CONFLICT AND LOVE: PREDICTING NEWLYWED OUTCOMES FROM
TWO OBSERVATIONAL CONTEXTS

by

Elana Graber

A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Master of Arts in Psychology

Spring 2010

Copyright 2010 Elana Graber
All Rights Reserved
CONFLICT AND LOVE: PREDICTING NEWLYWED OUTCOMES FROM TWO OBSERVATIONAL CONTEXTS

by
Elana Graber

Approved:

Jean-Philippe Laurenceau, Ph.D.
Professor in charge of thesis on behalf of the Advisory Committee

Approved:

Thomas DiLorenzo, Ph.D.
Chair of the Department of Psychology

Approved:

George Watson, Ph.D.
Interim Dean of the College of Arts and Sciences

Approved:

Debra Hess Norris, M.S.
Vice Provost for Graduate and Professional Education
ACKNOWLEDGMENTS

I would like to thank Jean-Philippe Laurenceau, Ph.D. for his guidance and academic support during the past several years. I greatly appreciate the contributions of James Coan, Ph.D. and Erin Miga, who were instrumental in the completion of this project.

This manuscript is dedicated to:

My family and friends for their ongoing support and endless encouragement.
TABLE OF CONTENTS

LIST OF TABLES .. v
LIST OF FIGURES .. vi
ABSTRACT ... vii

Chapter

1 INTRODUCTION .. 1
 Implications of Marital Conflict and Distress ... 1
 Methods for Studying Relationship Processes .. 4
 Limitations with Conflict Tasks ... 9
 Effects of Positive Affect ... 10
 Overview of Study and Hypotheses ... 12

2 METHOD ... 13
 Participants ... 13
 Procedure ... 14

3 RESULTS ... 23
 Analytic Strategy .. 27
 Predicting Steps Toward Divorce .. 29
 Predicting Relationship Satisfaction ... 34

4 DISCUSSION ... 37
 Steps Toward Divorce Findings ... 37
 Relationship Satisfaction Findings ... 39
 Treatment Implications .. 41
 Limitations .. 42

REFERENCES .. 44
LIST OF TABLES

Table 1 Inter-Rater Reliability Coefficients for Individual SPAFF Codes........20
Table 2 Weighting Scheme for SPAFF Positive and Negative Affects Composites...22
Table 3 Zero-Order Correlations Among SPAFF Composite Codes.............24
Table 4 Zero-Order Correlations Among SPAFF Contempt and Affection Codes...25
Table 5 Means, Standard Deviations, and Paired-Samples T-Tests Between Husband and Wife SPAFF Codes...26
LIST OF FIGURES

Figure 1 Actor-Partner Dyadic Path Model with Multivariate Outcomes......28
ABSTRACT

Research on marital stability and quality has primarily focused on couples in conflict to uncover processes that are associated with concurrent and longitudinal outcomes. Although this work has been prolific in revealing particular emotions or behavioral sequences that are associated with later marital distress (e.g., demand/withdraw patterns), it largely has neglected to take positive contexts into consideration. The present longitudinal study attempts to address this gap in the literature by directly comparing newlywed behaviors from a conflict-resolution interaction with those from a love-paradigm interaction to predict relationship satisfaction and steps taken toward divorce approximately 15 months later. Results show that partner emotions elicited in positive (i.e., love) and negative (i.e., conflict) contexts both provide unique predictors of relationship quality and stability for both husbands and wives. Using a linear growth model, we also found that the temporal course of positive emotion during the love context, but not the conflict context, was predictive of later relationship satisfaction. Implications for future marital research are discussed.
Chapter 1

INTRODUCTION

The study of marital conflict is ubiquitous in the close relationship literature (Fincham, Stanley, & Beach, 2007). Information about couples in conflict is typically the primary (and sometimes sole) predictor used to examine long- and short-term relationship outcomes. This precedence implicitly suggests that it is the presence or absence of conflict-related negative events that best predicts relationship length and quality. The primary goal of this paper is to explore this long-held belief and investigate whether the expression of emotion from a positive context has predictive value, above and beyond emotional behavior from a negative context, in predicting longitudinal relationship satisfaction and divorce proneness in newlywed couples.

Implications of Marital Conflict and Distress

The considerable interest in predicting relationship quality and stability within the field of relationship research is largely due to the overwhelming number of studies demonstrating an association between marital conflict and mental and physical health outcomes. For example, marital conflict has been consistently associated with depression and depressive symptoms (Whisman, 2001). Compared with non-depressed
wives, depressed wives show greater mood reactivity to conflict resolution tasks (i.e.,
greater increases in depressive symptoms pre- to post-discussion), that was then
associated with greater levels of marital dissatisfaction (Whisman, Weinstock, &
Uebelacker, 2002).

Recent work has also shown an association between marital distress and
cardiovascular reactivity that may be related to cardiovascular disease progression
(Birmingham, Uchino, Smith, Light, & Sanbonmatsu, 2009; Nealey-Moore, Smith,
Uchino, Hawkins, & Olson-Cerny, 2007; Smith et al., 2009). During a disagreement
task, compared to a collaboration task, older couples showed that elevated blood
pressure, a measure of cardiovascular reactivity, persisted into a recovery period
(Smith et al., 2009). Birmingham et al. (2009) also found this association for first-time
interactions between men and strangers (i.e., between a research experimenter and
study participants). Marital distress has also been associated with suppressed immune
functioning and inflammation that is associated with a host of health problems, such as
type II diabetes, arthritis, and Alzheimer’s disease (Kiecolt-Glaser, Gouin, & Liisa
Hantsoo, 2009; Kielcolt-Glaser & Newton, 2001). Couples who show greater levels of
hostility during conflict discussions show blister wound healing at 60% of the rate of
couples with lower levels of hostility (Kiecolt-Glaser et al., 2005). Perhaps most
striking in this literature is work indicating an association between marital status and
mortality. In a study predicting mortality eight years following relationship assessment, Kaplan and Kronick (2006) found that the death rate for those currently married and living with a spouse was significantly lower than those who were presently unmarried or never married. Thus, while good relationship functioning is associated with protective factors against negative health outcomes, poorer relationship functioning, examined during conflict, may put individuals at risk for illness.

Couple conflict and divorce confer negative outcomes on children, including mental health, social, academic, and psychobiological functioning (Cummings & Davies, 2002; Cummings & Davies, 1994). Recent research has begun to identify the mechanisms through which conflict has its effect on children’s well-being, such as changes in parenting due to marital distress (Cummings & Davies, 1994). Additionally, coactivation of parasympathetic and sympathetic nervous systems during exposure to couple conflict increases children’s risk for delinquency and Attention Deficit Hyperactivity Disorder symptoms (El-Sheikh, Kouros, Erath, Cummings, Keller, & Staton, 2009).

The presence of relational conflict, particularly conflict that is hostile and chronic, clearly has significant effects that even extend beyond the lives of the couple, thus providing more incentive and impetus to examine its causes, consequences, and associated underlying processes. And in particular, providing a better understanding of
communication processes in newlywed couples may allow for earlier identification of relationship difficulty and thus permits earlier intervention to prevent the detrimental effects shown to stem from conflict.

Methods for Studying Relationship Processes

Numerous methodologies have been used to study relationship functioning; however, three primary methods are most commonly used in the social and clinical psychology literatures (Reis, 1994). These include global self-report measures, daily diary measures, and laboratory experimentation, including behavioral observation tasks. As Reis (1994) explains, each of these methods typically provides valuable yet unique conceptual perspectives on relationship functioning, and each has been used extensively and at times in combination. While global questionnaires and daily self-reports have been used to study innumerable processes in diverse areas of psychology, dyadic behavioral observation methods have enjoyed a privileged status within the relationship literature.

Observing and coding marital interactions bestows many benefits to marital researchers. These include enhanced ecological validity, greater experimenter control, and ratings of “objective” coders, independent of individual subjective self-report (Roberts, Tsai, & Coan, 2007). Additionally, depending on the type of task in which participants engage (e.g., conflict resolution, social support), a variety of affects can be
elicited within a social context (Gottman, 2004), thus allowing researchers to capture
the natural course of emotion expression between partners (Roberts et al., 2007).
Although dyadic interactions can be thought of as “a snapshot sampling of emotion” (p.
7, Roberts et al., 2007), the variation in emotional responding over the course of the
interaction, both within-couples, between-couples, and within-persons, can still be
studied. The observed emotions and behaviors can also be associated with specific
physiological states by recording heart rate, blood pressure, skin conductance, or even
general bodily movement during the interaction. Despite the considerable expense and
time commitment required when using these methods, the benefits and predictive value
of marital interaction tasks can perhaps explain the plethora of studies employing these
techniques.

The overwhelming number of observational studies over the last several
decades have produced a great amount of information about relationship functioning
and predictors of marital distress and divorce. The majority of interaction tasks fall into
one of two broad classes: social support tasks and conflict resolution tasks, both of
which involve having dyads discuss a relationship problem (in the latter) or an
individual problem (in the former). Studies using social support paradigms require one
partner to disclose a personal difficulty and have their partner respond as they might at
home. Researchers then code for partner skills in eliciting and providing support and
particular affects expressed during the interaction by both partners (Cutrona & Suhr, 1994; Pasch & Bradbury, 1998). Findings from this literature indicate that support providers who show a larger number of supportive behaviors during marital interactions also report greater levels of marital satisfaction (Cutrona & Suhr, 1994) and partners with low levels of support skills are at risk for marital distress two years later (Pasch & Bradbury, 1998).

Although social support tasks have been useful in predicting marital outcomes, the vast majority of studies utilizing interaction tasks have examined affect and behavior in the context of conflict resolution interactions (Fincham, Stanley, & Beach, 2007). During these tasks, partners discuss problems they are having within their relationship, typically selected by one or both partners (Gottman, 2004; Roberts et al., 2007), and partner’s behaviors, emotions, and/or physiological symptoms are measured. There have been many coding systems developed for conflict resolution tasks, such as the Rapid Marital Interaction Coding System (RMICS; Heyman, 2004), the Iowa Family Interaction Rating Scales (Melby et al., 1990), and the Specific Affect Coding System (SPAFF; Coan & Gottman, 2007). These and other coding systems differ in their focus on conflict behavior and problem-solving skills (e.g., RMICS) versus conflict-related affective expressions (e.g., SPAFF). The conflict resolution task has been used both in a descriptive manner, as a means of uncovering the ways in
which couples function and interact (Gottman & Notarius, 2000), as well as to predict specific relationship outcomes, most commonly satisfaction and divorce (e.g., Carrère, Buehlman, Gottman, Coan & Ruckstuhl, 2000; Gottman & Levenson, 2000; Gottman, 1993; Roberts, 2000).

The expression of particular emotions, such as contempt, and the occurrence of behavioral sequences between partners during a conflict interaction have enabled researchers to predict the likelihood of divorce from a 15-minute discussion with 96% accuracy (Gottman, 1994). Different types of couples have also been uncovered through the use of conflict resolution tasks. A classification of five different types of couples was revealed (three identified as “stable” couples and two identified as “unstable” couples), and significant differences in divorce rates were found between the couples four years later (Gottman, 1993). Stable couples included volatile couples, validators, and avoiders, and the unstable couples were grouped into hostile or hostile detached couples. One main difference between the stable and unstable couples was that each of the stable couples produced a ratio of positive affect to negative affect of 5:1, suggesting that whether a couple is “volatile” or “validating,” roughly the same pattern exists that links to stability over time. Additionally, this work has established the importance of partner’s expressing positive affect in the context of conflict (Gottman, 1993).
Behavioral sequences and process models derived from conflict tasks have been shown to discriminate between satisfied and unsatisfied couples (Gottman, Coan, Carrere, & Swanson, 1998). Specifically, negative start-up and reciprocation of low intensity negativity by the wife, the husband’s refusal to accept influence from his wife, and his absence of de-escalation of negativity were all predictive of divorce. Interestingly, it was only positive affect expressed during the conflict that predicted both marital stability and happiness in stable couples.

The volume of literature on dyadic conflict interactions has been very informative about how couples may function, and processes that may distinguish those couples who are satisfied and likely to remain together from those who are not. However, this literature has predominantly focused on the presence or absence of negative affects (such as contempt), and to a lesser extent positive affects (such as affection), from conflict interactions in predicting relationship outcomes (Gottman, 1994). The emphasis on obtaining information about negative emotions is reflected even in the structure of coding systems. For example, the SPAFF, which is the best validated marital affect coding system, currently comprised of 18 codes, 12 of which are categorized as negative affects. The narrow focus permitted by examining affective processes within solely negative interaction contexts may prohibit researchers from identifying other potentially significant information about predicting couple well-being.
Limitations with Conflict Tasks

Despite the multitude of studies and findings that have provided important information using conflict resolution tasks, there are potential problems with it as the primary method for studying relationships. When researchers initially began using observational methods to study relationships, the motivating question was how best to distinguish between distressed and nondistressed couples, and the way determined to approach that inquiry was by examining the process of conflict (Gottman, 1994). It should be noted that this conflict-driven approach, which continues today to be the most frequently selected way of observing couples, was not based on empirical evidence that conflict provides the best context for distinguishing between distressed and nondistressed couples, but rather because it seemed intuitive. Observationally, couples who seem unhappy often argue, and so it made sense to examine that process in an attempt to see how they differ from happier couples. But as scientific researchers, it seems critical to empirically examine whether observational contexts other than conflict may be important.

One of the problems with using conflict-based observational tasks as the primary way to study relationships is that it does not capture all affects and behaviors with equal validity and reliability (Melby, Ge, Conger, & Warner, 1995). Conflict tasks are not designed to elicit positive, warm, or affectionate/loving behaviors between
partners. Comparing a warm/supportive interaction and a problem-solving task, Melby et al. (1995) found that positive affects and behaviors, such as warmth/support, listener responsiveness, and prosocial behavior, were more highly associated with self- and spousal-reports of marital quality in the warm/supportive interaction than in the problem-solving task. This finding highlights the importance of considering task context and design in predicting marital outcomes.

Effects of Positive Affect

Although there is a focus on negative affects within conflict tasks, several studies have investigated the effects of positive emotions during these interactions. Positive emotions have been found to be significant predictors of couple well-being. Johnson et al (2005) found a significant interaction between problem-solving skill and positive affect during a problem-solving task in predicting rates of change in marital satisfaction over a 4 year period. Couples with good problem-solving abilities did not differ on marital satisfaction trajectories from couples with worse problem-solving skills when the discussions were marked by high levels of positive affect. However, when couples displayed low levels of positive affect, poorer problem solving abilities were associated with a steeper negative slope in marital satisfaction over four years. In
other words, positive affect provided couples with poorer problem-solving abilities a buffer against accelerated rates of decline in marital satisfaction.

Positive affect during conflict resolution tasks has also been successful in predicting future relationship health (Driver & Gottman, 2004; Gottman, Coan, Swanson, and Carrere, 1998). Indeed, Gottman et al. (1998) found that positive affect was the only predictor of happiness and stability in a newlywed sample. Positive affects during conflict tasks have also been shown to be related to concurrent daily relationship behaviors. Driver and Gottman (2004) found that daily playful bids towards one’s partner contributed to positive affects in a conflict discussion. Specifically, daily playful bids were associated with more humor, enthusiasm, and affection.

While positive affect has emerged as a key predictor of marital outcomes, the context in which the positive affect occurs remains primarily negative. That is, research has begun to show that positive affect is important when partners fight, but that does not tell us about the importance of positive affect (or lack thereof) when couples engage in a positive, approach-oriented relationship task. One area of research that has examined a positive interaction context is work on capitalization (i.e., the sharing of a positive event with another person), which has been associated with increases in relationship satisfaction (Gable, Reis, Impett, & Asher, 2004). In fact, when comparing positive-event disclosures (i.e., capitalization) with negative-event disclosures (i.e.,
social support), perceived partner responsiveness (i.e., feeling understood, validated, and cared for by one’s partner) was predictive of future relationship health only in the positive-event discussion (Gable, Gonzaga, & Strachman, 2006).

Overview of Study and Hypotheses

Beyond these first steps taken in the social support literature, positive and negative marital interaction contexts have not been directly compared in predicting relationship stability and quality. Although work has called for the study of couple functioning in more positive contexts (Berscheid, 2010; Melby et al., 1995; Roberts, 2004; Snyder, Heyman, & Haynes, 2005) there have been few answers to this call. The primary goal of this paper is to take a first step towards addressing this question. By directly pitting a conflict-resolution task against a positive, love-paradigm task, we seek to determine which context may be more informative about newlywed functioning 12-15 months later. Specifically, we hypothesize that affective behavior from the positive interaction context will emerge as a significant predictor of marital outcomes, above and beyond affective behavior from a conflict interaction context.
Chapter 2

METHOD

Participants

The sample consisted of 120 newlywed heterosexual couples who had been married for six months or less when they came in to the laboratory (mean = 4.4 months). Couples were recruited through the Miami-Dade marital registry and received letters in the mail describing the opportunity to participate in the present study. To be eligible, couples could not have had any previous marriages, could not have children from their present or prior relationships, must feel comfortable speaking and writing English, and were planning to remain in the Miami-Dade area for the following 2 years for participation in follow-up visits. For their participation in this portion of the study, participants were compensated $50. Of these couples, 1 was removed from the analysis due to technical difficulties during the videorecording of the interaction. The remaining 119 couples were retained for analysis.

Male participants were on average 27.99 years old (SD = 5.1) and female participants were on average 26.39 years old (SD = 4.7). Nine percent were African-American, 2.1% were Asian-American and Pacific Islanders, 28.3% were European-American, and 66.6% were European-American.
Americans, 54.2% were Hispanic-Americans, and 5.4% were listed in other categories (e.g., Caribbean descent).

Procedure

Couples participated in a larger, longitudinal study that involved multiple components over three time points; the portions pertaining to the present analyses will be described below. At time 1, (i.e., within the first six months of marriage) couples came into the laboratory and completed a set of self-report measures and participated in marital interaction discussion tasks. At time 2, approximately 15.6 months later, couples returned to the lab and completed a second set of self-report measures that will be described below. The interaction tasks will be described first, followed by the measures that each partner completed.

Couples participated in four 12-15 minute behavioral observation laboratory tasks that were video recorded using two cameras and followed the procedures outlined by Gottman (1994). Partners were seated at a round table across from one another with one pan-tilt-zoom camera focusing on each of the partners to capture a portrait of the face and upper torso. The images from the two cameras were combined in a split-screen image so that both partners could be viewed simultaneously on a single screen.
Daily Activities Task. Participants were instructed to discuss the activities they had participated in during the previous 24 hours, either together or individually. Because many couples came to the study from their place of work, this provided them with an opportunity to discuss the events of their day as well as allowed them to habituate to the observational room and being video-recorded.

Conflict Task. Following the daily activities task, couples completed two conflict discussions in which they discussed disagreements they have been having in their marriage that they each selected. To generate the topics of the discussions, each partner independently completed the Areas of Change Questionnaire (Weiss, 1975), which listed areas of common marital disagreements, such as “spend time keeping the house clean” and “assume responsibility for finances.” Additional space was also provided that allowed partners to identify areas of disagreement that were not specifically listed. Each partner listed the top three areas they argue about most and rated them from 0 (“we never fight”) to 100 (“we fight all the time”). The highest ranked item for each spouse was selected as the topic for their conflict discussion. Average rating for top area of disagreement was 69.15 (SD=25.48, range 10-100) for husbands and 74.12 (SD=22.80, range 12-100) for wives. A coin-toss determined whether the husband-selected topic or wife-selected topic was discussed first. For the purpose of the present analyses, only data from the wife-selected discussion will be
presented. Couples were instructed to “discuss the issue in an attempt to solve the
problem or disagreement as you would at home.” Following the discussion, each
partner independently completed measures of their feelings and perceptions of the
interaction, including a rating of how similar this interaction was to interactions at
home from 1 (“not at all”) to 5 (“very much”). Average ratings for similarity of
interactions during the female selected conflict task was 4.07 (SD =1.1) for males and
4.37 (SD = 0.93) for females.

Love Paradigm Task. After completing the post-conflict task measures,
partners were taken to separate rooms where they were given 10 minutes to
independently think about positive feelings they have for their partner based on a “love
paradigm” laboratory interaction procedure developed by Roberts & Greenberg (2002).
Participants were given a list of common positive feelings towards partners, including
items such as love, respect, and desire, and were also given the following instructions:

> “Spend the next 10 minutes thinking about times when you’ve felt a strong
positive feeling toward your partner—a feeling of love, respect, desire, warmth, any
positive feeling. Also think about the reason you had this feeling—what brought the
feeling on, maybe something your partner did, or just some way your partner is. Write
these feelings down as a way of helping you focus on them. Try to concentrate on the
feelings you have, rather than simply generating a list of your partner’s positive
characteristics.”

Following the 10 minute reflection period, couples returned to the interaction room and
were instructed to talk about their positive feelings for each other for 12-15 minutes.
Again, partners were also instructed to “let the conversation flow as it might if you were talking about your positive feelings for each other at home.” Following the discussion, each partner again independently completed measures of current affect and how comparable this interaction was to interactions at home. Average ratings for similarity of the interaction for this task was 4.34 (SD =0.97) for males and 4.22 (SD = 1.12) for females.

Measures

Dyadic Adjustment Scale. The Dyadic Adjustment Scale-7 (DAS-7; Hunsley, Best, Lefebvre. & Vito, 2001) is a short form of Spanier’s Dyadic Adjustment Scale (Spanier, 1976) which asks partners to rate the extent to which they agree or disagree on several issues, such as “Aims, goals, and things believed important” on a scale of 0 (“Always disagree”) to 5 (“Always agree”). Partners also rated the frequency of several occurrences between themselves and their partner, such as “Have a stimulating exchange of ideas” on a scale of 0 (“Never”) to 5 (“More Often”). Partners also indicated the degree of happiness in their relationship on a scale from 0 (“Extremely unhappy”) to 6 (“Perfect”). The DAS was completed at both time 1 and time 2. Alphas were .72 for husbands and .74 for wives for time 1 and .70 for husbands and .73 for wives for time 2.
Marital Status Inventory. The Marital Status Inventory (MSI; Weiss & Cerreto, 1980) asks each partner to rate whether have considered or taken steps towards marital separation or divorce. Items increase in seriousness of action, beginning with “I have thought of divorce or wished that we were separated, usually after an argument or other incident” and escalating to “My spouse and I have had a trial separation.” These items are rated on a 3-point scale from “0=Never,” “1=Once,” to “2=Twice or more.” The final item, “I have filed for a divorce or we are divorced,” is rated as “True” or “False.” The items were summed to create an index of the number of steps taken toward divorce. The MSI was administered at time 2 only. Alphas were .76 for husbands and .75 for wives.

Behavioral Observation. The female-selected topic for the conflict task and the love paradigm task were coded for all couples using the Specific Affect Coding System (SPAFF; Coan & Gottman, 2007). The SPAFF is widely considered to be the gold standard for marital coding systems, has demonstrated good construct and criterion validity (Coan & Gottman, 2007; Johnson, 2002), and is the most widely studied marital affect coding system (Heyman, 2001). The SPAFF provides 18 positive and negative codes that are each coded at the construct level, using facial expressions, tone of voice, body movements, and content to inform coding. The positive codes included affection, enthusiasm, humor, interest, and validation, and the negative codes
included *anger, belligerence, contempt, criticism, defensiveness, disgust, domineering, fear/tension, sadness, stonewalling, threats,* and *whining*. The interactions were 15 minutes for the first 53 couples, but were shortened to 12 minutes for the subsequent 67 couples due to time constraints. These interactions were then chunked into 4 or 5 three minute segments coding. For each partner, all positive and negative affects were coded for how well represented they were during that segment, using a scale of 0 (“Not represented at all”) to 4 (“Very well represented”).

The love paradigm task was coded by research assistants at the University of Delaware and the conflict task was coded by research assistants at the University of Virginia. Graduate students attended a SPAFF training workshop led by Jim Coan, an author of the present version of the SPAFF (Coan & Gottman, 2007), and supervised reliability training and ongoing coding by undergraduate coding teams at the respective universities. Additionally, all coders at both universities coded the same selection of videos to determine good reliability between coding teams at the respective universities. Inter-rater reliability was calculated using coefficient Alpha for each of the affects coded. Reliability coefficients were calculated separately for the love task and for the conflict task (see Table 1).
Table 1. Inter-Rater Reliability Coefficients for Individual SPAFF Codes

<table>
<thead>
<tr>
<th>Affects</th>
<th>Love Task</th>
<th>Conflict Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral</td>
<td>.75</td>
<td>.53</td>
</tr>
<tr>
<td>Affection</td>
<td>.85</td>
<td>.56</td>
</tr>
<tr>
<td>Anger</td>
<td>.47</td>
<td>.34</td>
</tr>
<tr>
<td>Belligerence</td>
<td>.53</td>
<td>.35</td>
</tr>
<tr>
<td>Contempt</td>
<td>.62</td>
<td>.66</td>
</tr>
<tr>
<td>Criticism</td>
<td>.67</td>
<td>.53</td>
</tr>
<tr>
<td>Defensiveness</td>
<td>.78</td>
<td>.61</td>
</tr>
<tr>
<td>Disgust</td>
<td>0(^a)</td>
<td>0(^a)</td>
</tr>
<tr>
<td>Domineering</td>
<td>.74</td>
<td>.61</td>
</tr>
<tr>
<td>Enthusiasm</td>
<td>.57</td>
<td>.11</td>
</tr>
<tr>
<td>Fear/Tension</td>
<td>.36</td>
<td>.57</td>
</tr>
<tr>
<td>Humor</td>
<td>.70</td>
<td>.71</td>
</tr>
<tr>
<td>Interest</td>
<td>.67</td>
<td>.40</td>
</tr>
<tr>
<td>Sadness</td>
<td>.51</td>
<td>.54</td>
</tr>
<tr>
<td>Stonewalling</td>
<td>0(^a)</td>
<td>.32</td>
</tr>
<tr>
<td>Threats</td>
<td>.53</td>
<td>0(^a)</td>
</tr>
<tr>
<td>Validation</td>
<td>.77</td>
<td>.65</td>
</tr>
<tr>
<td>Whining</td>
<td>.75</td>
<td>.13</td>
</tr>
</tbody>
</table>

\(^a\) These affects yielded alphas of 0 due to a lack of variance in these data.
Negative and positive affect (NA and PA) composites were created using affects that were both reliable and occurred frequently enough to provide variance in both love and conflict tasks. The NA scale was a composite of contempt, criticism, defensiveness, and domineering and the PA scale was a composite of affection, humor, and validation. Additionally, we used a weighting scheme derived from previous research using the SPAFF to predict marital outcomes to create the NA and PA composites (Carrere & Gottman, 1999; Gottman, 1994). That is, each affect was multiplied by a weight coefficient so that affects shown to be particularly powerful in predicting marital outcomes (e.g., contempt) were more heavily represented in the NA or PA composites (see table 2 for weighting scheme).
Table 2. Weighting Scheme for SPAFF Positive and Negative Affects Composites

<table>
<thead>
<tr>
<th>Positive Affects</th>
<th>Weight</th>
<th>Negative Affects</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affection</td>
<td>+4</td>
<td>Contempt</td>
<td>-4</td>
</tr>
<tr>
<td>Humor</td>
<td>+4</td>
<td>Criticism</td>
<td>-2</td>
</tr>
<tr>
<td>Validation</td>
<td>+4</td>
<td>Defensiveness</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Domineering</td>
<td>-1</td>
</tr>
</tbody>
</table>

Note: Weights and table excerpted from Gottman (1994).
Chapter 3

RESULTS

Correlations between husband and wife SPAFF predictors are presented in Table 3 (SPAFF NA and PA composites) and Table 4 (SPAFF contempt and affection). Means and standard deviations for each of the predictor variables for husbands and wives are presented in Table 5. We conducted paired sample t tests to determine whether husbands and wives significantly differed in their mean levels of NA, PA, affection, and contempt across both conflict and love tasks (see Table 5). Partners significantly differed across most of the predictors, with the exclusion of PA expressed in the love task and affection expressed in both conflict and love tasks.
Table 3. Zero-Order Correlations Among SPAFF Composite Codes

<table>
<thead>
<tr>
<th>Variable</th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>7.</th>
<th>8.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Husband Conflict Task NA</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Husband Conflict Task PA</td>
<td>-0.51**</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Husband Love Task NA</td>
<td>0.38**</td>
<td>-0.32*</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Husband Love Task PA</td>
<td>-0.26**</td>
<td>0.44**</td>
<td>-0.45**</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Wife Conflict Task NA</td>
<td>0.58**</td>
<td>-0.38**</td>
<td>0.34**</td>
<td>-0.28**</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Wife Conflict Task PA</td>
<td>-0.47**</td>
<td>0.74**</td>
<td>-0.37**</td>
<td>0.36**</td>
<td>-0.52**</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Wife Love Task NA</td>
<td>0.31**</td>
<td>-0.24**</td>
<td>0.82**</td>
<td>-0.40**</td>
<td>0.47**</td>
<td>-0.36**</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>8. Wife Love Task PA</td>
<td>-0.23*</td>
<td>0.36**</td>
<td>-0.43**</td>
<td>0.85**</td>
<td>-0.24**</td>
<td>0.40**</td>
<td>-0.42**</td>
<td>---</td>
</tr>
</tbody>
</table>

* *p < .05. ** p < .01.
Table 4. Zero-Order Correlations Among SPAFF Contempt and Affection Codes

<table>
<thead>
<tr>
<th>Variable</th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>7.</th>
<th>8.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Husband Conflict Task Contempt</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Husband Conflict Task Affection</td>
<td>-0.24*</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Husband Love Task Contempt</td>
<td>0.38**</td>
<td>-0.15</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Husband Love Task Affection</td>
<td>-0.14</td>
<td>0.22*</td>
<td>-0.46**</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Wife Conflict Task Contempt</td>
<td>0.3**</td>
<td>-0.2*</td>
<td>0.43**</td>
<td>-0.18*</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Wife Conflict Task Affection</td>
<td>-0.3**</td>
<td>0.59**</td>
<td>-0.28**</td>
<td>0.10</td>
<td>-0.28**</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Wife Love Task Contempt</td>
<td>0.19*</td>
<td>-0.03</td>
<td>0.67**</td>
<td>-0.34**</td>
<td>0.47**</td>
<td>-0.18*</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>8. Wife Love Task Affection</td>
<td>-0.12</td>
<td>0.09</td>
<td>-0.33**</td>
<td>0.46**</td>
<td>-0.11</td>
<td>0.24**</td>
<td>-0.38**</td>
<td>---</td>
</tr>
</tbody>
</table>

* *p < .05. **p < .01.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Husband Mean</th>
<th>Husband SD</th>
<th>Wife Mean</th>
<th>Wife SD</th>
<th>t</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Conflict Task NA</td>
<td>1.58</td>
<td>.86</td>
<td>1.84</td>
<td>1.12</td>
<td>-3.00</td>
<td>.003</td>
</tr>
<tr>
<td>2. Conflict Task PA</td>
<td>2.14</td>
<td>1.49</td>
<td>1.88</td>
<td>1.34</td>
<td>2.61</td>
<td>.01</td>
</tr>
<tr>
<td>3. Love Task NA</td>
<td>.37</td>
<td>.52</td>
<td>.52</td>
<td>.64</td>
<td>-4.55</td>
<td>.000</td>
</tr>
<tr>
<td>4. Love Task PA</td>
<td>4.59</td>
<td>1.75</td>
<td>4.46</td>
<td>1.72</td>
<td>1.52</td>
<td>.13</td>
</tr>
<tr>
<td>5. Conflict Task Contempt</td>
<td>.35</td>
<td>.46</td>
<td>.55</td>
<td>.64</td>
<td>-3.22</td>
<td>.002</td>
</tr>
<tr>
<td>6. Conflict Task Affection</td>
<td>.29</td>
<td>.34</td>
<td>.29</td>
<td>.29</td>
<td>0.21</td>
<td>.83</td>
</tr>
<tr>
<td>7. Love Task Contempt</td>
<td>.16</td>
<td>.25</td>
<td>.25</td>
<td>.33</td>
<td>-3.88</td>
<td>.000</td>
</tr>
<tr>
<td>8. Love Task Affection</td>
<td>1.75</td>
<td>.68</td>
<td>1.75</td>
<td>.68</td>
<td>-0.11</td>
<td>.91</td>
</tr>
</tbody>
</table>

Note. NA values can range from 0-9, PA values can range from 0-16, and Contempt and Affection values can range from 0-4.
Analytic Strategy

Two analytic approaches were taken to examine the hypothesis that coded affects derived from a positive marital interaction context will predict couple outcomes above and beyond coded affects derived from a negative marital interaction context. First, we used dyadic path modeling with multivariate outcomes for husbands and wives (see Figure 1), enabling us to estimate parameters for both spouses simultaneously (Cook & Kenny, 2005). This approach was taken in order to accommodate the dyadic, and therefore interdependent, nature of these data. Additionally, using the actor-partner interdependence model (APIM; Cook & Kenny, 2005; Kashy & Kenny, 1999), we were able to model both actor and partner effects. That is, in addition to the within-person effects of male outcomes on male predictors and female outcomes on female predictors (i.e., actor effects), represented by the paths labeled A in Figure 1, we also regressed female partner outcomes on male predictors and male partner outcomes on female predictors (i.e., partner effects), represented by the paths labeled B in Figure 1. This enabled us to examine whether male and female partners influenced one another’s outcomes, above and beyond any actor effects.
A second approach we took in analyzing these data involved using a linear growth curve model (Bollen & Curran, 2006) to examine the temporal course of emotion over the marital interactions. To do this, we examined repeated measures of each partner’s affect over time (i.e., across the 4-5 segments of each interaction task), thus creating latent intercept and slopes for each person, and examining its association with marital quality and stability at time 2. Unlike the analyses described above, these data correspond to a multilevel data structure (Kenny, Kashy, & Bolger, 1998; Laurenceau & Bolger, 2005; Raudenbush & Bryk, 2002) where there are repeated measures of emotion predictors nested within individuals who in turn are nested within couples. As described above and in Laurenceau and Bolger (2005), we again conceive of male and female partner outcomes as multivariate outcomes of a couple, thus resulting in within-couple and between-couple levels of analysis. Multilevel modeling of these data allows for the interdependency due to individuals coming from couples to be modeled. All analyses presented below were conducted using Mplus 5.2 (Muthén & Muthén, 2008).

Predicting Steps Toward Divorce
PA and NA across context as predictors. We were first interested in examining the unique predictors of steps taken toward divorce at time 2 when including time 1 PA and NA expressed by both husbands and wives in both conflict and love interactions in our model. The following multivariate outcome path model was used:

\[
\text{Wife STD2} = B_{0w} + B_{1w}(\text{Love Task WNA}) + B_{2w}(\text{Love Task WPA}) + B_{3w}(\text{Love Task HNA}) + B_{4w}(\text{Love Task HPA}) + B_{5w}(\text{Conflict Task WNA}) + B_{6w}(\text{Conflict Task WPA}) + B_{7w}(\text{Conflict Task HNA}) + B_{8w}(\text{Conflict Task HPA}) + e_w
\]

\[
\text{Husband STD2} = B_{0h} + B_{1h}(\text{Love Task WNA}) + B_{2h}(\text{Love Task WPA}) + B_{3h}(\text{Love Task HNA}) + B_{4h}(\text{Love Task HPA}) + B_{5h}(\text{Conflict Task WNA}) + B_{6h}(\text{Conflict Task WPA}) + B_{7h}(\text{Conflict Task HNA}) + B_{8h}(\text{Conflict Task HPA}) + e_h
\]

where **Wife STD2** is the wife’s rating of steps she has taken toward divorce reported at time 2; **Husband STD2** is the husband’s rating of steps she has taken toward divorce reported at time 2; **B_{0w} and B_{0h}** is the intercept representing the average level of wives’ or husbands’ steps taken toward divorce when all of the predictors in the model equal 0; **Love Task WNA** is the NA composite from affects expressed by the wife during the love task; **Love Task WPA** is the PA composite from affects expressed by the wife during the love task; **Love Task HNA** is the NA composite from affects expressed by the husband during the love task; **Love Task HPA** is the PA composite from affects expressed by the husband during the love task;
expressed by the husband during the love task; *Conflict Task WNA* is the NA composite from affects expressed by the wife during the conflict task; *Conflict Task WPA* is the PA composite from affects expressed by the wife during the conflict task; *Conflict Task HNA* is the NA composite from affects expressed by the husband during the conflict task; *Conflict Task HPA* is the PA composite from affects expressed by the husband during the conflict task; and *e_w and e_h* are error components that are assumed to be normally distributed and are allowed to be correlated across husband and wife.

When including all of the above variables in the model, wives’ NA in the conflict task was the only predictor that uniquely and significantly predicted wife’s steps toward divorce (*B* = 1.12; *z* = 2.28 *p* = .02). Husband’s NA in the love task was the only predictor that uniquely and significantly predicted husband’s steps toward divorce (*B* = 1.71; *z* = 2.21, *p* = .03). When we attempted to constrain these effects across partners as a test of gender differences in these effects, we found that the model tended toward significant deterioration in fit, suggesting the presence of gender differences (∆χ²(2) = 4.871, *p* = .09).

Affection and contempt across context as predictors. Because using PA and NA composites can obscure the effects of individual affects in predicting outcomes, we next examined the unique effects of affection and contempt in predicting steps toward
divorce for husbands and wives. Affection and contempt were selected due to evidence suggesting they are powerful emotions that play an important role in predicting relationship well-being (Gottman, 1994; Pendell, 2002). The following multivariate outcome path model was used:

\[
Wife\ STD2 = B0w + B1w(Love\ Task\ WAFFECTION) + B2w(Love\ Task\ WAFFECTION) + B3w(Love\ Task\ WCONTEMPT) + B4w(Love\ Task\ HCONTEMPT) + B5w(Conflict\ Task\ WCONTEMPT) + B6w(Conflict\ Task\ WAFFECTION) + B7w(Conflict\ Task\ HCONTEMPT) + B8w(Conflict\ Task\ HAFFECTION) + e_w
\]

\[
Husband\ STD2 = B0h + B1h(Love\ Task\ WCONTEMPT) + B2h(Love\ Task\ WAFFECTION) + B3h(Love\ Task\ HCONTEMPT) + B4h(Love\ Task\ HAFFECTION) + B5h(Conflict\ Task\ WCONTEMPT) + B6h(Conflict\ Task\ WAFFECTION) + B7h(Conflict\ Task\ HCONTEMPT) + B8h(Conflict\ Task\ HAFFECTION) + e_h
\]

where \(Wife\ STD2\) is the wife’s rating of steps she has taken toward divorce reported at time 2; \(Husband\ STD2\) is the husband’s rating of steps she has taken toward divorce reported at time 2; \(B0\) is the intercept representing the average level of wives’ or husbands’ steps taken toward divorce; \(Love\ Task\ WCONTEMPT\) is the contempt expressed by the wife during the love task; \(Love\ Task\ WAFFECTION\) is the affection expressed by the wife during the love task; \(Love\ Task\ HCONTEMPT\) is the contempt
expressed by the husband during the love task; *Love Task HAFFECTION* is the affection expressed by the husband during the love task; *Conflict Task WCONTEMPT* is the contempt expressed by the wife during the conflict task; *Conflict Task WAFFECTION* is the affection expressed by the wife during the conflict task; *Conflict Task HCONTEMPT* is the contempt expressed by the husband during the conflict task; *Conflict Task HAFFECTION* is the affection expressed by the husband during the conflict task; and e_w and e_h are error components that are assumed to be normally distributed and are allowed to be correlated across husband and wife.

For wife’s steps toward divorce, wife’s expression of contempt during the conflict discussion ($B = 1.98, z = 3.09, p = .002$) and wife’s expression of affection during the conflict discussion ($B = -3.31, z = -2.16, p = .03$) emerged as the only unique, significant predictors. That is, controlling for her expressions of contempt and affection during the love task and her partner’s expression of contempt and affection in both conflict and love tasks, only affects from the conflict context emerged as significant predictors. In examining predictors of husband’s steps toward divorce, husband expression of contempt during the love task was the only unique predictor ($B = 2.89; z = 2.17, p = .03$). Again, we attempted to constrain the effects across partners, and found that the constrained model provided a poor fit for these data, providing
evidence of gender differences in these effects ($\Delta \chi^2(3) = 9.94, p=.02$). It is interesting to note that when using NA and PA composites and when examining the individual affects of affection and contempt, the context that best predicted wives’ steps toward divorce remained the conflict context, and the love context was consistently the significant context in predicting husbands’ steps toward divorce.

Predicting Relationship Satisfaction

After examining predictors of steps toward divorce, we now turn to examining the unique predictors of relationship satisfaction at time 2. Using the same model described above with relationship satisfaction as the outcome, neither NA nor PA were uniquely predictive of relationship satisfaction in either context for husbands or wives. However, when examining the effects of affection in both conflict and love tasks, affection expressed in the love task was shown to be predictive of husband and wife relationship satisfaction at time 2, controlling for relationship satisfaction at time 1 (i.e., concurrent with interaction data). That is, wife’s affection in the love task uniquely predicted her own reports of relationship satisfaction at time 2 ($B = 1.21, z = 2.37, p = .02$), and husband’s affection in the love task uniquely predicted his own reports of relationship at time 2 ($B = 1.21, z = 2.37, p = .02$). Because the effects for wives and
husbands appeared similar, we constrained the effects to create a more parsimonious model. The chi-square goodness-of-fit value showed that there was not a statistical difference between the models when comparing one model that held the two parameters to be equal, and a second model that allowed them to vary independently ($\Delta \chi^2(2) = .01, p=.996$), thus providing evidence that the constrained model was a good fit for these data. In addition to these actor effects, we also found trending partner effects in which wife’s expression of affection in the love task predicted husband’s report of relationship satisfaction at time 2 and husband’s expression of affection in the love task predicted wife’s report of relationship satisfaction at time 2 ($B = 0.98, z = 1.93, p = .054$). Again, the effects were constrained between wives and husbands and a statistical comparison of constrained and unconstrained models showed no significant difference between model fit.

Finally, we were interested in examining the effects of the temporal course of emotion during relationship interactions. Specifically, we were interested in examining whether a change in the expression of affection over the course of the 12- or 15-minute interaction was associated with reports of relationship satisfaction at time 2. A linear growth model provided a latent slope for affection scores over the 4 or 5 three-minute segments during the interactions for each person as well as an overall mean slope.
across all husbands and an overall mean slope across all wives. This slope showed significant variability between persons, and we then used this slope to predict relationship satisfaction at time 2. When controlling for the effects of the wife affection slope across the love task and wife and husband reports of relationship satisfaction at time 1, husband affection slope uniquely predicted his own and wife’s reports of relationship satisfaction at time 2 ($B = 27.56$, $z = 2.37$, $p = .02$). Again, husband and wife effects were constrained and the difference in model deviances provided support for the model fit of the constrained model (Δdeviance = .01, ns).
Chapter 4

DISCUSSION

The main aim of the present study was to examine the unique effects of positive and negative spousal affect expressed in positive and negative contexts. Although the majority of existing marital research had used observational data from a negative context to predict longitudinal outcomes in marriage (e.g., Gottman, 1994), our findings demonstrated that affective behaviors from a positive interaction context emerged as significant predictors of satisfaction and divorce proneness above and beyond affective behaviors from a conflict interaction context.

Steps Toward Divorce Findings

When examining the unique predictors of steps toward divorce, negative affect emerged as a significant predictor for both husbands and wives; however, the context in which these expressed affects played a predictive role differed. For wives, it was NA in the conflict context that was associated with wives’ steps taken toward divorce at time 2, but for husbands, it was NA in the love context that predicted husbands’ later steps taken toward divorce. Our finding that greater expression of NA during conflict was a predictor of marital distress has been consistently demonstrated in past marital research.
(Gottman, 1994). However, greater expression of NA in a context where couples should be connecting positively and (re-)experiencing loving affects is harmful to relationship well-being in a uniquely additive way.

Because the composition of NA and PA often differ across studies (i.e., different affects frequently comprise these scales) and may obfuscate the unique effects of individual affects, we examined contempt and affection independently. When examining affection and contempt as potential unique predictors of steps towards divorce in both love and conflict interaction contexts, again a similar pattern emerged in which wife’s affection and contempt predicted her own steps toward divorce during the conflict task, whereas husband’s contempt predicted his steps toward divorce during the love task.

Although we found significant gender differences in the context that uniquely predicted steps toward divorce, these differences were not hypothesized and are difficult to interpret. Although past research has found gender differences in associations between affect expression in conflict resolution tasks and marital outcomes, these differences often vary across different studies and lack consistency in the literature. For example, Carrere and Gottman (1999) found that an association between higher levels of negative affect and lower levels of positive affect and likelihood for later divorce, and this association was found in both wives and husbands.
However, other work has shown that the association between negative start-up and later divorce is present only for wives (Gottman et al., 1998). One plausible explanation for why the conflict task provided a more potent context for predicting wives’ steps toward divorce in the present study is that the conflict task we coded was the wife’s selected topic (and not the husband’s). Partners who are more invested in change occurring in the selected topic, and who typically are the ones who select the topic, have been found to have more significant associations between negative affect and relationship outcomes (Christensen & Heavey, 1990). Because it was the conflict interaction with the female spouse’s topic that was used in these analyses, wives may have been the more invested in change occurring, making it a more powerful context to predict their outcomes.

Relationship Satisfaction Findings

In predicting relationship satisfaction, a somewhat different picture emerged. When accounting for husbands’ and wives’ expression of affection in the love and conflict contexts, it was only affection in the love task that uniquely predicted relationship satisfaction at time 2. We found both actor and partner effects, where each spouse’s expression of affection was significantly associated with their own relationship satisfaction and their partner’s relationship satisfaction. Although affectionate behaviors in conflict interactions have been found to be predictive of later relationship quality.
(e.g., Gottman, 1998), here we examined the unique effects of context by including both affection expressed during conflict interactions and affection expressed during love interactions in our model. Our results suggest that when parsing out the effects of affection in the conflict task, it is the love task that provides a significant context for predicting later relationship satisfaction.

Additionally, we examined how the temporal course of emotion may be associated with later relationship satisfaction. By regressing the expression of affection on time over the course of the interactions, we generated latent slopes that significantly varied between persons. We then used these slopes as a predictor, and found that the husbands’ slope in the love task significantly predicted both husbands’ and wives’ relationship satisfaction at time 2. Husbands who had more positive slopes (i.e., were better able to maintain affection through the course of the interaction) were more satisfied, and had wives who were more satisfied, with their marriage later on. Again, in predicting relationship satisfaction, it was the love context that showed an association between affection and satisfaction.

Taken together, these findings suggest that (a) the most predictive context may be different in predicting divorce compared with relationship satisfaction, and (b) the context that best predicts these outcomes may be different for male and female partners. By identifying the significant contexts in which relational behaviors are best
associated with relationship outcomes, future work can capitalize on using these different contexts for better understanding longitudinal relationship outcomes.

Treatment Implications

These findings bear potentially significant implications for the assessment and treatment of relationship problems. One of the most common assessment techniques in relationship therapy involves observing a couple discuss an area of difficulty in their relationship while the therapist attends to the process of how the couple interacts. This is done as a diagnostic exercise to assess the possible maladaptive affective behavioral patterns that may underlie intimate relationship interaction (O’Leary, Heyman, & Jongsma, 2001; Snyder, Heyman, & Haynes, 2005). This is in part due to the presumed importance of communication processes *during conflict* that will assist in identifying and treating couples in distress. However, given the significance of affective expressions in a positive context in predicting husbands’ steps toward divorce, above and beyond a conflict context, therapists may want to include the use of positive interaction tasks to better understand couple functioning.

Moreover, our findings also point to the potentially important role that affection may have during both conflictual and loving interactions. Affectionate behaviors, such
as expressions of caring, have been shown to be critical in the development and maintenance of intimacy (Reis & Shaver, 1988), which has been pointed to as an important predictor of later relationship quality (Prager, 1995). In addition to the robust effects of negative affects such as contempt (Gottman, 1994), a lack of affection appears to also have detrimental effects on later relationship quality. These results suggest couples therapists should attend to the presence (or absence) of affectionate behaviors between partners in addition to negative behavioral patterns.

Limitations

There were several limitations to note in the present study. One weakness is the lack of counterbalancing of the interaction tasks. The conflict task preceded the love task for all couples. It would be difficult to know if negative affect expressed during the course of the love task resulted from residual thoughts or feelings related to the conflict task, or a response directly related to the love task. This would be best tested if half of the couples participated in the love task prior to the conflict task, so that any order effect hypothesis could be eliminated.

Another limitation of the present study is the potential misfit between the love interaction task and the coding system we used. The SPAFF was initially designed, and subsequently used, primarily as a way of measuring affective behavior elicited during conflict discussions. For this reason, a greater emphasis is placed on negative affects,
illustrated by the greater number of negative than positive affects in the coding system. Therefore, it is possible that the SPAFF was not sensitive enough to the range and type of affective behaviors elicited during the positive interaction task, thus making it more difficult to validly capture the expression of affect. However, in our efforts to directly compare the behavior elicited from the love paradigm with the behavior elicited during the conflict task, we chose to use the same coding system, at the possible expense of the sensitivity deficits that may have occurred in coding the love paradigm. Future work should examine better fitting coding schemes in evaluating the predictive value of affective behavior expressed in positive marital interaction.

Overall, this work suggests that we would be remiss as relationship researchers if we continue to account only for partner behaviors in conflict or negative contexts. A more complete, comprehensive picture of relationship functioning may be achieved when observing couples in the various contexts in which they live their lives.
REFERENCES

