel version for
your targeted architecture is available. Replace with that

• Identify loops, data structures and function which are good candidate for paral-
lelization

Dont’s:

• Never start parallelizing without profiling your code, it may result in a parallel
slowdown

• Know the targeted architecture to choose a data structure and directives appro-
priately

5.4 Parallelization Stage 2: Parallelize

In this stage we begin exploring parallelism, since we now have identified the

important portion of the code which we mean to accelerate. Starting with the functions

and loops that take a lot of time on a CPU. We now provide hints to the compiler

52



Table 5.1: sFFT serial code snippet

for ( int i i =0; i i <l oops ; i i ++){
for ( int i =0; i<B; i ++){

. .

. .
for ( int j =0; j<round 2 ; j +=4){

tmp = ( ( unsigned ) ( ( i 2+j ∗B)∗ a i ) ) ;
index = tmp & n2 m 1 ;
COMPLEX MULT( index , o f f 3 , j ) ;

index = (unsigned ) ( tmp + B∗2∗ a i ) & n2 m 1 ;
COMPLEX MULT( index , o f f 3 , j +2);

}

about parallelism using pragmas for C/C++ code.

Table 5.1 shows a snippet from perm+filter stage of the UH-sFFT algorithm

in C. There are multiple nested loops in the algorithm, and is a good candidate for

parallelization.

After identification of parts of the algorithm which can be parallelized, we tell

the complier to parallelize this section by providing the parallel pragma to specify

that this loop till the end of its scope is ready to be parallelized and it tells the com-

piler to create a bunch of parallel threads known as gangs , and then distribute the

iterations of the loop to those gangs, each one of it runs an iteration of the same.

We don’t need to tell the compiler how to divide the loop iteration, the com-

piler will figure it out on its own based on what it knows about optimizing code in the

targeted architecture. It will be different how the compiler targets GPU vs a multicore

CPU. By giving the parallel clause, we explicitly tell the compiler that this loop is safe

to execute.
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To avoid explicitly stating to the compiler that this loop is safe, unless we know

for sure that it will not cause any parallel scaling problems, we should let the compiler

decide whether the loop is safe or not and also let the compiler decide how to paral-

lelize the code. This can be done by the kernels clause. When we specify the kernels

clause, like described before, the compiler investigates the section to be parallelized

and launches an optimal parallel set of threads based on whether the loop is safe or

not to parallelize.

An OpenACC compiler when targeting a GPU, parallelizes portion of the code

by launching a bunch of threads in parallel. Each of these thread of execution is called

a vector . Vectors run a task specified and offloaded to the GPU by the compiler.

When a bunch of vectors run simultaneously performing the same task, it causes par-

allelism. This group of vectors is known as worker . Each one of the worker contains

32 vectors, depends on the GPU and its architecture also, and perform a parallel task.

A gang is a group of workers. Those workers may or may not be working on the same

task, or they maybe working on a same task with different data.

The same code shown above, after giving parallel OpenACC clauses looks like

this.

The keyword pragma specifies that this is a directive pragma and specifies how

a compiler should process its input. The acc in the directive specifies to the compiler

that this is an OpenACC directive.

Programming Best Practices for Stage 2: Parallelize

Do’s:

• Begin by adding only parallel clause to see how much speedup is gained as com-
pared to serial implementation of the algorithm
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Table 5.2: ACCsFFT after parallelization directives

#pragma acc k e r n e l s
for ( int i i =0; i i <l oops ; i i ++){

#pragma acc k e r n e l s
for ( int i =0; i<B; i ++){

. .

. .
for ( int j =0; j<round 2 ; j +=4){

tmp = ( ( unsigned ) ( ( i 2+j ∗B)∗ a i ) ) ;
index = tmp & n2 m 1 ;
COMPLEX MULT( index , o f f 3 , j ) ;

index = (unsigned ) ( tmp + B∗2∗ a i ) & n2 m 1 ;
COMPLEX MULT( index , o f f 3 , j +2);

}

• Add kernels directive instead of parallel, if you are not sure if it is safe to paral-
lelize

• Add more kernels directive if you want to divide the loop even further

• Add parallel clauses to functions and loops which need to be parallelized by the
compiler

Dont’s:

• Dont add kernels clause for architectures other than GPU, use parallel clause
instead

• Dont add parallel clauses everywhere, be aware of race conditions, synchroniza-
tions and parallel slowdown

5.5 Parallelization Stage 3: Optimize

The final stage of parallelization is optimize. Compilers try to optimize as much

as possible with the information they have to provide us with a fast code. Generally

that is enough, but more often so we have to provide more hints and helps to the com-

piler to generate even more efficient and optimized code. This stage of parallelization

is one of the stages which needs to be repeated constantly to obtain highly parallel and
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optimized version of the algorithm in question.

We begin this stage by profiling the parallel code either from stage 2 above,

or from the further optimized code which will be generated from this stage. We pro-

file the code again to find the portions of the code which can be optimized further,

or are performing poorly due to some constraints, such as data copy, low compute to

memory ratio, etc. We also want to know on what the algorithm is spending more time.

After profiling the portion of our code we noticed that the code spends a lot

of time transferring data between the host (CPU) and the device (GPU). After every

iteration it keeps transferring the data. This is a very common performance limiter.

So for further optimization, apart from the parallelization clauses, we need to specify

another set of clauses for data movement. A GPU does not share the same memory as

that of the CPU. So data needs to be moved from the host CPU to the device GPU

at the beginning of the loop scope or at the beginning of the data region. And all the

computations can then be done inside the GPU with no or minimal data movement,

before finally moving the data back to the host at the end of the data region or end

of the loop scope. This can be specified by the data clause. Data clause enables us

to create, copyin or copyout data from the host to device. Below is the code after we

added data clauses.

The data clauses above contains two parts, copyin, where this specifies the data

structure with scope to be sent from host to device. And copyout, where this specifies

the data to be sent back to the host for synchronization. After specifying the data

clauses, we profile the clause again, a good rule of thumb is to also check the compiler

feedback along with the profiled result. This time we notice that it can be further

optimized, as the parallelization done by the compiler has poor loop decomposition.

The algorithm was parallelized by the compiler and it launched 512 vectors for the

loop iterations, which was more than what was needed. This section of the code did
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Table 5.3: ACCsFFT Optimized - I

#pragma acc data copyin ( d o r i gx [ 0 : 2 ∗ n ] , \
d f i l t e r [ 0 : 2 ∗ f i l t e r s i z e ] ) \
copyout ( d x sampt [ 0 : l oops ∗B 2 ] )
{ // beg inn ing o f data reg ion

#pragma acc k e r n e l s
for ( int i i =0; i i <l oops ; i i ++){

#pragma acc k e r n e l s
for ( int i =0; i<B; i ++){

. .

. .
for ( int j =0; j<round 2 ; j +=4){

tmp = ( ( unsigned ) ( ( i 2+j ∗B)∗ a i ) ) ;
index = tmp & n2 m 1 ;
COMPLEX MULT( index , o f f 3 , j ) ;

index = (unsigned ) ( tmp + B∗2∗ a i ) & n2 m 1 ;
COMPLEX MULT( index , o f f 3 , j +2);

}
}//end o f data reg ion
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Table 5.4: ACCsFFT Optimized - II

#pragma acc data copyin ( d o r i gx [ 0 : 2 ∗ n ] , \
d f i l t e r [ 0 : 2 ∗ f i l t e r s i z e ] ) \
copyout ( d x sampt [ 0 : l oops ∗B 2 ] )
{ // beg inn ing o f data reg ion

#pragma acc k e r n e l s loop gang vec to r (8 ) independent
for ( int i i =0; i i <l oops ; i i ++){

#pragma acc k e r n e l s loop gang vec to r (64) independent
for ( int i =0; i<B; i ++){

. .

. .
for ( int j =0; j<round 2 ; j +=4){

tmp = ( ( unsigned ) ( ( i 2+j ∗B)∗ a i ) ) ;
index = tmp & n2 m 1 ;
COMPLEX MULT( index , o f f 3 , j ) ;

index = (unsigned ) ( tmp + B∗2∗ a i ) & n2 m 1 ;
COMPLEX MULT( index , o f f 3 , j +2);

}
}//end o f data reg ion

not need that many iterations and was wasting compute resources.

OpenACC provides the developers with complete control over the paralleliza-

tions. The kernels clause as can be seen above, contains additional information, like

the number of vectors to be launched. By specifying vector, in the directive, we tell the

compiler to generate vectors for the loop. And the number of vectors can be denoted

by vector length clause. We still want the compiler to generate gangs of vectors so we

also specify gang clause also. Together with the inner loop and the outer loop, a total

of 512 (8 ∗ 64) vectors are launched. But instead of compute resources being wasted,

it is now divided efficiently between the inner and outer loops. Finding the right no of

vectors, workers and gangs to be launched requires trial and error.
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We further optimized this section by adding the independent clause. It relays

information to the compiler that the loop can be parallelized to run independently,

cause it to run faster and more efficiently.

Programming Best Practices for Stage 3: Optimize

Do’s:

• Always profile the code after every optimizations done in any stage

• Keep an eye for the information provided by the compiler as well as the result of
the profiler

• Data clauses are important and unless relying completely on Unified memory,
should be specified

Dont’s:

• Unless needed, don’t vectorize manually. As the compiler can do it for you.

• Dont start optimizing without profiling the code, as it can be detrimental to the
parallelization

By adding together all of the above stages, we parallelized part of the perm+filter

stage of the Sparse FFT algorithm shown above. Rest of the stages of Sparse FFT is

done similarly by using the above three stages for parallelization.

5.6 Other Optimizations

Atomicity

Atomicity is an operation in parallel programming, where we explicitly state

that no two or more threads or operations can affect a variable at the same time. This

is usually to prevent incorrect sequence of operations on a variable and generating

wrong data. This is useful when you need to have a synchronized order of operation

on a variable. In parallel programming the threads are running at the same time,

and there is no fixed time or sequence for them to finish their execution. There is no
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Table 5.5: Experimental Setup

SOFTWARE HARDWARE
CUDA v5.5 NVIDIA K20Xm and K40
CUDA v8.0 NVIDIA K80

PGI v17.4 (Community Edition) NVIDIA P100
FFTW 3.3.6 Intel Xeon E5 (12 cores)

coherency as a result. This could be detrimental to the operation being executed.

For OpenACC, following 2.5 specs, the atomic operations on a variable can be

specified by the keyword atomic and specifying the type of atomic operation, eg. read,

write, update, etc.

Asynchronous

OpenACC allows asynchronous operations using the async keyword and speci-

fying the asynchronous operation. Asynchrony is handling events outside of the main

flow of the program and specifying to the compiler that the set of operations in the

loop can run independent of each other and dont have to wait. The results generated

can then be collected at a later point of the program. Asynchrony helps us to run

things in parallel.

5.7 Experimental Setup

Table 5.5 shows the experimental setup used to evaluate the performance of

ACCsFFT in this thesis and compare it against the other parallel and serial versions

of Sparse Fast Fourier Transform.
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Figure 5.4: ACCsFFT vs CUDA Sparse FFT (cusFFT), for a constant K=1000 and
N is varied

5.8 Performance Evaluation

As shown in the Figure 5.4, we see that ACCsFFT performs relatively close

to that of the CUDA Sparse FFT (cusFFT). In most of the experimentation results,

we noticed that, ACCsFFT has the same amount of speed up compared to cusFFT

in as sparsity decreases and towards the regions where it is really sparse, ACCsFFT

performs almost 70% to that of cusFFT.

The main advantage of OpenACC is that, unlike CUDA, the main algorithm

has not been modified. And a directive based programming allows us to maintain the
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Figure 5.5: ACCsFFT over different NVIDIA GPGPUs, spanning different architec-
tures, for a constant K = 1000

original code, and will work with any compiler, even the ones that do not support Ope-

nACC, serially. The number of lines of code is reduced to almost 10% lesser than that

of cusFFT and finally, the same code can be used to work with a Multi-core system

and can target other architectures which is available with OpenACC.

The result comparison in the graph is made using CUDA 5.5 and over NVIDIA

K20, which is not using NVIDIA Unified memory, more on the same in the later sub-

sections. Figure 5.4 is an extended graph as compared to others, to show the point of

divergence between OpenACC and CUDA-sFFT.
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Figure 5.6: ACCsFFT vs cusFFT vs sFFT vs PsFFT vs FFTW (threads), for a
constant K=1000 and N is varied

Figure 5.5 shows the result comparison graph between different NVIDIA GPG-

PUs. These GPGPUs are spanning different architectures and memory management

techniques. The aim of the graph is to show a scalable growth of the algorithm, as the

hardware improves and more and more CUDA cores are added. As can be seen from

the different architectures used and the speed of the algorithm increasing in a constant.

Also, helps in showing the reproducibility of the algorithm from old to new generation

of hardware. Making it a performance portable algorithm.

The K20 result shown in the figure is using non-unified memory management,

and the synchronization are not as optimized when compared to Unified Memory [11].
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Figure 5.6 shows the comparison of results between, serial sFFT v2.0 by MIT,

CUDA Sparse FFT(cusFFT), Parallel Sparse FFT (PsFFT), FFTW with threads en-

abled (6 threads) and ACCsFFT. FFTW library performs really well when the sparsity

is lower, but as sparsity increases it can be seen to have an exponential growth to the

time taken to perform FFT. As explained in chapter 1.

Sparse FFT serial version performs worse as compared to FFTW in the be-

ginning, and then starts picking up, eventually beating FFTW for really sparse input

data. Parallel Sparse FFT performs almost 4-5x faster than sFFT. The best among

all these, with the least amount of time taken, is by cusFFT, and following closely is

ACCsFFT.

This graph is showing the result of the ACCsFFT algorithm in non-unified

memory management. So as to be able to compare to the original result of CUDA-

sFFT algorithm. We could not generate the cusFFT algorithm over newer architectures

and is explained in detail in the section below.

5.9 Reproducibility

To compare the speedup of OpenACC, and to find the performance of porting

and parallelizing on a GPU, we need a reference parallelized version of the same algo-

rithm on the GPU. We used the CUDA Sparse FFT as the reference algorithm and

result.

As can be seen from the Experimental Setup section, we are CUDA v5.5. This

is done for reproducing CUDA sFFT result from the original work in [43]. When we

tried to use the cusFFT algorithm on newer hardware and software, a NVIDA K80

and CUDA v8.0, we noticed reproducibility issues popping up. When using the newer

hardware and software, K80 and CUDA v5.5, which has a better frequency and higher

count of CUDA cores and the newer optimized CUDA toolkit, the cusFFT started

throwing assertion failures. This assertion failure was due to the failure and error in
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recovery of the large signal coefficients in the estimation loop from the location loop.

We tried to resolve the situation and used older version of CUDA, CUDA v7.0,

here the code worked and was successfully completed without any assertion failures.

But the result generated had a high error in recovery of signals and the sFFT results

were slower than that of the serial version of the same algorithm.

We could not properly check if the results were fine with an older version of

CUDA, CUDA 5.5, used in the paper [43] and that of the newer hardware, due to

incompatibility driver issues of both together.

Finally after using the original hardware and software combination, NVIDIA

K20Xm and CUDA v5.5, we were successfully able to reproduce the original result.

And compare the result to that of the ACCsFFT. The reason as to why cusFFT was

not successfully reproduced in the newer hardware, was due to thread synchronizations.

After investigating heavily, it was evaluated that the original implementation consisted

of many thread synchronization techniques which are deprecated now. NVIDIA came

with a new memory management model known as NVIDIA Unified Memory model[11]

from CUDA 6.0 onwards, which is still used now. This was right after the development

and evaluation of the cusFFT over CUDA 5.5. The memory management model depre-

cated the old synchronization methods created by the algorithm. And these interfered

with the memory management model, result i

This brings up an important issue of reproducibility. As newer tools and hard-

wares are coming up, it is increasingly becoming difficult to reproduce/verify and use

original work done by many. Taking this into consideration, the OpenACC code cre-

ated by us is not using any synchronization methods or directives which has a chance

of becoming deprecated in the near possible future. And is developed as such that only

small changes may be necessary, should a need for change in the code is required due
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to major changes in hardware and software. Also a docker image is being prepared

for the same, so the original result and settings can be retrieved by any who wish to

expand, reproduce or use the algorithm.

5.10 Summary

ACCsFFT parallelized code may not be faster than CUDA sFFT, but the ad-

vantages of using OpenACC programming makes it easier to parallelize application.

This also makes the code base easier to maintain, and if further changes need to be

made, it can be done much more easily than as compares to a CUDA code, which not

only limits multiple heterogeneous architectures, but adds added complexity of a low

level language.

The parallel code was created keeping reproducibility in mind, and docker image

is created for the same so that it can be reproduced easily. As OpenACC is directive

based programming, if changes is needed further down the road due to reproducibility,

it can easily be fixed and newer clauses can be added. Even if the code cannot be

run on parallel architectures. Regardless of the directives being deprecated or memory

models changing in the future, the code will still work serially.
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Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

The sFFT algorithms are optimal algorithms for computing the Discrete Fourier

Transform of input signals with only a few nonzero Fourier coefficients, making it sparse

in nature. While there exists reference implementations of these algorithms along with

high performance optimized version which are really fast as compared to the state of

the art FFT libraries, sFFT is inherently a parallel algorithm, the performance can

be improved and allows real world applications to be utilized using the same, if it was

made into a parallel algorithms. Now there already exists parallel sFFT algorithms

targeting multicore and GPUs separately. But it is riddled with reproducibility issues

and lacks a single code base for all parallel implementations.

Guided by this analysis OpenACC parallel programming directive was chosen.

And the algorithm was reimplemented by us to make sure we have a performance

portable and reproducible algorithm along with having one parallel code for multiple

architectures. OpenACC also reduced the number of lines of code as compared to the

massive rewrite needed for CUDA by 14%. Making the algorithm easier to manage,

and maintainable.

ACCsFFT is the only parallel GPU algorithm available, as CUDA sFFT (cusFFT)

is not reproducible in higher architectures and hardwares, as explained in the previ-

ous chapter. It improves programmer productivity, by using high-level directive based

programming model without compromising on performance or accuracy. Making the

ACCsFFT algorithm also maintainable and extensible.
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6.2 Future work

In the future, further optimizations will be done in the existing code. As noted

in chapter 5, we have focused mainly on three out of the 6 stages in the algorithm.

Those were the most time consuming part of the algorithm. The rest of the stages

are also good candidates for parallelization and can be optimized. Another optimiza-

tion which can be done is for the location loop. The n no of location loop can be

reduced to 2 inner loops in each filter, Mansour Filter, Gaussian Filter and Permuted

Gaussian Filter. This is usually sufficient to reconstruct the signal coefficients with a

high probability[36]. This can be used to have fixed set of loops, and perfect for loop

enrollment.

The parallel implementation presented in this thesis is based on data paral-

lelism. OpenACC does not fully support task parallelism. As described in chapter 3,

Sparse Fast Fourier Transform, has two loop section, the location loop and estimation

loop. Since these are independent tasks, these are good candidates for task parallelism.

When location loop finds the location of the large coefficients, we can directly start

estimating them, while waiting for more coefficients to be located.

For future work we will target even more architectures such as a Xeon PHI,

OpenACC support for the same is expected late 2017, and explore more task paral-

lelism in the existing OpenACC parallel implementation. One mean of doing this is

my combining OmpSs programming model[13] along with OpenACC, so that we don’t

lose portability.
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