DESIGN OF A 9 STAGE 10 BIT HIGH SPEED PIPELINE ANALOG TO DIGITAL CONVERTER

by

Xi Long

A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Master of Science in Electrical and Computer Engineering

Summer 2010

Copyright 2010 Xi Long
All Rights Reserved
DESING OF A 9 STAGE 10 BIT HIGH SPEED PIPELINE ANALOG TO DIGITAL CONVERTER

by
Xi Long

Approved: __________________________________________________________
Keith W. Goossen, Ph.D
Professor in charge of thesis on behalf of the Advisory Committee

Approved: __________________________________________________________
Kenneth E Barner, Ph.D
Chair of the Department of Electrical and Computer Engineering

Approved: __________________________________________________________
Michael J. Chajes, Ph.D
Dean of the College of Engineering

Approved: __________________________________________________________
Debra Hess Norris, M.S.
Vice Provost for Graduate and Professional Education
ACKNOWLEDGMENTS

First, I would like to thank my advisor, Dr. Keith G Goossen. I would not have this opportunity without his kind help. Secondly, I would like to thank Dr. Fouad Kiamilev for his guidance. My thanks also go to my colleagues and friends here at the University of Delaware. Last but not the least, I thank my family for their kind support.
# TABLE OF CONTENTS

LIST OF TABLES .......................................................................................................... v  
LIST OF FIGURES ....................................................................................................... vi  
ABSTRACT ................................................................................................................ viii  

CHAPTER .....................................................................................................................  
1 INTRODUCTION .............................................................................................. 1  
   1.1 Introduction to Analog to Digital Converters ............................................ 1  
   1.2 Pipeline Architecture ................................................................................. 2  
   1.3 Pipeline ADC Design and Requirements .................................................. 5  
2 PIPELINE ADC DESIGN .................................................................................. 6  
   2.1 2 Phase Non-overlapping Clock ............................................................... 6  
   2.2 Sub ADC ................................................................................................... 7  
   2.3 Differential Comparator ............................................................................ 8  
   2.4 Sub DAC ................................................................................................... 9  
   2.5 Gain Stage ................................................................................................. 10  
   2.6 Last Stage ................................................................................................. 10  
   2.7 Shift Register ............................................................................................ 11  
   2.8 Digital Correction Logic .......................................................................... 11  
3 PIPELINE ADC TEST ..................................................................................... 14  
   3.1 5 Stage Test ............................................................................................. 14  
   3.2 9 Stage Pipeline ADC Test ...................................................................... 15  
      3.2.1 ADC Linearity Test ..................................................................... 15  
      3.2.2 ADC Frequency Test ................................................................... 16  
   3.3 Conclusion ............................................................................................... 20  

APPENDIX  
A SYSTEM DESIGN ........................................................................................... 21  
B CIRCUITS ........................................................................................................... 24  

REFERENCES ............................................................................................................. 51
LIST OF TABLES

Table 1.1  Resolution and bandwidth tradeoffs .......................................................... 2
Table 3.1  Calculated output of 5 stage ................................................................. 15
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Subranging of pipeline ADC</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Pipeline ADC architecture</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Illustration of a pipeline stage</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Sub ADC threshold and corresponding digital and residue output</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Concept of digital correction</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Mathematics of digital correction</td>
<td>13</td>
</tr>
<tr>
<td>3.1</td>
<td>Linearity test of 9 stage ADC</td>
<td>16</td>
</tr>
<tr>
<td>3.2</td>
<td>Output digital code of 800KHz test</td>
<td>17</td>
</tr>
<tr>
<td>3.3</td>
<td>Spectrum of 800KHz test output</td>
<td>18</td>
</tr>
<tr>
<td>3.4</td>
<td>Output digital code of 7.2MHz test</td>
<td>19</td>
</tr>
<tr>
<td>3.5</td>
<td>Spectrum of 7.2MHz test output</td>
<td>20</td>
</tr>
<tr>
<td>A.1</td>
<td>ADC diagram in Matlab Simulink</td>
<td>22</td>
</tr>
<tr>
<td>A.2</td>
<td>Matlab simulation results of the 10 bit ADC</td>
<td>23</td>
</tr>
<tr>
<td>B.1</td>
<td>2 phase non-overlapping clock schematic</td>
<td>25</td>
</tr>
<tr>
<td>B.2</td>
<td>Simulation results of clock</td>
<td>26</td>
</tr>
<tr>
<td>B.3</td>
<td>Schematic of differential comparator</td>
<td>27</td>
</tr>
<tr>
<td>B.4</td>
<td>Schematic of high speed comparator</td>
<td>28</td>
</tr>
<tr>
<td>B.5</td>
<td>Test of high speed voltage comparator</td>
<td>29</td>
</tr>
<tr>
<td>B.6</td>
<td>Simulation results of high speed voltage comparator</td>
<td>30</td>
</tr>
<tr>
<td>Figure B.7</td>
<td>Test of differential comparator</td>
<td>31</td>
</tr>
<tr>
<td>Figure B.8</td>
<td>Simulation results of differential comparator</td>
<td>32</td>
</tr>
<tr>
<td>Figure B.9</td>
<td>Schematic of Sub DAC</td>
<td>33</td>
</tr>
<tr>
<td>Figure B.10</td>
<td>Test of Sub DAC</td>
<td>34</td>
</tr>
<tr>
<td>Figure B.11</td>
<td>Schematic of gain stage</td>
<td>35</td>
</tr>
<tr>
<td>Figure B.12</td>
<td>Test of gain stage</td>
<td>36</td>
</tr>
<tr>
<td>Figure B.13</td>
<td>Simulation result of gain stage</td>
<td>37</td>
</tr>
<tr>
<td>Figure B.14</td>
<td>Schematic of the operational amplifier</td>
<td>38</td>
</tr>
<tr>
<td>Figure B.15</td>
<td>AC response of operational amplifier</td>
<td>39</td>
</tr>
<tr>
<td>Figure B.16</td>
<td>Schematic of last stage</td>
<td>40</td>
</tr>
<tr>
<td>Figure B.17</td>
<td>Schematic of last stage comparator</td>
<td>41</td>
</tr>
<tr>
<td>Figure B.18</td>
<td>Last stage logic</td>
<td>42</td>
</tr>
<tr>
<td>Figure B.19</td>
<td>Shift register</td>
<td>43</td>
</tr>
<tr>
<td>Figure B.20</td>
<td>Digital correction logic</td>
<td>44</td>
</tr>
<tr>
<td>Figure B.21</td>
<td>XOR gate</td>
<td>45</td>
</tr>
<tr>
<td>Figure B.22</td>
<td>Carry-bit logic</td>
<td>46</td>
</tr>
<tr>
<td>Figure B.23</td>
<td>XNOR gate</td>
<td>47</td>
</tr>
<tr>
<td>Figure B.24</td>
<td>5 stage test</td>
<td>48</td>
</tr>
<tr>
<td>Figure B.25</td>
<td>Test results of 5 stage</td>
<td>49</td>
</tr>
<tr>
<td>Figure B.26</td>
<td>9 stage pipeline ADC</td>
<td>50</td>
</tr>
</tbody>
</table>
ABSTRACT

Analog to digital converter (ADC) design has been an active research topic over the past few decades, as the scaling down of Complementary Metal-Oxide-Semiconductor (CMOS) Integrated Circuit (IC) fabrication process offers continuing room for performance improvement. Various ADC architectures have been proposed by researchers, including flash, successive approximation, sigma-delta and pipeline, etc. Among these architectures, pipeline ADC offers moderate resolution at high conversion speed and is widely used in both civil and military applications. In this thesis, we develop a 9 stage 10 bit pipeline ADC circuit in AMIS C5N process. The whole design methodology, from system simulation to schematic entry, from circuit simulation to post signal analysis is proposed. The operation frequency of the pipeline ADC is pushed to the upper limit of the process used. The ADC is designed and simulated in Cadence environment. Post simulation signal analysis is done in Matlab in order to verify its performance.
Chapter 1

INTRODUCTION

1.1 Introduction to Analog to Digital Converters

While virtually all processing of signals occurs in the digital domain nowadays, the real world signals are analog. For example, the microphone inside a cell phone picking up the sound of human voice generates a voltage whose amplitude may vary from a few microvolts to hundreds of milivolts, while the photocells in a camcorder produce a current on the scale of a few electrons per microsecond [1]. It is desirable to convert these analog signals into digital form using an analog to digital converter (ADC) for successive digital signal processing (DSP). Actually, some of the intricate signal processing may only be feasible in the digital domain [2].

The design of ADCs for high speed, high precision and low power dissipation has continuously been a challenge for analog designers. However, tradeoffs always exist between these parameters. It is not uncommon that designers have to sacrifice one for another. Basically, ADCs are divided into two categories: high speed and high precision. Converters with a sampling rate greater than 10MHz are considered high speed. Their application includes imaging, cameras, baseband digitalization where the analog signal bandwidth is relatively broad. One of the issues of high speed ADCs is their moderate resolution. Therefore in applications such as high fidelity audio systems like CD player, high resolution ADCs are needed. The
speed of the high resolution ADCs is usually sacrificed. However, this is not an issue in audio application where the signal bandwidth is only 20-24 kHz [2].

Table 1.1  Resolution and bandwidth tradeoffs

<table>
<thead>
<tr>
<th></th>
<th>Sigma Delta</th>
<th>Successive Approximation</th>
<th>Pipeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>High</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Low</td>
<td>Moderate</td>
<td>High</td>
</tr>
</tbody>
</table>

Tradeoffs between resolution and speed for some of the ADC architectures are shown in Table 1.1. Obviously, sigma delta ADC has the highest resolution at low conversion speed. It is usually used in speech or audio applications where signal bandwidth is limited. Pipeline structure has high speed at moderate resolution. Flash ADC has the highest speed with low resolution. It may be used for broadcast video applications where signal bandwidth is 5MHz, but the resolution required is only 8 bits [2].

1.2 Pipeline Architecture

Pipeline ADC utilizes subranging technique as shown in Figure 1.1. Several stages with low resolution are cascaded to obtain an overall high resolution. A generic type of pipeline ADC is shown in Figure 1.2. Each stage of the pipeline ADC includes a low resolution quantizer. Each stage sends out two outputs. The first output, $q_i$, is the coarse digitalization of the input of the $i$th stage. The second output, $r_i$, is the residue obtained by subtracting its digital representation of $q_i$ from $V_{in}$. This residue is sent to the next stage for further quantization. All the digital outputs are sent to the digital correction circuit to obtain the final high resolution output.
A block diagram of a generic stage is shown in Figure 1.3. The input signal is sampled by the sample and hold circuit. A sub ADC converts it into a coarse digital output. The coarse digital output is then converted back into analog value by the sub DAC. The analog value obtained is subtracted from $V_{in}$. The residue is amplified and sent off to the next stage for further digitalization.
Ideally, the resolution of the sub ADC can be just 1 bit. A simple comparator would do the job. However, the comparator inside the sub ADC inevitably suffers from threshold error. Input falling into that error range may not only cause an error output bit at that specific stage, but also saturate the following stages. In order to avoid ADC saturation, we introduce some digital redundancy in each stage by making the sub ADC output more than 1 bit wide. It will be shown that the digital redundancy introduced can correct the error bits caused by level shift of the comparator in the sub ADC.
1.3 Pipeline ADC Design and Requirements

In this paper, we propose to design a 9 stage 10 bit high speed analog to digital converter circuit in AMIS C5N process. It operates at 5V power supply and accepts -1 to 1 volts (2.5V common mode) fully differential input. The system design and simulation are done in Matlab, as shown in Appendix A.
2.1 2 Phase Non-overlapping Clock

All stages operate on a two phase non-overlapping clock signal [3]. The two clock signals, $Ph1$ and $Ph2$, are 180° out of phase and have a delay between the clock transitions. All the odd stages sample the input during $Ph1$ and pass a valid residue to the next stage during $Ph2$. The even stages work on the opposite timing schedule. In this scheme, after an initial propagation delay, the ADC outputs valid bits on every clock cycle.

Inside every stage there are switched capacitor circuits for sampling and signal processing. In order to reduce the charge injection effect on the capacitors, additional two clock signals $Ph1'$ and $Ph2'$ are introduced [1]. They are designed to turn off slightly before $Ph1$ and $Ph2$, respectively.

The clock schematic is shown in Figure B.1. The design was adapted from [3]. It utilizes delay elements and NAND gates to create the clock signals. The delay elements consist of several inverters connected in series. All the output clock signals are sent to a corresponding buffer to boost its driving capacity.

The two phase non overlapping clock is connected to a 100MHz clock generator for test. The clock generator provides a square wave clock signal with amplitude of 5V. The simulation result is show in Figure B.2.
It can be calculated from the Figure B.2 that $t_{nov}$ period, which is the non overlapping period of $Ph1$ and $Ph2$, is about 0.7ns. The lagging period between $Ph1$ ad $Ph1'$, $t_{lag}$, is approximately 0.5ns. Therefore, each stage should settle in 3.8ns.

2.2 Sub ADC

Each stage consists of a 1.5 bit sub ADC to digitize the input. The digital output of the Sub ADC is 00, 01 or 10. It consists of two voltage comparators. The threshold voltage of the two comparators is set at $-V_r/4$ and $V_r/4$ respectively, as shown in Figure 2.1.

![Figure 2.1 Sub ADC threshold and corresponding digital and residue output](image)

Figure 2.1 Sub ADC threshold and corresponding digital and residue output
There is great advantage of 1.5 bit sub ADC over 1 bit ADC. It is difficult to precisely control the threshold voltage when designing a comparator. In 1.5 bit sub ADC scheme, if the threshold voltage of the comparator deviates from the designed value, it may cause wrong output bits in this stage. However, according to the above figure, the residue output would not saturate, making it possible that the following stages will correct this error.

2.3 Differential Comparator

The differential comparator consists of switching capacitor network and a voltage comparator, as shown in Figure B.3. \( C_0 \) and \( C_3 \) sense the reference voltage during \( Ph2 \). It passes partial of the stored charge to \( C_1 \) and \( C_2 \) during \( Ph1 \). The voltage on \( C_1 \) and \( C_2 \) is subtracted from the input voltage and then sent to the voltage comparator. The threshold of the differential comparator is set by the reference voltage. When \( V_{r+} \) is set to 3V and \( V_{r-} \) is set to 2V, the threshold voltage is 0.25V. When the polarity of \( V_{r+} \) and \( V_{r-} \) is switched, the threshold voltage becomes -0.25V.

The high speed comparator design is shown in Figure B.4. It consists of a pre-amplification stage followed by a decision and a buffer stage. The output is latched when the \texttt{latch\_bar} signal is high. The output is pre-charged to high to improve the response time on high output. The comparator is found to be the most critical part of the design. When pushing it up to high speed operation, it is difficult to maintain precision comparison [4].

The high speed voltage comparator is tested in configuration illustrated in Figure B.5. \( V_{in-} \) is connected to a 2.5V DC source, while \( V_{in+} \) is ramped from 0 to 3V.
The simulation is done at 100MHz. The simulation results in Figure B.6 show that the comparator works well at 100 MHz clock frequency.

The differential comparator will follow the characteristics of the voltage comparator. The test details are omitted here. Please refer to Appendix B to see test setup and corresponding results.

2.4 Sub DAC

The sub DAC is used to convert the quantized output of the sub ADC into analog value. The analog output of the sub DAC is sent to the gain stage to be subtracted from the input signal to form the residue, which is sent out to the next stage for further quantization. The sub DAC also outputs digital bits to the shift register and correction logic. In the 1.5 bit scheme, the digital outputs are 00, 01, 10. The corresponding DAC analog outputs are $-Vr/2$, 0, $Vr/2$. The residue of the gain stage has to be multiplied by a factor of 2 before being sent to the next stage. In order to alleviate the complexity of the gain stage design, the output of sub DAC is amplified by a factor of 2 before the subtraction operation. In other words, the analog output of the sub DAC is $-Vr$, 0, $Vr$.

The detailed design of the sub DAC is shown in Figure B.9. The combination logic consisting of inverters and 3NAND gates generates the digital bits and control signal for the transmission gates. NMOS transistors are used for the transmission gates to pass $-Vr$ and $Vr$ to the analog outputs.

Similar scheme is used to simulate the sub ADC as the differential comparator, as shown in Figure 10. Two comparators are used to provide full range digitalization. The simulation is done at 100MHz. The simulation results show that the designed sub DAC works well at 100 MHz.
2.5 Gain Stage

The gain stage is used to subtract the output of the sub DAC from the input and pass the residue to the next stage. The schematic of the gain stage is shown in Figure B.11. The OTA block in the schematic is an operational amplifier. During \textit{Ph1}, \textit{Vin} charges the four capacitors: \(C_2, C_3, C_4, C_5\). At \textit{Ph2}, \(C_4\) and \(C_5\) are reconnected to the output of the OTA while \(C_2\) and \(C_3\) are connected to the residual voltage from the previous stage. This causes the charge on \(C_2\) and \(C_3\) to change. The charge variance is transferred to \(C_4\) and \(C_5\). The final output voltage at the differential outputs is equal to \(2V_i - V_{dac}\), which can be conveniently calculated based on previous analysis.

The gain stage is tested in configuration shown in Figure B.12. \(V_{dac+}\) is set to be 3V, \(V_{dac-}\) is set to be 2.5V. \(Vin\) is set to be 0.2V in the first 1us and -0.2V in the second 1us. The clock frequency is set to be 50MHz. The simulation result is shown in Figure B.13. The output voltage is -0.1V and -0.9V, which agrees with theoretical calculation.

The schematic of the transconductance operational amplifier is shown in Figure B.14. It is a single stage differential amplifier adapted from [5]. In order to boost its gain, cascaded telescopic structure is used. It also consists of a gain boosting stage to further increase the gain and a common mode feedback circuit to regulate the common mode output voltage. The AC simulation response is shown in Figure B.15. It shows it has a 75dB DC gain and a phase margin of 45 degree.

2.6 Last Stage

The last stage has similar structure as the other stages. However, the last stage does not generate the residual voltage so the gain stage is eliminated. Secondly,
the last stage has a full 2 bit output capacity. The sub ADC and sub DAC design are modified accordingly. A third comparator is added to the sub ADC. The threshold voltage is set to be \( V_{\text{r/2}} \) by changing the value of the corresponding switching capacitors. The DAC does not need to output any analog residual, so the transmission gates are eliminated. The logic is modified to output a full 2 bit signal: 00, 01, 10 and 11. The schematic of the last stage and its sub components are shown in Appendix B.

2.7 Shift Register

The shift register as shown in Figure B.19 is used to store the intermediate output bits from the sub DAC. For a 9 stage pipeline ADC, the output bits of the previous 8 stages must be stored in the register before output bits of the last stage become available. The shift register consists of minimum sized inverter connected with MOS switches. All odd stages have outputs available at \( \text{Ph1} \), while all even stages have outputs available at \( \text{Ph2} \). The outputs propagate in the shift register. The delay is determined by the length of the shift register. After an initial delay, the shift register array has new outputs available at each clock cycle. The outputs of the shift register array are sent to the digital correction logic for successive processing.

2.8 Digital Correction Logic

The output of the shift register is sent to the digital correction logic. In pipeline ADC, digital redundancy is utilized to compensate sub ADC errors. As a result, twice as many bits are generated than required for the output. A digital correction logic is required to produce the correct output. The concept of the correction logic is represented in Figure 2.2, which is adapted from [4]. The outputs of the previous stages are stored in the register until stage N has its output available. The
collected output bits are then added using a 1bit overlap methodology shown in Figure 2.2.

![Figure 2.2 Concept of digital correction](image)

A simple example for the binary addition is calculated using Figure 2.3:

\[
Z = D \\
Y = B + C \\
X = A + B \cdot C
\]

To perform the mathematical operation shown in Figure 2.3, it is broken down and implemented using logic gates. The design of the digital logic correction unit is shown in Figure B.20. The operation in equation is performed by a simple XOR.
The CARRY-BIT logic performs the AND/OR operation in equation. These logic gates are shown in appendix B.

![Diagram of logic gates]

**Figure 2.3** Mathematics of digital correction
3.1 5 Stage Test

5 stages are cascaded to test the functionality of the circuit components, as shown in Figure B.24. The clock frequency is set to be 25MHz. $V_{r+}$ and $V_{r-}$ are set to be 3V and 2V respectively. The 5 stage configuration is simulated for 400 ns. The differential input switches from 0.8V in the first 200ns to -0.8V in the last 200ns. The intermediate bits and sub DAC analog output of each stage are calculated and shown in Table 3.1. The duplicate value results from the possible threshold variation in comparators that is taken into consideration. The simulation result is shown in Figure B.25. The simulation performed at 25MHz clock frequency shows the 5 stage ADC works properly. Simulations are also done at higher frequency. It turns out the performance of the ADC downgrades as the frequency increases, causing error output bits. The upper bound frequency is found to be around 40MHz.
Table 3.1 Calculated output of 5 stage

<table>
<thead>
<tr>
<th>$V_{\text{diff}}$</th>
<th>Intermediate bits</th>
<th>Sub DAC output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>10</td>
<td>0.6</td>
</tr>
<tr>
<td>0.6</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>0.2</td>
<td>10, 01</td>
<td>-0.6, 0.4</td>
</tr>
<tr>
<td>-0.2</td>
<td>01, 00</td>
<td>-0.4, -0.6</td>
</tr>
<tr>
<td>-0.8</td>
<td>00</td>
<td>-0.6</td>
</tr>
<tr>
<td>-0.6</td>
<td>00</td>
<td>-0.2</td>
</tr>
<tr>
<td>0.6</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>-0.4</td>
<td>00</td>
<td>0.2</td>
</tr>
<tr>
<td>0.2</td>
<td>10, 01</td>
<td>-0.6, 0.4</td>
</tr>
</tbody>
</table>

3.2 9 Stage Pipeline ADC Test

The 9 stages, shift register and the correction logic are assembled to form the pipeline ADC, as shown in Figure B.26. The pipeline ADC is tested under two configurations. In the first configuration, the input voltage is ramped from -1V to 1V. The outputs are converted to normalized digital codes. The digital codes are compared with the input to show the linearity of the ADC. In the second configuration, sine wave of different frequency is fed into the ADC. Spectrum analysis of the output is performed to characterize the pipeline ADC under test.

3.2.1 ADC Linearity Test

In the linearity test, the input is ramped from -1V to 1V. The outputs of the ADC are collected in 0.2V interval from the Cadence Spectre simulation output. The data are then fed into Matlab for analysis. The clock frequency is set at 25 MHz. The test result is shown in Figure 3.1. It shows the linearity of the ADC agrees with an
ideal ADC. INL and DNL can be obtained from the test results. However, it is not performed here due to time constraints.

![ADC Linearity test](image)

**Figure 3.1** Linearity test of 9 stage ADC

### 3.2.2 ADC Frequency Test

The pipeline ADC is tested under different input frequencies to evaluate its performance. 64 data points are collected at the output. The operating frequency is set to 25.6 MHz. Two tests of different frequency are performed here. The low test frequency is set to 800KHz, while the high test frequency is set to 7.2 MHz. The output spectrum is analyzed by FFT in Matlab. The 800KHz test output digital code is shown in *Figure 3.2*. A clear sine wave can be seen here. The corresponding FFT
spectrum analysis is shown in Figure 3.3. A peak at 800KHz can be found in the spectrum. The DC component shown in spectrum is due to spectrum spread in FFT analysis. The test results of 7.2 MHz are shown in Figure 3.4 and Figure 3.5.

Figure 3.2 Output digital code of 800KHz test
Figure 3.3  Spectrum of 800KHz test output
Figure 3.4  Output digital code of 7.2MHz test
3.3 Conclusion

The objective of this project is to design a 10 bit 9 stage high speed analog to digital converter. It operates on 5V power supply and accepts -1 to 1 volts (2.5V common mode offset voltage) fully differential input. All of the objectives have been accomplished. The ADC exhibits good linearity and works at sampling rate up to 40MHz. The simulation is performed at the schematic level. Full layout of the chip is not done due to time constraints. Further work involves transistor level layout, physical extraction and pushing the sampling rate to higher frequency.
Appendix A

SYSTEM DESIGN
Figure A.1  ADC diagram in Matlab Simulink
Figure A.2  Matlab simulation results of the 10 bit ADC
Appendix B

CIRCUITS
Figure B.1 2 phase non-overlapping clock schematic
Figure B.2  Simulation results of clock
Figure B.3  Schematic of differential comparator
Figure B.4  Schematic of high speed comparator
Figure B.5  Test of high speed voltage comparator
Figure B.6  Simulation results of high speed voltage comparator
Figure B.7  Test of differential comparator
Figure B.8  Simulation results of differential comparator
Figure B.9  Schematic of Sub DAC
Figure B.10 Test of Sub DAC
Figure B.11 Schematic of gain stage
Figure B.12 Test of gain stage
Figure B.13  Simulation result of gain stage
Figure B.14  Schematic of the operational amplifier
Figure B.15  AC response of operational amplifier
Figure B.16  Schematic of last stage
Figure B.17 Schematic of last stage comparator
Figure B.18  Last stage logic
Figure B.19  Shift register
Figure B.20  Digital correction logic
Figure B.22  Carry-bit logic
Figure B.23 XNOR gate
Figure B.24 5 stage test
Figure B.25  Test results of 5 stage
Figure B.26  9 stage pipeline ADC
REFERENCES


