
APPLICATION OF DEEP-LEARNING TO COMPILER-BASED

GRAPHS

by

Tristan Vanderbruggen

A dissertation submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Computer and
Information Science

Winter 2018

c© 2018 Tristan Vanderbruggen
All Rights Reserved

APPLICATION OF DEEP-LEARNING TO COMPILER-BASED

GRAPHS

by

Tristan Vanderbruggen

Approved:
Kathleen F. McCoy, Ph.D.
Chair of the Department of Computer and Information Science

Approved:
Babatunde A. Ogunnaike, Ph.D.
Dean of the College of Engineering

Approved:
Ann L. Ardis, Ph.D.
Senior Vice Provost for Graduate and Professional Education

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
John Cavazos, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Daniel Quinlan, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Sunita Chandrasekaran, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Stephen Siegel, Ph.D.
Member of dissertation committee

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my advisor Prof. John

Cavazos for the continuous support of my Ph.D study and research, for his patience,

motivation, enthusiasm, and immense knowledge. His guidance helped me throughout

the research and writing of this thesis. I could not have imagined having a better

advisor and mentor for my Ph.D study.

Besides my advisor, I would like to thank the rest of my thesis committee:

Prof. Stephen Siegel, Prof. Sunita Chandrasekaran, and Dr. Daniel Quinlan, for their

encouragement, insightful comments, and challenging questions.

My sincere thanks also goes to Dr. Daniel Quinlan, Dr. Chunhua Liao, Dr.

Markus Schordan, and Justin Too, for offering me the opportunity to work with them

on the ROSE Compiler. Working with them provided the theoretical and technical

knowledge required to perform research on compilers. I wish to thank Prof. Christophe

Wolinski who introduced me to Dr. Daniel Quinlan.

I wish to thank my labmates at University of Delaware. Dr. Sameer Kulkarny,

Dr. Eunjung Park, William Killian, and Robert Searles contributed advice, critiques,

and encouragement, which made my work on performance optimization possible. Sim-

ilarly, my work on malware classification would not have been possible without the

support of Sean Kilgallon, Leonardo De La Rosa, and Ian Lantzy.

My internship at the Lawrence Livermore National Laboratory has lead me to

meet many great people. I wish to thanks Tony Baylis who provided us with memorable

networking opportunities. I must mention Michael Driscoll, George Vulov, and Sriram

Aananthakrishnan who were not afraid of my broken English during my first internship.

Our work together lead to lasting friendships.

iv

The baristas from my favorite coffee shop, Saxbys, must be acknowledge as

well. Without their coffee and welcoming attitude, I would not have been able to finish

writing this dissertation.

Last but not the least, I would like to thank my family. My mom, brother, and

sister for their support even as it meant being far away from home. My fiancée for

keeping me together when the pressure threatened to break me.

v

TABLE OF CONTENTS

LIST OF TABLES . xiii
LIST OF FIGURES . xiv
ABSTRACT . xvii

Chapter

1 INTRODUCTION . 1

2 MACHINE LEARNING BACKGROUND 5

2.1 Introduction . 5
2.2 Deep Learning . 5

2.2.1 Artificial Neural Networks . 5
2.2.2 Training Neural Networks . 8
2.2.3 Deep Neural Networks . 10
2.2.4 Implementation . 11

2.3 Random Forest . 12
2.4 Support Vector Machine . 12
2.5 Comparing Models . 14

2.5.1 Cross Validation . 14
2.5.2 Accuracy . 15

2.5.2.1 Error Rate . 16
2.5.2.2 Confusion Matrix . 16
2.5.2.3 Receiver Operating Characteristic and Area Under the

Curve . 17

2.5.3 In practice . 17

2.6 Conclusion . 18

vi

3 MACHINE LEARNING FOR GRAPHS 19

3.1 Introduction . 19
3.2 Graph Formalism . 19
3.3 Graph Kernels for Support Vector Machine 20
3.4 Graph Spectral Analysis . 22
3.5 Graph Spectral Features . 23
3.6 Conclusion . 24

4 BASIC NEURAL NETWORKS FOR MALWARE
CLASSIFICATION . 25

4.1 Introduction . 25
4.2 Malware Datasets and Characterization 26

4.2.1 Dataset . 26
4.2.2 Bytes-Entropy Histogram . 27
4.2.3 Malware’s Executable Code 31

4.2.3.1 Disassembly & Analysis 32
4.2.3.2 Code Features . 34

4.2.4 Summary of the Features . 36

4.3 Machine Learning in the Cloud . 36

4.3.1 Training and Consensus . 37
4.3.2 Cloud Infrastructure . 39

4.4 Malware Classification Results . 41

4.4.1 Models . 41

4.4.1.1 Multilayer Perceptrons 41

vii

4.4.1.2 Random Forests . 42

4.4.2 Accuracy and Training Time 43

4.5 Related Work . 47

4.5.1 Malware Characterization . 47
4.5.2 Feature Graphs . 49

4.6 Conclusion . 49

5 ADVANCED NEURAL NETWORKS FOR MALWARE
CLASSIFICATION . 51

5.1 Introduction . 51
5.2 Feature Sets . 52

5.2.1 Three Types of Features . 52

5.2.1.1 Hashes Histograms 53
5.2.1.2 Bytes-Entropy Histograms 54
5.2.1.3 Spectral Features of Assembly Graphs 54

5.2.2 Transformations . 54
5.2.3 Feature Sets Summary . 55

5.3 Dataset . 56

5.3.1 Relevant Files From Our Database 56
5.3.2 Composition of the Dataset 56
5.3.3 Streaming of Samples . 57

5.4 Neural Network Engineering . 58

5.4.1 Training Procedure . 58

5.4.1.1 High Level Features 58

viii

5.4.1.2 Classifiers . 59

5.4.2 Neural Network Architectures 60

5.4.2.1 Input Convolutional Layers 60

5.4.2.2 Hidden Convolutional Layers 63
5.4.2.3 Reference Architectures 63

5.5 Results . 64

5.5.1 Experimental Setup . 64
5.5.2 Accuracy Results . 66
5.5.3 Computational Performances 66

5.6 Related Work . 69

5.6.1 Dataset Augmentation . 69
5.6.2 Auto-encoder and Convolutional Architectures 70

5.7 Conclusion . 71

6 EXPLORATION AND CHARACTERIZATION OF COMPILER
TUNING SPACE . 73

6.1 Introduction . 73
6.2 TileK . 75

6.2.1 TileK language . 75
6.2.2 Iteration Domain . 76
6.2.3 Distributed Kernels . 77

6.2.3.1 TileK Threads . 77
6.2.3.2 TileK Accelerator . 79

6.3 Generating Tiled Kernels . 80

6.3.1 LoopTrees . 80
6.3.2 Generated Kernel . 82

ix

6.3.3 From Loop Bounds to Tile Bounds 84

6.4 Generating SPMD Kernels . 84

6.4.1 Kernel Index to Tile Iteration 85
6.4.2 Threads . 86
6.4.3 Accelerator . 86

6.5 Optimization Space Exploration . 87

6.5.1 Thread Experiments . 92
6.5.2 Accelerator Experiments . 94

6.6 Related Work . 96
6.7 Conclusion . 97

7 PERFORMANCE PREDICTION FOR COMPUTATION
KERNEL TUNING . 98

7.1 Introduction . 98
7.2 Dataset . 99

7.2.1 Feature Graph from TileTree 99
7.2.2 Targets . 100

7.3 Models . 102

7.3.1 Neural Networks . 103

7.3.1.1 TileTree Representations 103
7.3.1.2 Architectures . 104

7.3.2 Support Vector Machine . 104
7.3.3 Evaluation . 104

7.4 Results . 105

7.4.1 Effect of Complex Neural Networks 106
7.4.2 Performance Milestone . 106

7.5 Related Work . 108
7.6 Conclusion & Future Work . 109

x

8 CONCLUSION . 112

8.1 Results . 112
8.2 Insights & Future Work . 114

BIBLIOGRAPHY . 115

Appendix

A MAGIC FRAMEWORK . 124

A.1 Design . 124

A.1.1 Data Storage . 125
A.1.2 Datasets . 125

A.1.2.1 Feature Description 125
A.1.2.2 Building a Dataset 127

A.1.3 Sessions . 129

A.1.3.1 Models . 129

A.1.3.2 Usage . 131

A.2 WebUI . 132
A.3 Milestones . 133

A.3.1 Machine Learning Backends 133
A.3.2 Learning Patterns . 133
A.3.3 HPC support . 134
A.3.4 Control from Wizard . 135
A.3.5 Data Sources . 135
A.3.6 Virtual Segmentation . 136

B ROSE COMPILER . 137

B.1 Abstract Syntaxt Tree . 137
B.2 Visualization . 140

xi

C PARSING COMPILER DIRECTIVES 142

C.1 Directive-based Language Extension 142

C.1.1 Directive Format . 142

C.1.1.1 Structure . 142
C.1.1.2 Clause Arguments 143
C.1.1.3 Relations between directive and AST nodes 143
C.1.1.4 Relations between directives 143
C.1.1.5 How to Parse Directives 143

C.2 Generic Parser . 144

C.2.1 Implementation of DLX . 144

C.2.1.1 Class and Method Factory 144
C.2.1.2 Pattern in DLX . 145
C.2.1.3 Automation . 146

xii

LIST OF TABLES

2.1 Confusion Matrix . 16

4.1 Malware families . 27

4.2 Radare2 operation categories . 34

4.3 Features summary . 37

4.4 Size and shape of the MLPs for each feature set 42

4.5 Error-rates random-forests . 46

5.1 Feature Sets before and after preprocessing 55

5.2 Auto-encoder Architectures & Layers Size 65

5.3 Groups of Feature Sets . 65

5.4 Average test accuracy of the best model in each fold 67

6.1 Input space and Flops . 91

6.2 Thread versions . 92

6.3 Accelerator versions . 95

7.1 Number of evaluations needed to reach performance milestones. The
speedup compared to random search is shown between parenthesis. 107

C.1 The different components of the directives in Listing C.1. 142

xiii

LIST OF FIGURES

2.1 Artificial neuron . 6

2.2 MLP with single hidden layer . 6

2.3 Convolutional neuron network . 11

2.4 SVM: separating hyperplanes . 13

2.5 SVM: kernel trick . 14

4.1 Distribution of metrics in dataset 28

4.2 Flow of the bytes-entropy histogram extraction 29

4.3 Bytes-entropy histograms . 30

4.4 Assembly graph construction . 32

4.5 Code Nested Graphs . 33

4.6 Statistic accumulation across graph granularity levels 34

4.7 Structure of three blocks level graphs 35

4.8 Cross-validation and Consensus . 38

4.9 Deep learning on AWS cloud . 40

4.10 Error rates vs training time . 44

4.11 Area under the Curve . 45

5.1 List of Strings to Fixed Size Vector 53

5.2 Composition of the dataset . 57

xiv

5.3 Convolutional Layer for Hashes Histogram 61

5.4 Convolutional Layer for Bytes-Entropy Histogram 62

5.5 Convolutional Layer for Graph Spectral Features 62

5.6 Hidden Convolutional Layers of the Stacked Auto-encoders 63

5.7 Compare Accuracy across Feature Sets and Architectures 67

5.8 Comparing the Number of Parameters in the Models 68

5.9 Training and Testing Time per Model 68

6.1 TileK’s compilation flow . 74

6.2 Iteration domain tiled with TileK 77

6.3 Thread spawning . 78

6.4 Thread tiling . 78

6.5 TileK accelerator machine model 79

6.6 TileK’s LoopTree . 81

6.7 TileK’s TileTree . 81

6.8 Performance results for optimization and input spaces exploration . 93

7.1 Construction of a Feature Graph from TileK’s IR 101

7.2 Guiding Iterative Compilation . 102

7.3 Two stage ranking model: NN and SVM 102

7.4 Average Performance vs Evaluated Samples 105

7.5 Comparing the overfitting for the six models 107

7.6 Search Acceleration when using Perceptrons 108

7.7 Deep Learning for Iterative Compilation 111

xv

A.1 Building a dataset with MAGIC . 128

A.2 Create and Run Sessions in MAGIC 132

B.1 AST from ROSE Compiler . 139

B.2 AST with different formating . 141

xvi

ABSTRACT

Graph-structured data is used in many domains to represent complex objects,

such as the molecular structure of chemicals or interactions between members of a

social network. However, extracting meaningful information from these graphs is a

difficult task, which is often undertaken on a case by case basis. Devising automated

methods to mine information from graphs has become increasingly important as the

use of graphs becomes more prevalent. Techniques have been developed that adapt

algorithms, like support vector machine, to extract information from graphs with min-

imal preprocessing. Unfortunately, none of these techniques permit the use of deep

neural networks (DNNs) to learn from graphs. Given the potential of DNNs to learn

from large amounts of data, this has become an important area of interest. Recently,

a technique based on graph spectral analysis was proposed to characterize graphs in a

way that allows them to be used as input by DNNs.

We used this technique to apply DNNs to two different systems problems, i.e.,

1) classifying malicious applications based on graph-structured representations of exe-

cutable code and 2) developing prediction models that assist in iterative compilation

to optimize and parallelize scientific code. Our results on malicious application clas-

sification show that graph-based characterizations increase the ability of DNN to dis-

tinguish malware from different families. We performed a detailed evaluation of deep

learning applied to state-of-the-art and graph-based malware characterizations. The

graph-based characterizations are obtained by reverse engineering potentially malicious

applications. For performance prediction, the graphs represent versions of optimized

code. We use machine learning to rank these versions and inform an iterative compi-

lation process. The models are trained using only five percent of the search space.

xvii

Our work shows that graph structured data can be used to build powerful deep

learning models. The techniques developed for this dissertation shows great potential

in a diverse pair of systems.

xviii

Chapter 1

INTRODUCTION

Over the past several decades, machine-learning has revolutionized our lives.

From individually targeted advertisements to self-driving cars, machines are getting

better at solving tasks once reserved for humans. In the last few years, deep learning

has significantly advanced. Last year, Kaiming He et al trained the first deep neural

network (DNN) model to surpass humans at an image classification task [He et al.,

2015]. The authors note that their research was not proof that computer image iden-

tification, in general, was better than humans. However, this work showed that deep

learning excelled at specific “fine-grained recognition” problems. Where humans see

a dog or a bird, this model can distinguish their species with greater specificity than

humans.

The algorithms used for deep learning have been known for many years. How-

ever, it is only recently that these algorithms have shown great promise due to the large

amounts of data and computation they require to be trained. The kind of computation

capability needed to construct large models with millions of training examples has only

been widely available for a few years.

This dissertation pertain to using compiler internal representations (IRs) and

machine learning algorithms to solve hard system problems. Compiler IRs are typically

directed graphs used to represent code of a program. Learning from graphs such as

these requires special techniques to handle their size and non uniformity. Not all

techniques to handle graphs can scale to tens or hundreds of millions of graphs. Deep

learning often performs better with large datasets, which creates a trade off between

the size of the dataset and the computational complexity of the technique used to

handle graphs. Also, techniques enabling deep learning to use graph-structured data

1

are often limited to domain specific transformations that can not be applied in the

general case.

Machine learning plays an important role in improving compiler technologies.

As compilers have to handle an ever growing base of codes, there are many challenges

to be addressed, some of witch are related to computational performance or malware

classification, specifically addressed in this proposal. However, many other problems

involving code can be represented as graphs. For example, we could inspect the source

code of applications to detect duplicated code, stolen intellectual properties, or vulner-

able programming patterns. These problems can be solved by analyzing the abstract

syntax tree (AST) representing the source code. Unfortunately, with the current state-

of-the-art, applying machine learning to solve these problems requires definition of

domain specific transformations of the AST. Enabling the widespread application of

machine learning to compiler technologies requires automated methods to characterize

graphs. The doctoral research presented in this dissertation presents general purpose

techniques to use neural networks, especially deep learning, with graph-structured data.

We evaluate this technique on various compiler graphs. Using graph spectral

analysis, we extract the graph spectral features of compiler graphs. We apply this

technique to two hard system problems.

The first system problem is the classification of malicious applications. We used

graph spectral features to add graph-based characterizations of executable files to ex-

isting characterization techniques. Compiler graphs are extracted using a disassembler

and used alongside state-of-the-art characterizations to classify potentially malicious

applications. We compare the performance of multiple neural network architectures

applied to these characterizations.

The second system problem is the optimization of computation kernels. We de-

signed a directive-based language, named TileK, to expose the large optimization space

of hardware accelerators. Computation kernels annotated using TileK are translated

to OpenCL and offloaded to general purpose graphics processing units (GPGPUs). We

show that, unsurprisingly, the best optimization for a computation kernel depends on

2

the inputs being processed. The resulting tuning space is so large that exhaustively

evaluating it is prohibitively expensive. Instead, we used iterative compilation aided

by performance prediction models. These models are neural networks which predict

the performances of optimized kernels based on the graph-structured internal repre-

sentation of TileK. The prediction of this model are used to construct a ranking model

which informs an iterative compilation process.

The contributions of this dissertation are:

• a method to characterize graphs with a fixed size representation

• neural network architectures for different topologies of data

• accelerated iterative compilation using the internal representation of a directive-
based compiler

Outline

The beginning part of this dissertation is dedicated to the background infor-

mation needed to understand the work presented in later chapter. In Chapter 2, we

introduce various machine learning algorithms. In particular, we discuss deep learning,

support vector machine, and random forests. We also describe the proper experimental

process for machine-learning, including the various metrics used to evaluate models.

In Chapter 3, we discuss graphs and how they are used in machine learning. We intro-

duce some formal notations to help understand their utilization in machine learning.

Specifically, we introduce the use of graph spectral analysis that allows us to train on

graphs with deep learning.

The next two chapters are dedicated to the malware family classification prob-

lem. In Chapter 4, we provide a detailed presentation of our first malicious application

classification model. This model combines deep neural networks with a random forest

and was trained to classify malware into one of eleven families of malicious applications

targeting financial institutions. There are two main methods we used to characterize

the files: using raw bytes of the file or the graph of the disassembled code. Raw bytes

consists of the variable length sequence of bytes composing a file, which are processed

3

using conventional sequence analysis techniques. We also extract disassembled code

and represent it using our graph characterization technique. we investigate three dif-

ferent compiler IRs: call graphs (CGs), control flow graphs (CFGs), and instructions

graphs. In Chapter 5, we explore a large space of neural network architectures applied

to an extended malware dataset. The extended dataset includes some new character-

izations, additional malware families, and goodware. The new characterizations are

built using the ASCII strings in the file and the metadata and import table of Win-

dows executables. The resulting dataset has a total of seventeen malware families in

addition to goodware.

The next two chapter are dedicated to performance tuning for accelerators using

graphs and machine learning. In Chapter 6, we present a compiler we developed

that we named TileK. TileK transforms codes annotated using compiler directives

to leverage parallel architecture such as GPGPUs. It exposes a large optimization

space enabling the generation of many versions of a given computation kernel. Each

optimized version of a kernel uses a different tiling configuration, changing the pattern

in which computations are executed and data is accessed. We evaluated TileK on

four representative computation kernels for a variety of inputs. Our experiments show

that the best optimized version of a kernel depends on the data being processed. We

show in this work that finding the best version for any input is a lengthy process. In

Chapter 7, we use a combination of neural networks and support vector machines to

build performance predictors. We compare two approaches to characterize graphs for

neural networks. These models are used to guide an iterative compilation process.

We show that a fully automated using machine learning with graphs can dramatically

speed up the search for the best optimized kernel given a particular input.

In the last chapter, we conclude the dissertation and offer some insight and

discuss possible future work. We end the dissertation with three appendices discussing

additional technical aspects of our machine learning backend (MAGIC), the ROSE

Compiler, and the directive-based parser module in ROSE.

4

Chapter 2

MACHINE LEARNING BACKGROUND

2.1 Introduction

Machine Learning (ML) has been slowly, but steadily changing the way we use

data. The large amount of data generated by organizations can be a highly-valued

asset when analyzed with the proper ML algorithm. Out of these algorithms, Deep

Neural Networks (DNNs) have recently shown the most promise.

In this chapter, we present background knowledge about ML. In Section 2.2, we

describe the basics of Deep Neural Networks (NN). In Section 2.3, we present Random

Forest, another ML algorithm which we use to build consensus of NN. In Section 2.4,

we present Support Vector Machine (SVM). In Section 2.5, we describe experimental

methods and evaluation metrics specific to Machine Learning.

2.2 Deep Learning

Deep learning is the set of techniques used to train deep neural networks. In this

section, we present neural networks, how they are trained, and what “deep” means.

We start by introducing the model behind artificial neural networks. Then, we present

how they are trained to solve specific problems. Finally, we discuss the meaning of

deep learning.

2.2.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are models made up of interconnected arti-

ficial neurons. These artificial neurons are loosely based on how actual neurons work.

A single artificial neuron is depicted in Figure 2.1. This neuron has three inputs x0,

x1, x2 and four parameters w0, w1, w2, and b. The wi parameters are the respective

5

Figure 2.1: Depiction of one artificial neuron.

Figure 2.2: Multilayer perceptron (MLP) with a single hidden layer. All neurons from
the input layer are seen by all neurons of the hidden layer which themselves are seen
by all neurons of the output layer.

weights for each of the xi inputs and parameter b is called the bias. The output y

of such an artificial neuron is computed using Equation 2.1. The function σ, called

activation function, is typically a sigmoid function (function with a characteristic “S”-

shaped curve). Examples of sigmoid functions are the hyperbolic tangent or the logistic

function.

y = σ(w0 ∗ x0 + w1 ∗ x1 + w2 ∗ x2 + b) (2.1)

Artificial neurons can have any number of inputs. Given a neuron with n inputs,

x ∈ Rn, the neuron will have n weights, w ∈ Rn, one weight per input. Equation 2.2

represents the function realized by one neuron.

fσw,b : Rn → R

fσw,b(x) = σ(w · x+ b)
(2.2)

For the remaining parts of this section, we will focus on layered ANNs, especially

multilayer perceptrons. The perceptron algorithm was invented in 1957 at the Cornell

6

Aeronautical Laboratory by Frank Rosenblatt [Rosenblatt, 1957]. However, this first

attempt did not deliver the expected results. It took Marvin Minsky and Seymour

Papert, in their work published in the book “Percetron” in 1969 [Minsky and Papert,

1969], to describe the theoretical results explaining the shortfall of a single layer percep-

tron. Unfortunately, their results were misunderstood by many who believed that mul-

tilayer perceptrons had the same shortfall. This was disproved by Stephen Grossberg

in 1972 with a series of papers introducing networks capable of modelling differential,

contrast-enhancing and XOR functions [Grossberg, 1972a] [Grossberg, 1972b] [Gross-

berg, 1972c]. The 1980s saw a resurgence of research on perceptrons. Today, artificial

neural networks are used extensively and multilayer perceptrons (MLPs) continue to

be popular.

Formally, an MLP consists of multiple layers of nodes, as shown in Figure 2.2.

MLPs distinguish three type of layers: the input layer, the hidden layer(s), and the

output layer. Nodes in the input layer simply present an input to the network while

the nodes in the hidden and output layers are artificial neuron. In an MLP, the input

flows from one layer to next, i.e., it is a feed-forward ANN. In addition, MLPs are

typically fully-connected networks, all outputs of one layer are inputs to the next layer.

All the neurons in one layer see the outputs of all the neuron in the previous layer.

Finally, the activation function is the same for all neurons in one layer. We consider

an MLP with:

• Nhidden: number of hidden layers

• Nin: number of inputs

• Nout: number of outputs

The kth layer (0 ≤ k ≤ Nhidden) of this MLP is defined by:

• nk: the number of neurons

• σk: the activation function (R→ R)

• wk ∈ Rnk×nk−1 : the matrix of weights of the neurons, layer k has nk−1 inputs

7

• bk ∈ Rnk : the biases of the neurons

Using this notation, Equation 2.3 presents the function realized by layer k. In

this equation, ·σk represents the point-wise application of σk (·σk : Rnk → Rnk).

Fk : Rnk−1 → Rnk

Fk(x) = (fσ
k

wk
0 ,b

k
0
(x), . . . , fσ

k

wk
nk−1,b

k
nk−1

(x))

= (σk(wk0 · x+ bk0), . . . , σk(wknk−1 · x+ bknk−1))

= ·σk(wk · x+ bk)

(2.3)

Then, the MLP can be expressed as in Equation 2.4.

F : RNin → RNout

F(x) = (FNhidden ◦ . . . ◦ F0)(x)
(2.4)

The function realized by this MLP is the composition of the functions of the hidden

layers and output layer. The first take away from this equation is that if all of the

activation functions are linear then the network’s function is linear. In this case, the

network could be reduced to a single layer, explaining the importance of non-linear

activation functions. Another take away is that given an infinite number of layers with

non-linear activation functions, an MLP can approximate any (measurable) function.

This result is proven in [Hornik et al., 1989] and [Hornik, 1991].

2.2.2 Training Neural Networks

In the previous section, we defined how artificial neural networks, especially

multilayer perceptrons, are constructed from artificial neurons. In this section, we

discuss how ANN are trained. We will focus on supervised learning for MLPs.

In supervised learning, the goal is to train a model to realize a target function

ϕ : Rn → Rm. Supervised learning requires the existence of a training set Ω ⊂ Rn such

that for all x ∈ Ω, ϕ(x) is known. An MLP built to fit the function ϕ would have n

inputs and m outputs. We denote by F the function realized by this network and Θ

the set of all parameters of the network (weights and biases).

8

The basic method used to train ANNs is to use backward propagation of errors

(or backpropagation) [Rumelhart et al., 1988] in conjunction with an optimization

method such as gradient descent. The goal is to find the values of the parameters Θ

that minimize a loss function L. It is common to use L(x) = ||ϕ(x)−F(x)||2. In

its simplest implementation, backpropagation is applied sequentially to each training

sample x ∈ Ω:

1. Forward propagation: computes L(x) = ||ϕ(x)−F(x)||2

2. Backward propagation: evaluates ∂L
∂p

(x) for all parameter p of the network

3. Update: ∀p ∈ Θ; p← p− α∂L
∂p

(x) where α ∈ R∗+ is called learning rate

The first step simply computes the output of the network for the input x. The second

step is the actual backpropagation used to evaluate the influence of each parameter

on the loss function. Finally, the parameters are updated using gradient descent. The

learning rate, α, (alongside the number of layers, size of the layers, and the activation

function of each layer) is part of the hyper-parameters of the network. This process

is repeated multiple times for all training samples. Applying this algorithm to all the

training sample is called an epoch. Training an ANN takes many epochs (each training

sample is seen many times).

An extension of the classic backpropagation algorithm is stochastic gradient

descent (SGD) which is commonly used with mini-batch. Mini-batches were first pro-

posed in [Kramer and Sangiovanni-Vincentelli, 1988] as a method to apply conjugate

gradient. In SGD with mini-batch, each epoch sees the training set Ω divided into a

number of randomly selected subsets, Ω̃i, and the parameters are updated based on

the sum of the gradient of L for all x ∈ Ω̃i. The corresponding update equation is

present in Equation 2.5

∀p ∈ Θ; p← p− α
∑
x∈Ω̃i

∂L
∂p

(x) (2.5)

When the size of mini-batches is well chosen, SGD converges faster than other imple-

mentation of backpropagation [Li et al., 2014b]. This is due to two factors: (1) the

9

gradient accumulated over multiple samples is a better approximation of the real error,

and (2) the random order in which the sample are selected prevents the network from

oscillating in the neighborhood of a solution. The size of the mini-batches is another

hyper-parameter.

Hyper-parameters do not directly affect the function being learned, but they

influence the convergence of the learning algorithm. The optimal values of these

hyper-parameters is specific to the problem being learned. In most cases, they are

tuned manually through trial-and-error and rely on domain knowledge of the prob-

lem. However, various methods have been evaluated to automate this process: grid

search [Bengio et al., 2007], random search [Bergstra and Bengio, 2012], Bayesian op-

timization [Domhan et al., 2015], Covariance Matrix Adaptation Evolution Strategy

[Loshchilov and Hutter, 2016], and Non-Probabilistic Radial Basis Function Surrogate

Model [Ilievski et al., 2016].

2.2.3 Deep Neural Networks

The word “deep” in deep neural network (DNN) refers to the large number of

layers used to form these models. DNNs were introduced very soon after the intro-

duction of ANNs [Grigorevich and Lapa, 1966] and [Ivakhnenko, 1971]. However, the

computing capabilities necessary to train such large networks was not widely available

until the early 2000s. Increased compute capabilities of cloud computing and GPUs

has created a renewed interest in DNNs. Aside from the democratized access to pow-

erful computers, improved convolutional neural networks algorithms also played a role

in recent deep neural architecture successes.

Convolutional neural network (CNN) is a bio-inspired technique that reduces

the number of parameters in a DNN. CNNs are inspired by the organization of the

animal visual cortex [Hubel and Wiesel, 1968]. Two types of layers are introduced

by CNNs: (1) convolution layers, and (2) pooling layers. Convolution layers exploit

spatial locality of the input. They apply a learned convolution filter on neighborhoods

of the input extracting features for each of them. The number of parameters in a

10

convolution layer only depends on the size of the filter (usually tens of parameter) and

not the size of the input (often measure in millions). Pooling layers select the most

representative features from multiple neighboring neighborhoods. These layers do not

have any parameters that need to be trained. Figure 2.3 depicts a CNN used for image

recognition.

Figure 2.3: The filter from the first convolution layer is applied to a sliding window on
the input image. The first pooling layer select the most significant features extracted
by this filter. Then the second convolution layer and pooling layer are applied. Finally,
three fully-connected layers use the features from the second stage to identify objects
in the image. Image credit: [Denny Britz, 2015]

While the utilization of CNNs greatly reduces the complexity of the models (in

terms of number of parameters), training models on classic CPUs is still relatively

slow. General purpose graphics processing units (GPGPUs) provided a solution. The

technology of GPGPU comes from the domain of graphics processing, and graphics

processing pipelines are well suited to run DNNs. Indeed, GPGPUs provide massive

parallelism which have been leveraged to build high-performance libraries for deep

learning. Today, GPGPUs are key players in the increasing success of deep neural

networks.

2.2.4 Implementation

Our experiments with deep learning are being conducted using Theano [Theano,

2016]. We are developing our own framework around Theano, see Appendix A. Theano

provides low-level primitives to define mathematical expressions which we use to im-

plement deep learning algorithms. We decided to use Theano instead of higher level

11

frameworks like TensorFlow, Caffe, or Torch because it gives us the control needed

to evaluate new techniques. Most existing high-level deep learning frameworks focus

on making it easy to construct common models. They permit the construction of

convolutional neural networks for image processing or large recommendation systems.

In contrast, our framework does not consider any specific use-case and only provides

low-level primitives. By doing so, it permits us to define any neural network we might

need. In addition, this framework has been constructed to permit scaling of model

exploration for very large datasets on distributed memory systems. Finally, Theano

can leverage GPUs to accelerate DNN training and evaluation.

2.3 Random Forest

Random (decision) forest models can be used to solve both classification and

regression problems. This technique is an extension of decision trees. A decision tree

is a flow-chart-like structure, where each internal (non-leaf) node denotes a test on an

attribute, each branch represents the outcome of a test, and each leaf (or terminal)

node correspond to a class label. The idea of random forests was first introduced by

[Ho, 1995] and formally defined by [Breiman, 2001]. A random forest uses a collection

of decision trees built on different subsets of the feature space. The advantage of

a random forest is that it minimizes over-fitting during the training phase, yielding

models that generalize better.

We train random forests using the scikit-learn module for ensemble learning.

Also, a unified interface permits switching between machine learning algorithms easily

(e.g., using SVM instead of random forests).

2.4 Support Vector Machine

Support vector machine (SVM) is a machine learning (ML) technique mostly

used for supervised learning. SVM models are trained using the maximum-margin

hyperplane algorithm [Boser et al., 1992].

12

H1 H2 H3

X1

X2

Figure 2.4: Two distribution of points and three hyperplanes: H1 does not separate the
points, H2 and H3 do separate the two distributions, but H3 is the maximum-margin
hyperplane.

Figure 2.4 depicts a classification problem where two groups of points, whites

and blacks, have to be separated. These points are placed in a 2D euclidian space,

called the feature space. The figure shows three hyperplanes in this feature space. The

first hyperplane, H1, does not separate the two classes of points but H2 and H3 do. H3

is a better separator than H2 because it is further from any points in each classes. H3

is one maximum-margin hyperplane.

The “kernel trick” [Muller et al., 2001] enables one to train models where the

distance between points is defined by a kernel function. A kernel function, or positive

definite kernel, is a generalization of a positive definite function. With the kernel trick,

the maximum-margin hyperplane is fitted in a projected feature space. In the original

feature space, the separator is a curved line as shown in the left side of Figure 2.5.

The primary usage of the kernel trick is to construct non-linear separators.

However, it permits us to apply SVM to highly dimensional data. In Section 3.3, we

introduce a few kernels that measure similarities between graphs.

The python toolkit “scikit-learn” [Pedregosa et al., 2011] provides an accessible

SVM implementation. This module uses the LIBSVM library [Chang and Lin, 2011]

which has been actively developed since 2000. Scikit-learn provides a flexible but

unified way to construct machine learning models whether we use SVM or any other

13

Ø

Figure 2.5: On the left side: original feature space. On the right side: transformed
feature space. Features are transformed into a higher dimensional space where a linear
separator can be found.

supported algorithm.

2.5 Comparing Models

When machine learning is used to solve a task, multiple algorithms are used to

build various models until the best model is found. To construct the best model for

a specific task, we generally evaluate the ability of these models to generalize what

was learned on a training set to a testing set. This process requires both a proper

experimental setup and a measure of the accuracy of a given model. We use (n-fold)

cross-validation and different measures of accuracy. We use accuracy where others use

error because error is only one possible measure of accuracy.

2.5.1 Cross Validation

When we evaluate a model, we use non-intersecting subsets of the whole dataset.

A machine learning model is trained using the training set. The accuracy of the model

is reported using the testing set. Separating training and testing instances ensures that

the reported accuracy is representative of the usefulness of the model to generalize what

was learned from the training set. Estimated using previously unseen instances, the

testing accuracy is an approximation of the generalization accuracy. If the machine

learning algorithm tunes hyper-parameters or trains multiple models, a validation set

14

is set aside for this purpose. As the validation set is never used for training, models

are selected based on the generalization accuracy. However, once selected, a model has

seen the validation set, but the testing accuracy is still based on unseen instances.

The testing accuracy reported for one split of the dataset is not always the best

estimate of the generalization accuracy. Typically, multiple splits of the dataset are

used and the generalization accuracy is estimated by the mean of model’s accuracy

across all test sets. n-fold cross-validation is a strategy to construct the combination of

training and testing sets. It divides the dataset into n subsets of the same size, called

folds. Then, n models are built, each trained on a different combination of n− 1 folds

and tested on the left-out fold. A method to obtain a precise estimate of the gener-

alization accuracy of classification models was defined by [Zeng and Martinez, 2000].

Based on n-fold cross-validation, distribution-balanced stratified cross-validation (DB-

SCV) builds homogeneous folds decreasing the deviation between cross-validation ex-

periments. Stratification means that all folds contain the same number of instances

for each classification target, giving them the same class distribution as the original

dataset. With DBSCV, the intra-class distribution of the instance in each is the same

as for the original dataset. This improves the estimation of the generalization accuracy

especially for small datasets with intra-class clusters.

2.5.2 Accuracy

Let us consider a dataset which associates whether or not some property is true

or false for each instance. This dataset is defined as D = {Xi 7→ Yi} where Xi represents

the features and Yi is either 0 for false or 1 for true. We consider a classifier trained

on a subset of D and evaluate its performance on the left over instances Dtest. Given

the feature of an instance X , a trained classifier returns the probability of this instance

being true. The output of the classifier for instance Xi, denoted pi, is a probability

(pi ∈ [0, 1]).

15

2.5.2.1 Error Rate

First, we define the notion of correctness of a classifier’s prediction. The classifier

returns a probability and a threshold τ is needed to decide whether the prediction is

true or false. ρτi is the prediction for instance i given the threshold τ as defined in

Equation 2.6.

ρτi =

0 pi ≤ τ

1 pi > τ

(2.6)

In Equation 2.7, we define ετi representing whether or not instance i was miss-predicted.

ετi =

0 ρτi = Yi

1 otherwise

(2.7)

The error-rate of the model, denoted Eτ , is the number of miss-predictions divided by

the number of predictions ; as show in Equation 2.8.

Eτ =

∑
i∈Dtest

ετi
|Dtest|

(2.8)

2.5.2.2 Confusion Matrix

To get a more accurate depiction of the accuracy of a model, we may want to

know what are the errors made. The confusion matrix for a binary classifier is a two-

by-two matrix counting the pair of predicted and actual targets. The columns of this

matrix represent the actual targets while the rows represent the predicted targets.

targets
0 1

p
re

d
ic

te
d 0 TN FN

1 FP TP

Table 2.1: Confusion Matrix for a binary classifier.

In Table 2.1, we show a depiction of a confusion matrix. An actual confusion

matrix would show numbers of True Negatives (false predicted false), True Positives

16

(true predicted true), False Negatives (true predicted false), and False Positives (false

predicted true). Again, these values depend on the threshold τ and can be used to define

respective rates as shown is Equation 2.9. These rates are used to set the threshold

τ depending on the utilization of the model. For example, a spam detector needs to

minimize the false positive rate as it corresponds to desired emails being classified as

spam.

tnrτ =

∑Yi=0
i∈Dtest

1− ετi
|Dtest|

fnrτ =

∑Yi=1
i∈Dtest

1− ετi
|Dtest|

fprτ =

∑Yi=0
i∈Dtest

ετi
|Dtest|

tprτ =

∑Yi=1
i∈Dtest

ετi
|Dtest|

(2.9)

2.5.2.3 Receiver Operating Characteristic and Area Under the Curve

The receiver operating characteristic (ROC) comes from signal detection theory

and is a good way to visualize the performance of a binary classifier. The ROC is

constructed by plotting the pairs of fprτ and tprτ for various values of the threshold

τ . An ROC plot permits the comparison of models visually. Using the area under the

ROC curve (AUC of ROC, simply refered to as AUC) to estimate the “goodness” of a

model was proposed by [Bradley, 1997]. It is usually evaluated by sampling τ in [0, 1]

using trapezoidal integration. The AUC ranges from 0.5 (a classifier with no better

accuracy than chance) to 1 (a classifier with perfect accuracy).

2.5.3 In practice

In Chapter 4, we consider both AUC and error-rates to compare accuracy. Error

rate is used for qualitative comparisons, i.e., which model makes the best predictions?

AUC is used for quantitative comparisons, i.e., which model is the best at differentiating

instances? Error rate tells us which model is the best to use as it is, while AUC tells

us whether or not a model has potential.

Particularly, in the case of multiclasses classifiers, a model can have a high global

error-rate while the AUC for each class is high. In this case, the model can be improved

by applying a decision tree to its outputs. The decision tree can leverage the relative

17

probabilities of each class to make its decision. In Chapter 4, we show how we use this

technique to create better classifiers from MLPs.

2.6 Conclusion

In this chapter, we provided background knowledge on machine learning in

general. The next chapter presents formalisms to help describe our graph-based tech-

niques, and subsequently in this dissertation we introduce the techniques we developed

to allow graphs to be ingested by our machine learning algorithms.

18

Chapter 3

MACHINE LEARNING FOR GRAPHS

3.1 Introduction

Graphs are complex data structures that can be used to represent a variety of

objects. Graph-structured data are now appearing frequently in machine learning and

data mining literature.

In this chapter, we discuss the utilization of graphs to characterize code for

two different problems involving machine learning, malware classification and code

optimization. We discuss the general application of machine learning that use graphs

as features. In Section 3.2, we introduce basic graph formalism and notations. In

Section 3.3, we discuss the application of Support Vector Machines to graph structured

data. In Section 3.4, we describe graph spectral analysis and Section 3.5 discusses

how we use this analysis to generate graph spectral features that gives us a fixed-size

representation of graphs we can use for deep learning.

3.2 Graph Formalism

In this work, we consider directed graphs with weighted edges. Features (vector

of m reals) are associated with each node. Edges are weighted using real values.

G = (V,E ⊂ V× V,F : V 7→ Rm,W : E 7→ R) (3.1)

Equation 3.1 gives a formal definition of such graph, which is represented as a tuple of
four objects:

• V: set of vertices (or nodes) of the graph

• E: set of edges of the graphs, edges are directed from one vertex to another

• F : features map associates a vector from Rm to each vertex

19

• W : weights map associates a scalar from R to each edge

We also introduce:

• n: number of vertices (|V|)

• m: number of features for each vertex

• ε : V 7→ [0 . . n[: a bijection giving an index to each vertex in the graph

Such graphs can be represented using the adjacency and feature matrices. The adja-

cency matrix,Madjacency, is defined in Equation 3.2. It is a square matrix of n×n real

values. For any edge in G, the corresponding cell of the adjacency matrix is assigned

the edge’s weight. If there is no edge between two vertices, the corresponding cell of

the adjacency matrix has a value of zero.

Madjacency
i,j =

W(ε−1(i), ε−1(j)) if (ε−1(i), ε−1(j)) ∈ E

0 otherwise

(3.2)

The feature matrix, Mfeature, is defined in Equation 3.3. It is a matrix of size n ×m

with real values. Each of the n rows stores the m features of one vertex.

Mfeature
i,j = F(ε−1(i))j (3.3)

When it comes to learning from graphs, there are not many solutions. Graphs

are high dimensional data and even in matrix form they cause issues, e.g., their sizes

vary with the number of nodes. We will present two ways of utilizing ML on graphs:

graph kernels with SVMs and graph spectral features with deep learning.

3.3 Graph Kernels for Support Vector Machine

It is possible to use graph kernels with kernelized learning algorithms like SVM.

Graph kernels measure similarities between graphs and are covered in details by [Vish-

wanathan et al., 2010]. Using graph kernels, we can bypass the fixed size constraint of

many learning algorithms.

For example, the shortest paths graph kernel (SPGK) algorithm [Borgwardt

and Kriegel, 2005] computes the pairwise similarity between the shortest paths of two

20

graphs. SPGK is one of many path-based graph kernels like longest paths kernel and

all paths kernel. Compared to these other kernel algorithms, the shortest path graph

problem can be solved in polynomial time while yielding similar results.

Algorithm 3.1 The shortest-path graph kernel compute the sum of the pairwise
distances between all the shortest-paths of two graphs.

procedure AllEdgesGraphKernel(G0,G1)
D ← 0
for e0 ∈ Gedges0 do

for e1 ∈ Gedges1 do
Dsource ← NodeKernel(esource0 , esource1)
Dweight ← EdgeKernel(eweight0 , eweight1)
Dsink ← NodeKernel(esink0 , esink1)
D ← S +Dsource ∗Dweight ∗Dsink

end for
end for
return D

end procedure
procedure ShortestPathGraphKernel(G0,G1)
Gsp0 ← ShortestPathGraph(G0)
Gsp1 ← ShortestPathGraph(G1)
return AllEdgesGraphKernel(Gsp0 ,G

sp
1)

end procedure

Algorithm 3.1 shows how SPGK applies the all edge graph kernel to the graphs

after applying the shortest paths algorithm. The NodeKernel function takes feature

vectors from two nodes and returns a measure of their differences. The EdgeKernel

function takes as input two edges, feature vectors for source and sink node and an

edge’s weight for each node, and it returns the distance between these nodes. The

AllEdgesGraphKernel function can be used directly on a graph. In the case

of SPGK, AllEdgesGraphKernel is applied to the shortest path graphs of the

21

inputs. ShortestPathGraph can be implemented using the Floyd-Warshall algo-

rithm. Equations 3.4 and 3.5 shows typical versions of NodeKernel and EdgeK-

ernel, respectively.

NodeKernel(v1, v2) =
∑

0≤i<m

(v1
i − v2

i)
2 (3.4)

EdgeKernel(w1, w2) = |w1 − w2| (3.5)

SPGK was combined with SVM to classify graph models of proteins by [Borg-

wardt and Kriegel, 2005]. They compare SPGK to the random walk kernel, another

type of graph kernels introduced by [Gärtner et al., 2003]. Applied to the classification

of proteins, SPGK achieves better than 94% accuracy compared to little more than

89% with random walk.

SPGK and other kernel techniques have been applied to multiple compiler prob-

lems. It was used to train SVM models for application performance predictions by [Park

et al., 2012]. In this work, applications were characterized by their control flow graphs.

Graph-based features were used to order LLVM’s optimization passes by [Nobre et al.,

2016].

3.4 Graph Spectral Analysis

However, graph kernels are still computationally expensive and do not scale

well with the large datasets required by deep learning. In this section, we elaborate

on a much more efficient way of converting graphs to fixed size feature vectors for

deep learning. The first technique is DeepWalk [Perozzi et al., 2014]. This algorithm

aggregates the results of multiple random walk into one large feature vector. DeepWalk

was used to analyze social media datasets improving the accuracy of the generated

models while lowering the time needed for training.

Bruna et al. used spectral analysis of the graph Laplacian on the MNIST dataset

(hand-written digits) [Bruna et al., 2013]. This paper introduces the mathematical

tools that we leverage in our work. This technique was further leverage by Henaff

22

et al. with the introduction of ANN architecture similar to convolutional networks

[Henaff et al., 2015]. In 2016, Bronstein et al. published a review of graph spectral

techniques for deep learning [Bronstein et al., 2016].

3.5 Graph Spectral Features

Algorithm 3.2 Extracting the graph spectral features from the adjacency and feature
matrices of a graph takes three steps. First, we compute the Laplacian of the graph.
Second, we extract the eigenvectors for the w largest eigenvalues. Third, we project
the features matrix using these eigenvectors.

procedure GraphSpectralFeatures(Madjacency,Mfeature,w)
Mlaplacian ← GraphLaplacian(Madjacency)
Mprojection

w ← EigenVectors(Mlaplacian, w)
return (Mprojection

w)T ×Mfeature

end procedure

Graph Spectral Features (GSF) designates a technique which uses graph spec-

tral analysis to build a fixed size representation of graphs. This technique projects

the feature matrix, Mfeature, with respect to the w eigenvector corresponding to the

w largest eigenvalues of the Laplacian of the adjacency matrix, Madjacency. This pro-

jection matrix is denoted as Mprojection
w . The graph spectral feature of width w is the

projection of the features matrix with respect toMprojection
w and is denotedMspectrum

w .

Algorithm 3.2 presents the extraction of Mspectrum
w given Madjacency and Mfeature.

The Laplacian matrix, also called admittance or Kirchhoff matrix, is defined in Equa-

tion 3.6, where Mdegree
G is the degree matrix of the graph G. This matrix is diagonal

and diag(Mdegree
G) =Madjacency

G · 1n (1n is the unit vector of length n).

Mlaplacian
G = I − (Mdegree

G)−
1
2 ×Madjacency

G × (Mdegree
G)−

1
2 (3.6)

This Laplacian operator is used by [Henaff et al., 2015] to define a convolutional op-

erator on the grid (edges of the graph) by extracting its eigenvectors. Our method is

similar in that the EigenVectors function is applied to the Laplacian and returns

the eigenvectors for the w largest eigenvalues ofMlaplacian. We use the resulting matrix

(Mprojection) to project the feature matrix (Mfeature) into the Mspectrum
w ∈ Cw×m (m

23

being the number of features per node). The size ofMspectrum
w does not depend on the

size of original graph, which was our goal.

3.6 Conclusion

In this chapter, we discussed the use of graphs with machine learning. Af-

ter introducing graph formalism, we discussed how we use graph kernels to compare

graphs with SVMs. However, using graph kernels does not scale with the big datasets

required by deep learning techniques. To use deep learning on graphs, we must use

graph spectral analysis to build fixed size representations. In the remaining chap-

ters of this dissertation, we illustrate how to use graph spectral features (GSFs) to

solve complex system problems involving graphs. We use GSFs to classify malware in

Chapters 4 and 5 and make performance prediction in Chapters 6 and 7.

24

Chapter 4

BASIC NEURAL NETWORKS FOR MALWARE CLASSIFICATION

4.1 Introduction

In recent years, cybersecurity news has increasingly made headlines. Breaches

of computer systems have led to the theft of private information or to a companys

data being held hostage after it has been encrypted. While there are a variety of

ways in which computer systems can be compromised, many cases involve malicious

applications being downloaded into a organizations network without being detected.

These malicious applications, also called malware, have plagued computer systems for

decades. It is estimated that upwards of one million malware variants are released

into the “wild” every day. The rate at which these malware are created is due to the

widespread adoption of automated tools, which permit the construction of hundreds of

malware variants with only a few clicks.

To fight this onslaught of malware, security software has had to move past

signature-based malware detection. Cryptographic hashes used as signatures can only

recognize previously seen variants of malware. But signature-based techniques are not

effective when the malware attacking an organization is new malware. Better methods

to characterize and classify malware are currently being developed to replace signature-

based techniques. In particular, machine learning approaches have recently started to

yield exceptional results

The machine learning algorithms that have recently received the most attention

have been deep learning algorithms. The recent advances in deep learning are due to

the low-cost availability of vast amounts of computation capabilities and large datasets.

For example, in cybersecurity large amounts of labeled malware are available for free

25

on the internet to build malware detection models. Also, companies, such as Reversing

Labs and Virus Total, provide curated streams of malware to researchers to work on.

For our research, we obtained a large stream of financial malware from Reversing Labs

from which we extracted 1.2 million malware for our research. Our goal was to develop

models capable of predicting what family a particular unseen malware belonged to.

These models were built using a variety of analysis approaches to allow us to

characterize files in terms of bytes and reverse-engineered assembly codes. We con-

structed a dataset consisting of eleven different feature sets of various sizes, from tens

to thousands of features. We trained separate deep learning models for each feature

set. Then, a consensus model was built with the best models for each feature set using

ensemble learning. Ensemble models (using random forests) can be trained quickly

with the output of several neural networks.

In this chapter, we show the results of training two hundred deep learning models

for each of the eleven feature sets in our dataset. We trained two hundred models to

get an accurate estimate of the level of performance achievable by each feature set. In

this chapter, we present the malware dataset, the analyses performed, and the features

extracted. Next, we describe the machine learning backend we deployed on Amazon

Web Services (AWS). Finally, we show malware classification results comparing state-

of-the-art feature sets against our feature sets using graphs that better represent the

structure of the executable code.

4.2 Malware Datasets and Characterization

In this section, we describe our dataset of malicious applications and the various

techniques we used to characterize them.

4.2.1 Dataset

We obtained 1.2 million files from Reversing Labs pertaining to a stream of

malware targeting financial institutions. These malware come from forty families,

targeting a variety of different operating systems. For the experiments presented in

26

Name Target Type
Andromeda Windows virus

Banker Windows spyware
Banload Windows downloader
Cutwail Windows downloader

Inject Windows virus
Injector Windows trojan
Ramnit Windows trojan

Shifu Windows spyware
Zbot Windows downloader

Smsagent Android spyware
Smsthief Android spyware

Table 4.1: The eleven families of malware in the dataset. We list the OS each family
targets, either Microsoft Windows or Android systems. Viruses are malware that
spread on a system. Spyware collect and report private data. Downloaders get other
malware on the infected system. And, trojans are malware camouflaged as benign
applications.

this proposal, we randomly subsampled each family with more than one thousand

variants. This left us with a dataset made of one thousand files from eleven different

families. Table 4.1 provides the name, OS target, and type of each family of malware.

Figure 4.1 presents histograms (500 bins) of five metrics that were extracted

when characterizing the 11,000 files. These metrics are: (1) number of functions,

(2) number of blocks, (3) number of instructions, (4) number of bytes, and (5) en-

tropy. Number of functions, blocks, and instructions are computed from the reverse-

engineered assembly code of the malware. Entropy corresponds to the measurement of

randomness in the bytes of the malware. It is computed Shannon’s formula [Shannon,

1948] which yield a value between zero and eight.

4.2.2 Bytes-Entropy Histogram

Byte-entropy histograms are comprehensive representations of files that repre-

sent the state-of-the-art characterization of files for deep learning [Saxe and Berlin,

2015]. To construct this representation of files, we scan files using a sliding window of

length 1024 with a step of 256 bytes. For each of the windows, we get the histogram

27

Figure 4.1: Comparing the distribution of the size of the file, the entropy, and the
number of functions, blocks, and instructions over the different families of malware.
The size of the file and the number of functions, blocks, and instructions are plotted
using a logarithmic scale. It shows that many malware have only one function or one
block. However, there can be up to 9 thousand functions, 43 thousand blocks, and
605 thousand instructions. The entropy is usually average corresponding to conven-
tional data and code. However, there some case when the entropy is extremely high
corresponding to files where the majority of the information is either compressed or
encrypted.

28

of the bytes and compute the associated entropy. Finally, histograms are accumu-

lated in the 2D bytes-entropy histogram in one of 256 entropy bins. Figure 4.2 and

Algorithm 4.1 describe this process.

Window Size (N)

Bytes

N Extracted Binary Bytes

Entropy (e)
Computed entropy from bytes

(e, bo) , (e, b1) , … , (e, bN-2) , (e, bN-1)
Ordered pairs of entropy and byte value e

B

Entropy binned (e) Bytes binned (B)
For all extracted windows, accumulate pairs in binned matrix

Sliding Window Size (k)

Figure 4.2: First, the file is scanned by a sliding window of length 1024 with a step of
256 bytes. Then, for each window, the bytes histogram is extracted and the associated
entropy is computed. Pairs of byte and entropy are collected for all windows. Finally,
the pairs are counted in the bytes-entropy histogram.

Algorithm 4.1 For each window of length W taken from the bytes B with a step of k,
the histogram H and entropy E are computed. The entropy is quantized qE into En
values. Finally, the histogram is accumulated into the bytes-entropy histogram based
on the quantized entropy.

procedure BytesEntropyHistogram(B,W ,k,En)
BEH ← zeros(256 ∗ En)
for i = 0 to len(B) by k do

H ← Histogram(B[i : i+W])
E ← Entropy(H)
qE ← floor((E/8.) ∗ (En− 1))
BEH[qE, :]← BEH[qE, :] +H

end for
return BEH

end procedure

The intuition behind the bytes-entropy histogram is that different types of data

have different entropy values. ASCII text has a lower entropy than executable code and

executable code has a lower entropy than encrypted or compressed data. Bytes-entropy

histograms separate histograms for different types of data.

29

(a) Skype 4.3.0 (b) GCC 5.4.0

Figure 4.3: We provide depictions of the bytes-entropy histograms of two Linux appli-
cations. The X-axis represents the different ASCII bytes from 0 to 255. The Y-axis
represents Shannon’s entropy from zeros at the top to eight at the bottom. Entropy
values are discretized using 256 bins. One can note that Skype has a large amount of
high entropy data while GCC has none. In GCC, data with the highest entropy are a
thin line corresponding to the entropy of x86 code (6.6).

30

The bytes-entropy histograms for GCC 5.4.0 and Skype 4.3.0 are shown in Fig-

ures 4.3b and 4.3a, respectively. In both figures, the X-axis represents the bytes values

from 0 to 255 and the Y-axis is the entropy going down (high entropy at the bot-

tom). The main difference between these two applications is the existence of very high

entropy data in Skype, corresponding to compressed data (e.g., images, sounds, and

perhaps packed proprietary code). We also note the presence of lower-case characters

with medium entropy in GCC (darker squared area near the center of the bytes-entropy

histogram). This area corresponds to tables of lower-case strings such as the names of

GCC’s built-in types, variables, and functions.

In both bytes-entropy histograms, there is a horizontal line corresponding to

executable code. In GCC, it is clear, as this (thin) line is isolated at the bottom of the

bytes-entropy histogram. In Skype, this line is wider because of the high entropy data.

4.2.3 Malware’s Executable Code

The analysis of executable codes is a reverse engineering process. The first step

is to disassemble the executable code. It translates executable instructions to assembly

instructions. Disassemblers are classic tools in the arsenal of security analysts. Most of

these tools can perform high-level analyses on these instructions. These analyses iden-

tify functions and blocks of code and resolve most of the function calls and branches.

Given the results of these analyses, we can construct many compiler graphs, including

control flow graphs and call graphs. Finally, the compiler graphs are “regularized”

to form feature graphs, following the graph formalism presented in Section ??. Here,

“regularization” implies summarizing the content of the compiler graph’ nodes as vec-

tor of real numbers. Figure 4.4 depicts how the call graph with features at each node

is constructed from the output of a disassembler.

31

foo:
 push %rbp
 mov %rsp,%rbp
 mov %edi,-0x4(%rbp)
 cvtsi2sdl -0x4(%rbp),%xmm0
 movsd 0x158(%rip),%xmm1
 addsd %xmm1,%xmm0
 unpcklpd %xmm0,%xmm0
 leaveq
 retq
main:
 push %rbp
 mov %rsp,%rbp
 push %rbx
 sub $0x10,%rsp
 movl $0x0,-0xc(%rbp)
 jmp 400514 <main+0x3e>
 mov -0xc(%rbp),%ebx
 mov -0xc(%rbp),%eax
 movsd 0x601020(,%rax,8),%xmm0
 cvttss2si %xmm0,%eax
 mov %eax,%edi
 callq 4004b4 <foo>
 movslq %ebx,%rax
 movsd %xmm0,0x601020(,%rax,8)
 addl $0x1,-0xc(%rbp)
 cmpl $0x3,-0xc(%rbp)
 jle 4004e8 <main+0x12>
 add $0x10,%rsp
 pop %rbx
 leaveq
 retq

A

B H

C D

G

I

FE 2031 . . .0 1

Program ASM Call Graph Extracted Features

C
B

E
D I

A
H

F
G

Figure 4.4: First, the executable is disassembled into function, blocks, and instructions.
Second, the disassembled code is transformed into a graph-like data-structure (e.g., call
graph). Third, a feature graph is extracted from the “compiler graph”.

4.2.3.1 Disassembly & Analysis

We use Radare2, a free and open-source disassembler, to analyze executable files.

The advantage of Radare2 is that it “disassembles” many kinds of executables, includ-

ing x86, ARM, Bytecode (Java), Javascript (from HTML files), etc. We parse Radare2

output and consolidate the results of call and control-flow analyses into one data struc-

ture depicted in Figure 4.5. This data-structure is a graph of operations linked by calls

(blue curved arrows), branches (green/red angled arrows), and fallthroughs (black thin

straight arrows).

Operations are characterized using Radare2 categories (Table 4.2) and the op-

eration size. Blocks are sequences of operations not broken up by control flow. Each

block is characterized by its number of instructions, size, and statistics for the edges.

Edges’ statistics include the number of calls and jumps that were resolved, the number

of them that were not resolved, and the number of fallthrough between instruction.

Functions are composed of blocks and are characterized by their size, number of blocks

and operations, and statistics of their edges. Call edges connect the call site (call) to

the first instruction of the first block of the called function. Branches connect the last

instruction of one block to the first instruction of another block. True branches (in

green, connected below the instruction) are taken when a jump instruction is executed.

For conditional jump, if the condition is false, then the false branch is taken (in red

connected to the side of the instruction). Fallthroughs correspond to the normal flow

32

Figure 4.5: Depiction of code graph extracted from Radare2 output. At the lowest
level of this graph, the nodes represents instructions. These instructions are groups
into blocks which are themselves grouped into functions. Edges between instructions
represents the normal flow of execution. Branches are edges between the last instruction
in a block and the first instruction of another block. Edges between instructions and
the first instruction of the first block of a function represents calls.

33

of instructions in the absence of branches. They usually include the false branches but

we consider them separately.

control flow
switch case call ucall jmp ujmp cjmp

ucjmp uccall ccall ret cret swi

arithmetic

length cmp acmp add mod cast not

sub abs mul div shr shl cpl

sal sar or and xor crypto nor

ror rol

memory
mov lea cmov xchg leave store load

upush pop push new io

miscellaneous null nop unk trap ill

Table 4.2: This table shows the 53 different categories of instructions extracted by
Radare2. There are four major categories that the extracted instructions correspond
to. They are grouped into categories of control flow, arithmetic, memory, and miscel-
laneous.

4.2.3.2 Code Features

To apply machine learning on files characterized using code features, we need

to extract graphs and feature vectors at each node. We extract this representation

by scanning this data-structure from operations to blocks to functions to global level.

Along the way, we extract statistics about each level that we accumulate (Figure 4.6).

This gives us four different level of granularity at which we look at the code.

Figure 4.6: Statistics accumulation through the four levels of granularity. Statistics
are built recursively starting with operations. Each block’s statistics are concatenated
with the average statistics of its operations. Each function’s statistics are concatenated
with the average statistics of its operations and its blocks. The global statistics are
concatenated with the average statistics of its operations, its blocks, an its functions.

34

Figure 4.7: Three graphs showing the structure of extracted WPCFGs. Nodes represent
blocks in the original code. They are characterized using statistics, instructions 1-gram,
or instructions 2-gram. Edges represent: jumps between blocks, or calls between one
block and the first block of a function. We can see that not all blocks are connected
to other blocks. This is because Radare2 does not resolve all calls and jumps. We
can notice that sometimes many nodes connect to one node while no nodes connect
to them. These could correspond to a switch statement implemented with a relative
jump. The nodes without predecessors would be the cases of this switch statement.
The nodes they connect to would be the statement after the switch statement.

4.2.3.2.1 Operation Level

The whole-program instruction-flow-graph (WPIFG) connects operations using

calls, branches, and fallthroughs. For each operation, one feature vector is generated

containing statistics : operation kind and size.

4.2.3.2.2 Block Level

The whole-program control-flow-graph (WPCFG) connects blocks based on the

calls and branches. Each block is characterized by three feature vectors: statistics,

instruction 1-grams, and instruction 2-grams. The statistics include the block’s size

and edges statistics, but also aggregate the average statistics of its operations. The in-

struction 1-grams and 2-grams are histograms of the sequences of one or two operations

presented as 1D and 2D tensors.

4.2.3.2.3 Function Level

The call-graph (CG) connects functions based on the calls. Each function is

characterized by three feature vectors: statistics, instructions 1-grams, and instructions

35

2-grams. One function’s statistics include the function’s information, and the average

statistics of its blocks and operations.

4.2.3.2.4 Global Level

We construct the same three feature vectors. The global statistics include code

size, number of operations, blocks, and functions, and aggregated averages of its func-

tions, blocks, and operations. This is three feature vectors at the global level and seven

feature graphs for the other three levels.

4.2.3.2.5 Graph Spectrum

Figure 4.1 shows that, while the number of functions, blocks, and instructions

can be as small as one, it can also reach thousands, tens of thousands, and hundreds of

thousands, respectively. That is an issue as the structure of these graphs is important,

different graph structure are shown in Figure 4.7. We discussed in Section ?? a method

to summarize graphs of any size as into a 2D tensor of fixed-size. This method is the

final step of our executable code characterization. For each of the three granularity

levels (functions, blocks, and operations) and the three kind node features (statistics,

1-grams, and 2-grams), we extract the graph spectral features of width 20.

4.2.4 Summary of the Features

Between the byte and code level analyses, we generate eleven different features.

These features are summarized in Table 4.3. It includes the bytes-entropy histogram

used to characterize files at the byte level and the collection of vectors and graph

spectral features obtained from the executable code.

4.3 Machine Learning in the Cloud

Our goal is to design a malware detection system that can be updated daily.

Such a system will be essential to taking advantage of the millions of new malware that

are created every day. It should also permit us to independently leverage the eleven

36

Characterization Format Size

bytes-entropy histogram matrix 256 x 256

Global
statistics

vector
43

1-grams 53
2-grams 2809

Function
statistics

matrix
20 x 23

1-grams 20 x 53
2-grams 20 x 2809

Block
statistics

matrix
20 x 10

1-grams 20 x 53
2-grams 20 x 2809

Operations statistic matrix 20 x 2

Table 4.3: Summary of the feature produced by the bytes level and executable code
analyses.

feature sets that are extracted by the various file analyses. To make this possible, we

need a scalable machine learning service providing a schema to assemble models.

4.3.1 Training and Consensus

We decided to train deep neural networks (DNNs) on each of the feature sets as

deep learning scales much better than other techniques with the size of the data. Then,

we used a random forest to build consensus models using the output of the selected

DNNs. This two-step approach enables the concurrent training of a large number of

DNNs, which are aggregated at any time using random forests. While they are trained,

DNNs save the latest best models. Hence, a new random forest can be created, at any

time, using a selection of these DNNs.

Figure 4.8 shows how this schema is implemented when training, testing, and

validation sets are taken into account. First, the dataset is separated into N folds

(3 here for brevity and 5 in our experiments). In the case of a growing dataset, new

samples are separated between the N folds. Second, one Testing Pool is created for

each fold. Testing pools are independent from each other. The fold associated with

each pool is never seen by the models in this pool (neither for training nor validation).

Third, in each testing pool, N − 1 Cross Validation Pools are created, one for each

37

Figure 4.8: The dataset is divided in three folds. Each fold is the testing set for one
testing pool. Each testing pool has two cross validation pools where DNNs are trained.
Some of these DNNs are selected based on the validation accuracy. The output of the
selected DNNs are used to construct a random forest. This random forest forms a
consensus based on the selected DNNs.

fold not reserved for testing. In these cross-validation pools, models are trained on

the left-over folds and evaluated on the associated validation fold. For example, the

cross-validation pool B.A of the testing pool B in Figure 4.8 uses: fold C to train, fold

A to validate, and fold B to test. In our cloud service, the models trained in the cross-

validation pools are DNNs. Many DNNs are trained in each validation pool, for each of

the feature sets, providing us with many DNNs to choose from. Eventually, models in

each cross-validation pool could be selected using a meta-optimization algorithm, e.g.,

genetic algorithms. Fourth, some models are selected from all cross-validation pools

in each testing pool. The outputs of these models for both training and validation

folds are used to construct one random forest (or other ensemble techniques). The

final results are reported using the testing fold, which was never used for training or

selection.

38

4.3.2 Cloud Infrastructure

Our machine learning service is deployed on Amazon Web Services (AWS) to

enable on demand scaling of both compute and storage resources. Particularly, we use

four services from AWS:

• Elastic Compute Cloud (EC2) with Auto Scaling Group (ASG) to host the ap-
plications in a scalable way

• DynamoDB to store the descriptions of the models and datasets and to record
accuracy metrics while training models

• Simple Storage Service (S3) to store the datasets and the parameters of the
trained models

• Simple Queue Service (SQS) to distribute jobs

Aside from the flexibility, creating a machine learning service made it possible to

have a job-based system. This job-based system is essential to distribute the workload

on SPOT instances. SPOT instances are EC2 instances sold using a market pricing.

This enabled us to control the cost (as SPOT instances are usually much cheaper).

However, SPOT instances are volatile and can be taken down at any time. Distributing

jobs with SQS permits us to monitor the jobs for completion and restart jobs that failed.

The application behind the service is developed in python and it uses Theano

[Theano, 2016] for deep learning and scikit-learn [Pedregosa et al., 2011] for ensemble

learning. The connection between the application and AWS infrastructure is done

using boto3 [AWS, 2014] which provides python binding for AWS API. There are three

modules to this application: (1) creation and management of datasets, (2) training of

deep learning models, and (3) building ensemble models for consensus.

In the first module, datasets are constructed from a list of items and a list of

feature sets. Then, the dataset is separated into folds that are stored separately on S3.

A basic description of the dataset is stored in DynamoDB.

The second module is given a model, a dataset, and some policies: cross-

validation, stopping, recording and checkpointing. The dataset is obtained (from S3

or local caches) and normalized depending on the training set. The model is either

39

Figure 4.9: The deep learning application of our cloud service is deployed on AWS. The
jobs are distributed between multiple SPOT instances using AWS’s queuing service
(SQS). When a job is received, the dataset is loaded, if not already present in the
instance’s cache. Then, the latest checkpointed model is obtained. The model is
trained and after each epoch, metrics are saved and the model might be checkpointed.

loaded using its latest checkpointed parameters (on S3) or created locally. Finally,

the model is trained until the stopping policy is triggered (number of epochs, time,

error-rates, etc). In between each epoch, the model is tested on the validation fold.

Then, depending on the checkpointing policies, the application might:

• record metrics in DynamoDB

• checkpoint the model’s parameter on S3

Training metrics include the error rate on each fold (computed if requested),

and the time spent in the epoch. They are usually captured after each epoch. There

are two types of checkpoints: best and last. The “best” checkpointing means that

the parameters of the model are saved when it has the lowest error rate so far. It is

usually activated, allowing the retrieval of the best version of any model at any time.

The “last” checkpointing means that the parameters of the model are saved after each

epoch. It is turned on when we do not want to lose epochs after a failure (when epochs

are long). Figure 4.9 shows a SPOT instance (launched in an ASG) processing a DNN

job obtained from SQS.

The third module is given a list of models, a training set and a testing set.

It produces an ensemble model, generally a random forest, which makes predictions

40

based on the outputs of the given models. It computes the outputs of the models for

the whole dataset. The outputs for the training set are used to train the ensemble

model while the testing set is used for evaluation.

4.4 Malware Classification Results

In this section, we present the results of our malicious application classifiers.

We start with a description of the deep neural networks and random forests. Then, we

analyze the performance of these models.

4.4.1 Models

In these experiments, we evaluated an architecture where multiple deep neural

networks make predictions and random forests are used to build consensus using these

predictions (Figure 4.8). We used 5-fold cross-validation, giving us five testing pools

containing four cross-validation pools each. In each cross-validation pool, we trained

ten multilayer perceptrons (MLPs) for each of the eleven feature sets extracted from

the malware (Table 4.3). Finally, we selected different groups of MLPs from each

testing pool to construct random forests.

4.4.1.1 Multilayer Perceptrons

We evaluated each of the features sets by constructing MLPs that attempt to

classify the malware into one of the eleven strains. The prediction made by these MLPs

is a probability vector p ∈ R11 such that
∑

i pi = 1. The predicted class is the class with

the largest probability: c = argmax(p). The depth and structure of each MLP was

defined empirically. Table 4.4 gives the characterization sizes and the number of layers

in the associated MLPs. For small models (approx. 50 features), the size of the layers

decreases arithmetically from the number of features to the number of targets (11).

For larger models, the size of the layers decreases geometrically (by factor 2) from the

number of features to the number of targets. For the bytes-entropy histogram models,

the size of the layers also decreases geometrically. However, the first layer is limited to

12,000 neurons as larger layers cause a crash during the network’s optimization phase.

41

Malware Characterization DNN layers DNN shape

bytes-entropy histogram 12 geometric

global
stats 5 arithmetic

1-grams 6 arithmetic
2-grams 9 geometric

functions
stats 7 geometric

1-grams 8 geometric
2-grams 12 geometric

blocks
stats 5 geometric

1-grams 8 geometric
2-grams 12 geometric

operations stats 5 arithmetic

Table 4.4: Size and shape of the MLPs for each features. The shape column describes
how the size of the successive layers decrease. A geometric shape means the layers
sizes are divided by a constant factor. An arithmetic shape means the layers sizes are
diminished by a constant step.

All hidden layers use hyperbolic tangent as their activation functions. For the

output layer, we use the softmax function to ensure that the output of the model is

a probability distribution. The softmax function (also called normalized exponential

function) “squashes” a vector of arbitrary real values into a probability distribution.

4.4.1.2 Random Forests

In each testing pool, we have forty MLPs for each of the eleven features. We

used some selected MLPs to build forty-two random forests with ten decision trees

each. We built random forests using the one, two, or five best MLPs for each of the

eleven feature sets. We also evaluated three groups of feature sets: state-of-the-art,

executable code, and all features. For each of the three groups, we selected the one,

two, or five best MLPs for each of the features. For example, the best random forest

uses the five best MLPs for each of the eleven features, which means that it creates a

consensus between fifty-five MLPs.

42

4.4.2 Accuracy and Training Time

We trained two hundred instances of each MLP, ten for each configuration of

the 5-fold cross-validation. The generalization error-rate as a function of the training

time is given in Figure 4.10. This error rate was computed by comparing the actual

target of an instance with the predicted target. In this graph, the curves start when

the first epoch is done, showing the time required to train one epoch. It shows that

the large network used for the bytes-entropy histograms and GSF with 2-grams takes

more than one hour to perform one epoch of training. This makes these three models

impractical, especially because even after a week of training, the error rate is much

higher than any of the other models. The two most promising models are function and

block level 1-grams. These two models go through one epoch in approximately twenty

minutes. After a day of training (approx. 10,000 epochs), their error-rates are 13.4%

and 11.6% respectively. With the best instance of each model reaching 8.4% and 7.2%,

respectively.

Figure 4.11 presents the area under the ROC curve averaging the five best

models for each feature. Looking into these metrics, we can evaluate the capabilities

of each feature to capture information about the different malware. The figure shows

these metrics in two bar-graphs grouped by targets (top) and by features (bottom).

For example, the top bar-graph shows that Shifu and Andromeda are easily identified

as all models reach an AUC greater than 0.95. Similarly, the bottom graph shows that

function level 1-grams, block level statistics and 1-grams, and operation level statistics

can accurately classify all eleven malware families.

The high AUC of these models implies that they are actually better at making

predictions for each separated class than for the multiclass problem. This is good news

for our consensus schema as it means that decision trees, which can leverage the relative

predictions, will give better results than the raw MLPs. We used the one, two, or five

best MLPs (on the validation set) for each feature, for bytes-entropy histograms and

global level assembly (state-of-the-art), for all assembly, and for all features.

For each case, we built five random forests (using the same folds as for the

43

Figure 4.10: Error rates as a function of the training time, averaged over the 200
instances of each model. These error rates are measured on the testing sets of the
5-folds cross-validation. It provides a good approximation of the generalization error.
These experiments were conducted for a duration of two weeks using up to one thousand
SPOT instances. The lines start at the first epoch, showing the duration of one epoch
for each models.

44

(a) Grouped by targets

(b) Grouped by features

Figure 4.11: Area under the receiver operating characteristics curve (AUC) for all
models. Figure 4.11a, the results are grouped by targets to compare the ability of each
feature to characterize malware from each families. Figure 4.11b, they are grouped by
features to compare the quality of each feature over the whole target space. In both
figures, targets and features are sorted based on the geometric means (left-right and
top-bottom).

45

Models 1 best 2 best 5 best

bytes-entropy histogram 39.2% 32.8% 27.3%

Global
statistics 60.5% 53.2% 44.4%
1-grams 22.9% 20.8% 19.1%
2-grams 20.7% 19.2% 18.5%

Function
statistics 26.5% 23.8% 20.3%
1-grams 12.3% 12.0% 10.8%
2-grams 30.5% 27.2% 25.7%

Block
statistics 15.8% 14.8% 13.6%
1-grams 10.3% 9.9% 9.9%
2-grams 39.2% 35.1% 31.4%

Operations statistic 13.6% 11.3% 10.4%

BEH & Global level 16.0% 15.3% 13.8%
Assembly 8.4% 8.0% 8.0%

All Features 6.9% 6.5% 6.3%

Table 4.5: Comparing the error-rates of random forests built using the predictions of
the MLPs. Each row correspond to a different feature set or group of feature sets. The
one, two, or five best MLPs are selected for each feature set. The random forests built
for a group of feature sets, use the one, two, or five best MLPs for each of these feature
sets.

MLPs’ cross-validation). Each random forest is built using ten decision trees. Table 4.5

presents the average error-rates over the five random forests for each feature set and

group of best MLPs. These results confirm that function level 1-grams, block level

1-grams, and operation level statistics are the most expressive features (when limiting

training to one week). It also shows that:

• bytes-entropy histograms are improved when adding global level assembly fea-
tures (state-of-the-art)

• assembly features (including GSF) are better than the state-of-the-art

• combination of assembly features and bytes-entropy histograms defines a new
state-of-the-art

46

4.5 Related Work

4.5.1 Malware Characterization

There are two components to current state-of-the-art malware detection: char-

acterization and recognition. First, files are analyzed to extract characteristics. Sec-

ond, these characteristics are compared to the characteristics of known malware. For

signature-based detection, the characterization is done using a hashing technique, e.g.

md5, sha256, etc The recognition phase compares this hash to the hashes of known

malware. To improve upon signature-based detection, we need to improve both char-

acterization and recognition.

The first approach is to create hashing techniques that are resistant to noise.

These include fuzzy hashes, like context triggered piecewise hashing (CTPH) [Korn-

blum, 2006] or SSDeep [Chen and Wang, 2008]. Instead of a binary match, these

hashes can provide a measure of similarity between files. These permit the detection

of malware where small changes have been added to fool classic AVs.

Aside from new hashing techniques, there are various ways to characterize files.

When it comes to malware there are two main categories of analysis: static and dy-

namic. Static analysis only considers the content of the file while dynamic analysis

executes the file. Execution can mean running an application (e.g., if the file is an

executable) or opening a file with various applications (e.g., if the file is PDF).

We consider two categories of static analyses: bytes-level and code-level. Bytes-

level analysis considers the raw bytes in the files. They include: ASCII strings extrac-

tion [Schultz et al., 2001], bytes N-grams [Kolter and Maloof, 2004] [Li et al., 2005], and

statistical measures (i.e. entropy) [Weber et al., 2002]. One of the most comprehen-

sive bytes analysis is the extraction of the bytes-entropy histogram of a file [Saxe and

Berlin, 2015]. This analysis identifies the amount of information associated with vari-

ous bytes distributions providing a highly representative image of the file. Code-level

analyses originates from the domain of reverse-engineering. It considers the executable

portion of the files, x86 instructions, byte-code instructions, or scripting code. Tools

47

like IDApro [Eagle, 2008], Radare2 [Radare2, 2008], and ROSE Compiler [ROSE, 2017]

can extract code from various type of files.

Dynamic analysis is a powerful tool for malware detection. It is usually per-

formed inside a sand-boxing environment, like Cuckoo [Guarnieri et al., 2012]. Dynamic

analysis can recognize malicious behaviors, like privilege escalation or access to com-

mand and control channels. However, dynamic analysis can be time consuming and

difficult to implement.

While signature and fuzzy hashes are simple to compare, complex characteri-

zations are much more difficult. One solution is to aggregate the results from various

analyses inside a report and compute a fuzzy hash of this report. A similar method

is used for Reversing Labs Hashing Algorithm [ReversingLabs, 2015]. This technique

enables the detection of variants of malware that were never seen before, but it still

relies on comparing the generated hashes to the hashes of known malware. Instead, ML

techniques are designed to extract knowledge from large amounts of data. If trained

on meaningful characterizations of the files, ML techniques are much more resilient

to noise than any technique relying on hashes. Deep learning has been used to train

models on ASCII strings and bytes-entropy histograms [Saxe and Berlin, 2015]. To the

best of our knowledge, this work represents the state-of-the-art in detection of malware

based solely on static characterizations. Malware can also be “clustered” based on the

graph edit distance between their respective call graphs [Kinable, 2010]. Clustering is

an unsupervised learning technique, so the authors expect it to be able to detect emer-

gent malware. Finally, it is possible to detect malicious android applications based on

a combination of static and dynamic analyses [Xu et al., 2016]. This work presents the

most complex model that we have seen for malware detection. This model combines

a reduced boltzman machines (RBM) with support vector machine to make sense of a

variety of features provided by the analyses.

48

4.5.2 Feature Graphs

SPGK [Borgwardt and Kriegel, 2005] and other kernel techniques have been

applied to multiple compiler problems. SPGK was used to train SVM models for

application performance predictions [Park et al., 2012]. In this work, applications were

characterized by their control flow graphs. Graph-based features were also used to

order LLVM’s optimization passes [Nobre et al., 2016].

Deep learning is an ML technique that cannot take advantage of kernels. To

apply deep learning to compiler graphs, we need a fixed size feature vector. The first

technique is DeepWalk [Perozzi et al., 2014]. This algorithm aggregate the results of

multiple random walks into one large feature vector. DeepWalk was used to analyze

social media datasets, improving the accuracy of the generated models, while reducing

the time needed for training.

Spectral analysis of the graph’s Laplacian was used to classify hand-written

digits [Bruna et al., 2013]. This paper introduces the mathematical tools that we

leverage in our work. This technique was further extended [Henaff et al., 2015] with

the introduction of a DNN architecture that was similar to convolutional networks. a

review of graph spectral analysis for deep learning was conducted by [Bronstein et al.,

2016].

4.6 Conclusion

In this chapter, we used multiple layers perceptrons (MLP) to classify malware.

With MLP, the number of parameters that need to be optimized grows rapidly with

the number of features. Because of this issue, we limited each model to a subset of

the features in order to keep our computation practical. We used ensemble techniques

to aggregate the predictions of multiple MLP together. While these ensemble models

help to improve the overall accuracy, it is still computationally impractical for us to

train MLPs on the entire set of feature set. In the next chapter, we introduce advanced

techniques that allow us to scale our training of neural networks on our entire feature

set. We leverage these techniques on an extended dataset with more features and

49

targets. The resulting models are single neural networks that can leverage information

across all the feature sets.

50

Chapter 5

ADVANCED NEURAL NETWORKS FOR MALWARE
CLASSIFICATION

5.1 Introduction

Our work on malware classification relies on a large number of characterizations

of the files under scrutiny. Each of these characterizations produces different feature

sets. These feature sets have various topologies: some feature sets are collections of

loosely related values, other feature sets are one and two dimensional histograms, and

finally, we explore other feature sets consisting of graphs with a variety of features on

each node. If one wants to take advantage of all the feature sets in a single neural

network (NN), it becomes impractical to use a multiple layer perceptron (MLP) as we

did in Chapter 4. Indeed, the first layer of this MLP would be prohibitively large.

Instead, each feature set is fed to its own neural network. The outputs of these neural

network are then fed into another network which makes predictions. The additional

advantage of this differentiation is that we can specialize the NNs depending on the

topology of each feature set.

In this chapter, we discuss the construction of complex neural networks oper-

ating on many different feature sets simultaneously. Section 5.2 describes the feature

engineering part of our work. Seven feature sets, with three distinct topologies, are

described. These features are augmented using various transformations. Finally, we

summarize the seven augmented feature sets and compare them with the state-of-the-

art. In Section 5.3, we describe the dataset that we constructed to evaluate this work.

We describe and motivate our sample selection criteria and the composition of the

resulting dataset. We also introduce a sampling method used to deal with imbalanced

datasets. Section 5.4 examines the neural network engineering phase of our work. First,

51

we discuss the training procedure for these neural networks. Second, we propose net-

work architectures to take maximum advantage of our different feature sets. Third, we

discuss how we deal with the main issues that arise when working with graph spectral

features. We finish with the results in Section 5.5, and the related work in Section 5.6.

5.2 Feature Sets

Feature engineering is an essential step to take advantage of any machine learn-

ing algorithms. It is a step that happens between the sample’s characterization and its

ingestion into the algorithm. In Chapter 4, we only considered the first (and unavoid-

able) phase of feature engineering, i.e. making a characterization’s results “digestible”

by neural networks. In the case of neural networks, it means constructing a fixed size

representation of the characterization. The second phase of feature engineering deals

with data transformations. This phase is usually handled by a domain scientist who

can decide how best to transform the data. For example, a count might be better rep-

resented as a logarithm, i.e. an order of magnitude while histograms can be normalized

to represent the associated frequencies.

In this section, we describe seven feature sets obtained when characterizing our

samples. These characterizations are performed by our scalable file characterization

platform deployed on Amazon’s cloud services. By being highly configurable, our

platform permits us to apply any of a variety of characterizations to our malware

dataset.

5.2.1 Three Types of Features

Our feature sets can be separated into three groups: basic, bytes, and assembly.

The basic group contains the most common malware characterization techniques that

are typically used by cybersecurity analysts. Aside from a variety of hashing techniques,

it extracts the ASCII strings, and the metadata and import tables from portable exe-

cutable header of Windows executable files. The bytes group focuses on the bytes level

representation of the file. Particularly, it extracts the file’s bytes-entropy histogram

52

(BEH). The assembly group relates to characterization extracted from the result of the

binary’s reverse engineering. In this chapter, we focus on the graph spectral features

(GSF) built from the function, block, and operation graphs.

5.2.1.1 Hashes Histograms

Hashes histograms, as presented by Saxe and Berlin, are fixed size representa-

tions of list of strings [Saxe and Berlin, 2015]. These are feature vectors constructed

from lists of strings, namely the ASCII strings in the file, and metadata and import

table of the portable executable (PE) headers. The ASCII strings are obtained using

the GNU tool strings. The PE header is part of Windows executable files and provides

informations needed to load and execute it. The python module pefile is used to dump

the metadata and import tables from the PE header.

Figure 5.1 shows how a list of strings is transformed into a fixed-size feature

vector. In the case of metadata and import tables, each row (comma-separated) is

hashed separately.

Figure 5.1: Given a list of strings, either the ASCII strings or dumped import and
metadata from the PE header, we build a fixed-size feature vector. Here, an arbitrary
number of ASCII strings of arbitrary sizes is transformed into a feature vector of length
256. First, each string is “hashed” to an integer between zero and the desired vector
length. Second, a histogram of these hashes is produced by counting the occurrences
of each value. The result is a vector of positive integers of the desired size.

53

5.2.1.2 Bytes-Entropy Histograms

We presented bytes-entropy histograms (BEH) in Chapter 4 (see Algorithm 4.1

and Figure 4.2). In this chapter, we only consider 16 entropy bins (En) instead of 256.

This reduces the size of the BEH feature vector by a factor of sixteen. The resulting

BEH feature vector can be used efficiently even with fully-connected neural networks.

5.2.1.3 Spectral Features of Assembly Graphs

We presented graph spectral features in Chapter 4. For this characterization,

the reverse-engineering tool Radare2 [Radare2, 2008] extracts assembly code from the

file. This assembly code is then transformed into graphs at three levels of granularity:

functions, blocks, and operations. Finally, we use graph spectral analysis to extract a

fixed-size representation of the graph. In this chapter, we decrease the number of ex-

tracted spectral bands from twenty to sixteen. We also do not consider the instruction

n-grams larger than 1, which are too large to be practical for training.

5.2.2 Transformations

The second phase of feature engineering is to apply various transformations to

the feature sets. These transformations allow us to extract more information. For

example, let us consider the strings histogram. It is a vector of 256 positive integers,

which add up to the number of ASCII strings in the file. Hence, the range of values

depends on this number. The first possible transformation for such a vector is to nor-

malize it. The normalization transformation enables the neural network to compare

frequencies instead of comparing counts. However, the actual numbers could be im-

portant features, but small values get greatly diminished when the whole dataset is

normalized (zero-centered and bounded between −1 and 1). To prevent this, we also

present the neural network with logarithms of elements of the vector.

For any feature set, we can apply one the three following transformations:

• ID: identity, no preprocessing

• log: compute the logarithm of each element (actually x 7→ log(x + 1), requires
positive values)

54

• norm: normalize the tensor (can provide one or more axis to enable row, column,
or global normalization)

5.2.3 Feature Sets Summary

In Table 5.1, we summarize the feature sets considered in our experiments. After

preprocessing, some feature sets are aggregated as they are part of the same group of

feature sets. That is the case with the three graph spectral feature (GSF) sets. Each

of them aggregates the eigenvalue, statistics, and the instruction 1-grams of each node.

The tensors produced for the GSF feature sets have an additional dimension of size

two, which corresponds to the real and imaginary parts of the complex numbers.

Shape IN Transformations Shape OUT

Strings [256] ID, log, norm [3 , 256]
Metadata [256] ID, log, norm [3 , 256]

Import [256] ID, log, norm [3 , 256]

Bytes-Entropy Histogram [16 , 256]
ID, log, norm row

[5 , 16 , 256]
norm columns, norm global

Function GSF Eigenvalues [16] ID [16 , 220 , 2]
Statistics [16 , 19] ID, log, norm
1-grams [16 , 54] ID, log, norm

Blocks GSF
Eigenvalues [16] ID

[16 , 187 , 2]Statistics [16 , 8] ID, log, norm
1-grams [16 , 54] ID, log, norm

Operations GSF
Eigenvalues [16] ID

[16 , 166 , 2]Statistics [16 , 1] ID, log, norm
1-grams [16 , 54] ID, log, norm

Table 5.1: Preprocessed feature sets are usually combined into a higher dimensional
tensor (BEH have 5 preprocessing yielding an additional dimension of size 5).

In addition to these seven feature sets, we reproduce the feature sets used by

Saxe and Berlin, in their state-of-the-art deep learning work for malware detection

[Saxe and Berlin, 2015]. This neural network uses the hashes histograms (strings,

metadata, import) and bytes-entropy histogram without any transformation. Given

that the feature sets have different topologies, we flatten and concatenate them together

in a 1D tensor of size 1792. We refer to this feature set as “Invincea”, the company

that developed this state-of-the-art technique.

55

5.3 Dataset

For our experiments, we have access to a large database of files consisting of more

than eight million fully analyzed malware and more than thirty thousand goodware.

However, we filtered this dataset to make it relevant for our analyses. Specifically, we

focused on files that yield meaningful features for all feature sets.

In this section, we first describe the constraints that were used to select the rel-

evant samples. Then, we describe the resulting dataset and its particularities. Finally,

we introduce the sampling technique to deal with imbalance of the dataset.

5.3.1 Relevant Files From Our Database

To compare the characterization capacities of the seven feature sets that we use,

we selected files that are relevant to all of them. The first constraint comes from the

metadata and import feature sets as they only exist if the file is a Windows executable.

The second constraint is that none of the list of ASCII strings, metadata, or import

should be empty. The third, and most restrictive, constraint is related to the complexity

of the assembly code graphs (either functions, blocks, or operations). We require these

graphs to have more than eight nodes and at least half as many edges as they have

nodes. The lower limit on the number of nodes prevents the resulting GSF from being

mostly zeros, since a large number of zeros prevents the unsupervized pretraining

from converging. Similarly, graphs with very few edges compared to the number of

nodes tends to produce “noisy” GSFs which prevent convergence. Finally, we limit the

number of nodes in the graphs to ten thousand, since extracting the eigenvalues and

eigenvectors of the laplacian of larger graphs is prohibitively expensive.1

5.3.2 Composition of the Dataset

When these constraints are applied to the eight million files in our database, only

25,559 match these criteria. These files are from eighteen different families, including

1 We investigated using an eigenvector extractor for sparse matrices. A large number
of graphs cause this code to break, making it unusable.

56

Figure 5.2: Number of files from each of the eighteen families in the dataset using a
logarithmic scale. All these samples match all the constraints describe in Section 5.3.1.

both malware and goodware. Figure 5.2 shows the number of samples for each family.

This figure shows the difference in the number of files among the different fami-

lies. About half of the families have less than a hundred files with some families having

as little as thirteen samples. While a little over half the families have a few thousand

files with as many forty-two hundred files in the largest family.

5.3.3 Streaming of Samples

Imbalanced datasets are problematic for most machine learning techniques and

require correct handling to ensure valid results. When possible, the best solution to deal

with this problem is to use one or more data augmentation techniques. For example,

in the domain of image processing, one can use cropping, rotation, or color shifting to

create additional samples. Data augmentation of executable files require tools used by

bad actors to generate many variants of malware. However, such work is out of the

scope of this dissertation. Instead, we use a combination of up-sampling and down-

sampling of the dataset. This is done stochastically during the training of the neural

networks.

This method is implemented alongside the streaming of the dataset into the

learning algorithm. Our neural networks are trained using stochastic gradient descent

with mini-batches. This training algorithm updates the model based on the gradient

of its error for randomly chosen (small) subset of the training set, called mini-batches.

In this method, one epoch of training corresponds to presenting the whole training set

to the model in as many mini-batches as needed.

57

There is a couple differences in terms of how we implement mini-batches com-

pared to traditional approaches. Instead of creating mini-batches from the whole train-

ing set, we create one mini-batch for each family in the dataset. These mini-batches

are then merged and shuffled before being split again and presented sequentially to

the model. Also, instead of streaming the whole training set for each epoch, we only

stream the requested number of mini-batches.

While the primary goal of our streaming method is to produce balanced mini-

batches, streaming a fixed amount of mini-batches for each epoch has other advantages.

In the conventional case, doubling the size of the dataset doubles the size of the training

set, making epochs twice as long. That has two effects: 1) the model converges faster

when considering the number of epochs, and 2) checkpointing is less frequent. The first

effect is an issue when tuning the learning rates, especially their decay, which is usually

a function of the number of epoch. The second effect increases the cost of failure in a

large scale distributed training system.

5.4 Neural Network Engineering

Once our feature sets are engineered, we created neural network architectures

adapted for each of them. In this section, we describe how our deep neural networks

are constructed. First, we discuss the training procedure for these neural networks.

Second, we propose network architectures to take maximum advantage of the different

features set.

5.4.1 Training Procedure

Our neural networks have two stages. The first stage constructs high level

features (HLF) for each feature set. The second stage is a multiple layer perceptron

(MLP) that uses one or more high level features to perform the classification.

5.4.1.1 High Level Features

The first stage is to extract HLF from each feature set, we construct neural

network called stacked auto-encoders (SAE). For each feature set except Invincea, we

58

trained a SAE generating a HLF of size 8 × 8. For the Invincea feature set, the SAE

yields a HLF of size 1024, see Section 5.4.2.3.

Auto-encoding [Hinton and Salakhutdinov, 2006] is an unsupervized method

to train neural networks. For a single layer auto-encoder, there are three groups of

parameters: the weights (W) and the encoding and the decoding biases (be/bd). The

idea behind an auto-encoder is to find the values of W , be, and bd that minimize

X − σ(σ(X × W + be) × W T + bd), where σ is the activation function of the layer.

Here, σ(X ×W + be) is called the “code” while σ(σ(X ×W + be) ×W T + bd) is the

“reconstruction”. Intuitively, the input is fed forward in the layer to be “encoded” and

the resulting “code” is fed backward through the layer to be “decoded”.

• encode: the input is fed forward through the layer, the resulting output is called
“code”

• decode: the “code” is fed backward through the layer, the resulting output is
called “reconstruction”

• training: minimize the difference between the original input and the “recon-
struction” output

Stacked auto-encoders [Vincent et al., 2010] are constructed by stacking multiple

layers sequentially. Each layer increases the level of abstraction of the resulting code.

The main advantage of stacked auto-encoders is that they permit the use of layer-wise

pre-training [Bengio et al., 2007]. This means that the layers are trained sequentially.

The first layer is trained, then the second layer, and then the next layer, etc. This

method helps alleviate the vanishing gradient problem. The vanishing gradient problem

refers to the fact that the gradient of the error tends to get smaller as we move backward

through the hidden layers. This means that neurons in the earlier layers learn much

more slowly than neurons in later layers.

5.4.1.2 Classifiers

The second stage is an MLP with one hidden layer of size 64 and an output

layer the same size as the number of classification targets in the dataset. We build

59

many of these classifiers, using either a single HLF or different combinations of HLFs.

When the classifier stage of the network is being trained, the layers producing the HLF

are being fine-tuned using a very small learning rate.

5.4.2 Neural Network Architectures

We have eight feature sets: seven transformed feature sets and the state-of-the-

art Invincea feature set. In this section, we define the architectures of the stacked

auto-encoders (SAE) used to build the high level features (HLF). We define three of

these convolutional architectures: one for hashes histograms, one for the bytes-entropy

histogram, and one for graph spectral features. Each of these networks consists of four

layers. The shape of the input layer depends on the topology of the feature sets, but

the next three layers are similar. We also define fully-connected versions of the network

architecture used to evaluate against our convolutional architectures.

5.4.2.1 Input Convolutional Layers

Encoding different feature sets requires us to construct input layers that are

adapted to the topologies of these feature sets. In the following paragraphs, we describe

these input layers.

5.4.2.1.1 Hashes Histograms

The features in this section correspond to three hashes histograms: strings,

metadata, and import. The preprocessing stage adds the logarithm and frequencies of

each of the 256 counts in a histogram, yielding a 2D tensor of 3×256. A convolutional

layer for our “augmented” hashes histograms maps each of the 256 triplets (count, log-

arithm, and frequency) to the desired number of channels. The number of channels in

a convolutional network is the number of outputs of the convolutional filter. Figure 5.3

depicts such architecture with two channels.2

2 To simplify our diagrams, the number of channels is smaller than what we used in
our experiments.

60

Figure 5.3: A hashes histogram (top-left) is processed by a convolutional layer. For
each triplet (count, logarithm, and frequency), two values are computed.

5.4.2.1.2 Bytes-Entropy Histograms

After preprocessing the bytes-entropy histogram is a 3D tensor of dimensions

5×16×256. There are three possible convolutional architectures for it as the tensor can

be sliced over the bytes axis, the entropy axis, or both. The architecture that slices the

tensor across both bytes and entropy axis does not reduce its dimensionality sufficiently

to be useful on its own. We evaluated both of the other architectures, however, when

slicing the tensor across the bytes axis the back-propagation of the error is extremely

time consuming. In addition, models using this architecture are inferior to models

where the entropy axis is sliced. In Figure 5.4, the tensor is sliced along the entropy

axis. The filter with eight channels is applied to each slice, taking as input 5 × 256

values. The result is a 2D tensor of dimension 16× 8.

5.4.2.1.3 Graphs Spectral Features

Graphs are complex data-structures that are unbounded in size. In Section 3.5,

we presented how we can leverage graph spectral analysis to obtain a fixed size repre-

sentation of a graph. Each GSF is characterized by an eigenvalue and a collection of

projected node features. The network architecture presented here leverages the struc-

ture of graph spectral features (GSFs). In Figure 5.5, we present the convolutional

architecture used to learn from GSFs.

61

Figure 5.4: The tensor, of dimension 5× 16× 256, is sliced along the entropy axis (red
planes). The convolution filter with eight channels is applied to each slice of dimension
5× 256. It yields a tensor of dimension 16× 8.

Figure 5.5: Each graph spectral feature is made of one eigenvalue and multiple pro-
jected feature vectors. The graphs produced by our analyses have two feature vectors
per node, a statistics and an instruction histogram. All features of each node is pre-
sented to the same filter with eight channels. For simplicity, we do not represent the
three version of each feature vector that were generated during the preprocessing stage.

62

Figure 5.6: The input to a hidden layer is the output of the previous layer specific to
each feature set. These input layers produce a collection of independent rows (blue
lines). The first and second hidden layers reduce the size of each row to four elements.
The last layer encodes each of the resulting four columns (red lines) into four elements.
The result is a tensor of 4× 4 elements.

5.4.2.2 Hidden Convolutional Layers

The input layers generate two dimensional tensors where the first dimension

corresponds to its convolution axis. The next two layers apply their convolutions across

the same axis, bringing the size of the second dimension to eight. Finally, the fourth

layer is applied along the second dimension to bring the size of the first dimension to

eight. The results are eight by eight tensors that provide a high-level representation

of the feature sets. In Figure 5.6, we depict an analogous architecture that generates

a tensor of four by four elements.

5.4.2.3 Reference Architectures

We compare the accuracy of models built using the augmented feature sets and

convolutional architectures. To this end, we reproduced the state-of-the-art model from

Invincea and trained a fully-connected SAE for each of the seven transformed feature

sets.

The Invincea SAE is made of two layers of size 1024 [Saxe and Berlin, 2015]. The

classification stage of the model adds another layer of size 64 before the final output

layer. Given that we are solving a much larger classification problem, this additional

layer must be involved to obtain good results.

63

For each of the seven transformed features, the fully-connected SAE is made of

three layers: two layers of size 1024 and a third layer of size 64. This third layer makes

the HLF produced by both the convolutional and fully-connected SAE have the same

size.

5.5 Results

In this section, we compare results from our different feature sets and neural

network architectures.

5.5.1 Experimental Setup

All experiments have been conducted using five-fold nested cross-validation,

meaning that three folds are used for training, one is used validation, and the remaining

fold is used for testing. This results in twenty cross-validation experiments.

The models were trained using the following schedule:

• 100 epochs for each layer of the auto-encoding stage

• 200 epochs for the classification stage

Each epoch consists of two hundreds and fifty-six mini-batches of sixteen sam-

ples.

In each cross-validation fold, we trained one encoder per architecture, resulting

in fifteen HLF described in Table 5.2. The resulting HLFs are used to train classifiers

for each feature sets and group of feature sets (see Table 5.3). We trained five instances

of each classifier in each cross-validation fold. For each of these folds, we selected the

best instance based on the validation error. The results in Section 5.5.2 are the average

across cross-validation experiments. For each cross-validation experiment, the results

being reported were evaluated on the testing folds, which was never seen by the model

during training.

64

HLF Names Feature Set Architecture Layer Sizes

hlf-strings-fc Strings Hashes Vector Fully-Connected 1024 - 1024 - 64
hlf-strings-cnn Strings Hashes Vector Convolutional 64 - 16 - 8 - 8
hlf-metadata-fc Metadata Hashes Vector Fully-Connected 1024 - 1024 - 64
hlf-metadata-cnn Metadata Hashes Vector Convolutional 64 - 16 - 8 - 8
hlf-import-fc Import Hashes Vector Fully-Connected 1024 - 1024 - 64
hlf-import-cnn Import Hashes Vector Convolutional 64 - 16 - 8 - 8
hlf-beh-fc Byte/Entropy Histogram Fully-Connected 1024 - 1024 - 64
hlf-beh-cnn Byte/Entropy Histogram Convolutional 256 - 64 - 8 - 8
hlf-functions-fc Functions Graph (CG) Fully-Connected 1024 - 1024 - 64
hlf-functions-cnn Functions Graph (CG) Convolutional 256 - 64 - 8 - 8
hlf-blocks-fc Blocks Graph (CFG) Fully-Connected 1024 - 1024 - 64
hlf-blocks-cnn Blocks Graph (CFG) Convolutional 256- 64 - 8 - 8
hlf-operations-fc Operations Graph Fully-Connected 1024 - 1024 - 64
hlf-operations-cnn Operations Graph Convolutional 256 - 64 - 8 - 8
hlf-invincea Invincea Fully-Connected 1024 - 1024

Table 5.2: This table lists the fifteen auto-encoder architectures that we developed.
For each of them, we specify the feature set, kind of architecture, and layers size.

Groups of Feature Sets Feature Sets

VECT Strings, Metadata, Import
BEH Bytes/Entropy Histograms
GSF Functions, Blocks, Operations
SOA VECT, BEH
ALL VECT, BEH, GSF

Table 5.3: Groups of feature sets corresponding to: hashes histograms (VECT), bytes-
entropy histogram (BEH - only one feature set), graph spectral features (GSF), state-
of-the-art features (SOA - transformed version of the Invincea feature set), and all
feature sets (ALL)

65

5.5.2 Accuracy Results

We present our results in Table 5.4 and Figure 5.7. On our dataset, the state-

of-the-art model reaches 62.3% accuracy while our model using all the transformed

features and convolutional architectures reaches 83.6%.

The main source of improvement between our approach and the state-of-the-

art is the introduction of transformations. Indeed, the augmented bytes-entropy his-

tograms and hashes histogram of the metadata table of PE headers yield accuracies

of 74.8% and 71.5%, respectively, when used by themselves. Using the augmented

versions of the state-of-the-art feature sets yields 79.3% accuracy compared to 62.3%

accuracy of the unaltered state-of-the-art approach.

Our results also show that convolutional neural networks are able to extract

more (relevant) information from the feature sets. This is especially true for the graph

spectral features where the convolutional approach is 1.26× more accurate than a fully-

connected approach. In addition to this increased accuracy, convolutional architectures

have far fewer parameters than fully-connected architectures (see Figure 5.8). Using

all feature sets, the convolutional approach outperforms the fully-connected version

by 3.9%, and it achieves this by using 42× less parameters. In terms of storage, the

resulting fully-connected model uses approximately 200 MB, while the convolutional

model requires only 4.5 MB.

5.5.3 Computational Performances

This section examines the training and testing cost. Figure 5.9 shows the time

spent on training (top) and testing (bottom) for one epoch of the classifier. We focus

on the final classifier layers as that is, by far, where most of the time is spent. These

times are shown in seconds using a logarithmic scale.

These graphs show that convolutional neural networks (CNN) are much slower

to train than their fully-connected counterparts. However, this is not inherent to CNNs

but is due to our implementation using Theano. Indeed, we do not use Theano opti-

mized 2D convolution layers for 2D or 3D tensors (images). Instead, we implemented

66

Feature Set(s) Fully-Connected Convolutional

Invincea 62.3%
Strings 53.9% 58.1%
Metadata 69.6% 71.5%
Import 53.4% 58.3%
VECT 73.4% 75.2%
BEH 71.6% 74.8%
Functions 15.6% 18.7%
Blocks 18.2% 29.1%
Operations 34.3% 40.3%
GSF 38.5% 48.7%
SOA 76.3% 79.3%
ALL 79.7% 83.6.%

Table 5.4: Average test accuracy of the best model in each fold

Figure 5.7: We evaluated the accuracy for the different combination of feature sets and
for different architectures. We used five-fold cross validation. In each fold, five instance
of each classifier was trained and the best was selected.

67

Figure 5.8: This graph shows the number of parameters in the different models. The
vertical axis uses a logarithmic scale. The difference between convolutional and fully
connected architecture is more than two orders of magnitude for the hashes histograms.

Figure 5.9: Time spent (in second) on training (top) and testing (bottom) for each
model. Training dominates testing as it requires performing backward propagation.

68

a convolution layer for any number of convolution axis on tensor of arbitrary dimen-

sion. Our implementation uses nested Theano map operators, one for each convolution

axis. However, Theano is unable to optimize the resulting computation graph when

multiples of these layers are stacked.

5.6 Related Work

In this chapter, we used dataset augmentation techniques to extract additional

from the feature sets (Section 5.2.2) and balance the dataset (Section 5.3.3). We also

created novel neural network architectures by mixing convolutional and auto-encoding

techniques to build high level features (HLF) (Section 5.4). In this section, we review

the related work on these two topics.

5.6.1 Dataset Augmentation

The first step we took to augment our dataset was to extend the feature space

through the application of various domain-specific transformations. This topic has

been explored for many years by the data mining community. The book “Feature

Extraction, Construction and Selection: A Data Mining Perspective” [Liu and Motoda,

1998] provides a complete overview of the various transformations that can be used

on feature sets. Our work only covers a limited scope of transformations compared

to what is available due to the large associated search space, which is highly domain

specific. However, automatic and guided methods have been explored to help data

mining and machine learning practitioners. While most technique are domain specific

and focused on image, text, or speech analysis, some techniques are more general. For

example, Vafaie and Jong used genetic search to discover the best set of transformations

[Vafaie and Jong, 1998]. Other works focus on variable selection that reduces the size

of the feature sets [Fan and Lv, 2008]. Srivastava et al, used rule induction methods

to discover combinations of features specific to each class in the dataset [Srivastava

et al., 2007]. Finally, Seide et al, used a complex combination of neural networks

to automate feature engineering in speech recognition [Seide et al., 2011]. This work

69

shows that feature space transformation can be handle by a sufficiently complex neural

network.

The second step we took to augment our dataset dealt with the imbalance of

our initial data distribution. Imbalanced datasets are a well documented problem in

machine learning. However, the techniques to deal with it are either simple or highly

domain specific. In our work, we used simple techniques, namely up-sampling and

down-sampling. These re-sampling techniques are reviewed by Xinai [Xinai, 2016]. In

specific domains, techniques can be developed to generate new samples from existing

samples. For example, image datasets can be augmented using a variety of simple image

transformations such as cropping, rotation, and color shifting [Arandjelovic and Zis-

serman, 2012]. Recent work on malware detection [Anderson et al., 2017] have looked

into using techniques used by bad actors to transform malware and evade malware

detection models. This work has been formulated as an adversarial machine learning

problem, but the same techniques could also be used to extend our dataset.

5.6.2 Auto-encoder and Convolutional Architectures

Auto-encoding techniques [Vincent et al., 2010] associated with layer-wise pre-

training [Bengio et al., 2007] have been instrumental in enabling the transition from

shallow neural networks to deep neural networks. These techniques help prevent large

neural networks from converging on bad solutions while also reducing the computation

needed to converge.

Convolutional neural networks (CNN) have also been a key technique in the

success of deep learning [Krizhevsky et al., 2012]. By leveraging regularity and locality

in the features, CNNs reduce by many orders of magnitude the number of parameters

in the network. Reducing the number of parameters not only reduces the amount of

computation of each learning iteration, but it also simplifies the search space. The

reduced search space decreases the risk of a model converging on a local minimum.

Most work on convolutional networks is focused on image recognition, where it is

70

particularly efficient. However, convolutional networks have been used for sentence

classification [Kim, 2014][Zhang and Wallace, 2015].

In our work, we use a combination of auto-encoding and convolutional tech-

niques to build high level features. This was motivated by recent work [Sharif Razavian

et al., 2014] which introduces the idea of “off-the-shelf” features. The main idea in this

paper is that we can use high-level features extracted from images by a convolutional

network to build new classifiers. One of our goals with this work is to make it possible

to construct “off-the-shelf” features for malware classification.

5.7 Conclusion

This chapter explores the predictive capabilities of different malware character-

ization techniques when using fully-connected versus convolutional neural networks.

We use multiple techniques from the state-of-the-art in deep learning to construct our

models. In addition, we incorporated a new class of malware characterization based

on compiler graphs. This study was conducted on a dataset of more than 25 thousand

Windows executable files, including 17 families of malware and nearly 3,000 goodware.

Compared to the state-of-the-art neural network for malware detection, our

models leverage feature transformations and convolutional architectures. The state-of-

the-art model yields an accuracy of 62.3%, while our model using the same character-

ization techniques yields 79.3% accuracy.

Our new characterization technique, the graph spectral features of compiler

graphs, performed below the expectations set in Chapter 4. However, when used in

combination with other characterization methods, our resulting model achieved an

accuracy of 83.6%.

Finally, we show that properly engineered convolutional architectures have bet-

ter performances than fully-connected architectures. Convolutional architectures have

the added benefit of decreasing the number of parameters in the network, facilitating

its convergence.

71

In future work, we will determine when each of the characterization methods

should be used. Particularly, we will determine when exactly to use graph-based fea-

tures that are expensive to extract. Also, we want to explore building models that

predict whether or not it is advisable to use particular features. Such models would

use inexpensive and efficient features, such as the bytes-entropy histogram, to predict

when to use more expensive features.

72

Chapter 6

EXPLORATION AND CHARACTERIZATION OF COMPILER
TUNING SPACE

6.1 Introduction

As the high performance computing (HPC) community makes progress toward

exaflops computing, hardware in supercomputers has new, less intuitive, execution

models. Supercomputer manufacturers often evaluate a wide range of hardware to reach

the best performance for their users. The growing number and variety of accelerator-

equipped systems in the TOP500 list [Strohmaier, 2013] illustrates this issue. In June

2016, ninety-five systems on the TOP500 list contained accelerators of five different

kinds. These computation accelerators promote the host/kernel paradigm. In this

paradigm, some parts of an application are programmed in a general purpose lan-

guage, like C or C++, to be executed by a general purpose processor. The application

may spawn kernels. These kernels are written in a language specific to the targeted

architecture. In the case of accelerators like GPGPU (General Purpose Graphic Pro-

cessing Units), kernels can be programmed using OpenCL (Open Compute Language,

an extension of C) [Munshi, 2008]. In addition, many accelerators are well-suited

for the single-program multiple-data model of parallelism [Darema, 2001]. In SPMD

parallelism, the same program is executed by independent processors on different data.

As computing systems become more complex, new programming models need

to be provided that can handle the complexity of the machines. It is the role of pro-

gramming models to define the abstractions needed to exploit the underlying hardware.

Once the programming models are defined, languages or APIs are created to implement

them. These languages and APIs will eventually have to be compiled down to parallel

code. An efficient way to accomplish this is to transcribe the input program into an

73

ROSE Compiler

TileK
CODE

CODE

CODE

AST

Kernel AST

Transformed
AST

LoopTree TileTree
1 2

4.a

4.b

5

5

3

Figure 6.1: TileK’s compilation flow: (1) ROSE parses the input C/C++ code, (2)
TileK extracts a representation of the loop nests, (3) TileK applies tiling based on
annotations, (4.a) TileK transforms the application’s AST to instantiate the kernel and
move data, (4.b) Tilek generates the AST of the kernel for the desired target: pThread,
CUDA, or OpenCL, (5) ROSE unparses the AST into C/C++/CUDA/OpenCL code.

SPMD problem, and then generate kernels accordingly. This technique often involves

two compiler phases: (1) the programming model’s language is compiled to a generic

SPMD formulation, and (2) the SPMD formulation is compiled to a kernel specialized

to the underlying target architecture.

In this chapter, we focused on the second phase where the difficulty is to find a

technique to distribute computations across multiple instances of a kernel. As compute

intensive codes are generally composed of loops, we focused our attention on methods

to distribute nested loops. One such method is to use tiling [Wolfe, 1989] which sub-

divides the iteration space of a loop into blocks or tiles. We devised a simple method

which decomposes loops into tiles then tiles are mapped to the indexes of the kernel’s

instances. This method is generic, and we used it to generate kernels for multicore

CPUs (pThread) and for accelerators (OpenCL, CUDA).

In this chapter, we present TileK: a tiling abstraction embedded in C/C++

using directives. This work was recently published [Vanderbruggen et al., 2017]. TileK

is a set of directives which enables us to perform tiling and loop interchange on nested

loops. The strength of TileK is its ability to generate SPMD Kernels by mapping some

of the resulting tiles to different processors. These kernels can be distributed with

pThreads or OpenCL. TileK was implemented using ROSE Compiler [ROSE, 2017],

74

a source-to-source compiler developed at the Lawrence Livermore National Labora-

tory. First, we present TileK’s programming model. Second, we introduce the tiling

method and associated transformations applied to the kernel. Third, we show how this

method is used to distribute the computation in SPMD Kernels. Fourth, we conduct an

optimization-space exploration where linear-algebra kernels and stencils are tiled and

distributed using TileK. The various versions of these codes are evaluated for many

different input sizes. We show that the selection of a given optimized version is non-

trivial and that the “one version fit all” approach [Dolbeau et al., 2013] is sub-optimal

when faced with both a large optimization space and a large input space.

6.2 TileK

TileK is a programming model extending C/C++ through compiler directives.

It enables us to define regions of code that have to be offloaded into kernels. In these

offloaded regions of code, loops can be decomposed into tiles. These tiles will either

appear as loops in the generated kernel or will be distributed across a multicore CPU

or accelerators. Figure 6.1 depicts the compilation flow of TileK.

6.2.1 TileK language

TileK has two constructs: kernel and loop. Kernel constructs are used to des-

ignate a region of code that will be transformed into a kernel. The kernel construct is

associated with data clauses specifying the data used by the kernel. The loop construct

is used to mark loops that have to be tiled. The loop construct is associated with tile

clauses. We show an example in Listing 6.1.

First, the region of code that has to be transformed into a kernel is marked using

the kernel construct: kernel data(A[0:n][0:m], mode:rw, live:inout). The associated

data clause specifies that A[0:n][0:m] is read and written by the kernel (mode:rw) and

lives in and out of the kernel (live:inout). A[0:n][0:m] represents the array A of

dimension n×m. Array dimensions are used for data transfers and for array flattening

(linearizing). The additional access mode and liveness information are used for data

75

1 #pragma tilek kernel data(A[0:n][0:m], mode:rw, live:inout)

{

3 #pragma tilek loop tile [0](static , 2) tile [2](dynamic)

for (i = 0; i < n; i++)

5 #pragma tilek loop tile [1](static , 3) tile [3](dynamic)

for (j = 0; j < m; j++)

7 A[i][j] += b;

}

Listing 6.1: We use this simple kernel to illustrate TileK and associated code transfor-
mation. It adds a constant value to every elements of a matrix. The TileK annotations
are used to specify a kernel, its data, and the way loops are transformed.

placement (using eventual constant memory) and data movements. Second, loops in

this region of code are annotated with loop constructs: loop tile[0](static, 2) tile

[2](dynamic) and loop tile[1](static, 3) tile[3](dynamic). Loop constructs hold tile

clauses which are of the form: tile[’order’](static, ’trip-count’) or tile[’order’](

dynamic). The trip-count of a loop is the number of time the body of this loop is

executed. The product of the trip-count of all tiles associated to one loop is equal to

the trip-count of this loop. For static tiles, the trip-count is known at compile time,

but the trip-count of dynamic tiles is determine at runtime. At this point, the TileK

compiler requires evenly divisible loops. Allowing loops that are not evenly divisible is

possible, but would require adding guards in the generated code. Adding these guards

would add computation and could cause divergence which is costly on some accelerator

(e.g. GPGPU). There can only be one dynamic tile else the system cannot be solved.

When the kernel is generated, tiles from perfectly nested loops are sorted based on

order, allowing the compiler to perform interchange.

6.2.2 Iteration Domain

TileK enables changing the order in which the iteration domain of a loop nest is

traversed. Figure 6.2 shows how the iteration domain is separated between tiles. Each

cell represents the iteration of coordinates (i, j). For example, cell (3, 4) executes A

[3][4] += b;. The clauses tile[0](static, 2) and tile[1](static, 3) split the iteration

76

domain into six subdomains (demarcated with bold lines). And the clauses tile[2](

dynamic) and tile[3](dynamic) iterate over each of these subdomains. The tiles are

executed starting with the outer tiles first (i loop then j loop), then the inner tiles

are executed (same i then j). The sequence of iterations is (0, 0), (0, 1), (0, 2), (0, 3),

(1, 0), ..., (1, 3), (0, 4), ..., (0, 7), (1, 4), ..., (1, 7), (2, 0), ..., (2, 3), (3, 0), ...

Figure 6.2: This figure illustrates the iteration domain for Listing 6.1 when n = 8 and
m = 6. The static tiles become the outer most loops and iterate over the blocks formed
by the dynamic tiles.

6.2.3 Distributed Kernels

TileK has two distinct extensions to generate SPMD kernels: Threads and Ac-

celerator. Both introduce a special kind of tile that will be mapped either to software

threads or to the execution units of an accelerator. We will present the syntax in the

TileK language and the associated execution model.

6.2.3.1 TileK Threads

The TileK Threads extension permits distributing computations across multiple

processors or cores. This is done by mapping a tile to the thread dimension, as shown

in Listing 6.2. The clause num_threads declare the number of threads that the host will

fork as depicted in Figure 6.3. This number of threads does not have to be known at

77

compile time. The computations are distributed based on the tile(thread). Figure 6.4

shows how the iteration domain is distributed between the different threads.

#pragma tilek kernel num_threads (4)

2 {

#pragma tilek loop tile(thread) tile [1](dynamic)

4 for (i = 0; i < n; i++)

#pragma tilek loop tile [2](dynamic)

6 for (j = 0; j < m; j++)

A[i][j] += b;

8 }

Listing 6.2: The Threads extension of TileK applied to the same example as Listing 6.1.
The num_threads clause was added to the kernel construct to determine the number of
threads used by the generated kernel. The tile(thread) declares a tile of which each
iteration will be mapped to a spawned thread.

Figure 6.3: The host forks as many threads as requested by the num_threads clause.
Each thread executes part of the computation (Figure 6.4) then the threads join.

Figure 6.4: This figure shows how the iteration domain in Listing 6.2 is shared among
the four threads from Figure 6.3. Each thread computes a block of 2× 8 elements.

78

6.2.3.2 TileK Accelerator

Using the TileK Accelerator extension, kernels are offloaded to an accelerator

using OpenCL. The TileK Accelerator model uses the OpenACC model for two levels

of parallelism: gang and worker. Gang represents coarse grain parallelism while worker

represents fine-grain parallelism.

Figure 6.5: Illustration of the abstract machine for TileK Accelerator. Accelerators
generally have two levels of parallelism: coarse-grain with multiprocessors that are
mostly independent (share global memory) and fine-grain where all processing elements
can be synchronized and share local memory.

Figure 6.5 shows an abstract machine used as a model by TileK Accelerator.

This machine is made of a 2 × 2 array of gangs and each gang contains a 4 × 4 array

of workers. It also shows the global and local memories. Global memory is accessible

by all workers from all gangs while workers can only access the local memory of their

parent gang.

Listing 6.3 shows an example of code annotated with TileK’s Accelerator ex-

tension. The clauses num gangs and num workers declare the size of the abstract

accelerator. Computations are distributed on this abstract machine using gang and

worker tiles. The trip-count for gang and worker tiles is given by the corresponding

num gangs and num workers clauses. On both loops, the inner-most tiles are dynamic.

Each worker in the abstract machine will execute a block of the iteration domain.

79

#pragma tilek kernel num_gangs [0](2) num_gangs [1](2) \

2 num_workers [0](4) num_workers [1](4)

{

4 #pragma tilek loop tile(gang , 0) tile(worker , 0) tile [0](dynamic)

for (i = 0; i < n; i++)

6 #pragma tilek loop tile(gang , 1) tile(worker , 1) tile [1](dynamic)

for (j = 0; j < m; j++)

8 A[i][j]+=b;

}

Listing 6.3: This code is the same as Listing 6.1, but uses the TileK Accelerator
extension. This code instantiates an abstract accelerator made of 2× 2 gangs of 4× 4
workers as in Figure 6.5.

6.3 Generating Tiled Kernels

The first step to generate SPMD kernels is to generate tiled kernels. These

kernels correspond to codes like Listing 6.1. In this case, the computation are not

distributed, but the loops are tiled and the resulting tiles are reordered. In TileK’s

compiler, the generation of tiled kernel is done through a two step process: (1) one

process we call the LoopTree generator converts Rose’s IR into TileK’s IR, called

LoopTree, on which the tiling is done, and (2) another process we call the Kernel

generator converts LoopTrees into optimized ASTs that can be fed back into Rose for

further transforming improvements.

We will first present TileK’s IR called LoopTree. Next, we describe a kernel

generated for the motivation example (Listing 6.1). Finally, we will introduce the

algorithm used at runtime to determine the length and stride of each tiles.

6.3.1 LoopTrees

When compiling code annotated with TileK, the region associated to the ker-

nel construct is transformed into a LoopTree. They are a simplified Abstract Syntax

Trees (ASTs) that can be specifically optimized in our TileK compiler. Any block of

code that contains a restricted, but large and common set of for-loops, if-statements,

and expression-statements can be model into LoopTrees. Here, our restricted set of

for-loops corresponds to loops of the form for (i = lb; i < ub; i += s) and variations,

80

Figure 6.6: When directive are not considered, Listing 6.1 translates into a simple
LoopTree. The i loop is identified as loop 0 which iterates from 0 to n-1 with a stride
of 1. The j loop is identified as loop 1 which iterates from 0 to m-1 with a stride of 1
and loop 0 is its parent. The expression statement appears as the leaf of the tree and
loop 1 is its parent.

Figure 6.7: When the directives are considered, the LoopTrees for Listing 6.1 is more
complicated than in Figure 6.6. Both loops are separated into two tiles. Loop 0
becomes Tile 0 and Tile 1. Loop 1 becomes Tile 2 and Tile 3. The order of the tiles
in the LoopTree depends on the order argument (between square brackets).

81

including: greater-than and non-strict comparison operator or decrement/increment

operators. lb, ub, and s need to be constant across the lifetime of the loop, but do

not need to be known at compile time. We note that many popular scientific algo-

rithms and most scientific kernels we have encountered fall into our constrained set

of for-loops. The IR uses fragments of ROSE’s AST to represent variables (symbols),

expressions, and statements. Figure 6.6 shows the LoopTree constructed from List-

ing 6.1 without considering the annotations. For each loop in the example, the iterator

was identified alongside the lower bound, upper bound, and stride. In Figure 6.7, the

LoopTree was modified according to the TileK annotations. The tile clauses on TileK’s

loop constructs lead to the creation of tile nodes that take the place of the loop nodes.

Iterators are constructed for each tile and tiles are sorted depending of their order

parameter. Each tile is linked to the loop it originates from, providing the bounds and

stride. LoopTrees are used to generate the kernel, however, we associate to each kernel

a copy of its LoopTree. This LoopTree fully characterizes the kernel and present a few

more advantages:

• it uses pieces of the original AST facilitating the generation of correct ASTs

• it has a higher level of abstraction than the original AST simplifying transforma-
tions

• it could be used to handle non traditional loops with minimal change to the
subsequent transformations

6.3.2 Generated Kernel

Once the LoopTree has been tiled, the Kernel generator traverses it and gener-

ates a new AST for ROSE. This generated AST includes all the intricacies of the final

kernel. It connects to TileK’s runtime support and takes care of lowering parameters

and data accesses. This AST is finally unparsed using ROSE backend.

An example of the final kernel is shown in Listing 6.4. It was generated from

the code in Listing 6.1. This kernel receives two arrays of pointers, one for the pa-

rameters and one for the data. These pointers are cast to their original types inside

82

void klt_kernel_0(

2 void ** param , void ** data ,

struct klt_loop_context_t * loop_ctx

4) {

float *A = (float *)data [0];

6 float b = *((float *)param [2]);

int m = *((int *) param [1]);

8 int n = *((int *) param [0]);

int l_0 , l_1;

10 int t_0 , t_1 , t_2 , t_3;

for (t_0 = 0;

12 t_0 < klt_get_tile_length(loop_ctx ,0);

t_0 += klt_get_tile_stride(loop_ctx ,0))

14 for (t_2 = 0;

t_2 < klt_get_tile_length(loop_ctx ,2);

16 t_2 += klt_get_tile_stride(loop_ctx ,2))

for (t_1 = 0;

18 t_1 < klt_get_tile_length(loop_ctx ,1);

t_1 += klt_get_tile_stride(loop_ctx ,1))

20 for (t_3 = 0;

t_3 < klt_get_tile_length(loop_ctx ,3);

22 t_3 += klt_get_tile_stride(loop_ctx ,3)) {

l_0 = klt_get_loop_lower(loop_ctx ,0)

24 + t_1 + t_0;

l_1 = klt_get_loop_lower(loop_ctx ,1)

26 + t_3 + t_2;

A[l_0 * m + l_1] += b;

28 }

}

Listing 6.4: Sequential kernel generated for Listing 6.1. Both loops are separated into
two tiles. The resulting tiles are reordered, grouping the outer tiles and inner tiles
together.

83

the kernel. Each tile from the LoopTree leads to the generation of one for-loop. The

length and stride of this for loop is obtained from the loop_ctx object of type struct

klt_loop_context_t. Because tiles from multiple loops can be ordered randomly if the

loops are perfectly nested, the iteration of the associated loops are determined at the

inner-most loop body for this loop nest. At any time, the value of a loop’s iterator is

the sum of its lower bound and the tiles composing the loop. Any further optimizations

are left to the backend compiler.

6.3.3 From Loop Bounds to Tile Bounds

We cannot determine the length and stride of the tiles at compile time. We

need to wait until the bounds and strides of the loops are known at runtime. Before

launching a kernel, Algorithm 6.1 determines the length and stride of all the tiles of

one loop. For this algorithm, tiles are sorted following their declaration order (not the

order parameter). The inputs of the algorithm are: (1) bounds and stride of the loop

(upper in, lower in, and stride in), (2) number of tiles (num tile in), and (3) kind and

trip count for each tile (arrays kind in and trip count in). The outputs are the length

and stride for each tile (arrays length out and stride out). The algorithm goes from

outermost tile to the innermost. It propagates the loop length dividing it by the trip

count of each tiles. It stops when/if it encounters a dynamic tile. If a dynamic tile

is encountered, it goes from innermost tile to the outermost. It propagates the loop

stride multiplying it by the trip-count of each tile.

6.4 Generating SPMD Kernels

Section 6.3 presented the generation of a tiled kernel. In this section, we ex-

plain how this process can be used to build SPMD kernels. These kernels distribute

computations across threads or an accelerator.

84

Algorithm 6.1 Given a loop’s bounds and stride, its number of tiles, and the kind
and trip-count of each tile, this algorithm computes the length and stride for each tile.

L← upper in − lower in

i← 0
while i < num tile in and kind in

i = static do
length out

i ← L
stride outi ← L/trip count ini
L← stride outi

end while
S ← stride in

j ← num tile in − 1
while j >= i and kind in

j = static do
length out

j ← S ∗ trip count inj
stride outj ← S
S ← length out

j

end while
if kind in

j = dynamic then
length out

j ← L
stride outj ← S

end if

6.4.1 Kernel Index to Tile Iteration

In Section 6.2.3, we presented the machine models associated with TileK’s

Thread (Figure 6.3) and Accelerator (Figure 6.5) extensions. In both of these ex-

tensions, the machine is composed of multiple execution units. Each of these execution

units is identified by a unique index. In the case of the Thread extension, the indexes

are made of one integer between zero and the number of spawned threads. For the

Accelerator extension, the dimension of the index varies depending on the gang and

worker dimensions. This index space can have two, four, or six dimensions ; from one

gang and one worker dimension to three gang and three worker dimensions.

For a given kernel, there will be as many distributed tiles as there is dimensions in

the index. Kernels are associated with a single index (one instance of the kernel per

execution unit), and each of the distributed tiles take only one value per execution of

the kernel. Hence, distributed tiles are not loops in the generated kernel. Instead, the

current iteration of a distributed tile is determined using its stride and the kernel’s

85

index.

6.4.2 Threads

In TileK’s Threads extension, generated kernels are distributed between a group

of threads as shown in Figure 6.3. The kernel is launched once for each thread and

receives a thread ID (tid). The iteration of the thread tile is equal to the product of

tid and the tile’s stride. Listing 6.5 shows the kernel generated for the annotated code

in Listing 6.2. The distributed tile iteration t_0 is computed at Line 10.

void klt_kernel_0(

2 int tid , void ** param , void ** data ,

struct klt_loop_context_t * loop_ctx

4) {

float *A = (float *)data [0];

6 float b = *((float *)param [2]);

int m = *((int *) param [1]);

8 int n = *((int *) param [0]);

int l_0 , l_1;

10 int t_0 = tid * klt_get_tile_stride(loop_ctx ,0);

int t_1 , t_2;

12 for (t_1 = 0;

t_1 < klt_get_tile_length(loop_ctx ,1);

14 t_1 += klt_get_tile_stride(loop_ctx ,1)) {

for (t_2 = 0;

16 t_2 < klt_get_tile_length(loop_ctx ,2);

t_2 += klt_get_tile_stride(loop_ctx ,2)) {

18 l_0 = klt_get_loop_lower(loop_ctx ,0) + t_0 + t_1;

l_1 = klt_get_loop_lower(loop_ctx ,1) + t_2;

20 A[l_0 * m + l_1] += b;

}

22 }

Listing 6.5: Kernel generated when distributing the code from the motivating example
using TileK’s Thread extension (Listing 6.2). The variable tid represents the Thread
ID, and it is used to determine the current iteration of the thread tile.

6.4.3 Accelerator

In the TileK Accelerator extension, the kernel is offloaded to an accelerator us-

ing OpenCL. Depending on the number of gangs and workers required by the kernel,

86

a specialized kernel using 1D, 2D, or 3D arrays is launched.. The TileK Accelera-

tor extension maps gangs to work-groups and workers to work-items of the OpenCL

NDRange. OpenCL NDRange are 2D or 3D arrays of groups, which themselves are 2D

or 3D arrays of work-items (threads). Given this mapping, the index used to calculate

the iteration of tile(gang,1) is OpenCL’s get_group_id(1) (2nd element of the inde of

the current group). Similarly, tile(worker,0) maps to get_local_id(0) (1st element of

the index of the current work-item). In Listing 6.6, we show the kernel generated for

the annotated code in Listing 6.3. The distributed tiles from the outer loop of the

original code (i loop in Listing 6.3) are associated to variables t_0 and t_1. These

variables are assigned on Lines 6 and 8 using OpenCL’s group ID and OpenCL’s local

ID for the gang tile and the worker tile, respectively. Similarly, t_3 and t_4 are the

tiles from the j loop in Listing 6.3 and are assigned at Lines 10 and 12.

6.5 Optimization Space Exploration

TileK allows one to describe many different versions of a given loop nest. This

section motivates the need for predictive modeling to generate optimized kernels. The

goal of this modeling would be to accelerate an iterative compilation process [Agakov

et al., 2006] [Chen et al., 2010]. It has also been shown that iterative compilation

needs to be input aware [Demmel et al., 2005] [Liu et al., 2009]. A predictive model

that is input aware (i.e., uses features of the input especially array sizes) is necessesary

to generate the best version of a given code. To illustrate our point, we evaluate the

performance of many versions of four simple computation kernels:

• 2d-conv: 2D convolution (Listing 6.7)

• sgemm: single precision general matrix multiply (Listing 6.8)

• syr2k: symmetric rank-2k operations (Listing 6.9)

• doitgen: multiresolution analysis kernel (MADNESS) (Listing 6.10)

We distributed these loops with the Threads and the Accelerator extensions

of TileK. For each kernel, we evaluated eight threads versions and forty accelerator

87

__kernel void klt_kernel_0(

2 int n, int m, float b, __global float *A,

__constant struct klt_loop_context_t *loop_ctx

4) {

int l_0 , l_1 , t_2 , t_5;

6 int t_0 = get_group_id (0)

* klt_get_tile_stride(loop_ctx ,0);

8 int t_1 = get_local_id (0)

* klt_get_tile_stride(loop_ctx ,1);

10 int t_3 = get_group_id (1)

* klt_get_tile_stride(loop_ctx ,3);

12 int t_4 = get_local_id (1)

* klt_get_tile_stride(loop_ctx ,4);

14 for (t_2 = 0;

t_2 < klt_get_tile_length(loop_ctx ,2);

16 t_2 += klt_get_tile_stride(loop_ctx ,2))

for (t_5 = 0;

18 t_5 < klt_get_tile_length(loop_ctx ,5);

t_5 += klt_get_tile_stride(loop_ctx ,5)) {

20 l_0 = klt_get_loop_lower(loop_ctx ,0)

+ t_1 + t_0 + t_2;

22 l_1 = klt_get_loop_lower(loop_ctx ,1)

+ t_4 + t_3 + t_5;

24 A[l_0 * m + l_1] += b;

}

26 }

Listing 6.6: Code generated for Listing 6.3 using TileK Accelerator with OpenCL
backend.

88

void 2dconv(

2 int n, int m,

float ** A, float ** B

4) {

int i, j;

6

for (i = 1; i < n-1; i++) {

8 for (j = 1; j < m-1; j++) {

B[i][j] = 2.34 * A[i-1][j-1]

10 + 4.64 * A[i+1][j+1]

- 7.93 * A[i-1][j]

12 + 1.26 * A[i][j-1]

+ 0.64 * A[i+1][j]

14 + 1.34 * A[i][j+1]

- 2.17 * A[i-1][j+1]

16 + 7.22 * A[i+1][j-1]

- 9.59 * A[i][j];

18 }

}

20 }

Listing 6.7: 2d-conv: 2D Convolution with random, hard-coded, floating coefficients

void sgemm(

2 int n, int m, int p,

float ** A, float ** B, float ** C,

4 float alpha , float beta

) {

6 int i, j, k;

8 for (i = 0; i < n; i++) {

for (j = 0; j < m; j++) {

10 C[i][j] *= beta;

for (k = 0; k < p; k++) {

12 C[i][j] += alpha * A[i][k] * B[k][j];

}

14 }

}

16 }

Listing 6.8: sgemm: single precision general matrix multiply

89

void syr2k(

2 int n, int m,

float ** A, float ** B, float ** C,

4 float alpha , float beta

) {

6 int i, j, k;

for (i = 0; i < n; i++) {

8 for (j = 0; j < n; j++) {

C[i][j] *= beta;

10 for (k = 0; k < m; k++) {

C[i][j] += alpha * A[i][k] * B[j][k];

12 C[i][j] += alpha * B[i][k] * A[j][k];

}

14 }

}

16 }

Listing 6.9: syr2k: symmetric rank-2k operations

void doitgen(

2 int R, int Q, int P,

float *** A, float *** sum , float ** C4

4) {

int r, q, p, s;

6

for (r = 0; r < R; r++) {

8 for (q = 0; q < Q; q++) {

for (p = 0; p < P; p++) {

10 sum[r][q][p] = 0;

for (s = 0; s < P; s++)

12 sum[r][q][p] += A[r][q][s] * C4[s][p];

}

14 for (p = 0; p < P; p++)

A[r][q][p] = sum[r][q][p];

16 }

}

18 }

Listing 6.10: doitgen: multiresolution analysis kernel (MADNESS)

90

versions. For both the thread and accelerator experiments, we only measure the time

it takes for the kernel to run, ignoring initialization and data-transfers, which are not

optimized. Each kernel is executed five times and the average of the five measurements

is used. We compare the different optimized versions by looking at the number of

floating point operations per second (flops) that they compute. Given that we are

comparing different kernels for many different inputs, flops is the best measurement

when optimizing runtime.

Varying the inputs for these codes is simple: none of the controls are data-

dependent. As there is no loop or conditional depending on the values of the inputs,

only the input’s size influences the runtime of a given version. For each version, we

evaluated a few hundred input sizes depending on the kernel. Table 6.1 summarizes

the input space for each of the four kernels used in the experiments.

parameters float operations # inputs
2d-conv n,m 17.n.m 225
sgemm n,m,p n.m.(6.p+ 1) 1152
syr2k n,m n2.(6.m+ 1) 252

doitgen r,q,p 2.r.q.p2 250

Table 6.1: Summary of the input space for each of the four codes used in the exper-
iments. It shows the parameters (positive integers) that define the input sizes of the
different problems, the formula which gives the number of floating point operations as
a function of the parameters, and the number of inputs (combinations of parameters)
that was evaluated.

These experiments were conducted using Elastic Cloud Compute (EC2) from

Amazon Web Services (AWS). We used compute instances with 16 VCores (c4.4xlarge)

to evaluate the Threads extension and GPU instances (g2.2xlarge) for the Accelerator

extension. The c4.4xlarge instances are equipped with Intel Xeon E5-2666 v3 (Haswell)

processors and 30 GiB of RAM. The g2.2xlarge instances are equipped with NVIDIA

Grid K520 GPU (Kepler architecture with 1,536 CUDA cores and 4GB). OpenCL was

used to target the GPU, using both our OpenCL implementation of the TileK runtime

and the corresponding OpenCL target. The g2.2xlarge instances used OpenCL 1.2

91

cuda with the NVIDIA driver version 352.79. All codes were compiled using gcc 4.8.3

and the -O3 optimization flag.

6.5.1 Thread Experiments

For each of the four kernels, we generated eight threaded versions of the com-

putation kernel. The loops i and j are annotated with one dynamic tile each. Then a

thread tile is placed either before or after the dynamic tile of one of the loops. Finally

the dynamic tiles can be interchanged using the order parameter (square bracket on

the tile clause). Table 6.2 summarizes the eight tile configurations used to parallelize

the two outer loops of each of the four codes. For example, the tiling in Listing 6.2

corresponds to the first tile configuration in Table 6.2.

parallelized loop
before/after dynamic tiles
dynamic tile order

1 i before i - j
2 i before j - i
3 i after i - j
4 i after j - i
5 j before i - j
6 j before j - i
7 j after i - j
8 j after j - i

Table 6.2: The eight tile configurations used to evaluate the TileK Threads extension.
The first column gives the version’s ID. The second column specifies which of the two
loops is annotated with the tile(thread) clause. The third column tells whether this
thread tile is placed before or after the dynamic tile. Finally, the fourth column shows
the order in which the two dynamic tiles are unparsed (interchange).

The results of our experiments with the thread versions of these four kernels are

presented in the top row of Figure 6.8. These graphs present the percentage of peak

performance of four versions of each kernel for various inputs sizes. The percentage

of peak performance allows one to compare the performance of one version for one

input to the performance of the best version for the same input. We show versions 1,

3, 7, and 8 from Table 6.2. These versions are the two best (1 and 3) and the two

worst (7 and 8). On the X-axis inputs are sorted based on increases in performance,

92

(a) TileK Threads Extension

(b) TileK Accelerator Extension

Figure 6.8: Inputs space exploration for TileK threads and accelerator. X-axis rep-
resent the various inputs sorted by increasing performance (independently for each
version). Y-axis show the percentage of peak performance reached by each version for
the different inputs.

93

independently for each version.

We can draw a few observations from these graphs:

• No version is the best for all inputs: version 3 for 2d-conv performs approxi-
mately 65% worse than another version for at least one input

• The best version depends on the code being optimized: version 3 is generally the
best for 2d-conv while it is version 1 for sgemm

• Even poorly performing versions can have at least one input for which they
perform as well as the best version

For all four kernels, versions 7 and 8 have the worst performance. This behavior

is easily explained as these versions have their parallel tile as the inner tile of the

innermost loop. Distributing the loop nest in this fashion almost always reduce the

locality of the kernel. Mostly because when translating an algorithm in C, we order

the loops in the same order as the dimensions of the principal array. It means that the

inner loop usually accesses rows with the most locality. Hence, placing the parallel tile

on the inner tile of the innermost loop, breaks this locality.

6.5.2 Accelerator Experiments

While the TileK Threads extension only provides one dimension to distribute the

loop nest, the Accelerator extension enables up to six dimensions, thus giving us a large

search space of code versions, i.e., forty in our case. In these experiments, we consider

the two machine models for the Accelerator extension shown in Table 6.3. These

machine models include 1D and 2D configurations of gangs and workers. For both of

these machine models, we evaluate the performance of different tiling configurations.

To construct these tiling configurations, we start with one dynamic tile for each loop.

For the 1D machine model, we add one gang tile and one worker tile. We place

one of each on the i and j loops, either before or after the dynamic tile. Having

either the gang or worker tile on the i loop (and vice-versa for the j loop) creates

two possibilities. The position of the gang and worker tile in relation to the dynamic

tiles creates four possibilities. Finally, the dynamic tiles can be interchanged creating

another two possibilities for a total of 16 different tiling configurations.

94

For the 2D machine model, we add two gang tiles and two worker tiles. Each of

the two loops receives either gang and worker #0 or gang and worker #1, creating two

possibilities. Then, there are six ways to order the dynamic, gang, and worker tiles.

Finally the dynamic tiles can be interchanged creating another two possibilities for a

total of 24 tiling configurations.

This search space is not exhaustive, search spaces for both 1D and 2D machine

models can be extended and other machine models can be tested using various numbers

of gangs and workers.

gangs workers # tiling
(16,) (256,) 16
(4,4) (16,16) 24

Table 6.3: We evaluated two different machine models: 1D and 2D. The total number
of gangs is always 16. The total number of workers is always 256.

We evaluated each of the forty versions of the four codes on GPUs. The bottom

row of graphs in Figure 6.8 highlights some results from four representative versions.

The X-axis is ordered based on increases in performance. The Y-axis shows the per-

centage of peak performance.

Two of the four versions shown use a 1D topology and the other two versions

use a 2D topology. The first version (based on the legend’s order) uses a 1D topology.

It has the gang and worker as the innermost tile of the i and j loops, respectively.

This configuration is more efficient than the configuration of the second version as it

increases the memory coalescence (neighboring execution units accesses neighboring

memory cells). Similarly, the third configuration, which uses a 2D topology, has the

two worker tiles as innermost tiles. This configuration can achieve better memory

coalescing than the fourth configuration.

Across the four codes, there a few noticeable effects especially when looking into

the first and third versions. These two versions have very different performance profile

for sgemm and syr2k. In the case of sgemm, the first version is almost always the

best. This could be due to the flattening of the 2D topology when OpenCL threads

95

are mapped to the execution units. For syr2k, the third version is almost always the

best. In this case, the symmetrical distribution of gangs and workers across both loops

is advantageous to the symmetrical nature of the syr2k kernel.

6.6 Related Work

This work is a generalization of our experimentations with OpenACC [Ope-

nACC, 2011]. We presented [Vanderbruggen and Cavazos, 2014] how a static tiling

of loops could be used generate OpenCL kernels for OpenACC. This paper presents a

much more flexible technique.

Loop tiling [Wolfe, 1989] [Xue, 2000] has been used as a technique to generate

parallel workloads. The classic approach to tiling transforms one loop into outer and

inner tiles. When multiple loops are tiled, all outer tiles and inner tiles are grouped.

Computation is distributed by assigning each iteration of the outer tiles to one exe-

cution unit. In our technique, each loops can be divided into many tiles. Tiles are

not ordered from the outer to the inner tile, instead the order is set by the user. This

approach enables more control over the resulting data access pattern by mixing tiling

and interchanges.

HOMP [Liao et al., 2013] is an early implementation of the OpenMP Accelerator

Model using the ROSE Compiler [ROSE, 2017]. In OpenMP [Dagum and Menon,

1998], loops are divided into chunks (or blocks) and each chunk is executed “atomically”

by one thread. In HOMP, the workload is distributed in the same fashion preventing

usage of the multidimensional grids and blocks of CUDA.

An implementation of OpenACC targeting CUDA is presented in [Tabuchi et al.,

2014]. In this work, each loop has at least one counterpart in the generated kernel. The

bounds and stride of the generated loop depends on the index of the kernel. Finally the

iteration variable is reconstructed for each iteration of this loop. Unfortunately, this

publication does not provide details on this process, preventing a better comparaison.

Other implementations of OpenACC [Tian et al., 2014, Reyes et al., 2012] directly map

loops to one dimension of the CUDA grid/block.

96

OpenACC 2.0 introduces a tile clause that can be applied to loops and which

is supported by the PGI Compiler [Wolfe, 2015]. However, this tile clause is different

from our approach. OpenACC tile clause has a similar effect to the tile directive of the

HMPP Codelet Generator Directives [CAPS-e, 2012]. In both compilers, the loop to

be tiled is separated between an outer tile and an inner tile. When multiple loops are

tiled they are reorganized accordingly, all outer tiles then all inner tiles. Finally, in the

PGI Compiler, other clauses applied to the loop are moved to either of the generated

loops. The gang clause moves to the outer tile, while worker and vector clauses are

applied to the inner tile.

6.7 Conclusion

In this chapter, we presented an optimizing compiler. Given a computation

kernel, implemented in C, this compiler lets the user add annotations to specify how

it should be parallelized. We have shown that the resulting tuning space can be vast,

especially when we pay attention to the inputs of these kernels. Indeed, the best

optimization can depends on the inputs’ sizes.

Fully evaluating the training set would be prohibitively expensive in real cases.

In such case, we can use iterative compilation to explore the tuning space. In the next

chapter, we construct performance prediction models to guide such iterative compi-

lation process. These models leverage TileK internal representation to represent the

optimized kernels and their inputs.

97

Chapter 7

PERFORMANCE PREDICTION FOR COMPUTATION KERNEL
TUNING

7.1 Introduction

In Chapter 6, we presented a parallelizing compiler, TileK. We showed that

this compiler can be used to generate many variants of a given computation kernel.

However, evaluating this tuning space exhaustively is prohibitively expensive. In this

chapter, we construct a performance prediction model that can be used to guide the

search to find the best variants of an optimized kernel in this space.

We are particularly interested in the tuning of legacy application where both

computation kernels and workloads are well defined. Indeed, applications are often

composed of distinct kernels which can be used with a variety of inputs. We showed in

the previous chapter that the best optimizations for a given kernel sometime depend

on the input size. We want to minimize the number of evaluations to determine the

best optimized version of a kernel for any possible input.

To optimize such an application using TileK, we need a performance prediction

model to use for iterative compilation. As is often the case with machine-learning,

the main issue is to characterize the problem in a way that is amenable to machine-

learning. There are two issues we have to deal with in terms of having a variable

length input and needing to represent it in a fix length characterization for machine

learning. A first issue is that TileK can apply any number of transformations to a

kernel, changing the structure of the loop-nest. It is not possible to represent an

arbitrary set of optimizations in a fixed size representation. Instead, the optimized

kernel can be represented using TileK Internal Representation (IR). A second issue

comes from considering various inputs for the kernels. Given that our work is limited

98

to statically controlled loops, we can summarize these inputs using their size. However,

the number of inputs and their dimensions is not fixed across all kernels. We solve the

issue of having a variable length input by embedding the trip count of each loop into

TileK IR. The resulting graph-based representation is specific to each triplet of kernel,

optimization, and input. This representation solves the issues of representing variable

length optimizations and inputs.

In this chapter, we evaluate the potential of using TileK IR to iteratively tune

a collection of computation kernels. First, we describe how TileK IR and the runtime

measurement are made usable by machine learning. Second, we use a combination

of neural networks (NN) and support vector machines (SVM) to build performance

prediction models. Finally, we compare how fast iterative compilation converges to

good optimized kernels when guided by our machine learning models versus using

random search.

7.2 Dataset

The first step of any machine-learning work is to build a representation of the

problem which can be used by machine learning algorithms. In this case, we transform

TileK IR (Section 6.3.1) into a feature graph, defined in Section 3.2. We also have to

define the training targets used to train the model. As our goal is to guide iterative

compilation, we use targets that are related with the performance of each optimized

kernel.

7.2.1 Feature Graph from TileTree

TileTrees are tree data structures that represent optimized versions of a com-

putation kernel. Each node in a TileTree represents either a tile or, when it is a leaf,

an expression. When the kernel is generated, tiles either become loops or computation

that is distributed across the computing elements of the hardware. Expressions are

composed of variable references, array indexing, arithmetic operations, or assignments.

99

The process of converting a TileTree into an input that can be ingested by

a neural network is depicted in Figure 7.1. The first step is to build a vector that

represents expressions in the TileTree and collects the trip-counts of the tiles. This

vector representing an expression is a histogram of the operations. As TileTrees use

ROSE Compiler IR to represent expressions, it is simply a matter of counting each

type of node. The trip-count of each tile depends on the input sizes and how the

computation are distributed on the different tiles. The second step propagates the

histogram of each leaf upward in the data structure. The histogram associated with

each node is the sum of the histograms of its children nodes multiplied by the trip-count

of the tile. During this step, the histogram’s values are replaced by their logarithms.

When this process is applied to our optimization search space, our resulting

feature graphs have thirty elements. In addition, as the kernels considered in this

experiment are small, the maximum number of nodes is twelve. This work takes

advantage of the small size of these graphs to compare our graph spectral feature

approach with a more straightforward approach of using our Feature Graphs (detailed

in Section 7.3.1.1).

7.2.2 Targets

We not only consider different computation kernels but we optimize these ker-

nels for multiple input sizes. The exhaustive tuning space exploration performed in

Chapter 6 provided us with the execution time for each optimized kernel and their

inputs. These execution times, combined with the kernel’s complexity and the input

size, determine the performance of each optimization as the rate of floating point op-

erations per second (flops). We then normalized these performance measurement with

respect to the best performance for each pair of kernel and input. Finally, we dis-

cretized these values into 100 bins, numbered from 1 to 100 corresponding to the best

and wort case, respectively. Essentially, target 1 means that we are within 1% of the

best performance, while 4 means to be between 3% and 4% of the best performance.

100

(a) Collect expression histograms and loop trip-counts

(b) Propagate histograms upward

Figure 7.1: This figure shows how Tilek’s IR, TileTree, is transformed into a Fea-
ture Graph that is well suited for machine-learning. We take an optimized version of
SGEMM, which uses a 2D OpenCL NDRange. We start with the TileTree representing
one optimized version of the computation kernel. The inputs’ sizes are used to deter-
mine the trip-counts of each tile. Expressions are traversed to collect the number of
arithmetic and data read/write operations. These counts are propagated up the tree,
multiplied by the length of each tile. The resulting nodes of the Feature Graph are
vectors with eight values: the type of node, its length, three operations (add-assign,
mul-assign, and mul), and three data access (read scalar, read 2D array, and write 2D
array) operations.

101

Figure 7.2: Given a previously unseen tuning space, we randomly sample 5% of the
space. The performance measured on these samples is used to train a ranking model.
This model is used to order the remainder of the search space.

Figure 7.3: Our ranking model is made of two stages: a neural-network and a support
vector machine. The NN determines the probabilities of a given TileTree to reach a
certain percentage of the best performance. The SVM uses these probability to rank
the TileTree.

7.3 Models

Our goal is to build models that can guide an iterative compilation process,

as presented in Figure 7.2. We start by sampling five percent of the search space to

build the training set for the model. The remainder of the space is ranked using the

model. We evaluate the performance of the ranking model in ordering the tuning space

compared to random search.

The ranking models that we built for this work have two machine learning

102

stages, as depicted in Figure 7.3. First, a neural network (NN) uses the feature graph

representing one optimized version of a kernel for one specific input size and predicts the

likelihood of it falling into each fraction of the best performance. Second, a support

vector machine (SVM) uses the NN’s predictions to determine whether or not the

optimized TileTree is one of the top performers (within 5% of the best optimized

version for a given input). Finally, we use the SVM decision function (distance from

the separating hyperplan, see Section 2.4) to rank the remainder of the search space.

7.3.1 Neural Networks

The first stage of our ranking models are neural networks which classify Tile-

Trees into one of a hundred classes. These classes correspond to the discretized fraction

of the best performance. The TileTrees are transformed into feature graphs following

the process described in Section 7.2.1. In Chapter 3, we discussed the fact that feature

graphs are not directly ingestible by a neural network. In this set of experiments, the

size of the graphs are limited to 12 nodes. This restriction makes it possible to make

comparisons using the node features or the graph spectrum features. We also compare

the potential of different NN architectures, i.e. perceptrons, multi-layer perceptrons,

and convolutional architectures.

7.3.1.1 TileTree Representations

We consider two characterizations of the TileTree, both based on the feature

graphs described in Section 7.2.1. The first characterization presents the raw feature

vectors from the graph’s nodes and we refer to this as the features representation

of TileTree. They are stored as a 2D tensor where each row corresponds to one fea-

ture vector. The rows are ordered using a depth-first traversal of the TileTree. The

second representation is our graph spectral features approach, which we presented in

Section 3.5. It is referred as the spectrum representation of the TileTree. It also

yields a 2D tensor, but each row contains an eigenvalue and the corresponding pro-

jected feature vector (both real and imaginary parts). These two representations yield

103

tensors of sizes 12 × 30 and 12 × 62, for the features and spectrum representations,

respectively. For TileTree with less than twelve nodes, the representations are padded

with zeros.

7.3.1.2 Architectures

We consider three neural networks for both our TileTree representations. First,

we evaluate a simple perceptron, the simplest neural network architecture. Second,

we look at a multi-layer perceptrons (MLP) with eight hidden layers. The first four

hidden layers have 512 neurons each, and the next four layers have 128 neurons each.

Third, we replace the first four layers of the MLP with convolutional layers. These

layers are applied to each row of the inputs individually. The last four hidden layers

are not changed. They are fully-connected with 128 neurons each.

The perceptron gives us a baseline on the amount information that can be

extracted from the representation. With a single layer, perceptrons are limited to

linearly separable spaces. The MLP permits us to model much more complex spaces

at the cost of a large number of parameters. It results in much longer training times.

Finally, we use convolutional layers to reduce the number of parameters in the first

four layers. This reduces the number of parameters to optimize, without weakening

the resulting models.

7.3.2 Support Vector Machine

Each SVM model uses the predictions from one NN, which is one hundred

probabilities between zero and one (with the sum of these probabilities equaling to

one). The SVM model predicts if a given TileTree is within five percents of the best

performance, corresponding to the five first targets of the NN. We use the SVM model

to rank order the remainder of the search space.

7.3.3 Evaluation

We evaluate the models by comparing them to a random traversal of the search

space (random search). First, we initialize the best known performance for each kernel

104

Figure 7.4: The average observed performance as a function of the number of evaluated
optimized kernels. The X-axis shows the number of evaluated kernels on a logarithmic
scale. The Y-axis represents the average observed performance so far up to that point.

and input pair using the training set (5% of the dataset). The remainder of the search

space is traversed, either using the order of the SVM ranking model or using random

search. For each new observed sample, we update the corresponding (kernel and input

size) overall observed performance. We discuss the performance of each model by

comparing the mean performance, across pairs of kernels and input sizes, as a function

of the number of samples evaluated.

7.4 Results

We compare the efficiency of our models for our two representations of the graph

features and three neural network architectures. Each of the six models is evaluated

one hundred times: five times for each slice of 5% of the data. We divide the dataset

into twenty folds and used one fold for training. For each fold, we train five instances of

each of the six models. Similarly one hundred random searches were used to generate a

baseline comparison. For each case, we report the average across all these evaluations.

Figure 7.4 shows the results of these experiments. In this figure, the X-axis

105

represents the number of optimized kernels that have been evaluated. The X-axis uses

a logarithmic scale. The Y-axis shows the average performance across all experiments

so far. The performance corresponds to the average of the best optimizations across

all kernels and input sizes. In all seven cases, the performance starts at approximately

55%, corresponding to the performance observed after evaluating the training set (5%

of the search space).

7.4.1 Effect of Complex Neural Networks

For this problem, we observe that more complex neural networks tended to

decrease the performance of the SVM ranking model. This is particularly true for the

models using the spectrum features of the TileTree. This can be explained by the fact

that complex models tend to overfit the training set. This is shown in Figure 7.5.

We characterized overfitting using the ratio between testing and training errors. In

this case, “error” refers to the cross-entropy between predicted and actual distribution.

We refer the reader to Prechelt’s work which treats the issue of overfitting in neural

networks and compares criteria for “early stopping” [Prechelt, 1998]. In Figure 7.5, we

observe two trends. First, models based on TileTree spectrum features overfit much

more than when the TileTree node features are used. Indeed, graph spectral features

contain more information than the raw node features, and using 5% of the search space

for training is not sufficient to permit the models to generalize. Second, models with

more parameters tend to overfit more, whih is a well known problem. As the number

of parameters increases, neural networks tend to memorize the training set instead of

generalizing over it. As can be seen in Figure 7.5, the convolutional network overfits

less than MLPs because it uses significantly fewer parameters for the same depth of

the neural networks.

7.4.2 Performance Milestone

One way of comparing iterative compilation methods is to compare the num-

ber of evaluations necessary to reach a given percentage of the best performance. In

106

Figure 7.5: This bar chart shows the ratio between training and testing losses for the
six neural networks. This ratio is an estimate of the amount of overfitting [Prechelt,
1998].

Features Spectrum
Perceptron MLP CNN Perceptron MLP CNN

60% 191 (16.5x) 185 (17.0x) 185 (17.0x) 218 (14.5x) 248 (12.7x) 216 (14.6x)

70% 837 (16.1x) 775 (17.4x) 787 (17.1x) 691 (19.5x) 1072 (12.6x) 719 (18.7x)

80% 2199 (14.7x) 2135 (15.1x) 2151 (15.0x) 1236 (26.1x) 17435 (1.8x) 1362 (23.7x)

90% 4524 (16.1x) 4635 (15.7x) 4585 (15.8x) 11639 (6.2x) 60636 (1.2x) 22073 (3.3x)

95% 9692 (12.2x) 10053 (11.8x) 9811 (12.1x) 53746 (2.2x) 103526 (1.1x) 66855 (1.8x)

99% 49862 (3.9x) 55221 (3.5x) 52257 (3.7x) 125682 (1.6x) 157742 (1.2x) 132090 (1.5x)

Table 7.1: Number of evaluations needed to reach performance milestones. The
speedup compared to random search is shown between parenthesis.

this section, we look at the number of evaluation needed to reach six milestones of

performance: 60%, 70%, 80%, 90%, 95%, and 99%. Table 7.1 shows the number of

evaluations and the speedup compared to random search for each of the six models.

We highlighted the results corresponding to the best model for each milestone. We

observe that, aside from the lowest milestone, perceptrons outperform more complex

models.

In Figure 7.6, we compare the performance of iterative compilation using perceptron-

based ranking models compared to random search. It shows that these perceptron-

based models permit us to reach the 60%, 70%, and 80% milestones more than 10×

faster than when the search space is randomly sampled. Using the spectrum-based

107

Figure 7.6: This bar chart shows how much faster the two perceptrons reach the
different milestones compared to random search.

perceptron, the 80% milestone is reached more than 26.1× faster, compared to 14.7×

faster for the node features. However, for the higher performance milestones, the node

features outperform the spectrum features. For the final milestone, i.e. achieving 99%

of the top performance available, the node features and spectrum features are 3.9×

and 1.5× faster than random search, respectively.

7.5 Related Work

In this chapter, we evaluate the utilization of graph-based machine learning

(ML) to accelerate iterative compilation (IC). In this section, we review the previous

work on these topics.

Bodin et al, performed some of the earliest work on iterative compilation found

in the literature [Bodin et al., 1998]. This research highlights the high cost of IC

techniques because of the number of evaluations needed before a satisfactory solution

was found. However, they showed the potential of the technique and argued for its

usefulness when applied to embedded systems. Following this work, various platform

independent approaches to iterative compilation were developed [Triantafyllis et al.,

2003][Fursin et al., 2005].

In these early work, a major limitation of iterative compilation was the cost of

evaluating a very large number of optimizations. Researchers tackled this issue through

108

the utilization of better search algorithms. Some early work in this area compared

different strategies for iterative search using genetic algorithms, random sampling, and

simulated annealing [Knijnenburg et al., 2003].

Agakov et al, introduced the utilization of predictive modeling as a way to

accelerate iterative compilation [Agakov et al., 2006]. In this work, an independent

distribution model and a Markov model were used to focus the iterative search in

the optimization space. Further research introduced performance predictors based on

static code features [Dubach et al., 2007] and dynamic performance counters [Cavazos

et al., 2007]. The usage of performance counters to predict the performances of an

optimization sequence was further refine in later work [Park et al., 2011]. This research

introduced the idea of a tournament predictor, which was used to select the best of

two optimization sequences.

Recent work has focused on the construction of optimization heuristics using

machine learning techniques. One recent work explored the different way programs can

be characterized, using static and dynamic program features [Li et al., 2014a]. Other

work evaluated the use of source code features to solve the compiler phase ordering

problem [Kulkarni, 2014].

One recent paper [Ashouri et al., 2017] performed research in optimization

heuristics, predictive modeling, and iterative compilation in a framework the authors

called MiCOMP. This framework uses these techniques to achieve an average per-

formance speedup of 1.31× over LLVM’s most aggressive optimization setting (-O3).

Finally, Ogilvie et al, explored active learning and iterative compilation [Ogilvie et al.,

2017]. Active learning leverages new samples to incrementally improve predictive mod-

eling during the exploration of the optimization space.

7.6 Conclusion & Future Work

In this chapter, we compare two characterizations of graphs to accelerate itera-

tive compilation. The first characterization only considers the features in the graph’s

nodes, and the second characterization leverages graph spectral features to incorporate

109

the structure of the graphs. There are two interesting results: complex neural networks

do not achieve the best results compared to simple neural networks, and the choice

between the two TileTree representations is not clear cut.

Our first result regarding the poor performance of complex neural networks is

explained by the tendency of large models to overfit, especially given the small size of

our training set. We can envisage two ways to solve this problem, and both methods

would help to reduce overfitting. First, we can use unsupervized pre-training to learn

high-level features of the graph representations. This can be done on a very large

part of the search space since it does not require us to evaluate the optimized kernels.

Second, we can take advantage of the iterative nature of the search and train the

ranking models continuously. In this later case, a very small subset of the search

space would be used to construct the initial version of the ranking model. During each

iteration of the search, the model would be used to select the most promising samples

to be evaluated. The results of these evaluations would provide targets used to extend

the training set. The extended training set is then used to refine the ranking model.

This refined ranking model is used to select the next batch of samples to evaluate. In

Figure 7.7, we depict how these two techniques can be put together.

The second result concerns the comparison between the two characterization of

TileTree. Determining which of these characterization is best depends on our goals.

Models based on the spectrum features of the TileTree reach 80% of the best perfor-

mance 1.8× faster than models using the nodes features of the TileTree. It corresponds

to evaluating only a little more than 1,200 samples, and 0.5% of the full search space.

On the other hand, if one wants to reach 99% of the best performance, it is 2.5×

faster to use the model based on node features versus spectrum features. It requires

evaluating approximatively 50,000 samples, which is 20% of the search space.

110

Figure 7.7: This figure shows an iterative compilation flow using unsupervized pretrain-
ing and continuous learning. Pretraining: Train a deep auto-encoder on TileTrees.
Transfer: The deep auto-encoder is used to initialize the ranking model. Ranking:
The ranking model is applied to the tuning space. Evaluate: Top ranked samples are
evaluated. Training: All evaluated samples are used to training/refine the ranking
model. Loop: Back to 3 until reaching a stop criteria.

111

Chapter 8

CONCLUSION

In this dissertation, we presented new techniques to characterize graph-structured

data for use with neural networks. This work has two major parts: malware classi-

fication and computation kernel optimization. In the first part, we compare various

malware characterization techniques. One of the novelties of this work is the con-

struction of convolutional neural networks for diverse data types. We show that these

convolutional architectures increase the accuracy of the resulting models. In the sec-

ond part, we compare two methods to characterize a graph-based compiler intermediate

representation (IR). For both methods, we build perceptrons and deep neural networks.

We show that perceptrons outperform deep neural networks on this problem. To con-

clude this dissertation, we summarize our results and present insights gained while

performing this work.

8.1 Results

In this research, we explored the construction of neural networks methods to

ingest graph data. We have shown that it is possible to leverage these complex data

structures both to improve malware detection and to accelerate the tuning of compu-

tation kernels.

In Chapter 4, we presented our early work on malware classification. In this

work, a small and balanced dataset of malware was classified between eleven families

of malware. On this dataset, our graph-based characterization was more effective than

state-of-the-art characterization methods. Specifically, using a consensus of multilayer

perceptrons, graph-based characterization achieved 92.0% accuracy compared to 86.2%

for the state-of-the-art characterizations.

112

In Chapter 5, we expanded this malware classification work. We created an

extended dataset and expanded our research with more characterizations of potentially

malicious files, a feature engineering stage, and advanced neural network architectures.

The extended dataset is more than twice as large as the previous dataset and contained

eighteen classes that are not balanced. Using the state-of-the-art model, a multilayer

perceptron, we achieved 62.3% accuracy. Using more advanced methods, including

feature transformations and convolutional architectures, we constructed models with

79.3% accuracy. Finally, on this dataset, our graph-based characterization does not

yield good models when used by themselves. However, models using the state-of-the-

art features augmented with graph-based characterizations yield 83.2% accuracy in the

malware family classification problem.

In Chapter 6, we presented TileK, an optimizing compiler where directives are

used to drive parallelization. We used this compiler to generate many parallelized

versions of four computation kernels. We then evaluated these versions for a large

variety of inputs. We argue that this evaluation phase, while necessary, is prohibitively

expensive. This is a common problem when dealing with optimizing compilers because

they enable a large set of optimizations to be applied. Expert programmers can leverage

such compilers if they have a thorough understanding of the optimization space and

underlying hardware. We show that using machine learning can greatly assist the

programmers when porting legacy applications to new hardware.

In Chapter 7, we propose a solution to reduce the time necessary to tune appli-

cations. We use iterative compilation to search the tuning space for the best optimiza-

tions. While basic iterative compilation traverses the tuning space randomly, it is now

common to use predictive modeling to guide search toward the most promising opti-

mizations. We created models that use our TileK IR to rank order optimized kernels

in the tuning space based on their expected performance. Specifically, we compared

two methods to present TileK IR to neural networks, either using the graph’s feature

vectors or its graph spectral features (GSF). We show that both methods have their

advantages. GSF models permit us to reach 80% of the best performance 26× faster

113

than random search (15× faster than node features). Using node features that don’t

take into account the graph’s topology enables us to reach 99% of the best performance

3.9× faster than random search (1.5× faster than GSF).

8.2 Insights & Future Work

The work presented in this dissertation demonstrates various novel techniques

to learn from graphs using neural networks. As we conclude this work, it is important

to highlight remaining questions and possible improvements.

When we devised the extended dataset of Chapter 5, we imposed constraints on

the graphs. Specifically, we required the graphs to have more than eight nodes and at

least half as many edges as they have nodes. These criteria were determined empirically

by evaluating datasets formed using various limits. To make this method more widely

applicable, it is essential to determine precise constraints on applicable graphs. To this

end, we need both theoretical and experimental analyses. There are many definitions of

the Laplacian operator corresponding to different geometrical interpretations of graphs.

Properly defining the domain of applicability of each would permit us to choose which

one to use in a given situation.

After characterizing the limits of spectral methods, we need to envisage graph

transformations. The goal of these transformations will be to increase the applicability

of spectral methods. The shortest paths algorithm is used to build graph kernels for

support vector machine. We want to evaluate the characterization capabilities of the

spectrum of the shortest path graph.

As graph spectral methods will not always be applicable, other graph charac-

terization methods should be envisaged. We are particularly interested in recursive

neural networks which can be applied to the directed acyclic graphs (DAG) [Micheli

et al., 2004].

114

BIBLIOGRAPHY

[Agakov et al., 2006] Agakov, F., Bonilla, E., Cavazos, J., Franke, B., Fursin, G.,
O’Boyle, M. F. P., Thomson, J., Toussaint, M., and Williams, C. K. I. (2006). Using
machine learning to focus iterative optimization. In Proceedings of the International
Symposium on Code Generation and Optimization, CGO ’06, pages 295–305, Wash-
ington, DC, USA. IEEE Computer Society.

[Anderson et al., 2017] Anderson, H. S., Kharkar, A., Filar, B., and Roth, P. (2017).
Evading machine learning malware detection. Black Hat USA.

[Arandjelovic and Zisserman, 2012] Arandjelovic, R. and Zisserman, A. (2012). Three
things everyone should know to improve object retrieval. In Proceedings of the 2012
IEEE Conference on Computer Vision and Pattern Recognition, pages 2911–2918.

[Ashouri et al., 2017] Ashouri, A. H., Bignoli, A., Palermo, G., Silvano, C., Kulkarni,
S., and Cavazos, J. (2017). Micomp: Mitigating the compiler phase-ordering prob-
lem using optimization sub-sequences and machine learning. ACM Transactions of
Architecture and Code Optimizaion, 14(3):29:1–29:28.

[AWS, 2014] AWS (2014). Boto3 documentation. http://boto3.readthedocs.io/

en/latest/. Accessed: 2017-1-24.

[Bengio et al., 2007] Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., et al.
(2007). Greedy layer-wise training of deep networks. Journal of Advances in neural
information processing systems, 19:153.

[Bergstra and Bengio, 2012] Bergstra, J. and Bengio, Y. (2012). Random search for
hyper-parameter optimization. Journal of Machine Learning Research, 13(Feb):281–
305.

[Bodin et al., 1998] Bodin, F., Kisuki, T., Knijnenburg, P., O’ Boyle, M., and Rohou,
E. (1998). Iterative compilation in a non-linear optimisation space. In Workshop on
Profile and Feedback-Directed Compilation, Paris, France.

[Borgwardt and Kriegel, 2005] Borgwardt, K. M. and Kriegel, H. P. (2005). Shortest-
path kernels on graphs. In Proceedings of the Fifth IEEE International Conference
on Data Mining (ICDM’05).

115

http://boto3.readthedocs.io/en/latest/
http://boto3.readthedocs.io/en/latest/

[Boser et al., 1992] Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A training
algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop
on Computational Learning Theory, COLT ’92, pages 144–152, New York, NY, USA.
ACM.

[Bradley, 1997] Bradley, A. P. (1997). The use of the area under the roc curve in
the evaluation of machine learning algorithms. Journal of Pattern Recognition,
30(7):1145–1159.

[Breiman, 2001] Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

[Bronstein et al., 2016] Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Van-
dergheynst, P. (2016). Geometric deep learning: going beyond euclidean data. CoRR,
abs/1611.08097.

[Bruna et al., 2013] Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. (2013). Spec-
tral networks and locally connected networks on graphs. CoRR, abs/1312.6203.

[CAPS-e, 2012] CAPS-e (2012). https://www.olcf.ornl.gov/wp-content/

uploads/2012/02/HMPPWorkbench-3.0_HMPPCG_Directives_ReferenceManual.

pdf.

[Cavazos et al., 2007] Cavazos, J., Fursin, G., Agakov, F., Bonilla, E., O’Boyle, M.
F. P., and Temam, O. (2007). Rapidly selecting good compiler optimizations using
performance counters. In Proceedings of the International Symposium on Code Gen-
eration and Optimization, CGO ’07, pages 185–197, Washington, DC, USA. IEEE
Computer Society.

[Chang and Lin, 2011] Chang, C.-C. and Lin, C.-J. (2011). Libsvm: a library for
support vector machines. ACM Transactions on Intelligent Systems and Technology
(TIST), 2(3):27.

[Chen and Wang, 2008] Chen, L. and Wang, G. (2008). An efficient piecewise hashing
method for computer forensics. In Proceedings of First International Workshop on
Knowledge Discovery and Data Mining, pages 635–638. IEEE.

[Chen et al., 2010] Chen, Y., Huang, Y., Eeckhout, L., Fursin, G., Peng, L., Temam,
O., and Wu, C. (2010). Evaluating iterative optimization across 1000 datasets. ACM
SIGPLAN Notice, 45(6):448–459.

[Dagum and Menon, 1998] Dagum, L. and Menon, R. (1998). Openmp: an industry
standard api for shared-memory programming. IEEE Journal of Computational
Science & Engineering, 5(1):46–55.

[Darema, 2001] Darema, F. (2001). The spmd model: Past, present and future. In
Cotronis, Y. and Dongarra, J., editors, Recent Advances in Parallel Virtual Machine

116

https://www.olcf.ornl.gov/wp-content/uploads/2012/02/HMPPWorkbench-3.0_HMPPCG_Directives_ReferenceManual.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2012/02/HMPPWorkbench-3.0_HMPPCG_Directives_ReferenceManual.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2012/02/HMPPWorkbench-3.0_HMPPCG_Directives_ReferenceManual.pdf

and Message Passing Interface, volume 2131 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg.

[Demmel et al., 2005] Demmel, J., Dongarra, J., Eijkhout, V., Fuentes, E., Petitet,
A., Vuduc, R., Whaley, R. C., and Yelick, K. (2005). Self-adapting linear algebra
algorithms and software. Proceedings of the IEEE, 93(2):293–312.

[Denny Britz, 2015] Denny Britz (2015). Understanding Convolutional
Neural Networks for NLP (Blog). http://www.wildml.com/2015/11/

understanding-convolutional-neural-networks-for-nlp. Accessed: 2016-12-
23.

[Dolbeau et al., 2013] Dolbeau, R., Bodin, F., and de Verdire, G. C. (2013). One opencl
to rule them all? In 2013 IEEE 6th International Workshop on Multi-/Many-core
Computing Systems (MuCoCoS), pages 1–6.

[Domhan et al., 2015] Domhan, T., Springenberg, J. T., and Hutter, F. (2015). Speed-
ing up automatic hyperparameter optimization of deep neural networks by extrapo-
lation of learning curves. In Proceedings of the 24th International Joint Conference
on Artificial Intelligence (IJCAI).

[Dubach et al., 2007] Dubach, C., Cavazos, J., Franke, B., Fursin, G., O’Boyle, M. F.,
and Temam, O. (2007). Fast compiler optimisation evaluation using code-feature
based performance prediction. In Proceedings of the 4th International Conference
on Computing Frontiers, CF ’07, pages 131–142, New York, NY, USA. ACM.

[Eagle, 2008] Eagle, C. (2008). The IDA Pro Book: The Unofficial Guide to the
World’s Most Popular Disassembler. No Starch Press, San Francisco, CA, USA.

[Fan and Lv, 2008] Fan, J. and Lv, J. (2008). Sure independence screening for ultra-
high dimensional feature space. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 70(5):849–911.

[Fursin et al., 2005] Fursin, G. G., O’Boyle, M. F. P., and Knijnenburg, P. M. W.
(2005). Evaluating iterative compilation. In Pugh, B. and Tseng, C.-W., editors,
Proceedings of 15th Workshop on Languages and Compilers for Parallel Computing,
pages 362–376, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Gärtner et al., 2003] Gärtner, T., Flach, P., and Wrobel, S. (2003). On graph kernels:
Hardness results and efficient alternatives. In Learning Theory and Kernel Machines,
pages 129–143. Springer.

[Grigorevich and Lapa, 1966] Grigorevich, I. and Lapa, V. G. (1966). Cybernetic pre-
dicting devices. Technical report, DTIC Document.

117

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp

[Grossberg, 1972a] Grossberg, S. (1972a). Neural expectation: cerebellar and retinal
analogs of cells fired by learnable or unlearned pattern classes. Kybernetik, 10(1):49–
57.

[Grossberg, 1972b] Grossberg, S. (1972b). A neural theory of punishment and avoid-
ance, i: Qualitative theory. Mathematical Biosciences, 15(1):39 – 67.

[Grossberg, 1972c] Grossberg, S. (1972c). A neural theory of punishment and avoid-
ance, ii: quantitative theory. Mathematical Biosciences, 15(3):253 – 285.

[Guarnieri et al., 2012] Guarnieri, C., Tanasi, A., Bremer, J., and Schloesser, M.
(2012). The cuckoo sandbox.

[He et al., 2015] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. In Pro-
ceedings of the IEEE International Conference on Computer Vision (ICCV).

[Henaff et al., 2015] Henaff, M., Bruna, J., and LeCun, Y. (2015). Deep convolutional
networks on graph-structured data. CoRR, abs/1506.05163.

[Hinton and Salakhutdinov, 2006] Hinton, G. E. and Salakhutdinov, R. R. (2006). Re-
ducing the dimensionality of data with neural networks. Science, 313(5786):504–507.

[Ho, 1995] Ho, T. K. (1995). Random decision forests. In Proceedings of 3rd Interna-
tional Conference on Document Analysis and Recognition, volume 1, pages 278–282
vol.1.

[Hornik, 1991] Hornik, K. (1991). Approximation capabilities of multilayer feedforward
networks. Journal of Neural Networks, 4(2):251–257.

[Hornik et al., 1989] Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer
feedforward networks are universal approximators. Journal of Neural Networks,
2(5):359–366.

[Hubel and Wiesel, 1968] Hubel, D. H. and Wiesel, T. N. (1968). Receptive fields
and functional architecture of monkey striate cortex. The Journal of Physiology,
195(1):215–243.

[Ilievski et al., 2016] Ilievski, I., Akhtar, T., Feng, J., and Shoemaker, C. A. (2016).
Hyperparameter optimization of deep neural networks using non-probabilistic RBF
surrogate model. CoRR, abs/1607.08316.

[Ivakhnenko, 1971] Ivakhnenko, A. (1971). Polynomial theory of complex systems.
IEEE Transactions on Systems, Man, and Cybernetics, (4):364–378.

[Kim, 2014] Kim, Y. (2014). Convolutional neural networks for sentence classification.
arXiv preprint arXiv:1408.5882.

118

[Kinable, 2010] Kinable, J. (2010). Malware detection through call graphs. Master’s
thesis, Institutt for telematikk.

[Knijnenburg et al., 2003] Knijnenburg, P. M. W., Kisuki, T., and O’Boyle, M. F. P.
(2003). Combined selection of tile sizes and unroll factors using iterative compilation.
The Journal of Supercomputing, 24(1):43–67.

[Kolter and Maloof, 2004] Kolter, J. Z. and Maloof, M. A. (2004). Learning to de-
tect malicious executables in the wild. In Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 470–478.
ACM.

[Kornblum, 2006] Kornblum, J. (2006). Identifying almost identical files using context
triggered piecewise hashing. Journal of Digital investigation, 3:91–97.

[Kramer and Sangiovanni-Vincentelli, 1988] Kramer, A. H. and Sangiovanni-
Vincentelli, A. L. (1988). Efficient parallel learning algorithms for neural
networks. In Proceedings of The Conference on Neural Information Processing
Systems, pages 40–48.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural networks. In Proceedings of the
Advances in neural information processing systems, pages 1097–1105.

[Kulkarni, 2014] Kulkarni, S. (2014). Improving compiler optimizations using machine
learning. PhD thesis, University of Delaware.

[Li et al., 2014a] Li, F., Tang, F., and Shen, Y. (2014a). Feature mining for machine
learning based compilation optimization. In 2014 Eighth International Conference
on Innovative Mobile and Internet Services in Ubiquitous Computing, pages 207–214.

[Li et al., 2014b] Li, M., Zhang, T., Chen, Y., and Smola, A. J. (2014b). Efficient mini-
batch training for stochastic optimization. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’14, pages
661–670, New York, NY, USA. ACM.

[Li et al., 2005] Li, W.-J., Wang, K., Stolfo, S. J., and Herzog, B. (2005). Fileprints:
Identifying file types by n-gram analysis. In Proceedings from the Sixth Annual IEEE
SMC Information Assurance Workshop, pages 64–71. IEEE.

[Liao et al., 2013] Liao, C., Yan, Y., de Supinski, B. R., Quinlan, D. J., and Chapman,
B. (2013). Early experiences with the openmp accelerator model. In OpenMP in the
Era of Low Power Devices and Accelerators, pages 84–98. Springer.

[Liu and Motoda, 1998] Liu, H. and Motoda, H. (1998). Feature Extraction, Con-
struction and Selection: A Data Mining Perspective. Kluwer Academic Publishers,
Norwell, MA, USA.

119

[Liu et al., 2009] Liu, Y., Zhang, E. Z., and Shen, X. (2009). A cross-input adaptive
framework for gpu program optimizations. In Proceedings of IEEE International
Symposium on Parallel Distributed Processing, 2009.

[Loshchilov and Hutter, 2016] Loshchilov, I. and Hutter, F. (2016). CMA-ES for hy-
perparameter optimization of deep neural networks. CoRR, abs/1604.07269.

[Micheli et al., 2004] Micheli, A., Sona, D., and Sperduti, A. (2004). Contextual pro-
cessing of structured data by recursive cascade correlation. IEEE Transactions on
Neural Networks, 15(6):1396–1410.

[Minsky and Papert, 1969] Minsky, M. L. and Papert, S. (1969). Perceptions: An
Introduction to Computational Geomry. MIT press.

[Muller et al., 2001] Muller, K. R., Mika, S., Ratsch, G., Tsuda, K., and Scholkopf, B.
(2001). An introduction to kernel-based learning algorithms. IEEE Transactions on
Neural Networks, 12(2):181–201.

[Munshi, 2008] Munshi, A. (2008). Opencl. Parallel Computing on the GPU and CPU,
SIGGRAPH.

[Nobre et al., 2016] Nobre, R., Reis, L., and Cardoso, J. M. (2016). Compiler phase
ordering as an orthogonal approach for reducing energy consumption.

[Ogilvie et al., 2017] Ogilvie, W. F., Petoumenos, P., Wang, Z., and Leather, H.
(2017). Minimizing the cost of iterative compilation with active learning. In
2017 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO), pages 245–256.

[OpenACC, 2011] OpenACC (2011). Openacc: Directives for accelerators. http://

www.openacc-standard.org/.

[Park et al., 2012] Park, E., Cavazos, J., and Alvarez, M. A. (2012). Using graph-
based program characterization for predictive modeling. In Proceedings of the Tenth
International Symposium on Code Generation and Optimization, pages 196–206.
ACM.

[Park et al., 2011] Park, E., Kulkarni, S., and Cavazos, J. (2011). An evaluation of
different modeling techniques for iterative compilation. In Proceedings of the 14th
International Conference on Compilers, Architectures and Synthesis for Embedded
Systems, CASES ’11, pages 65–74, New York, NY, USA. ACM.

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Van-
derplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay,
E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830.

120

http://www.openacc-standard.org/
http://www.openacc-standard.org/

[Perozzi et al., 2014] Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). Deepwalk: Online
learning of social representations. CoRR, abs/1403.6652.

[Prechelt, 1998] Prechelt, L. (1998). Automatic early stopping using cross validation:
quantifying the criteria. Journal on Neural Networks, 11(4):761–767.

[Radare2, 2008] Radare2 (2008). Radare2. http://www.radare.org. Accessed: 2016-
12-25.

[ReversingLabs, 2015] ReversingLabs (2015). Reversinglabs hashing algorithm. https:
//www.reversinglabs.com/technology/reversinglabs-hash-algorithm.html.
Accessed: 2016-12-25.

[Reyes et al., 2012] Reyes, R., Lopez-Rodriguez, I., Fumero, J. J., and de Sande, F.
(2012). accull: An openacc implementation with cuda and opencl support.

[ROSE, 2017] ROSE (2017). Rose compiler infrastructure, user manual. http://

rosecompiler.org/ROSE_UserManual/ROSE-UserManual.pdf.

[Rosenblatt, 1957] Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing
automaton Project Para. Cornell Aeronautical Laboratory.

[Rumelhart et al., 1988] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1988).
Learning representations by back-propagating errors. Journal of Cognitive modeling,
5(3).

[Saxe and Berlin, 2015] Saxe, J. and Berlin, K. (2015). Deep neural network based
malware detection using two dimensional binary program features. In Proceedings of
10th International Conference on Malicious and Unwanted Software (MALWARE),
pages 11–20. IEEE.

[Schultz et al., 2001] Schultz, M. G., Eskin, E., Zadok, F., and Stolfo, S. J. (2001).
Data mining methods for detection of new malicious executables. In Proceedings of
IEEE Symposium on Security and Privacy, pages 38–49.

[Seide et al., 2011] Seide, F., Li, G., Chen, X., and Yu, D. (2011). Feature engineering
in context-dependent deep neural networks for conversational speech transcription.
In 2011 IEEE Workshop on Automatic Speech Recognition Understanding, pages
24–29.

[Shannon, 1948] Shannon, C. E. (1948). A mathematical theory of communication.
The Bell System Technical Journal, 27(3):379–423.

[Sharif Razavian et al., 2014] Sharif Razavian, A., Azizpour, H., Sullivan, J., and
Carlsson, S. (2014). Cnn features off-the-shelf: An astounding baseline for recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops.

121

http://www.radare.org
https://www.reversinglabs.com/technology/reversinglabs-hash-algorithm.html
https://www.reversinglabs.com/technology/reversinglabs-hash-algorithm.html
http://rosecompiler.org/ROSE_UserManual/ROSE-UserManual.pdf
http://rosecompiler.org/ROSE_UserManual/ROSE-UserManual.pdf

[Srivastava et al., 2007] Srivastava, A., Zäıane, O. R., and Antonie, M.-L. (2007). Fea-
ture space enrichment by incorporation of implicit features for effective classification.
In Database Engineering and Applications Symposium, 2007. IDEAS 2007. 11th In-
ternational, pages 141–148. IEEE.

[Strohmaier, 2013] Strohmaier, E. (2013). Highlights of the 42nd top500 list. SC13
BoF.

[Tabuchi et al., 2014] Tabuchi, A., Nakao, M., and Sato, M. (2014). A source-to-
source openacc compiler for cuda. In Euro-Par 2013: Parallel Processing Workshops,
volume 8374 of Lecture Notes in Computer Science, pages 178–187. Springer Berlin
Heidelberg.

[Theano, 2016] Theano (2016). Theano: A Python framework for fast computation of
mathematical expressions. arXiv e-prints, abs/1605.02688.

[Tian et al., 2014] Tian, X., Xu, R., and Chapman, B. (2014). Openuh: open source
openacc compiler. Proceedings of GPU Technology Conference.

[Triantafyllis et al., 2003] Triantafyllis, S., Vachharajani, M., Vachharajani, N., and
August, D. I. (2003). Compiler optimization-space exploration. In International
Symposium on Code Generation and Optimization, 2003. CGO 2003., pages 204–
215.

[Vafaie and Jong, 1998] Vafaie, H. and Jong, K. D. (1998). Feature space transfor-
mation using genetic algorithms. Proceedings of IEEE Intelligent Systems and their
Applications, 13(2):57–65.

[Vanderbruggen and Cavazos, 2014] Vanderbruggen, T. and Cavazos, J. (2014). Gen-
erating opencl c kernels from openacc. In Proceedings of the International Workshop
on OpenCL 2013 & 2014. ACM.

[Vanderbruggen et al., 2017] Vanderbruggen, T., Cavazos, J., Liao, C., and Quinlan,
D. (2017). Directive-based tile abstraction to distribute loops on accelerators. In
Proceedings of the General Purpose GPUs, pages 53–62. ACM.

[Vincent et al., 2010] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol,
P.-A. (2010). Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion. Journal of Machine Learning Research,
11(Dec):3371–3408.

[Vishwanathan et al., 2010] Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, R.,
and Borgwardt, K. M. (2010). Graph kernels. Journal of Machine Learning Research,
11:1201–1242.

122

[Weber et al., 2002] Weber, M., Schmid, M., Schatz, M., and Geyer, D. (2002). A
toolkit for detecting and analyzing malicious software. In Proceedings of the 18th
Annual Computer Security Applications Conference, pages 423–431. IEEE.

[Wolfe, 1989] Wolfe, M. (1989). More iteration space tiling. In Proceedings of the 1989
ACM/IEEE Conference on Supercomputing, Supercomputing ’89, pages 655–664,
New York, NY, USA. ACM.

[Wolfe, 2015] Wolfe, M. (2015). http://www.openacc.org/sites/default/files/

PGI-Wolfe-GTC-Notes_0.pdf.

[Xinai, 2016] Xinai, X. (2016). Review on resampling algorithms for imbalanced data
classification. Journal of Residuals Science & Technology, 13(5):138–1.

[Xu et al., 2016] Xu, L., Zhang, D., Jayasena, N., and Cavazos, J. (2016). Hadm:
Hybrid analysis for detection of malware. In Proceedings of SAI Intelligent Systems
Conference.

[Xue, 2000] Xue, J. (2000). Loop Tiling for Parallelism. Kluwer Academic Publishers,
Norwell, MA, USA.

[Zeng and Martinez, 2000] Zeng, X. and Martinez, T. R. (2000). Distribution-balanced
stratified cross-validation for accuracy estimation. Journal of Experimental & The-
oretical Artificial Intelligence, 12(1):1–12.

[Zhang and Wallace, 2015] Zhang, Y. and Wallace, B. (2015). A sensitivity analysis of
(and practitioners’ guide to) convolutional neural networks for sentence classification.
arXiv preprint arXiv:1510.03820.

123

http://www.openacc.org/sites/default/files/PGI-Wolfe-GTC-Notes_0.pdf
http://www.openacc.org/sites/default/files/PGI-Wolfe-GTC-Notes_0.pdf

Appendix A

MAGIC FRAMEWORK

Any sufficiently advanced technology

is indistinguishable from MAGIC.

Arthur C. Clarke

Machine learning is well known for its appetite for computation time and data

storage. We designed a framework to manage some of the issues linked to the deploy-

ment of a machine learning infrastructure. Our goal is to construct a purely declar-

ative framework that can be used both locally, in a cloud environment, or in a HPC

environment. We created the MAGIC framework which interfaces the data with the

learning algorithms. MAGIC can be used through a low-level command line interface,

or through a Python API. However to provide a simple, non-programmatic interface,

we created MAGIC’s Wizard. At this point, MAGIC demonstrates the viability of our

approach. However, the Wizard is limited to a visualization tool. In this appendix, we

present the design of MAGIC, the interface of its Wizard, and discuss the important

future milestone.

A.1 Design

The design of MAGIC is focused on two main constraints. First, it needs to

collect large amount of data to form datasets. Second, it needs to make it easy to

design and evaluate many models.

The first goal is realized through MAGIC dataset abstraction. It aggregates

many samples to efficiently stream them to the learning algorithms. The second goal is

realized through MAGIC session abstraction. It encapsulates training one instance of

124

a model described by the user. This abstraction authorizes the utilization of multiple

machine learning backends, currently either Theano or Scikit-learn.

A.1.1 Data Storage

In MAGIC, data storage is split between table and store. Tables are hierarchical

documents (equivalent to JSON) that are indexed using primary key (or partition key)

and, optionally, a secondary key (or sort key). Currently, MAGIC supports DynamoDB

Tables and a schema to use local file-systems (which can be applied to S3 buckets).

Stores are simple, directory-based, storage. Currently, MAGIC supports S3 Buckets

and local file-systems. MAGIC provides a high-level interface to work with both tables

and stores. this permits MAGIC to store any python data-structures, compatible with

JSON, into a record in a table. The store interface permits MAGIC to work with

different types of data: numpy arrays, pickled objects, and archives. MAGIC always

uses this interface to load or store data, it permits us to easily switch between local

and Cloud environments.

A.1.2 Datasets

MAGIC’s dataset abstraction is designed to aggregate the features from millions

of samples into segments that fit into the memory of a single compute node. These

segments are organized into groups, which can themselves be grouped into higher level

groups.

A.1.2.1 Feature Description

The first step to build a dataset with MAGIC is to describe the features used

to characterize samples. This description tells MAGIC how to retrieve the data from

wherever it is stored. It also provides MAGIC with the transformations that need to

be applied to the features.

Currently, MAGIC supports two types of data: structured and tensor. Struc-

tured data corresponds to hierarchical documents and can currently be retrieved from

JSON files (stored locally or in a S3 Bucket) or from a DynamoDB Table. Tensor data

125

corresponds to arrays of numerical data (integer, real, or complex) stored in numpy ar-

rays. These can be stored locally or in S3 buckets and can be retrieved from archives.

Listing A.1 shows an example of a structured feature description while Listing A.2

describes a tensor feature. The descriptions for both types of features have six fields

in common. Three of these fields are common to all the objects MAGIC managed:

title, description, and metatags. These fields are used to permit a user to search

for objects using natural language. The other fields are:

• format: either structured or tensor

• repo: points either to: a table for structured features, or a store for a tensor
feature

• size: size of the feature

{

2 "title": "Bytes Features",

"description": "Size in bytes , Entropy , Frequency for each bytes

value (0 to 255).",

4 "metatags": ["bytes" , "size" , "entropy" , "frequency"],

"format": "structured",

6 "repo" : "analysis",

"size": 256,

8 "fields": [

{ "path" : "metrics.bytes.size" },

10 { "path" : "metrics.bytes.entropy" },

{ "path" : "metrics.bytes.histogram" , "size" : 256, "preproc" :

["frequency:metrics.bytes.histogram"] }

12]

}

Listing A.1: Example of structured feature description. This feature set is extracted
from the bytes-level file analysis. It extracts features from the record produced by
this analysis. These include the size in bytes, the entropy of the file, and the bytes
frequency.

In the case of a structured feature, Listing A.1, there is only one other field:

fields (plus one optional). This a list of descriptors used to retrieve fields from the

structured document. It has a path toward the desired leaf of the document. As the

path can point to a list, the expected size of this list can be provided. Additionally,

126

a preprocessing directive can be added. Finally, the optional field, record, corresponds

to a secondary key to retrieve the record. The primary key is the samples identifier.

1 {

"title": "TileTree Spectrum",

3 "description": "GSF of a TileTree",

"metatags": ["gsf" , "tiletree"],

5 "format" : "tensor",

"repo" : "tilek",

7 "size" : 720,

"shape" : [12 , 30],

9 "dtype" : "complex64",

"path" : "spectrum",

11 "preproc" : ["ID"]

}

Listing A.2: Example of tensor feature description.

In the case of a tensor feature, Listing A.2, there are four more fields (plus one

optional). These include the shape and data type of the tensor. If the tensor obtained

for an item is not the correct size, it will either be truncated or filled with zeros along

each axis. The field path represents the path toward the stored tensor. This path is

prefixed with the sample identifier to retrieve the array from the store (repo field).

The optional field, archive, represents the path toward an archive. When present, the

archive’s path is prefixed by the sample identifier while the path field corresponds to

the path in the archive.

A.1.2.2 Building a Dataset

At the level of the MAGIC API, building a dataset takes a few steps. These

steps exist to permit the construction of complex group hierarchies and, in the future,

continuous extension of the dataset. However, we do not intend our user to use this

interface. We provide a simple script that implements the construction of a dataset

based on a list of samples. The flow of this script is presented in Figure A.1.

Using this script, a user only has to provide a list of samples (with stratification

targets), a list of features, and configuration such as the number of folds or segment size.

The first step splits all samples into as many folds as needed while ensuring that they

127

Figure A.1: MAGIC provides a helper script to create dataset. This script takes a
list of items with stratification targets, a list of features, and a number of folds. (1)
The stratification targets are used to separate the dataset into segments which are
organized into groups. (2) MAGIC collects the features for each of the items in the
segment and computes statistics about each segments. (3) MAGIC aggregates statistics
for the groups recursively (starting with segments’ statistics).

contain the same number of samples from each stratification target. This step generates

segments and groups descriptions (stored in JSON format). There is one group per fold.

Each of these groups have one sub-group per stratification target. Finally, each group

corresponding to one stratification target of one fold is made of one or more segments.

The second step is the collection of the segments. This operation is done in parallel

as each segment is independent. For each feature in the dataset, a numpy array is

stored, it contains the features for all samples in the segment. Alongside this array, we

also store statistics about the data. Finally, information about the segments are stored

into structured records (JSON). These records include the description of each segment,

lists of their samples, and the issues encountered while building them (such as missing

samples or features). The third step accumulates the statistics from the segments

composing the groups (recursively for groups composed of groups). These statistics

are stored using numpy arrays. Groups are also associated with records including their

descriptions and lists of children (groups or segments). The resulting data permits easy

cross-validation experiments with properly constructed normalization.

128

A.1.3 Sessions

In MAGIC, a session corresponds to training one specific model on one specific

dataset, using selected folds for training, validation, and testing. First, we explain how

models are defined in MAGIC, providing details for our Theano backend. Second, we

describe how to use MAGIC’s sessions to train and evaluate models.

A.1.3.1 Models

A model is describe by two documents: the black box description and the imple-

mentation. The black box description tells us about the ML backend to use, the type

of model (supervized, online learning, probabilistic outputs), the input features, and

the targets. The implementation describe the inside of the black box. For example,

if the model is a neural network, it tells us about the number of layer and their sizes.

At this point, MAGIC supports two ML backends: neural networks with Theano, and

Scikit-learn (experimental).

A.1.3.1.1 Neural Networks with Theano

The main machine learning backend for MAGIC uses Theano. Theano is a

Python library that allows you to define, optimize, and evaluate mathematical expres-

sions involving multi-dimensional arrays efficiently. We built this backend to permit

us to experiment with uncommon models. This backend enables us to describe neural

networks where layers inputs can be either feature sets, other layers outputs, or any

combination of both. The only constraint is that the graph formed by these layers need

to be acyclic, i.e. a DAG. Defining a model in MAGIC takes two steps.

First, one needs to provide the black-box description of the model, as in List-

ing A.3. This description tells MAGIC what backend it should use, the kind field. It

also tells whether the model support online training, if it is a supervized model, and if

it can provide probabilities for classifications. These parameters are important as they

inform us about the flow of training this model. This description also informs MAGIC

about the inputs and, for supervized learning, the outputs.

129

{

2 "title": "Flops Percentile from TileTree Spectrum",

"description": "This model predicts the percentile of performance

reach by a a TileTree given its spectral representation.",

4 "metatags": ["DNN" , "tiletree spectrum" , "flop percentile"],

"kind": "MAGIC.DNN",

6 "online": "true",

"supervized": "true",

8 "probabilities": "true",

"inputs": ["data.eigenvalues", "data.spectrum"],

10 "outputs": {

"data.flops -100": { "error": "misspred_int" }

12 }

}

Listing A.3: Example of “black box” description of a model for the Theano backend
of MAGIC. As for any MAGIC object, it is given a title, description, and metatags.
This describes a model trained with supervized learning using the flops-100 features.
It uses both the eigenvalues and spectrum of TileTrees to predict probabilities. As it
is neural network, it is trained online meaning incrementally (epochs).

1 {

"title": "MLP - 1 hidden",

3 "description": "Multiple layer perceptron with a single hidden

layer of 1024 rectifying linear units.",

"metatags": ["mlp" , "relu"],

5 "layers": [

{

7 "tag": "L0",

"activation": "relu",

9 "channels" : 1024,

"in": ["data.eigenvalues", "data.spectrum"]

11 },{

"tag": "L1",

13 "activation": "softmax",

"cost": "crossentropy_int",

15 "in": ["layer.L0"],

"out": ["data.flops -100"]

17 }

]

19 }

Listing A.4: Example of implementation for a model using the Theano backend.

130

Second, we provide MAGIC with an implementation of the model. It describes

the content of the black-box. The example in Listing A.4 shows an implementation

for the black-box defined in Listing A.3. This implementation is a multiple layer

perceptron with a single hidden layer of 1024 rectifying linear units. The output layer

uses a softmax activation to produce a probability distribution and the error cost is

measured using cross-entropy. The layer L0 takes two feature sets producing 1024

values activating rectifying linear units. The layer L1 takes the output of layer L0 and

produces a distribution of probabilities.

A.1.3.1.2 Scikit-Learn

The scikit-learn backend of MAGIC is not stable because advances in the neural

network work has priority. However, using this backend, one can use any model from

the scikit-learn python library. It includes a very large number of model for both

supervized and unsupervized machine learning.

A.1.3.2 Usage

Evaluating the performances of a machine learning model requires well defined

experimental conditions. The session object was create to encapsulate some of the

complexity arising from it. Particularly, a session corresponds to one implementation

of one model being trained for a specific split of one dataset. Here, split refers to the

division between training, validation, and testing samples.

Figure A.2 depicts the creation and training of a session in MAGIC. To create

a session (1), we need a dataset, a split (three lists of groups), and a model with its

implementation. A description of the session (title, description, metatags, dataset, and

model) and the hyper-parameters for the model are recorded. The hyper-parameter can

either be provided by the implementation of the model, or upon creation of the session.

Alongside these static information, MAGIC also initialize the model and its state. For

example, the initial data of a neural network are the randomly initialized weights and

biases of each layer. When the session runs (2), it is controlled by policies which tells

131

Figure A.2: We depict the creation and utilization of MAGIC’s Sessions. First, the
session is created. It saves a description of the session and its hyper-parameters. It
initializes an instance of the model and summary of its state. Second, the session is
trained (potentially in multiple increments). During this training, the ML algorithm
retrieves the data from the relevant segments of the dataset. As the model is trained,
MAGIC triggers checkpoints when the model is evaluated and saved. The training is
provided with policies which control the batches, stopping condition and checkpointing.
Third, the trained model can be deployed, or the collected data can be used to evaluate
the model.

it how to stream the dataset, when to checkpoint and/or evaluate the model, and what

the stopping conditions are. The main goal of this setup is to authorize interruption

and restart of the training. Finally (3), the information collected during training and

the saved models can either be used to evaluate the capability of the model or to

deploy this model in production. In the case of online model, such as neural networks,

we collect various metrics, such as the error-rate, which can be used to compare the

convergence of different models.

A.2 WebUI

MAGIC exposes both a command line interface (CLI) and application pro-

gramming interface (API). While these are sufficient to build datasets and work with

sessions, we needed a tool leverage the large amount of data produced by MAGIC.

132

Especially, we wanted the capability to inspect datasets and sessions. For the dataset,

it means checking the groups hierarchy and statistics of each groups or segments. It

permits, for example, to know the distribution of each classification target in a group.

For the session, their is much more information. When a session is running, it regularly

checkpoints its state which include evaluating the model.

MAGIC’s Wizard is meant to provide a simple interface to access all this in-

formation. In the future, the Wizard will not only permit MAGIC’s users to create

datasets and sessions but it will also help the user declare new feature sets and construct

models.

A.3 Milestones

The MAGIC framework is at the stage of proof-of-concept. We identified several

milestones to make it attractive to most machine learning practitioners.

A.3.1 Machine Learning Backends

Machine learning practitioners want to evaluate multiple ML algorithms when

tackling a new problem. It makes it essential for MAGIC to handle multiple ML back-

end. Currently, MAGIC supports our Theano backend and provides an experimental

connection to scikit-learn library. Our Theano backend is meant to explore the con-

struction of complex neural network architectures. The computational performance of

the resulting networks can be poor. Simultaneously, the scikit-learn backend give us

access to many state-of-the-art implementation of ML algorithm but lack support for

deep learning.

Reaching this milestone requires to fully validate the scikit-learn connection and

provides a state-of-the-art deep learning backend. We propose to develop this backend

using Keras, a high-level neural networks API.

A.3.2 Learning Patterns

The validation of machine learning models requires a careful examination of

multiple instances of the same model trained with different splits of the dataset. There

133

is many different schema to do this validation, such as hold-out, leave-one-out, and

cross-validation. Currently, MAGIC does not provide any abstractions to deal with

these “learning patterns”. Their implementation is left to the user who have to create

many sessions and analyze the result on a case-by-case basis.

We wish to provide an abstraction for these “learning patterns”. They are not

limited to cross-validation and we identified a few more of these patterns when using

MAGIC. The current list of pattern that we wish to implement in MAGIC is:

• hold-out validation

• leave-one-out validation

• (nested) cross-validation

• cascading models

• layer-wise pretraining (specific to neural networks)

Reaching this milestone only requires the implementation of the cross-validation

pattern. It would introduce the necessary abstraction for learning patterns and simplify

our own work. Indeed, we are heavily relying on cross-validation to build our models.

As we start using more complex models, we are sure to identify more learning patterns.

Hence, a subsequent milestone would address the creation of scripted learning-flows.

This approach should permits any MAGIC user to define their own learning patterns.

A.3.3 HPC support

MAGIC’s design is meant to permit us to train a large number of model on a

distributed system. Our focus has been on AWS Cloud services which provide “elastic”

computation resources. However, many ML users have access to high performance

computing clusters. We want to make sure that MAGIC users can leverage these

systems.

Using HPC system is vastly different from the Cloud infrastructure. Particu-

larly, we want to make sure that MAGIC properly uses the file-systems in these cluster.

Another issues with HPC systems is the connection with the outside world. Especially,

we want to be able to distribute ML workload between HPC and Cloud resources.

134

A.3.4 Control from Wizard

MAGIC’s Wizard is currently limited to be a visualization tool. However, it

is intended to become the main interface for MAGIC users. Using the Wizard, one

should be able to define feature sets and models, to construct dataset, and to instantiate

learning-patterns.

In addition, the Wizard should be able to manage multiple computation re-

sources. It should permit users to submit workloads (datasets construction, sessions

training and analyses) on different systems. For example, AWS instances would be

used to construct a dataset using data stored in AWS S3 Buckets. However, evaluating

hundreds of models using cross-validation should be done on a HPC cluster.

Full control of MAGIC through the Wizard is a large project. The first milestone

in this project includes:

• create, edit, and delete feature sets and models description

• construct a dataset (implementing Figure A.1)

• create and submit sessions

For this milestone, we will focus on AWS Cloud, leaving the HPC integration

for a later milestone.

A.3.5 Data Sources

At this point, MAGIC is limited to data stored in hierarchical documents or

numpy arrays. In addition, they have to be either on local disk, AWS S3 Buckets, or

AWS DynamoDB Tables. We wish to offer MAGIC user with more possible sources

to inject their data. This problem can be split into two sub-problems: where does the

data come from, and what is the data format.

First, we want to absorb data from any number of repositories. It includes

retrieving data from various databases, such as SQL and MongoDB. We also need to

integrate with other Cloud providers and their data-storage solutions.

135

Second, raw data are rarely amendable to ML. For example, when working

on malware classification, the first step was to analyze millions of files. We used a

distributed file analysis platform which applies many analyzers to a single file. We can

integrate this characterization phase in MAGIC and permit users to instantiate their

own analyzers. It would enable MAGIC users to implement their whole data ingestion

pipeline in the construction of datasets.

A.3.6 Virtual Segmentation

The last milestone deals with segmentations. Currently, the segmentation of

MAGIC dataset is rigid: once a segment is created, it cannot be changed. It is an

issue for some use case, especially when it come to continuous learning for search. In

this case, the samples used for learning depends on the model being trained. This

is an important learning pattern. Indeed, search in large spaces can be improved by

orders of magnitude with machine-learning. We want to introduce the notion of virtual

segments. A virtual segment refers to items in an actual segment. Virtual segments

are still immutable however they can be added and removed from the dataset at any

time.

136

Appendix B

ROSE COMPILER

ROSE is an open source compiler infrastructure to build source-to-source pro-
gram transformation and analysis tools for C, C++, Fortran, and other languages.
ROSE aims to be: (1) a library (and set of associated tools) to quickly and easily ap-
ply compiler techniques to your code in order to improve application performance and
developer productivity, and (2) a research and development compiler infrastructure
for one to write his own custom source-to-source translators to perform source code
transformations, analyses, and optimizations. The approach of ROSE Compiler is:

• Cutting-edge research on source- and high-level compiler analysis and optimiza-
tion algorithms.

• Best-practice software development to incorporate existing compiler techniques
to and develop new ones.

• Pre-built ROSE tools to perform program transformation, analysis and optimiza-
tion of your code.

• An easy-to-use API to help you to build your own customized, or domain-specific
compiler-based analysis, transformation, and optimization tools.

B.1 Abstract Syntaxt Tree

When it comes to implementing programming models, working from compiler

directives to instantiation of the runtime is an advantageous path. Compiler directives

are easy to grasp for the user and can require very little changes to the original code.

However from the compiler perspective it is more complex. Compiler directives can

profoundly change the meaning of nearby language constructs. Consider the for loops

of C/C++ distributed using OpenMP. It is this action on the languages they are

embedded in that makes compiler directive so user friendly. However, most compilers

work with intermediate representation (IR) that are far from the source-code.

ROSE is a source-to-source compiler, so its intermediate representation (IR) is

as close to the source code as possible. It uses an Abstract Syntax Tree (AST) to

137

1 SgExpress ion ∗ makeExpr (
SgVariableSymbol ∗ v1 , SgVariableSymbol ∗ v2 , f l o a t c1 , f l o a t c2

3) {
re turn SageBui lder : : buildAddOp (

5 SageBui lder : : bui ldMultiplyOp (
SageBui lder : : buildVarRefExp (v1) ,

7 SageBui lder : : bu i ldFloatValue (c1)
) ,

9 SageBui lder : : bui ldMultiplyOp (
SageBui lder : : buildVarRefExp (v1) ,

11 SageBui lder : : bu i ldFloatValue (c1)
)

13) ;
}

15
SgFunct ionDeclarat ion ∗ makeFunc (std : : s t r i n g function name , f l o a t c1 , f l o a t c2) {

17 SgScopeStatement ∗ scope = SageBui lder : : topScopeStack () ;
SgType ∗ f l o a t t y p e = SageBui lder : : bui ldFloatType () ;

19
// Build a parameter l i s t f o r the func t i on : ”(f l o a t a , f l o a t b)”

21 SgFunctionParameterList ∗ params = SageBui lder : : bui ldFunct ionParameterList (
SageBui lder : : bu i l d In i t i a l i z edName (”a” , f l o a t t y p e) ,

23 SageBui lder : : bu i l d In i t i a l i z edName (”b” , f l o a t t y p e)
) ;

25
SgIn i t ia l i zedName ∗ i n i t name a = params−>g e t a r g s () [0] ;

27 SgVariableSymbol ∗ sym a = init name a−>s ea r ch fo r symbo l f r om symbo l tab l e () ;
SgIn i t ia l i zedName ∗ in i t name b = params−>g e t a r g s () [b] ;

29 SgVariableSymbol ∗ sym b = init name b−>s ea r ch fo r symbo l f r om symbo l tab l e () ;

31 // Build a d e f i n i n g func t i on de c l a r a t i on : ” f l o a t name(f l o a t a , f l o a t b) {}”
SgFunct ionDeclarat ion ∗ f un c d e c l = SageBui lder : : bu i ldDe f in ingFunct ionDec la ra t i on (

33 function name , f l o a t t yp e , params , scope) ;

35 SgBasicBlock ∗ func body = func dec l−>g e t d e f i n i t i o n ()−>get body () ;
SageBui lder : : pushScopeStack (func body) ;

37
Sage In t e r f a c e : : appendStatement (

39 SageBui lder : : buildReturnStmt (SageBui lder : : buildExprStatement (
makeExpr (sym a , sym b , c1 , c2)

41)) ,
func body

43) ;

45 SageBui lder : : popScopeStack () ;

47 return f unc de c l ;
}

49
in t main (i n t argc , char ∗∗ argv) {

51 SgProject ∗ p ro j e c t = new SgProject (argc , argv) ;
SgSourceFi l e ∗ f i l e = i sSgSou r c eF i l e (pro j ec t−>g e t f i l e (0)) ;

53 SgGlobal ∗ g l oba l s c op e = f i l e −>g e t g l o b a l s c op e () ;

55 SageBui lder : : pushScopeStack (g l oba l s c op e) ;

57 SgFunct ionDeclarat ion ∗ f un c d e c l = makeFunc (”my func” , 19 .2 , 5 . 7 9) ;
Sage In t e r f a c e : : prependStatement (func dec l , g l oba l s c op e) ;

59
SageBui lder : : popScopeStack () ;

61
AstTests : : runAl lTests (p r o j e c t) ;

63 return backend (p r o j e c t) ;

65 return 0 ;
}

Listing B.1: Building an AST with ROSE Compiler. This adds a function to the file
passed in argument. The function is float my_func(float a, float b) { return a*19.2+

b*5.79; }.

138

Figure B.1: AST from ROSE Compiler

SgInitializedName SgInitializedName

SgFunctionParameterList

SgVarRefExp

SgCastExp SgDoubleVal

SgMultiplyOp

SgVarRefExp

SgCastExp SgDoubleVal

SgMultiplyOp

SgAddOp

SgCastExp

SgReturnStmt

SgBasicBlock

SgFunctionDefinition

SgFunctionDeclaration

SgGlobal

SgSourceFile

represent the code. An AST is a tree representation of the abstract syntactic structure

of source code. Each node of the tree denotes a construct of the programming language.

Figure B.1 depicts the AST for the function float my_func(float a, float b) { return

a*19.2+b*5.79; }. This figure is a representation of ROSE’s AST (Section B.2).

Interpreting compiler directives is much easier when working on an AST than

with IRs that are closer to machine code, such as LLVM or GCC. Working in the

context of an AST, accessing high-level information is easier. All the structures from

C/C++ are easily accessible: scopes, loops, types, ...

While extracting information from an AST is relatively simple, transformation

and generation of ASTs is much harder. Fortunately, ROSE Compiler provides an AST

node Factory : SageBuilder. It provides a unified interface to build and assemble ASTs.

In Listing B.1 we present a small tool working on ROSE’s AST. It adds the func-

tion float my_func(float a, float b) { return a*19.2+b*5.79; } at the begining of the

first file passed in argument. The function makeExpr takes the symbols of two variables

139

(v1 and v2) and two floating point numbers (c1 and c2). It builds an expression, for

example makeExpr(sym_a, sym_b, 19.2, 5.79), where sym_a and sym_b are the respective

symbols of variable a and b would produce a*19.2+b*5.79. The function makeFunc takes

a function name and two floating point numbers. It returns a function that computes

the sum of its two arguments multiplied by the floating point numbers. The function

main uses its arguments to build a ROSE project. It gets the first source file, then calls

makeFunc("my_func", 19.2, 5.79), and appends the resulting function to the file.

The function makeExpr illustrates two important points. First, building the AST

of an expression in ROSE is extremely simple. SageBuilder provides many build func-

tions that can be nested to build corresponding ASTs. The second point is the conve-

nience of having symbols. Symbols are unique identifiers for objects (variable, function,

class, namespace, ...). Function makeFunc shows that building more complex objects

like a function definition requires more work. It becomes important to be aware of the

scopes. Files, function and class definitions, namespaces, and block of codes (curly-

braces { }), are some of the C++ construct that create a scope. An entity only lives

inside the scope where it has been declared. For example, { int i = 0 ; { int j = 3;

} ; i = j; } is invalid because the scope of j is limited to the inner block of code.

Symbols associate one name and one declaration to one scope.

B.2 Visualization

Figure B.1 showed a raw AST from ROSE Compiler. This graph was generated

using an AST visualization tool built using ROSE’s AST traversal. ROSE’s AST

traversal implements a Visitor pattern toward the AST. The traversal visits each node

and collects information. In the graph generator, we collect a representation of the

AST for visualization. Using the graph generator, we can display the AST at different

granularities, as shown in Figures B.2a and B.2b.

For Figure B.2a we used the default generator. This generator only changes the

shape, color, and label of the nodes. For Figure B.2b we used a custom generator which

stop generating the AST on the first expression it reaches. The label of the node is the

140

Variable:
a

Variable:
b

Parameters

SgVarRefExp

SgCastExp SgDoubleVal

SgMultiplyOp

SgVarRefExp

SgCastExp SgDoubleVal

SgMultiplyOp

SgAddOp

SgCastExp

SgReturnStmt

SgBasicBlock

Function Definition

Function:
my_func

(a) We can add coloring and change the nodes
shape.

Function:
my_func

float a float b

Parameters

SgReturnStmt

a * 19.2 + b * 5.79

SgBasicBlock

Function Definition

(b) Expression trees can be reduced for clar-
ity.

Figure B.2: For the same code than Figure B.1, we applied different filters.

unparsed expression. In addition this graph generator can skip some nodes, nodes can

be placed in different clusters, and edges can be added to the graph.

141

Appendix C

PARSING COMPILER DIRECTIVES

Languages like C and C++ can be extended using compiler directives. In this

appendix, we describe a module for ROSE Compiler which facilitate the creation and

maintenance of such extensions.

C.1 Directive-based Language Extension

C.1.1 Directive Format

We observed that, in many annotation languages, the directives have the same

format as OpenMP and OpenACC directives (Listing C.1).

#pragma acc parallel copy(a[0:n][0:m])

#pragma acc loop gang

#pragma omp parallel shared(a,b) private(i)

#pragma omp for schedule(static, chunk)

Listing C.1: Different Directives from OpenACC and OpenMP Languages.

C.1.1.1 Structure

The construction of these directives is simple. Directives are the concatenation

of (1) the name of the language, (2) the construct, and (3) a list of clauses. Each

component from the directives in Listing C.1 are presented in Table C.1.

OpenACC OpenMP
Language acc omp

Constructs parallel loop parallel for

Clauses copy(a[0:n][0:m]) gang
shared(a,b)

schedule(static, chunk)
private(i)

Table C.1: The different components of the directives in Listing C.1.

142

C.1.1.2 Clause Arguments

Clauses can take arbitrary arguments. We can look at the copy clause in

OpenACC. arr[start:length] is a Cish notation for array sections. For example,

arr[3:10] is a section of arr made of the 10 elements from arr[3] to arr[12]. It can

also be a more complex C or C++ expression, such as my stream.get data()[my stream.curr

: Streamer::get chunck size()]. Handling such expressions (access to fields and

methods, arithmetic, types, ...) is essential to working with real C++ applications.

C.1.1.3 Relations between directive and AST nodes

Depending on the construct, the directives are attached to neighboring nodes

from the AST. For example, OpenMP’s loop construct (#pragma omp loop) is always

attached to a for loop (the one directly following the directive), while OpenMP’s parallel

construct (#pragma omp parallel) can be attached either to a code block ({}) or a

loop (through another directive). Some directives act as stand-alone statements. All

directives are placed in a scope, and linked to the corresponding AST node. Clauses

arguments, that are code snippets, are parsed in the context of this scope.

C.1.1.4 Relations between directives

Relations between directives can originate from the relative position of the di-

rectives in the AST. For example, OpenACC’s loop construct (#pragma acc loop)

always has a parent which is either another loop construct or a parallel construct. In

other cases, the relation between directives originates from the clauses. OpenACC’s

parallel and kernel constructs (#pragma acc parallel and #pragma acc kernel) can

be related through the clauses async and wait. async assigns an integer to the con-

struct it applies to, and wait takes a list of integers. These clauses are used to define

dependencies between different parallel regions when they executed asynchronously.

C.1.1.5 How to Parse Directives

Compiler directives are a common way to provide information or trigger analysis

and transformation. However, there are no standard way to define their grammars. It

143

means that parsing directives is done on a case-by-case basis. Often, it means using a

parser generator such as bison or flex.

Using two existing set of directives, we defined rules that can be used to con-

struct such directives. We used these rule to build a tool for ROSE that enables ROSE

users to easily define new sets of directives. Our goal is to make it much easier to

design and implement extensions for C and C++ in ROSE Compiler.

C.2 Generic Parser

The DLX tool is a template library for ROSE Compiler. The template can be

specialized for different languages. Given an AST, DLX collects all the directives from

the target language, and it parses the associated string. The parsing determines the

construct, and it produces a list of clauses (with their arguments). Then, depending

on the construct, DLX associates nodes from the AST to the directive. When all the

directives have been processed, the relation between directive is determined. DLX’s

output is a graph where the nodes are directives and the edges are the relations between

these directives. To instantiate a frontend, DLX needs the following information:

• list of constructs and clauses

• neighbor AST nodes of constructs

– container in the IR

– retrieving from the AST

• list of parameters for every kind of clauses

– container in the IR

– parsing from the directive

• relation between directives: building graph from list of directives

C.2.1 Implementation of DLX

C.2.1.1 Class and Method Factory

DLX uses a template pattern to build its Internal Representation (IR) and the

Frontend. The simplest expression of this pattern is presented in Listing C.2. It is made

of three parts: the template (Listing C.2a), the specialization (Listing C.2c), and the

144

template <c l a s s S>
2 s t r u c t g e n e r a t o r t {

4 template <enum S : : l i s t e kind>
void f o o () ;

6

void foo (enum S : : l i s t e kind) ;
8 } ;

(a) Template

i n t main () {
2 gene ra to r t<s eed t> genera to r ;

4 genera to r . foo (s e e d t : : e 0) ; // d i sp l a y ” e 0 ”
genera to r . foo (s e e d t : : e 1) ; // d i sp l a y ” e 1 ”

6

r e turn 0 ;
8 }

(b) Main

#inc lude ” generato r . hpp”
2

s t r u c t s e e d t {
4 enum l i s t e { e 0 , e 1 } ;
} ;

6

template <>
8 template <>

void gene ra to r t<s eed t > : :
10 f oo <s e e d t : : e 0 >() ;

12 template <>
template <>

14 void gene ra to r t<s eed t > : :
f oo <s e e d t : : e 1 >() ;

16

template <>
18 void gene ra to r t<s eed t > : : f oo (

enum s e e d t : : l i s t e kind
20) ;

(c) Specialization

template <>
2 template <>

void gene ra to r t<s eed t > : : f oo <s e e d t : : e 0 >() {
4 std : : cout << ” e 0 ” << std : : endl ;
}

6

template <>
8 template <>

void gene ra to r t<s eed t > : : f oo <s e e d t : : e 1 >() {
10 std : : cout << ” e 1 ” << std : : endl ;
}

12

template <>
14 void gene ra to r t<s eed t > : : f oo (

enum s e e d t : : l i s t e kind) {
16 switch (kind) {

case s e e d t : : e 0 : foo <s e e d t : : e 0 >() ; break ;
18 case s e e d t : : e 1 : foo <s e e d t : : e 1 >() ; break ;

}
20 }

(d) Implementation

Listing C.2: The template pattern enables to define a repetitive interface based on an
enumeration.

implementation (Listing C.2d). The template is called generator and the specialization

defines a seed. The seed is a class defining an enumeration. The generator takes the

seed as template argument. The generator defines a template object (either a method

or sub-class) which takes an enumeration from the seed as a template parameter.

This pattern is useful as it enables us to organize similar functions or classes

based on an enumeration. On the other side, it is verbose and it requires us to provide

additional code to resolve the template at runtime (switch statement in Listing C.2d).

C.2.1.2 Pattern in DLX

The description of DLX’s compiler directives starts with two lists: constructs

and clauses. For each element of these lists, we provide one data-structure and some

145

methods. Each type of construct is associated to different nodes from the AST. Each

type of clause has different parameters. The data-structure enables storing either

information, forming DLX Internal Representation (IR). The functions are used to

analyze the neighborhood of the directives in the AST and parse the arguments of the

clauses.

In DLX, the Frontend and the IR are constructed using a seed representing the

language. This class defines two enumerations: one for the constructs and one for the

clauses.

C.2.1.3 Automation

Because it uses this pattern, implementing compiler directives using DLX is

simple but repetitive. The template pattern enables a procedural method to implement

the language. However, the process would be improved by some automation. We are

developing a Domain Specific Language (DSL) to describe DLX language. A program

in this DSL will produce the seed defining the language, the constructs’ and clauses’ IR

nodes, the parser for some clauses’ parameters, and empty definitions for the remaining

functions.

146

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	1 Introduction
	2 Machine Learning Background
	2.1 Introduction
	2.2 Deep Learning
	2.2.1 Artificial Neural Networks
	2.2.2 Training Neural Networks
	2.2.3 Deep Neural Networks
	2.2.4 Implementation

	2.3 Random Forest
	2.4 Support Vector Machine
	2.5 Comparing Models
	2.5.1 Cross Validation
	2.5.2 Accuracy
	2.5.2.1 Error Rate
	2.5.2.2 Confusion Matrix
	2.5.2.3 Receiver Operating Characteristic and Area Under the Curve

	2.5.3 In practice

	2.6 Conclusion

	3 Machine Learning for Graphs
	3.1 Introduction
	3.2 Graph Formalism
	3.3 Graph Kernels for Support Vector Machine
	3.4 Graph Spectral Analysis
	3.5 Graph Spectral Features
	3.6 Conclusion

	4 Basic Neural Networks for Malware Classification
	4.1 Introduction
	4.2 Malware Datasets and Characterization
	4.2.1 Dataset
	4.2.2 Bytes-Entropy Histogram
	4.2.3 Malware's Executable Code
	4.2.3.1 Disassembly & Analysis
	4.2.3.2 Code Features

	4.2.4 Summary of the Features

	4.3 Machine Learning in the Cloud
	4.3.1 Training and Consensus
	4.3.2 Cloud Infrastructure

	4.4 Malware Classification Results
	4.4.1 Models
	4.4.1.1 Multilayer Perceptrons
	4.4.1.2 Random Forests

	4.4.2 Accuracy and Training Time

	4.5 Related Work
	4.5.1 Malware Characterization
	4.5.2 Feature Graphs

	4.6 Conclusion

	5 Advanced Neural Networks for Malware Classification
	5.1 Introduction
	5.2 Feature Sets
	5.2.1 Three Types of Features
	5.2.1.1 Hashes Histograms
	5.2.1.2 Bytes-Entropy Histograms
	5.2.1.3 Spectral Features of Assembly Graphs

	5.2.2 Transformations
	5.2.3 Feature Sets Summary

	5.3 Dataset
	5.3.1 Relevant Files From Our Database
	5.3.2 Composition of the Dataset
	5.3.3 Streaming of Samples

	5.4 Neural Network Engineering
	5.4.1 Training Procedure
	5.4.1.1 High Level Features
	5.4.1.2 Classifiers

	5.4.2 Neural Network Architectures
	5.4.2.1 Input Convolutional Layers
	5.4.2.2 Hidden Convolutional Layers
	5.4.2.3 Reference Architectures

	5.5 Results
	5.5.1 Experimental Setup
	5.5.2 Accuracy Results
	5.5.3 Computational Performances

	5.6 Related Work
	5.6.1 Dataset Augmentation
	5.6.2 Auto-encoder and Convolutional Architectures

	5.7 Conclusion

	6 Exploration and Characterization of Compiler Tuning Space
	6.1 Introduction
	6.2 TileK
	6.2.1 TileK language
	6.2.2 Iteration Domain
	6.2.3 Distributed Kernels
	6.2.3.1 TileK Threads
	6.2.3.2 TileK Accelerator

	6.3 Generating Tiled Kernels
	6.3.1 LoopTrees
	6.3.2 Generated Kernel
	6.3.3 From Loop Bounds to Tile Bounds

	6.4 Generating SPMD Kernels
	6.4.1 Kernel Index to Tile Iteration
	6.4.2 Threads
	6.4.3 Accelerator

	6.5 Optimization Space Exploration
	6.5.1 Thread Experiments
	6.5.2 Accelerator Experiments

	6.6 Related Work
	6.7 Conclusion

	7 Performance Prediction for Computation Kernel Tuning
	7.1 Introduction
	7.2 Dataset
	7.2.1 Feature Graph from TileTree
	7.2.2 Targets

	7.3 Models
	7.3.1 Neural Networks
	7.3.1.1 TileTree Representations
	7.3.1.2 Architectures

	7.3.2 Support Vector Machine
	7.3.3 Evaluation

	7.4 Results
	7.4.1 Effect of Complex Neural Networks
	7.4.2 Performance Milestone

	7.5 Related Work
	7.6 Conclusion & Future Work

	8 Conclusion
	8.1 Results
	8.2 Insights & Future Work

	Bibliography
	A MAGIC Framework
	A.1 Design
	A.1.1 Data Storage
	A.1.2 Datasets
	A.1.2.1 Feature Description
	A.1.2.2 Building a Dataset

	A.1.3 Sessions
	A.1.3.1 Models
	A.1.3.2 Usage

	A.2 WebUI
	A.3 Milestones
	A.3.1 Machine Learning Backends
	A.3.2 Learning Patterns
	A.3.3 HPC support
	A.3.4 Control from Wizard
	A.3.5 Data Sources
	A.3.6 Virtual Segmentation

	B ROSE Compiler
	B.1 Abstract Syntaxt Tree
	B.2 Visualization

	C Parsing Compiler Directives
	C.1 Directive-based Language Extension
	C.1.1 Directive Format
	C.1.1.1 Structure
	C.1.1.2 Clause Arguments
	C.1.1.3 Relations between directive and AST nodes
	C.1.1.4 Relations between directives
	C.1.1.5 How to Parse Directives

	C.2 Generic Parser
	C.2.1 Implementation of DLX
	C.2.1.1 Class and Method Factory
	C.2.1.2 Pattern in DLX
	C.2.1.3 Automation

