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Abstract

This paper is concerned with the application of the Newton-imbedding
iteration procedure to nonlinear boundary value problems in Sobolev
spaces. A simple model problem for the second-order semilinear el-
liptic equations is considered to illustrate the main idea. The essence
of the method hinges on the a priori estimates of solutions of the as-
sociated linear problem in appropriate Sobolev spaces. It is to our
surprise that H1(Ω)-solution is not smooth enough to guarantee the
convergence of the sequence generated by the procedure. Existence
and uniqueness of solution to the original nonlinear problem are es-
tablished constructively. An application of this approach to the Lamé
system with nonlinear body force and its generalization to contain a
nonlinear surface traction in elasticity will also be discussed.
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1 Introduction

In [19], an integral equation method was introduced for solving boundary
value problem for generalized analytic functions. By a combination of an
imbedding method and the Newton iteration procedure according to [18],
this integral equation method then leads to a constructive scheme for solving
semilinear first-order problems [19], [21]. Such combinations between imbed-
ding and Newton’s iteration procedure have been successfully employed for
existence proofs for the solutions to boundary value problems for a class
of first-order semilinear elliptic systems with linear and nonlinear boundary
conditions (see, e.g., [2], [3] - [6], [8], [20]).

In this paper, we shall adopt a similar approach employed in [19], how-
ever, to the construction of variational solutions of semilinear second-order
boundary value problems in Sobolev spaces. As will be seen, this approach
depends primarily on the nature of the associated linear equation derived
from the original semilinear equation by applying the Newton iteration pro-
cedure. The basic mathematical ingredients here are the a priori estimates
of the solutions of the linear problem in suitable function spaces. The associ-
ated linear problem in fact can be reduced to a pair of coupled linear integral
equations, one integral equation of the second kind over the domain, and one
boundary integral equation of the first kind. The existence and uniqueness of
the solutions of this system of integral equations are still remained to be ana-
lyzed. Nevertheless, the present approach gives a practical numerical scheme
and offers an additional method in the connection of application of boundary
element methods to nonlinear problems where the nonlinearity occurs in the
partial differential equations of the semilinear type (see e.g., [9],[11],[10], and
[7]).

We organize the paper as follows: In Section 2, the Newton-imbedding
method is described by using a simple model problem. As will be seen, in
each iteration step, it involves a linear boundary value problem for a lin-
ear equation which contains a zero-th order term with variable coefficient.
We refer to a typical problem of these forms as the associated linear prob-
lem. Section 3 contains the relevant a priori estimates of the solution of the
associated problem and a reduction of the problem to the coupled integral
equations. The a priori estimates will be needed for the convergence proof
for the Newton-imbedding iteration procedure in Section 4. We conclude
the paper by extending the approach to the case of a semilinear equation in
elasticity.
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2 The Newton-imbedding procedure

Let Ω ⊂ R3 be a domain with smooth boundary Γ. We consider the simple
model problem

−∆u = f(u) in Ω, (2.1)

u|Γ = ϕ(x) on Γ, (2.2)

where as usual, ∆ denotes the Laplacian. Here f and ϕ are given data
satisfying certain regularity conditions which will be specified later in order
to ensure the existence of the unique solution of the problem. To describe
the procedure, our first step is to imbed the problem in a family of problems
(Pt) which consists of

−∆u = tf(u) in Ω

together with the same boundary condition (2.2) as before. Here t ∈ [0, 1] is
the imbedding parameter. If we denote the solution of (Pt) by u(x, t) which
we assume to exist for the time being, then u(x, 1) is the desired solution of
the original problem, (2.1), (2.2).

We note that for t = 0, u(x, 0) is the solution of the Dirichlet problem
for the Laplacian, and can be easily constructed by the boundary element
method. Using the solution, u(x, 0) as the initial approximation, we may
solve (Pt) for t = t1 > 0 by the Newton iteration procedure. The known
solution u(x, t1) can then be used again as the initial approximation for
u(x, t2) with t2 > t1 by the Newton iteration procedure. We shall show that
after finitely many steps such that

0 = t0 < t1 < t2, · · · < tN = 1,

the solution of the problem (Pt) for t = 1, the original problem, can be found.
Now for the Newton iteration procedure, let us assume that u(x, tj−1) to

be the solution of the problem (Ptj−1
) for a fixed tj−1, 0 ≤ tj−1 < 1. Then as

an approximation to the solution of (Pt) for t = tj, tj−1 < tj ≤ 1, we define
the sequence un(x, tj) by

u0(x, tj) = u(x, tj−1) (2.3)

and by solving the linear boundary value problem below for un+1(x, tj), n =
0, 1, · · · :

−∆un+1 = tjf
′(un){un+1 − un}+ tjf(un) in Ω (2.4)

un+1|Γ = ϕ on Γ. (2.5)
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Such a combination between imbedding and the Newton iteration proce-
dure is generally known as the Newton-imbedding procedure (see e.g., [18]).
We remark that in the standard Newton’s method, the convergence of the
approximate sequence depends crucially on the choice of initial guess, which
requires to be sufficiently close to the exact solution. However, in the Newton-
imbedding scheme, as will be seen, as long as tj − tj−1 is sufficiently small,
the initial choice of u0(x, tj) given by (2.3) will be a good approximation to
u(x, tj) so that convergence will be ensured.

3 Associated linear problem

We notice that in each of the iterations in the procedure given by (2.4),(2.5),
we arrive at a typical linear boundary value problem of the form:

−∆v + q(x)v = g(x), x ∈ Ω, (3.1)

v|Γ = ϕ on Γ. (3.2)

Here both the variable coefficient q(x) and the nonhomogeneous term g(x)
are known and they are related to f ′ and f in an obvious manner. In the
following, we shall refer to (3.1), (3.2) as the associated linear problem for
the nonlinear problem (2.1), (2.2). We are interested in the weak solution
of this associated problem in the Sobolev space H1(Ω). It is well known
that there exists a unique solution v ∈ H1(Ω) for given g ∈ L2(Ω), and
ϕ ∈ H1/2(Γ), provided q ∈ Cα(Ω), α > 0 with the property that (qv, v)0 ≥ 0
for all v ∈ H1(Ω). However,it is to our surprise that H1(Ω)-solution is not
smooth enough to guarantee the convergence of the sequence {un} defined by
(2.3)-(2.5) in the Newton-imbedding iteration procedure. We need a H2(Ω)-
solution (or at least a solution v ∈ Hs(Ω) with s − 3/2 ≥ α > 0) in order
that the method works. To be more precise, we begin with the following a
priori estimate.

Lemma 3.1 Let q ∈ Cα(Ω) be given such that ||q||Cα(Ω) ≤ M for some
constant M > 0 and let q be positive in the sense that

0 < (qv, v)0 for all 0 6= v ∈ H2(Ω). (3.3)

Then for any v ∈ H2(Ω) there holds the a priori estimate:

||v||H2(Ω) ≤ cq{|| −∆v + qv||L2(Ω) + ||v|Γ||H3/2(Γ)}, (3.4)

where cq is a constant depending on q.
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Proof. Let H1
0 (Ω) denote the Sobolev space defined by

H1
0 (Ω) :=

{
v ∈ H1(Ω)| v|Γ = 0 on Γ

}
.

Then by the second Green formula, we have for any v ∈ H1
0 (Ω) ∩H2(Ω),

a(v, w) + (qv, w)0 = (−∆v + qv, w)0 for all w ∈ H1
0 (Ω). (3.5)

Here a(v, w) is the bilinear form

a(v, w) :=

∫
Ω

∇v · ∇wdx,

and (·, ·)0 stands for the L2(Ω) inner product. (Without loss of generality,
we have assumed here the real L2(Ω).) The positivity of q implies that

a(v, v) ≤ || −∆v + qv||0 ||v||H1(Ω).

As a consequence of the Poincaré inequality, we obtain the estimate

||v||H1(Ω) ≤ c|| −∆v + qv||0 for any v ∈ H1
0 (Ω) ∩H2(Ω) (3.6)

with some constant c independent of q. The later shows that the mapping

L : H2(Ω) −→ L2(Ω)×H3/2(Γ)

defined by
Lv := (−∆v + qv, v|Γ)

is a continuous isomorphism which gives the desired estimates (3.4). This
completes the proof of the lemma.

Lemma 3.2 Under the same assumption of q in Lemma 3.1, we have the
estimate

||v||H2(Ω) ≤ κ|| −∆v + qv||L2(Ω) for any v ∈ H1
0 (Ω) ∩H2(Ω), (3.7)

where the constant κ depends on M but not on q.

Proof. Let H1
0 (Ω) ∩H2(Ω). Then we have the estimates

||v||H2(Ω) ≤ c0|| −∆v||0
≤ c0

(
|| −∆v + qv||0 + ||qv||0

)
≤ κ(M)|| −∆v + qv||0
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for some constant depending κ depending on the boundness M of ||q||Cα(Ω).
The last step in the estimate follows from (3.6).

We remark that from the proof of Lemma 3.1 , it is clear that the estimate
also holds for (qv, v)0 ≥ 0. However, our integral equation method works only
for either q is positive or q ≡ 0. In the latter, the function f in (2.1) is no
longer depending on u. Hence in what follows we assume that q is always
positive.

As a consequence of Lemma 3.1, we have the following existence and
uniqueness results for the solution of the associated problem.

Lemma 3.3 For given g ∈ L2(Ω) and ϕ ∈ H3/2(Γ), under the assumptions
of q in Lemma 3.1, the problem (3.1), (3.2) has a unique solution v ∈ H2(Ω).

The constructive solutions of the associated linear problem can be ob-
tained by using finite element or integral equation methods for the numerical
approximations. We now give a brief description of the later. We seek a
solution in the form

v(x) =

∫
Γ

E(x, y)σ(y)dsy

∫
Γ

∂

∂ny

E(x, y)ϕ(y)dsy +

∫
Ω

E(x, y)g(y)dy

−
∫

Ω

E(x, y)v(y)dy, x ∈ Ω, (3.8)

where

E(x, y) =
1

4π

1

|x− y|
is the fundamental solution of −∆ and

σ = γ1v
∂

∂n
v|Γ and ϕ = γ0 = v|Γ

are the Cauchy data of v. In operator form this becomes

v + T v = Vσ −Wϕ +N g, x ∈ Ω,

where V , and W are the simple and double -layer surface potential operators,
where N is the Newtonian potential operator and T v := N (qv) is a modified
Newtonian operator. In this representation, v ∈ H2(Ω) and σ ∈ H1/2(Γ)
are the unknowns. By using the boundary condition (2.2), and from the
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properties of these potentials, the associated linear problem is reduced to the
following system of integral equations

(I + T )v − Vσ = N g −Wϕ in Ω, (3.9)

−γ0T v + V σ = −γ0N g + (1/2I + K)ϕ on Γ, (3.10)

where V and K are the familiar simple- and double-layer boundary integral
operators such that V = γ0V and K = I + γ0W . These is a coupling of
domain and boundary integral equations. In particular, we know that the
mapping defined by

T : H2(Ω) → H2(Ω)

is compact while the mapping defined by

V : H1/2(Γ) → H3/2(Γ)

is an isomorphism. Equation (3.9) corresponds a domain integral equation of
the second kind for the unknown v and (3.10) a boundary integral equation of
the first kind for the unknown σ. The exitance and uniqueness results of these
equations can be best analyzed by using the theory of pseudo-differential
operators (see, e.g., [15]) and will not be pursued here.

Lemmas 3.2 and 3.3 form the basis for our scheme. The a priori estimate
(3.7) provides the tool for establishing the convergence of the sequence in the
Newton-imbedding iterations.

4 Convergence results

In this section, we now devote to the convergence proof of the scheme (2.3)-
(2.5), and their related questions. Let us first begin formally with the problem
satisfied by the difference (un+1 − un),

−∆(un+1 − un) = tj{f ′(un)(un+1 − un)

+
1

2
˜fuu(un−1)(un − un−1)

2} in Ω, (4.1)

(un+1 − un)|Γ = 0 on Γ,

where ˜fuu is defined by the mean value formula

˜fuu(un−1) :=

∫ 1

0

f ′′(τun + (1− τ)un−1)τdτ. (4.2)
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In order to justify the procedure defined by (2.3)-(2.5) rigorously, and to
make use of the a priori estimate (3.7) for the convergence proof, we now
make the following assumptions on the nonlinear term f :

(A1) The functions f is continuous from H2(Ω) to L2(Ω), while its deriva-
tives f ′ and f ′′ are continuous from H1(Ω) to Cα(Ω). Moreover, f and
its derivatives f ′ and f ′′ are all bounded: There is a constant M > 0
such that

||f ||L2(Ω) ≤ M, ||f ′||Cα(Ω) ≤ M, ||f ′′||Cα(Ω) ≤ M.

(A2) The derivative −f ′ is positive in the sense that for any u ∈ H2(Ω),

(−f ′(u)v, v)0 > 0 for all 0 6= v ∈ H2(Ω).

Under these assumptions, we first note that the linear problems defined by
(2.4),(2.5) are uniquely solvable and each of the solutions un+1(x) is again in
H2(Ω), if un(x) belongs to H1(Ω). By applying the a priori estimate (3.7) to
(4.1), we obtain the estimate

||un+1 − un||H2(Ω) ≤ κ||1
2
tj ˜fuu(un−1)(un − un−1)

2||L2(Ω)

≤ (
κ

2
tjM ||un − un−1||cα(Ω))||un − un−1||L2(Ω)

≤ (
κ

2
tj c0M ||un − un−1||H2(Ω))||un − un−1||H2(Ω)(4.3)

for n = 0, 1, · · · , where c0 is a constant due to the Sobolev imbedding theorem
(see, e.g., [1]). Then from (4.2) it is not difficult to show that the sequence
{un} converges in H1(Ω), if

κ

2
tj c0M ||u1 − u0||H2(Ω) < 1. (4.4)

Assume that (4.3) holds and denote by u∗ the limit of the sequence {un} in
H1(Ω). One can easily verify that u∗ ∈ H2(Ω) satisfies an equation of the
form

−∆u∗tjf(u∗) = Rn(u∗) in Ω.

Here Rn(u∗) is given by

Rn(u∗) = −∆(u∗ − un+1)− tj(f(u∗)− f(un)) + tj(f
′(un)(un+1 − u− n).

8



Thus by the continuity of f and the boundness of f ′, it can be shown that

||Rn(u∗)||L2(Ω) → 0 as n →∞.

Also we see that

||u∗|Γ − ϕ||H3/2(Γ) = ||(u∗ − un+1)|Γ||H3/2(Γ)

≤ c||u∗ − un+1||H2(Ω) → 0 as n → 0.

Hence by the uniqueness of the solution of (2.1), (2.2) below, we conclude
that the sequence {un} converges to u∗ = u(x, tj), the solution of (2.1),(2.2)
for t = tj.

To fulfill the condition (4.4), it suffices to require tj be chosen near tj−1

enough so that

tj − tj−1 < (
1

2
c0κ

2M2)−1 (4.5)

for j = 1, 2, · · · . Indeed, from the definition of u0 and u1, we arrive at the
estimate

||u1 − u0||H2(Ω) ≤ κ||(tj − tj−1)f(u0)||L2(Ω)

≤ κM(tj − tj−1). (4.6)

According to (4.6), if we choose tj such that

κ2

2
c0 tj(tj − tj−1)M

2 < 1

or

tj(tj − tj−1) < (
1

2
c0κ

2M2)−1,

j = 1, 2, · · · , then the condition (4.4) will be satisfied. Since tj ≤ 1, the
condition (4.5) will be sufficient for this purpose. We emphasize that the
right hand side of (4.5) provides a uniform bound for the difference (tj−tj−1),
the imbedding method may be extended to t = 1 in finitely many steps.

We now turn our attention to the uniqueness of the solution of problem
defined by (2.1), (2.2). Let u and v be any two solutions of the problem.
Then the difference must satisfy the boundary value problem of the form

−∆(u− v) = f̃u(u− v) in Ω,

(u− v)|Γ = 0 on Γ.
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The function f̃u is defined similarly as in (4.2) and is negative by the as-
sumption of (A2). Hence it follows from Lemma 3.3, u ≡ v.

We summarize all these results up to now in the following theorem.

Theorem 4.1 For given ϕ ∈ H3/2(Ω), under the assumptions of (A1)-(A2),
the boundary value problem, (??), (2.2) has a unique solution u ∈ H2(Ω)
which can be constructed by the Newton-imbedding method, provided the con-
dition (4.5) is satisfied.

We remark that from the computational point of view, it is important
to know the rate of convergence as well as the accuracy of the approximate
solutions, if one uses un(x, tj) to approximate the exact solution u(x) =
u(x, 1). Indeed, this information is revealed in the theorem below.

Theorem 4.2 Let α be any given real number such that 0 < λ < 1. For any
fixed tj, 0 ≤ tj ≤ 1, suppose that the t-step size of the imbedding satisfies the
uniform bound

tk − tk−1 ≤
2λ

c0κ2M2

for k = 1, 2 · · · , j. Then the following error estimate holds

||u− un(·, tj)||H2(Ω) ≤
√

c0κM(1− tj) + 2(λtj)
2(n−1)

.

The proof of this theorem is lengthy but straightforward. We omit the
details. We comment that in the estimate, the first term on the right is due
to the contribution of ||u − u(·, tj)||H2(Ω), while the second term is from the
estimate of ||u(·, tj)−un(·, tj)||H2(Ω). Since λ < 1, the error will be eventually
dominated by the first term for n sufficiently large, say n0, such that the
iteration solution un0(x, tj) will give just a good approximation to u as all
the higher order terms un(x, tj), for n > n0. Hence one can stop the iteration
there.

5 Concluding Remarks

In this concluding remarks, we wish first to exploit the possibility of extend-
ing the approach for the model problem in Section 2 to nonlinear problems
in elasticity. As a natural extension, we consider the Dirichlet problem for
the semilinear Lamé system

−∆∗u := −µ∆u− (λ + µ) grad div u = f(u) in Ω, (5.1)

u|Γ = ϕ on Γ. (5.2)
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Again Ω ⊂ R3 is a bounded domain with smooth boundary Γ, and we are
interested in the weak solution for the displacement field u ∈ (H1(Ω))3. Here
µ and λ as usual denote the Lamé constants with µ > 0, and 3λ + 2µ > 0;
ϕ ∈ (H1/2(Γ))3 is the prescribed surface displacement vector, while f is the
nonlinear body force. From the model problem of (2.1), (2.2), it suggests
that we should modify the assumptions A(1) − A(2) properly in order to
accommodate all the necessary changes in the Newton-imbedding iteration
procedure due to the vector-valued nonlinear term in (5.1). This leads us to
the following assumptions:

(A1) The vector-valued function f and its derivatives ∇uf and ∇2
uf are

continuous as the mappings defined below:

f : (H2(Ω))3 −→ (L2(Ω))3

∇uf : (H2(Ω))3 −→ (Cα(Ω))3×3

∇2
uf : (H2(Ω))3 −→ (Cα(Ω))3×3×3.

Moreover, f and its derivatives ∇uf and ∇2
uf are all bounded: There

exists a constant M > 0 such that for all u ∈ (H2(Ω))3,

||f ||(L2(Ω))3 ≤ M, ||∂f i

∂uj

||Cα(Ω) ≤
M

3
, || ∂2f i

∂uj∂uk

||Cα(Ω) ≤
M

γ(c0, Ω)
,

where γ(co, Ω) is a constant depending on the imbedding constant c0

and the measure of Ω.

(A2) The derivative −∇uf is positive in the sense that for any u ∈ (H2(Ω))3

(−∇uf(u)v,v)0 > 0

for all 0 6= v ∈ (H2(Ω))3.

We remark that the derivatives ∇uf and ∇2
uf are 2nd- and 3rd- order tensors

respectively. The entries of these derivatives are, respectively ∂f i/∂uj and
∂2f i/∂uj∂uk for indices i, j, k = 0, · · · , 3. These terms will appear in the
Newton-imbedding procedure for (5.1). It is not difficult to see that under
the assumptions (A1)-(A2) together with the restriction of the t−step size,
our results for the model problem (2.1), (2.2), Theorems 4.1 and 4.2, will
remain valid for the nonlinear problem, (5.1) and (5.2), in elasticity.

11



Indeed, if we denote by u(x, t) the solution of the family of the imbedding
systems corresponding to (5.1), (5.2), then for the imbedding parameter t =
0, we will arrive at the Dirichlet problem for the homogeneous Lamé system

−∆∗u(·, 0) = 0 in Ω, u(·, 0)|Γ = ϕ on Γ. (5.3)

The solution of (5.3) can be represented again as in the case for the model
problem in the form of a simple-layer potential

u(x, 0) =

∫
Γ

E(x, y)σ0(y)dsy, x ∈ Ω, (5.4)

where E(x, y) is the fundamental tensor

E(x, y) =
λ + 3µ

8πµ(λ + 2µ)

{
1

|x− y|
I +

λ + µ

λ + 3µ

1

|x− y|3
(x− y)(x− y)T

}
.

Here the unknown density sigma0 satisfies the boundary integral equation
of the first kind

Vσ0 :=

∫
Γ

E(·, y)σ0(y)dsy = ϕ on Γ,

which has a unique solution σ0 ∈ (H1/2(Γ))3, since

V : (H1/2(Γ))3 → (H3/2(Γ))3

is a Fredholm operator of index zero, and moreover V is (H−1/2(Γ))3- elliptic,
that is, there exists a constant c0 > 0 such that

〈Vσ0, σ0〉 ≥ c0||σ0||2(H−1/2(Γ))3 ∀ σ0 ∈ (H−1/2(Γ))3.

For t > 0 in the iteration procedure, the prototype of the corresponding
associated problem is now given by

−∆∗v + Q(x)v = g(x) in Ω, (5.5)

v|Γ = ϕ on Γ, (5.6)

for given g ∈ (L2(Ω))3 and ϕ ∈ (H3/2(Γ))3. Here Q is a 2nd-order tensor
which can be identify with

Q := −∇uf(un).
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Hence in analogy to the condition in Lemmas 3.1, 3.2, we require that Q ∈
(Cα(Ω))3×3 and is bounded above and positive as in (A.1) and (A.2). Then
under the positivity and boundness of Q, the a priori estimate (3.4) now
reads: For any v ∈ (H1

0 (Ω))3 ∩ (H2(Ω)3 the following estimate holds:

||v||(H2(Ω))3 ≤ κ|| −∆∗v + Qv||(L2(Ω))3 ,

where κ is a constant depending on M but not on Q.
This estimate can be derived in the same manner as in the scalar case and
will be employed for establishing the convergence of sequences in the Newton-
imbedding procedure. Details will be omitted.

An attempt has also been made to apply the Newton- imbedding method
to the nonlinear problem consists of (5.1) together with a nonlinear Robin
condition of the form

T [u]|Γ + Φ(x,u) = 0 on Γ, (5.7)

where T stands for the traction operator, and Φ is a nonlinear function which
satisfies a Caratheodory, Lipschitz as well as a strong monotonicity condition
(see [11]). In the case when the body force f = f(x) is independent of u,
based on the theory of monotone operators, this problem has been treated in
[11] via boundary integral equation methods and was motivated by a similar
problem for the Laplacian in [17], [16]. For the nonlinear body force f(u), in
principle, by following [4], we may imbed both (5.1) and (5.7) into a family of
nonlinear Robin problems. However, we note that for t = 0, we have a pure
traction problem for the homogeneous Lamé system whose solution is unique
only up to rigid motions. In spite of this, a more serious technical difficulty
that we seem to have for the time being is the lack of an appropriate a priori
estimate for the corresponding associated problem. We hope to return to
this investigation in the near future.
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