Index

A
Apoplast
osmotic potential, 80–81
tension in, 17–20
water potential components, 108–110
Atmospheric pressure, cell pressures relative to, 105
Average, volume-weighted, 27–28, 73–74

B
Baffles, in pressure chamber, 40–42
Balancing pressure, time requirement, 26, 30, 36, 41
Beveling, microcapillary tip, 119–120
Branches, sampling in pressure chamber, 30
Bubbling, in xylem solution, 42–43

C
Calibration
dew point instruments, 59
and diffusion errors, 86–89
Peltier instruments, 60
pressure transducer, 116
thermocouple instruments, 63–65, 68–69
Canopy, and potential gradients, 43–44
Casparian strips, selectivity, 31–32
Cell capacitance, calculations, 131
Cell size, for pressure probe measurements, 120–122
Cell wall
complex with plasmalemma, Lp, 132
density, 112
and plasmalemma, puncturing, 106–107
temperature-dependent synthesis, 147–148
Chemical potential, thermodynamic determination, 2–8

D
Dehydration
avoidance, 40–42, 65–67, 94, 134–135
pressure related to, 13
soil, 78
tissue, in pressure chamber, 40–42
Dew point hygrometers, 59, 70, 75
Diffusion error, in psychrometers, 86–90
Droplets
sample, freeze/thaw, 126
water prevention with baffle, 40–41
on thermocouple, 60–61, 87–90

E
Elasticity, cell wall, 39, 112
Elastic modulus
calculations, 39, 130–131
plant tissue, 39
Electrical performance, thermocouple, 61–62
Energy state, molecules, (\(\mu_\text{w} - \mu_\text{o}\)), 4–8

173
Equilibration
branches, 30
leaves, 28
Equilibrium
measuring at, 41, 49–52, 106
thermodynamic
benefits, 143–144
value, 9–10
vapor, 56–57
Evaporation
ability, measurement, 8–9
control, in pressure probe, 134–135
detection from temperature, 51
retardation, 24–26, 84
water in closed container, 50
Excision
plant tissue, 24, 75–77
stem growing region, 149
and subsequent growth, 95–96
water potential before and after, 73–75
External pressure, 16–20
Extrapolation
isopiestic point, 80
linear, 70–72
in measuring osmotic potential, 34–36
Far cells, contribution to volume average, 27–28
Flow
hydraulically driven, 108
pressure measurements in absence of, 9–10
Freeze/thaw
leaf, matric potential, 38
plant tissue, osmotic potential, 82–84
sample droplet, 126
tissue, and negative pressure, 44–47
Gas, in pressure chamber, 21–26, 39
Gene expression, changes in, 3–4
Glove box
humidified, 40, 66, 94
saturated, 76–77
Gravitational potential, measurement, 85–86
Gravity, effects, 16–17
Growth
and cell water status, 3–4
after excision, 95–96
process, psychrometer study, 148–151
and water potentials, 151–154
Half-time, t½, for efflux and influx, 131–132
Heat, metabolic
avoidance, 96–97
correction for, 92
Humidity, measured by thermocouple, 49–52
Hydraulic conductivity
determination, 131–132
membrane, Lp, 110–111
Hygrometers, dew point, 58, 59, 70, 75
Illumination
and potential gradients, 43–44
for viewing meniscus, 123
Isopiestic psychrometers, 57–58, 67–71, 75, 78, 144, 146–147
Junctions, thermocouple
check for good contact, 61
at different temperatures, 54–56
Kinetics, cellular, 113
Leaks
and diminished turgor, 124–125
in pressure chamber, 25
in sealed pressure probe, 119
Leaves
frozen/thawed, matric potential, 38
sampling in pressure chamber, 28–30
sampling in psychrometer, 75–76
sorghum, water status, 143–144
water potential, 74, 97
Liquid water
molal volume, 6–8
movement, opposition, 52–53
Lp, see Hydraulic conductivity
Index

M

Maize
- growing regions, enclosed, 151–153
- weight at tasseling, 1

Manufacturers
- pressure chambers, 48
- pressure probe parts, 141–142
- psychrometers, 98

Matric potential
- expressed as tension, 17–20
- measurement, 84–85
- and wettability, 36–38

Measurements
- ability to evaporate, 8–9
- humidity, by thermocouple, 49–52
- matric potential, 36, 84–85
- osmotic potential, 32–36, 79, 84, 126–129
- with pressure chamber, 23–27
- with pressure probe, 122–134
- with psychrometers, 61–73
- soil, in situ, 79
- turgor, by different methods, 36, 84, 122, 149–150

Membranes
- breakdown in high temperatures, 41
- conductivity, 105, 110, 131–132
- layers of water and solute next to, 133–134
- reflective for solutes, 5–6, 133–134
- transport, 147–148

Microcapillary
- construction and filling, 116–120
- oil-filled, 106
- plugged tip, 135–136

Micromanipulator, pressure probe mounted on, 114, 120

Midday, water potentials, 155–158, 161

Mixing
- errors caused by, 83–84
- solutions in microcapillary, 126–128

Molecules, energy state (\(p_n - p_o\)), 4–8

N

Needles, conifer, washing, 93

Negative pressure, see also Tension inside protoplasts, 44–47

Nodules, 77

O

Observation, from side of pressure chamber, 25–26, 39

Oil
- filled microcapillary, 106
- filling microcapillary with, 117–119
- filling pressure probe with,
 114–115

Osmotica, see also Solutions
- effect on dehydration, 112
- measuring water status with, 6
- series of, roots in, 1–2

Osmotic adjustment, caused by solute accumulation, 158–161

Osmotic effectiveness, solution, 2, 6

Osmotic potential
- measurement, 32–36, 79–84, 125–129
- sucrose solutions, 99–102

Overheating, effect on readings, 41

Overpressuring
- applied to tissue, 20
- removal of water from cells, 33–34

Oxygen, in vapor chamber, 96

P

Peltier effect, 54–55

Peltier psychrometers, 59–61, 70, 75

Plants
- intact, 78, 122–123
- response to water, variability, 1
- tissue
 - elastic modulus, 39
 - excision, 24, 75–77
 - working with, 27–32, 73–78
 - water status measurement, 143–162
 - water transport system, 15

Plasmalemma
- and cell wall, puncturing, 106–107
- complex with cell wall, \(L_p\), 132
- forces across, 109–110
- solute-reflecting, 17–19

Pollen
- in saturated glove box, 77
- water potential, 161–162

Pore-forming proteins, 148

Pores, water-filled, 17–18, 21, 37, 85

Porous solids, wettable, 16, 21, 85

Potential gradients
- contributors to, 43–44
- problems in psychrometry, 97
- water
 - restoration, 64
 - volume averaging, 73–75
Precautions
pressure chamber, 39–47
pressure probe, 134–137
psychrometers, 86–97
Pressure, see also specific types
expressed in megapascals, 6–8
Pressure chamber
comparison with isopiestic psychrometer,
143–144
measurements of turgor, 154–155
precautions, 39–47
type, 15–22
types, 22–23
Pressure probe
building, 138–142
precautions, 134–137
principles of method, 103–106
theory, 106–113
Proteins, pore-forming, 148
Protoplast
negative pressure, 44–47
osmotic potential, 81–83
water potential, 17–20
water potential components, 17–20,
108–110
ψw, see Water potential
Psychrometers
isopiestic, 57–58, 67–71, 75, 78,
143–147
Peltier, 59–61, 70, 75
precautions, 86–97
Richards/Ogata, 60–61, 90
study of growth process, 148–154
Psychrometry, thermocouple, see
Thermocouple psychrometry
Pure water
energy state (μw − μa), 4–5
vapor pressure, 52

R
Recutting, effect on readings, 42
Reflection coefficient, 6, 111–112, 132–134
Reflectivity, membranes, 5–6
Reswelling, diagnostic for solute entry,
133
Richards/Ogata psychrometers, 60–61, 90
Roots
placement in series of osmotica, 1–2
sampling in pressure chamber, 31
in saturated glove box, 76–77
water potential, growth, 153

S
Safety, when using pressure chamber, 25, 39
Sampling
efforts, in psychrometry, 94
time, long, 66
tissues, in pressure chamber, 28–32
in psychrometry, 75–79
Seals
changing position of sample in, 43
and leaks, 119
for pressure chamber, 22–23, 28–32
replacement, 136
Shrinkage
cells in response to solutes, 111
protoplasts, 44–45
Single cells
turgor measurement, 145–147
water status measurement, 103
Soils
roots in, sampling in pressure chamber,
31–32
water status measurement, 152–153
working with, 78–79
Solids, porous, wettable, 16
Solute content, tissue, 35–36
Solute entry, cell reswelling, 133
induced osmotic adjustment, 158–161
lowering of chemical potential, 16
membrane reflective for, 5–6
reflection by membrane, 5–6, 111,
132–134
released from apoplast, 80
in xylem, 14
Solutions, see also Osmotica
cell, dilution by apoplast solution, 83–84,
146
isopiestic, 51–52, 69
mixing in microcapillary, 126–128
osmotic effectiveness, 2, 6, 111–112
sucrose, osmotic potentials, 99–102
surface
components, 53–54, 79
vapor pressure, 53–54
Sorghum, leaves, water status, 143–144
Sorption effects, in psychrometers, 93
Stems
growing region, excision, 95–96, 149–154
sampling, 76
woody, in pressure chamber, 22, 30
Sucrose, solutions, osmotic potentials, 99–102
Index

Syringe
fine-needle, 115, 117–119
tissue sample in, 82

Temperature
droplet, 88
effects
on pressure chambers, 22, 41
on pressure probe, 135
on psychrometers, 59–61
on water movement, 147–148
high, and membrane breakdown, 41
Kelvin, 8–9, 22, 53, 99, 126, 135
uniformity in psychrometers, 49, 91–93
and vapor pressure change, 8–9, 53
Tension, set also Negative pressure
created by cellular water potential, 14
large, in apoplast, 17–20, 37, 144–145
Terminology, for water status, 2–3
Thermocouple psychrometry
principles of method, 49–52
theory, 52–54
Thermodynamics
concept of work, 4–10
determination of chemical potential, 2–8
Time
to achieve balancing pressure, 26, 30, 36
to approach average, 27–28
of day
associated water potentials, 155–158, 161–162
and transpiration, 21
freezing, for blade, 38
for psychrometer measurements, 66–67, 96
sampling, long, 66
Tissues
mature and growing, 96, 148–151
overpressuring, 20, 33
plant
elastic modulus, 39
excision, 24, 73–74
working with, 27–32, 73–78
preparation for psychrometer, 64–66
reproductive, water relations, 161–162
sealed into pressure chamber, 13
Turgor pressure measurement, 145–147, 150
Transfer, rapid, samples, 24, 65, 94, 126
Transpiration, variability during day, 21

Turgor
and balancing pressure, 30
calculation, 84
changes in, interpreting, 110
measurements
by different methods, 150
with pressure chamber, 154–155
in single cells and tissues, 145–147
in small cells, 120–122
positive, in cells, 19
statistical test, 136
and water contents, 36–37, 44–47
Turgor pressure
change in, 129
measurements, 122–125

Vacuole, central, microcapillary tip in, 129, 135
Vapor pressure
droplet on thermocouple, 88–90
liquid, 50–52
measuring work with, 7–9
solutions, 10
solution surface, 33–54
Vaseline
coating
vapor chamber surfaces, 62–64, 96–97
wounded area, 42
covering plant surface, 123
cut surface hidden by, 75, 81
melted and resolidified, 56–57, 64, 93
Vibration, from table or air movement, 124, 134

Water
crossing membrane, 5–6, 110–111
droplets
prevention with baffle, 24, 40–41
on thermocouple, 60–61, 87–90
liquid, see Liquid water
movement, temperature effects, 147–148
pure, see Pure water
relations, reproductive tissues, 161–162
Water content
compared to other tissue properties, 2
and turgor, 36–37, 44–47, 112–113
Water potential
calculating, 26–27, 70–72
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water potential (continued)</td>
<td>14, 144-145</td>
</tr>
<tr>
<td>components</td>
<td></td>
</tr>
<tr>
<td>effects on ψ_w</td>
<td>15-20</td>
</tr>
<tr>
<td>measuring, 32-39, 79-86, 122-129</td>
<td></td>
</tr>
<tr>
<td>gradients</td>
<td></td>
</tr>
<tr>
<td>restoration, 64</td>
<td></td>
</tr>
<tr>
<td>volume averaging, 27-28, 73-75</td>
<td></td>
</tr>
<tr>
<td>growth-induced, 151-153</td>
<td></td>
</tr>
<tr>
<td>inside and outside cell, 17-20, 53, 108-110</td>
<td></td>
</tr>
<tr>
<td>low, growth at, 153-154</td>
<td></td>
</tr>
<tr>
<td>midday, 155-158</td>
<td></td>
</tr>
<tr>
<td>ψ_w, 6-9</td>
<td></td>
</tr>
<tr>
<td>Waxes, sorptive capacity, 93</td>
<td></td>
</tr>
<tr>
<td>Wettability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36-38, 84-86</td>
</tr>
<tr>
<td>porous solids, 16, 85</td>
<td></td>
</tr>
<tr>
<td>Work, in thermodynamics, 4-10</td>
<td></td>
</tr>
<tr>
<td>Wounding</td>
<td></td>
</tr>
<tr>
<td>chemical, avoidance, 65</td>
<td></td>
</tr>
<tr>
<td>pressurized samples, 42</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Xylem</td>
<td></td>
</tr>
<tr>
<td>dimensions, changes in, 43</td>
<td></td>
</tr>
<tr>
<td>tension, 20</td>
<td></td>
</tr>
<tr>
<td>Xylem solution</td>
<td></td>
</tr>
<tr>
<td>bubbling in, 42-43</td>
<td></td>
</tr>
<tr>
<td>at cut end, 26, 29-30</td>
<td></td>
</tr>
<tr>
<td>position before excision, 26</td>
<td></td>
</tr>
<tr>
<td>retraction, 14-15</td>
<td></td>
</tr>
</tbody>
</table>
Measuring the Water Status of Plants and Soils

John S. Boyer
University of Delaware, Lewes

Plants use large amounts of water in their growth, contributing to important consequences for agriculture and the distribution of plant communities. This book is a laboratory manual and serves as a companion to the textbook, Water Relations of Plants and Soils, by Kramer and Boyer (1995). Much of our knowledge of plant and soil–water relations comes from thoughtful and careful measurements of the water status of the plant and its surroundings. This book emphasizes potential thermodynamic methods that can be reproduced at any time or place to indicate the energy used for water transport.

The manual begins with a brief review of relevant thermodynamics, followed by a description of principles and methods used in measuring chemical potential and its components, as well as the precautions necessary to ensure success. The book also provides an explanation of the uses of pressure chamber, thermocouple psychrometer, and pressure probes, as well as selected examples of experiments and references for further study.

Key Features

- Explains laboratory procedures for most-used water status research methods
- Introduces underlying thermodynamic principles
- Compares methods; points to possible conclusions
- Provides example experiments for immediate application

ISBN 0-12-122260-8