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maize meiotic anthers from Zhai et al., 2016 were used for these plots.120 

Figure 4.8: Intra-molecular secondary structure at IR-related 24-nt PHAS 

loci in Asparagus. (A) Scatter plots showing secondary structure 

scores as function of strand-specificity scores for IR-related loci along 

with randomly selected hc-siRNA, miRNA, tasiRNA and IR-related 

21-nt loci that passed the coverage cutoff. Dotted line represents score 

medians, red for 24-nt PHAS loci and blue for hc-siRNAs. (B) 

Consensus of dsRNA structure scores (red) from five IR-based PHAS 

loci show two statistically significant peaks of paired nucleotides and 

a “valley” (loop, in green) of unpaired nucleotides validating 

formation of stem-loop structure from these IR-related PHAS 

transcripts. The five loci for this figure were selected based on high 

coverage and similar lengths and loop sizes. The control (blue line) 

represents the mean score from shuffled controls. ................................ 124 
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Figure 4.9: Anther stage and size correlations capture pre-meiotic and 

meiotic anther stages for Lilium and daylily. (A) Paraffin-

embedded Lilium samples, cross-sectioned and stained with 

propidium iodide. Histology and cell divisions were examined for 

determination of the cell stages using confocal microscopy. Based on 

the morphology of archesporial cells (yellow arrows), 4 mm and 5 

mm anthers corresponded to pre-meiotic stages. The 6 mm and 7 mm 

anthers were undergoing meiosis, and displayed a well-developed 

tapetum. (B) For daylily, anthers were treated with ScaleP clearing 

buffer for 1 week (see methods), and imaged using confocal 

microscopy. Histology and cell divisions in the longitudinal images of 

anthers were examined for determination of stages; the 1 mm anther 

was at a pre-meiotic stage, while 2 mm and 3 mm anthers were past 

meiosis and the tapetum was starting to thin out. Scale bars = 100 μm 

for all images. ........................................................................................ 128 

Figure 4.10: Transcriptome and hybrid assemblies developed for Asparagus, 

Lilium and daylily. Precisely-staged pre-meiotic, meiotic anther and 

leaf samples were used to generate transcriptome assemblies for 

Lilium and hybrid assemblies for Asparagus and daylily; a phylogeny 

of species is at left and data types and metrics at right. For single- and 

paired-end libraries, reads are represented in million(s), and for SMRT 

libraries processed full-length transcripts are represented in thousands. 

The E90N50 metric signifies the N50 statistic for transcripts in the 

90th percentile of normalized expression. ............................................. 129 

Figure 4.11: Reproductive PHAS triggers and 24-nt phasiRNAs in Lilium. (A) 

miR2118 (violet) and miR2275 (blue) family members identified in 

Lilium and daylily by comparing mature sRNA sequences to members 

in miRBASE (v.21); matches with total variance ≤ 4 were considered 

as valid candidates. Values on top of bars represent their total 

abundance (TP30M) in anthers. (B) Heat maps depicting abundance 

of Lilium 24-nt phasiRNAs (in red) and miR2275-triggers (in blue) in 

developing anthers. Both heat-maps are clustered on similarity of 

expression. Pie charts represent the proportion of stage-specific 

abundances for 24-nt phasiRNAs (in red), miR2275 (in orange) and 

miR390 (in green) the trigger of tasiRNAs across different anther 

developmental stages that are included in this study. Box-whisker plot 

shows enrichment (log2) of Lilium 24-nt phasiRNAs abundance from 

all PHAS loci in the meiotic anther compared to the vegetative sample 

(leaf). ..................................................................................................... 131 
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Figure 4.12: Daylily 24-nt phasiRNAs and miR2275 are abundant in meiotic-

stage anthers. Heat maps depicting abundance of daylily 24-nt 

phasiRNAs (in red) and the miR2275 trigger family (in blue) in 

developing anther. Both heat maps are clustered on similarity of 

expression. Pie charts represent the proportion of stage-specific 

abundances for 24-nt phasiRNAs (in red), miR2275 (in orange) and 

and miR390 (the trigger of TAS3 tasiRNAs, in green) across different 

anther developmental stages that are included in this study. The box-

whisker plot shows the enrichment (log2) of daylily 24-nt phasiRNA 

abundance from all PHAS loci in the meiotic anther compared to the 

vegetative sample (leaf). ........................................................................ 133 

Figure 4.13: Distribution of sRNAs in hairpin PHAS (hp-PHAS) and inferred 

inverted-repeat (IR-PHAS) precursor transcripts. (A) Summed 

sRNA abundances from 5’ and 3’ arms of 50 hp-PHAS transcripts 

show a clear 24-nt phasing with a 2-nt overhang. Representative hp-

PHAS with foldback score > 500, arm length > 384 (8 or more phases) 

were used to generate this distribution plot. (B) Scatterplot of sRNA 

abundances from 5’ and 3’ arm of inferred IR-related PHAS-

transcripts (n= 1,477) show a strong 24-nt phasing pattern with a 2-nt 

overhang between the paired arms. ....................................................... 134 

Figure 4.14: Secondary structure and sRNAs for three representative hairpin 

(hp-) PHAS precursors from Lilium. Precursors display consistent 

production of 24-nt long siRNAs from both arms, at 24-nt intervals, a 

processive signature of DCL5 activity. Scatter-plot depicts sRNA 

distribution on PHAS precursor transcripts, starting from the first 

detected 24-nt phasiRNAs. The abundance, on Y-axis, is shown in 

log2 scale. Position of first and last phasiRNAs for 5’- and 3’-arm 

along with the total phases and arm lengths are described in header of 

each scatter plot. The colors and size, in scatter plot, represent sRNA 

size class and abundance respectively. .................................................. 137 

Figure 4.15: Localization of 24-nt phasiRNA components in premeiotic 

(~4mm) and meiotic (~5 mm) anthers of Lilium. Small RNA in situ 

hybridizations in pre-meiotic and meiotic anthers of Lilium, using 

probes for miR2275, meiotic phasiRNAs from IR locus 24-PHAS-

5505 and hp-PHAS-5843. These phasiRNAs were not detected in pre-

meiotic stages. Meiotic anthers were used for these in situ 

hybridizations. 24-nt phased siRNAs were not detected at pre-meiotic 

stage. ...................................................................................................... 137 
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Figure 4.16: Processing of miR2275-triggered hairpin PHAS precursors in 

Lilium. (A,B) Foldbacks of two representative miR2275 triggered hp-

PHAS precursor transcripts in Lilium, 24-PHAS-5 and 24-PHAS-1681. 

(C) Precursor for hp-PHAS-2398 with no unpaired 3’-arm. (D) 

Precursor for hp-PHAS-4395 putatively processed from loop-to-base. 

The cuts leading to release of 24-nt phased siRNAs are shown as 

orange arrows while those that generate siRNAs of other sizes are 

indicated as grey arrows. Counts represents cut frequencies computed 

from sRNA data. Red arrows indicate 5-termini of sRNAs of different 

sizes at non-triggered end along with their prevalence as indicated by 

sRNA data. In (A) and (B) the miR2275 cleavage site is 49 and 24 

nucleotides inside the dsRNA region, while in (C) the cleavage site is 

126 nucleotides from the 5‘-terminus of the precursor. ........................ 140 

Figure 4.17: Ratio of 24-nt phasiRNAs abundances in triggered foldback 

PHAS precursor transcripts. Phased siRNAs (24-nt) (orange) and 

other small RNA size classes (grey) in miR2275 triggered foldback 

PHAS precursor transcripts. P1 to P8 represents first eight phasiRNA 

sites on precursor. Foldback precursors with miR2275 trigger site 

predicted precisely at P1, i.e. phase index = 0 (n=18), were used as a 

representative set. P1 is critical in this analysis, and any precursor 

with trigger site predicted 1 or 2 (24-nt) phases to left or right of P1 is 

most likely missing the first phase cycle, and therefore cannot be used 

in this particular analysis.. ..................................................................... 141 

Figure 4.18: Protein partners involved in processing of two endogenous 

inverted-repeats in Arabidopsis. (A) Pie-charts represent sRNAs of 

21- to 24-nt sizes derived from IR-71 and IR-2039 endogenous IR 

loci. Counts represents the normalized abundance in thousands. (B) 

Heat maps representing differential abundance of 21-, 22- 23- and 24-

nt sRNAs in Arabidopsis dcl3, dcl2/3/4, dcl1, nrpd1, rdr6 and nrpe1 
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Figure 4.19: Dicer-like (DCL) and Argonaute gene family members in 

Asparagus, daylily and Lilium. (A) Phylogenetic tree of AGO 

members from Asparagus (Ao), Daylily (Hl) and Lilium (La) 

identified in this study along with four representative species – 

Arabidopsis (At), rice (Os), maize (Zm) and soybean (Gm). AGO9 

was renamed to AGO4 family because these are closely related in 

many plants.  (B) DCL phylogeny with members from Asparagus 

(Ao), daylily (Hl) and Lilium (La) identified in this study along with 

four representative species – Arabidopsis (At), rice (Os), maize (Zm) 

and soybean (Gm). (C) Bar plots representing the relative expression 

of DCL5 in Asparagus pre-meiotic & meiotic anthers, and leaves, as 

measured by quantitative, real-time PCR. ............................................. 146 

Figure 4.20: Dicer-like (DCL) gene family and expression in Asparagus, daylily 

and Lilium. (A) Heat-map representing expression profile of 

Asparagus, daylily and Lilium AGO members. Phylogeny of AGO 

members is provided in Figure S13. (B) Heat map of DCL abundances 

for three monocots, that were reliably detected (>1 FPKM) in one of 

three anther stages or the vegetative material. Phylogeny of DCL 

members is provided in Figure 4.19. (C) FISH localizing DCL5 

transcripts in the cytoplasmic area of the tapetum and archesporial 

cells in meiotic-stage anthers from Lilium. AF647 (green) indicates 

the DCL5 mRNA localization. DAPI (pink) shows the stained 
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Cells associated with the male germline, specifically in rice and maize 

(grasses), produce diverse and numerous “phased” 21-nt and 24-nt siRNAs. These 

phased siRNAs (phasiRNAs) show striking similarity to mammalian Piwi-interacting 

RNAs (piRNAs) in terms of their abundance, biogenesis and timing of accumulation. 

Both the plant phasiRNA and mammalian piRNA pathways are emerging as factors 

crucial for reproductive success. However, since the first report of germline-associated 

plant phasiRNAs, no systematic study of their evolutionary origins has yet been 

reported; in this context, the meiotic (24-nt) phasiRNAs are particularly interesting, as 

they have only been described in grasses, a group of monocots that speciated ~71 

million years ago (MYA). Grasses include the most important staple crops: rice, maize 

and wheat. Given the importance of reproductive success to crop yield, a deeper 

understanding of phasiRNA pathway is crucial. 

This dissertation traces the prevalence and origins of phasiRNA pathways in 

monocot evolution, while simultaneously it addresses a broad range of key 

computational gaps and algorithmic limitations in leveraging small RNA data for the 

study of small RNA in plants. First, I present a new set of tools for identifying and 

validating miRNA targets, and a new suite for computational characterization of 

phasiRNAs, which together comprise important methods for studies of plant sRNA 

field. These next generation tools efficiently scale to the increasing volume of high-

throughput data, and are fast, sensitive and feature-rich compared to the existing 

options. Next in my work, I deployed these tools to investigate phasiRNAs in a 
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recently sequenced genome, that of Asparagus officinalis. The common ancestor of 

asparagus and the grasses diverged approximately 109 MYA. My work then further 

expanded to study two other non-grass monocots, Lilium (Lilium maculatum) and 

daylily (Hemerocallis lilioasphodelus), which diverged from Asparagus ~111 MYA. 

In this dissertation, I demonstrate that both pre-meiotic and meiotic phasiRNAs are 

prevalent across the monocots that I studied, establishing their origins well before 

grasses. In addition to male germline, I find evidence for their accumulation in female 

and somatic tissues, perhaps suggesting that the narrow accumulation of reproductive 

phasiRNAs in anthers is either not a general characteristic or it is the product of 

evolutionary refinement in the grasses. I show that the miRNA trigger for pre-meiotic 

(21-nt) phasiRNAs likely shifted in evolutionary time from targeting pathogen-defense 

genes to long, non-coding RNAs (observed in grasses) via specialization and sub-

functionalization versus neo-functionalization. I also demonstrate that exceptions to 

the canonical mechanism of biogenesis of phasiRNAs exist in monocot evolution, 

whereby phasiRNAs are produced apparently without a miRNA trigger. I conclude 

that plants show substantial variation in their composition and biogenesis of 

reproductive phasiRNAs, which have broad roles in plant germline development.  
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INTRODUCTION 

Regulatory small RNAs (sRNAs) are ubiquitous “non-coding” component of 

the plant transcriptome that function in distinct, yet overlapping, genetic and 

epigenetic silencing pathways. These play essential regulatory roles in the growth, 

development, reproduction, genome reprogramming and defense processes.  An array 

of sRNA pathways likely contribute to the phenotypic plasticity in plants as well as 

animals. Most regulatory sRNAs are 21-, 22- and 24 nt in size, produced as double-

stranded duplexes from the helical regions of longer non-coding RNA precursors by 

endonuclease activity of DICER-LIKE proteins (DCLs). Their biogenesis mechanism 

relies on the formation of double-stranded RNA (dsRNA) intermediates from either 

hairpin precursors, formed by the intermolecular hybridization of precursor transcript, 

or by the synthesis of dsRNA from a single-stranded RNA by RNA-DEPENDENT 

RNA POLYMERASEs (RDRs). Processed sRNA duplexes load into ARGONAUTE 

(AGO) proteins to target coding and non-coding RNAs. Depending on the nature of 

target transcript and the AGO involved, this process leads to target cleavage and 

degradation, translational repression or recruitment of additional cofactors. 

The duplication of genes encoding for DCL and RDR has resulted in extensive 

diversity of regulatory sRNAs, specifically in terms of their size (Mukherjee, Campos, 

and Kolaczkowski 2013; Willmann et al. 2011), which along with the diversification 

of AGO proteins led to the development of distinct gene-silencing processes (Czech 

and Hannon 2011) based on the differential AGO affinities for sRNA duplexes (Mi et 
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al. 2008). In plants, endogenous sRNA pathways are divided into five major classes: 

microRNAs (miRNAs), secondary siRNAs, heterochromatic siRNAs (hc-siRNA), 

hairpin-derived siRNAs (hp-siRNAs) and natural antisense siRNAs (nat-siRNAs). See 

Figure 1.1, below, for their classification based on mode of biogenesis and nature of 

precursor. 

Among these five classes of sRNAs, the first three comprise the major 

proportion of regulatory sRNAs, in terms of their abundances and diversity of their 

functions. In plants, miRNAs are the most well-studied subset of regulatory sRNAs. 

MicroRNAs execute post-transcription silencing of target genes by precise cleavage or 

translational repression. In addition, these also trigger secondary siRNA production 

from RNA polymerase II (Pol II) transcribed coding and non-coding RNAs (Allen et 

al. 2005; Peragine et al. 2004). miRNAs (21- and 22-nt) usually have a defined set of 

mRNA targets and both, individual miRNA families and their targets, are mostly 

conserved over a long evolutionary period (Cuperus, Fahlgren, and Carrington 2011). 

Secondary siRNAs are generated by the cleavage of specific coding and non-coding 

precursors by 22-nt miRNAs (Chen et al. 2010; Cuperus et al. 2010). Although 21-nt 

miRNAs also trigger the production of phasiRNAs via two-hit model (Axtell et al. 

2006), the functionally unique “22-nt” class of miRNAs triggers the bulk of secondary 

siRNAs. Secondary siRNAs, and specifically reproductive phased siRNAs (21- and 

24-nt) are the focal point of this dissertation and are described in detail later in this 

chapter. 

In this dissertation, I aimed to fill existing gaps for bioinformatics tools needed 

for characterizing plant sRNA populations by developing new algorithms and 

packaging them into industry-grade software’s; and finally leveraging these to make 
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insights into the biogenesis and origins of a particular class of secondary siRNA 

pathways – “male-germline associated phasiRNAs”. These pathways, referred to as 

pre-meiotic and meiotic phasiRNAs, are relatively new discoveries, crucial for 

reproductive success and likely analogs of mammalian PIWI-interaction (piRNAs). 

Our knowledge of their functional roles as well as evolution is mostly missing. In 

brief, we first develop necessary tools and then investigate male-germline associated 

pathways in branches of monocot which represents at least 115 million years of 

evolution. 
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Figure 1.1: Hierarchical classification system for endogenous plant small RNAs. 

Thick black lines indicate hierarchical relationships. Abbreviations: 

dsRNA, double-stranded RNA; hpRNA, hairpin RNA; miRNA, 

microRNA; NAT-siRNA, natural antisense transcript small interfering 

RNA; siRNA, small interfering RNA. Figure from (Axtell et al., 2013), 

courtesy of Michael Axtell. 
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1.1 Pre-dissertation state of approaches to discover targets for plant miRNAs 

Since the first reports of miRNAs in plants (Llave et al. 2002; Reinhart et al. 

2002), there has been a steep escalation in the number of known miRNAs, fueled 

primarily by concurrent advances in sequencing technologies and computational 

methodologies. At the time of writing, there are over 7,385 mature miRNAs reported 

from 72 plant species in miRBASE (version 20). However, identification of a miRNA 

does not provide insights into its function or regulatory targets, nor is an 

understanding of the targets part of the process of miRNA identification(Meyers et al. 

2008). A key to understanding the biological relevance of a miRNA lies in discovering 

and validating its targets. 

Parallel analysis of RNA ends (PARE) is a high- throughput sequencing 

technique which profiles uncapped mRNAs, products of cleavage or decay, facilitating 

studies of miRNA targets (German et al. 2009). Nearly identical techniques have been 

termed ‘degradome analysis’ or ‘GMUCT’ and they generate equivalent data (Addo-

Quaye et al. 2008; Gregory et al. 2008). Because of our role in the development of the 

technique called PARE, we are partial to this terminology and will use it hereafter. 

Computational tools to predict miRNA targets and validate those targets using PARE 

data are limited in both number and functionality. Also, among these tools, there is a 

divergence in the methodology used to predict targets and assign significance scores. 

CleaveLand, the most-cited and perhaps most commonly-used tool for computational 

validation of miRNA targets using PARE datasets, presumes that there exists a 

positive correlation between complementarity at a canonical seed region (2 to 13 nt 

from the 5, end of the miRNA) of a miRNA::target duplex and probability of actual 

cleavage (Addo-Quaye, Miller, and Axtell 2009; Fahlgren and Carrington 2010). 

Therefore, CleaveLand implements a ‘seed region’-based target scoring schema along 
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with a penalty score cutoff of 4, to model the p-values for validated interactions. 

However, cleavage of potential targets can occur even with poor complementarity in 

the seed region or mismatches at canonical positions (Y. Zheng et al. 2012; Brousse et 

al. 2014) (Figure 1.2). 
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Figure 1.2: MicroRNA (miRNA) targets with weak or non-canonical interactions 

are missed by existing PARE-based validation tools. Each example 

shows the target-miRNA alignment at the top, with screenshots below 

from our website (https://mpss.danforthcenter.org); the upper panel 

shows the PARE data, the middle panel in each case, phased small RNA 

production from cleavage sites further substantiates the cleavage events. 

(A) at-miR173–5p cleaves the Arabidopsis thaliana TAS1B gene with a 

penalty score=4.5, and with mismatches at both the 10th and 11th 

positions. (B) mtr-miR1507 cleaves the Medicago truncatula NBS-LRR 

type disease resistance gene (Medtr8g038570) with a penalty score = 7, 

and with a mismatch at the 11th position. (C) mtr-miR1507 cleaves the 

M. truncatula NBS-LRR type disease resistance gene (Medtr7g078790) 

with a penalty score = 7, and with a mismatch at the 11th position. 
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PAREsnip is an accelerated approach to extend PARE validation of targets 

from a small set of miRNAs up to a more extensive library of small RNAs (Folkes et 

al. 2012). Yet, PAREsnip suffers from the same inductive bias as CleaveLand, which 

is the assumption that there exists a positive correlation between complementarity in 

the canonical seed region and probability of actual cleavage. These assumptions about 

miRNA-target interactions are not easily modified or refined. Furthermore, the target 

search algorithm implemented in PAREsnip expects a perfect match at canonical 10th–

11th positions and is dependent on ‘seed region’- based rules for its speed. Therefore, 

both PAREsnip and CleaveLand tend to bias the results by assigning significant p-

values to only those interactions that either has a relatively good complementarity in 

seed regions or to those miRNAs that have limited number of interactions. Another 

existing tool for PARE-based validation of miRNA targets, SeqTar (Y. Zheng et al. 

2012), broadens the complementarity-based prediction rules but it is currently 

moderately slow and therefore best employed for a pre-selected set of miRNAs (or 

sRNAs) rather than a complex sRNA population. 

1.2 Rationale for developing a new PARE-based target discovery tool 

Tools that existed for working with PARE data, Cleaveland, PAREsnip and 

SeqTar (Addo-Quaye, Miller, and Axtell 2009; Folkes et al. 2012; Y. Zheng et al. 

2012), before our work in this area not only suffered from inductive bias, but focused 

exclusively on the annotated portion of the genome, utilizing cDNA sets as their input. 

Many new genomes are poorly annotated, at least in their initial release, and recent 

studies indicate that even in well-annotated genomes, target mRNA still remain to be 

found in unannotated, intergenic regions (IGRs), evidenced in reports of large 

numbers of miRNA- targeted long, noncoding RNAs in the grasses (Arikit, Zhai, and 
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Meyers 2013; Johnson et al. 2009; Song, Li, et al. 2012). For example, one report 

describes these loci (and their miRNA triggers) in unannotated regions of the 

Brachypodium genome (D. H. Jeong et al. 2013). Such analyses depend on approaches 

for target identification at a full-genome level, not just using annotated genes. As 

mentioned above, all existing algorithms to validate miRNA targets from PARE data 

are built on the assumption that the relevant interactions are within annotated 

transcripts. Since this is inaccurate, a new approach is required to be able to discover 

genome-wide targets of miRNAs. Such genome-wide prediction methods are 

primarily lacking because complete genomes are many times bigger then it’s 

annotated portions, plus the mismatches, wobble pairings and gaps (or bulges) that 

occur between miRNA and their targets inflates the search space by many magnitudes 

even for the modest sized genomes.  

In the past decade, the increase in the yield-per-dollar cost of sequencing has 

further democratized the use of high-throughput sequencing technologies. This has 

initiated a shift in plant genomics, from the study of model plants with modest genome 

sizes to diverse crops, and now even including species with genomes many times 

larger than most model genomes. For example, the recently sequenced Picea abies and 

Triticum aestivum genomes are both >100 larger than Arabidopsis thaliana. 

Furthermore, an increased DNA sequencing throughput has commoditized the 

sequencing of RNA samples. A single small RNA or PARE library now includes tens 

millions of reads that can be analyzed and integrated to predict new miRNAs and their 

targets. These recent advances and cost reductions in genome and RNA sequencing 

warrant the development of a PARE validation approach capable of high efficiency to 

handle large non-model genomes and quickly analyze all likely sRNA-PARE 



 

10 

 

interactions from multiple libraries. Fortunately, there exist many technologies that 

could be deployed to meet these needs, via the development of algorithms capable of 

efficiently exploiting available computing power. 

This explosion in genome sequencing has also fueled the sRNA studies. Many 

groups have developed approaches to identify novel miRNAs and their targets from 

sequence data. Databases that computationally predict, curate and collect 

experimentally verified miRNA-target interactions include TarBase, StarBase, 

miRTarBase and MiRecords (Vergoulis et al. 2012; J.-H. Li et al. 2014; Hsu et al. 

2014; Xiao et al. 2009). For biologists, the most practical use is to combine the best 

aspects of different databases and interpret the data using graphical interfaces. 

However, the database mentioned here lack integrated genome viewers, except 

StarBase (J.-H. Li et al. 2014) which uses the purpose-built deepView for visualization 

of mapped reads, target peaks, and target plots. A limitation for plant biologists is that 

most of these databases focus on animals with only limited plant data. The extensive 

availability of data in plants is an opportunity for greater integration of small RNA, 

PARE, and RNA-seq data. A plant focused, online resource for depositing and 

curating miRNA-target interactions could advance data- driven small RNA analyses. 

1.3 Phased secondary siRNAs are crucial regulators of development, 

reproduction and plant defense 

Phased siRNAs (phasiRNAs) are a major subclass of secondary siRNAs, found 

extensively in plants (Axtell 2013a). The defining characteristic of phasiRNAs is the 

DCL-catalyzed processing of double-stranded RNA (dsRNA) precursors, starting from 

a precisely delimited 5’ terminus and generating regularly spaced 21- or 24-nt 

populations of siRNAs (Johnson et al. 2009). PhasiRNAs can be further subdivided 
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into three main categories based on their precursor mRNAs and spatiotemporal 

patterns of accumulation: i) The first phasiRNAs identified, so-called trans-acting 

siRNAs (tasiRNAs) generated from a small family of long, non-coding mRNAs 

(lncRNAs) referred to as TAS genes (Vazquez et al. 2004; Peragine et al. 2004; Allen 

et al. 2005), ii) phasiRNAs from protein-coding transcripts, such as NB-LRRs or PPRs  

(Fei, Xia, and Meyers 2013), and iii) two classes, 21-nt premeiotic or 24-nt meiotic 

phasiRNAs, highly enriched in reproductive tissues and also produced from lncRNAs, 

reported in grasses, but with no as-yet reported targets (Johnson et al. 2009; Zhai et al. 

2015). Thus, the umbrella name of “phasiRNAs” refers simply to their biogenesis and 

not their function (unlike the subset of tasiRNAs) because many phasiRNAs lack 

validated targets, either in cis or trans (Zhai et al. 2011; Fei, Xia, and Meyers 2013). 

The biogenesis of phasiRNAs in plants is dependent on a triggering 

mechanism that sets the phase of the resulting secondary siRNAs, generated from a 

specific nucleotide in the mRNA precursor. To date, the only described trigger type is 

a miRNA, and a breakthrough in our understanding of plant miRNA function came 

with the observation that all or nearly all 22-nt miRNAs trigger phasiRNA biogenesis 

from their targets (Chen et al. 2010; Cuperus et al. 2010). The miRNA triggers 

function via the ARGONAUTE (AGO) proteins into which they are loaded, and since 

phasiRNA biogenesis requires both SGS3 and RDR6 (Peragine et al. 2004; Vazquez et 

al. 2004), there may be interactions between these proteins, ultimately recruiting 

DCL4 or DCL5. SGS3 and RDR6 proteins function in the cytoplasm, forming siRNA 

bodies (Jouannet et al. 2012). Recent work has identified membrane-bound polysomes 

in the rough ER as the site where miRNA triggers of phasiRNA accumulate, leading to 

phasiRNA biogenesis (Shengben Li et al. 2016). miRNA triggers are thus an 
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important component in the analysis of phasiRNAs, and the identification of specific 

triggers with specific PHAS targets is integral part of studies of phasiRNAs. 

Since, the discovery of phasiRNAs, in 2005, TAS genes have been relatively 

well-characterized, especially in Arabidopsis but these represent a miniscule fraction 

(n=8) of the PHAS repertoire found in many plant genomes. In other eudicot genomes, 

there are many more PHAS loci compared to Arabidopsis, the result of up to hundreds 

of protein-coding genes that are targeted by diverse miRNAs, many of which are 

lineage-specific (Zhai et al. 2011; D. H. Jeong et al. 2013; Arikit et al. 2014; R. Xia, 

Ye, et al. 2015).  Beyond eudicots, plant genomes contain even more PHAS loci. For 

example, reproductive phasiRNAs number in the hundreds to thousands of loci in 

maize (Zhai et al. 2015) and rice (Fei et al. 2016), and have yet to be characterized 

broadly in monocots or other lineages outside of the grasses (described in detail 

below). These includes, the premeiotic loci that are targeted by miR2118 family 

members, triggering production of 21-nt phasiRNAs accumulating in early anther 

development, and the 24-PHAS loci that are targeted by miR2275 family members, 

triggering production of 24-nt phasiRNAs, accumulating in anthers during meiosis 

(Zhai et al. 2015). Analysis of the spruce genome, a gymnosperm that speciated 329 

million years before the evolution of monocots and eudicots have over 2000 PHAS 

loci, most of which are protein-coding genes, including over 750 NB-LRRs (R. Xia, 

Xu, et al. 2015). Thus, plant PHAS loci are widely prevalent and highly variable from 

genome to genome both in the total number and in terms of the types of loci that 

generate them. 
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1.4 Rationale for developing new methods for in silico characterization of 

phased siRNAs 

Characterization of PHAS loci from each sequenced plant genome will provide 

insights into this unusual type of post-transcriptional control, its evolution, and 

diversification. Tools for the de novo identification of PHAS loci (or genes) to date 

have required an assembled genome for their discovery and additional experimental 

data (PARE or degradome libraries) to further identify their miRNA triggers. 

Integrated tools for discovery and in-depth characterization of PHAS genes have not 

yet been developed; and the existing options are both limited in number and function. 

These algorithmic limitations and bioinformatic gaps along with increasing depth and 

volume of sequencing data necessitates a scalable, fast and advanced methods to study 

this relatively new class of secondary siRNAs that might even be transcending the 

evolutionary boundaries with parallel pathways existing in mammals (Johnson et al. 

2009; D. H. Jeong et al. 2013; Mohn, Handler, and Brennecke 2015; B. W. Han et al. 

2015).  

1.5 Male-germline associated phased siRNA pathways and their importance 

In higher plants, diverse and versatile small RNA (sRNA) pathways are 

present in reproductive tissues, present presumably to ensure reproductive success 

(Borges and Martienssen 2015). Two such male germline-associated pathways, 

generating diverse and abundant phased secondary siRNAs (phasiRNAs) have been 

described in grasses (Johnson et al. 2009; Zhai et al. 2015; Fei et al. 2016). These 

phasiRNAs are generated from 5’-capped and polyadenylated, non-coding precursors 

(“PHAS” transcripts) transcribed by RNA polymerase II (Pol II) from non-repetitive 

loci. Their production is triggered by two 22-nt miRNAs – miR2118 for 21-nt 

phasiRNAs and miR2275 for 24-nt phasiRNAs – that direct cleavage of PHAS 
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transcripts, setting a consistent 5’-terminus for each PHAS precursor. The 3’ mRNA 

fragments are converted to double-stranded RNA by RNA-DEPENDENT RNA 

POLYMERASE6 (RDR6), and processed by DCL4 and DCL5 to yield phased 21- 

and 24-nt siRNAs, respectively (Song, Li, et al. 2012). 

miR2118-triggered 21-nt phasiRNAs are abundant during the specification of 

cell fate in anthers, originating from the epidermal layer (Zhai et al. 2015). In contrast, 

miR2275-triggered 24-nt phasiRNAs accumulate during meiosis in the tapetum and 

germinal cells, and they persist into the differentiation and maturation of pollen; their 

production is dependent on normal tapetal cells (Zhai et al. 2015; Nonomura et al. 

2007). There are parallels with mammalian PIWI-associated RNAs (piRNAs): both 

phasiRNAs and mammalian piRNAs originate from non-repetitive loci, are generated 

in two different size classes with distinct developmental timing, and both generate 

abundant and diverse siRNAs (Nonomura et al. 2007; Johnson et al. 2009; Zhai et al. 

2015). Recently, piRNAs were also shown to be phased (Mohn, Handler, and 

Brennecke 2015; B. W. Han et al. 2015). Hence, based on their timing and by analogy 

to the piRNAs, the grass phasiRNAs are referred to as “pre-meiotic” and “meiotic” 

siRNAs  (Axtell 2015) 

1.6 Rationale for investigating phasiRNAs beyond grasses 

The functions of plant reproductive phasiRNAs are as-yet unknown, but clues 

about their roles in male reproductive success are emerging. For example, a mutant in 

MEIOSIS ARRESTED AT LEPTOTENE (MEL1), an Argonaute protein in rice, 

arrests in early meiosis and has an abnormal tapetum and anomalous pollen mother 

cells (PMC) (Nonomura et al. 2007; Komiya et al. 2014). MEL1 selectively binds 21-

nt phasiRNAs (Komiya et al. 2014), indicating that pre-meiotic phasiRNA functions 
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are required for male fertility. Various, hypothetical roles of meiotic phasiRNAs in 

male fertility have also been proposed, potentially including silencing transposable 

elements, genome imprinting, and chromatin remodeling by facilitating chromosome 

dynamics, or functions in pairing, synapsis and recombination (Zhai et al. 2015; 

Dukowic-Schulze et al. 2016) 

The evolutionary origins of plant reproductive phasiRNAs are also poorly 

characterized, with little known outside of their presence in the grasses. In this 

context, 24-nt meiotic phasiRNAs are particularly interesting as their biogenesis 

depends on Dicer copy specialized for their production, derived from DCL3 yet absent 

in eudicots, and described only in grass genomes (Margis et al. 2006). Also, the 

origins of miR2275, the specialized trigger for these siRNAs, is unknown. The 21-nt, 

pre-meiotic phasiRNAs have apparently, and unusually, co-opted previously existing 

components, including as triggers the miR2118/482 superfamily, which in many other 

plant genomes triggers phasiRNAs from NB-LRR pathogen-defense genes (Zhai et al. 

2011; Y. Zhang et al. 2016). The evolutionary route by which miR2118 shifted to 

targeting non-coding PHAS precursors in a highly restricted spatiotemporal manner is 

also not known.  Thus, significant questions remain about when and how in plant 

evolution reproductive phasiRNAs emerged and were refined to the state in which 

they’ve been observed in grasses. 

1.7 Overview of dissertation research 

This dissertation investigates the origins and biogenesis male-germline 

associated pathways beyond grasses such as maize and rice; and in process 

significantly advances the computational methods to leverage RNA-seq data for study 

of small RNAs. Specifically, by presenting new methods for discovery of miRNA 
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targets and characterization of phased siRNAs including their discovery and trigger 

identification. In Chapter 2, I describe a new miRNA target discovery tool small RNA 

PARE Target Analyzer (sPARTA). sPARTA was initially imagined to address the 

algorithmic shortcomings of existing methods, but the explosive growth in number of 

plant miRNAs, genome and experimental data (PARE and degradome libraries) in last 

few years along with and the prospects of discovering novel regulatory modules, 

further, motivated us to develop a complete software package with a built-in, plant 

focused target prediction module (aka ‘miRferno’). The next-generation tool that I 

describe in Chapter 2 was developed from scratch and is the only existing tool (as of 

writing this) capable of predicting and validating targets at a whole genome level, 

even for hundreds to thousands of miRNAs or small RNAs. It is up to 500x faster 

compared to the most popular alternative. Unlike previous tools, which could only 

focus on annotated portion of genomes and identify targets for tens to a hundred of 

miRNAs, sPARTA employs true parallel computing to gain significant advances in 

speed, and it implements a data partitioning scheme for both scalability and to 

maintain a small memory footprint, which makes it superlatively efficient in handing 

even the biggest available genomes as well as large input sets of RNA data. sPARTA 

is freely available to plant researchers, has open-source and released under permissive 

license.  

In Chapter 4, I describe “PHASIS”, the “first” tool-set for in-depth in silico 

characterization of phasiRNAs. The motivation to develop a feature-rich suite came 

from the fact that the existing options to study identify phasiRNA are not only limited 

in number and function but also incompatible or inefficient in handling a large volume 

of small RNA-seq data. These existing methods do not support the large-scale study of 
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PHAS pathways, and more importantly, these require a sequenced genome for the 

discovery of PHAS genes and phasiRNAs, and they need additional data such as 

PARE or degradome to identify triggers. Since I planned to embark on an 

investigation that transcends evolutionary boundaries, the expectation to have an 

assembled genome for species of interest was unrealistic. So, to make this study 

possible, I developed a new computational toolset that we named as “PHASIS”. 

PHASIS facilitates discovery, quantification, annotation of phasiRNA loci or genes 

from a few to hundreds of sRNA libraries in a single run, and rapid identification of 

their miRNA triggers. Benchmarks from five different plant species demonstrate that 

PHASIS is sensitive, scalable and fast. Importantly, PHASIS eliminates the 

requirement of a sequenced genome and PARE/degradome data for discovery of 

phasiRNAs and their miRNA triggers. Like sPARTA, PHASIS too is open-source, 

released under a permissive license. I believe that the algorithmic superiority, 

flexibility to tailor analysis and the suitability for small to large-scale experiments will 

make PHASIS the de facto choice for discovery and study of phased siRNAs in the 

future. 

Chapter 4 focusses on the implementation of next generation tools and 

methods that I describe in Chapter 2 and 3 for an investigation of phased siRNA 

pathways beyond the “grasses” such as maize and rice, to check the possibility of their 

prevalence in other plant species and to gain insights into their origins and evolution. 

In this chapter, I take advantage of the recently sequenced Asparagus officinalis 

genome (Harkess et al., 2017) for our investigation. The Asparagus and grass lineages 

diverged approximately 114 million years ago (Hedges et al. 2015). In addition to 

Asparagus, I characterized two representative non-grass monocots, Lilium (Lilium 
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maculatum) and daylily (Hemerocallis lilioasphodelus), which diverged >120 MYA 

from MRCA of grasses (Chase and Reveal 2009). My combined study of Asparagus, 

Lilium and daylily reveal that both pre-meiotic and meiotic pathways outdates 

speciation of grasses during monocot diversification i.e. these are not specific to 

grasses, as earlier believed. I also demonstrate the presence of phasiRNAs in female 

and somatic tissues, perhaps suggesting that the narrow accumulation in anthers is 

either not universal or the product of refinement in the grasses. I show that the miRNA 

trigger for pre-meiotic (21-nt) phasiRNAs likely shifted in evolutionary time from 

targeting pathogen-defense genes to long, non-coding RNAs (observed in grasses) via 

specialization and sub-functionalization versus neo-functionalization. Finally, I 

demonstrate that many 24-nt phasiRNAs are produced from precursors lacking 

miRNA trigger, from long inverted repeats, revealing divergence in both the 

biogenesis mechanism and the protein factors of male-germline associated phased 

siRNA pathways.  

1.8 Publications from this dissertation 

The following publications are direct result of research conducted in this 

dissertation; and the chapter 2, 3 and 4 directly correspond to paper or manuscript #3, 

7 and 9, respectively: 

A. Gong L, Kakrana A, Meyers BC, Wendel JF (2013) Composition and 

Expression of Conserved MicroRNA Genes in Diploid Cotton 

(Gossypium) Species. Genome Biol. Evol. 5, 2449-59 

B. Thompson BE, Basham C, Hammond R, Kakrana A, et al (2014) The 

dicer-like1 Homolog fuzzy tassel is required for the regulation of 

meristem determinacy in the inflorescence and vegetative growth in 

maize. Plant Cell. 26(12):4702-17 
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C. Kakrana A, Hammond R, Patel P, Nakano M, Meyer BC (2014) 

sPARTA: a parallelized pipeline for integrated analysis of plant 

miRNA and cleaved mRNA data sets, including new miRNA target-

identification software. Nucleic Acids Res. 42(18):e139 (*Fastest 

algorithm (>500x), to date, for plant miRNA target identification and 

validation) 

D. Arikit S, Xia R, Kakrana A, et al (2014) An Atlas of Soybean Small 

RNAs Identifies Phased siRNAs from Hundreds of Coding Genes. 

Plant Cell. 26(12):4584-601 

E. Patel P, Ramachandruni SD, Kakrana A, Nakano M, Meyers BC 

(2015) miTRATA: a web-based tool for microRNA Truncation and 

Tailing Analysis. Bioinformatics. 1;32(3):450-2 

F. Mathioni, S.M., Kakrana, A., and Meyers, B.C. 2017. 

Characterization of plant small RNAs by next generation sequencing. 

Curr. Protoc. Plant Biol. 2:39-63. doi: 10.1002/cppb.20043 (Book 

Chapter)  

G. Kakrana A, Li P, Patel P, Hammond R, Mathioni S, Anand D, Meyer 

BC. PHASIS: A computational suite for de novo discovery and 

characterization of phased, siRNA-generating loci and their miRNA 

triggers. (In review) 

H. Harkess A, Zhou J, Xu C,…, Kakrana A, Meyers BC, Leebens-Mack 

J (2016) The evolution of sex chromosomes in Asparagus. (accepted in 

Nature Communications) (*Plant genome sequencing report, led the 

small RNA study 

I. Kakrana A, Mathioni S, Huang K, Hammond R, Patel P, Vandiver L, 

Gregory B, Leebens-Mack J, Meyers BC. Survey of phasiRNA 

pathway in non-grass monocots, uncovers widespread prevalence and 

unique plasticity. (Prepared for submission to Genome Research) 
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A HIGH-PERFORMANCE APPROACH FOR PREDICTION AND 

VALIDATION OF miRNA TARGETS 

(All of this chapter has been published previously as Kakrana et al. (2014). It 

has been modified in part to meet the formatting requirements of the dissertation, and 

to integrate the work together with the rest of the dissertation.) 

Parallel analysis of RNA ends (PARE) is a technique utilizing high-throughput 

sequencing to profile uncapped, mRNA cleavage or decay products on a genome-wide 

basis. Tools that existed before our work, to validate miRNA targets using PARE data 

employ only annotated genes, whereas important targets may be found in unannotated 

genomic regions. To handle such cases and to scale to the growing availability of 

PARE data and genomes, we developed a new tool, ‘sPARTA’ (small RNA-PARE 

target analyzer) that utilizes a built-in, plant-focused target prediction module (aka 

‘miRferno’). sPARTA not only exhibits an unprecedented gain in speed but also it 

shows greater predictive power by validating more targets, compared to a popular 

alternative. In addition, the novel ‘seed-free’ mode, optimized to find targets 

irrespective of complementarity in the seed-region, identifies novel intergenic targets. 

To fully capitalize on the novelty and strengths of sPARTA, we developed a web 

resource, ‘comPARE’, for plant miRNA target analysis; this facilitates the systematic 

identification and analysis of miRNA-target interactions across multiple species, 

integrated with visualization tools. This collation of high-throughput small RNA and 

Chapter 2 
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PARE datasets from different genomes further facilitates reevaluation of existing 

miRNA annotations, resulting in a ‘cleaner’ set of microRNAs. 

2.1 sPARTA algorithm and workflow 

The sPARTA algorithm has four main steps that are implemented in series. 

With the exception of the first step in which user-defined features (gene or 

intergenic) are extracted and fragmented, the three subsequent steps use single-

instruction multiple-data (SIMD) parallel processing via Python (v3.3) 

multiprocessing module. The two most data intensive steps (i) mapping reads from 

multiple PARE libraries and (ii) the prediction of sRNA or miRNA targets (by 

miRferno), both benefit from two-way SIMD parallelism (Figure 2.1). 
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Figure 2.1: sPARTA schematic, showing order of steps in workflow. Solid boxes 

represent sPARTA functions, dashed boxes represent the product of an 

applied function. Multiple arrows indicate multiple output files from the 

preceding function. Steps executed in parallelized environment are 

enclosed within colored dotted lines. 

2.1.1 Feature extraction and input file partitioning 

To build a ‘feature set’ or input library of sequences in which targets will be 

identified for a species of interest, sPARTA starts with a GFF file (Generic Feature 

Format, version 3) containing gene annotations along with the corresponding 

genome sequence. In many cases, this is downloaded from Phytozome (Goodstein 

et al. 2012). These GFF and genome sequence files are used by the built-in Genome 
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Slicer function to extract first the coordinates of selected features (i.e. genic or 

IGRs) from the GFF files and next to extract the sequences from the genome. 

These intergenic and genic sequence sets comprise the main feature set, which is 

further partitioned into different data elements (features) so as to implement data 

parallelism. 

2.1.2 PARE data processing and read mapping 

The next step in sPARTA is to map PARE reads to the feature set. An FM 

index (Simpson and Durbin 2010) for each component of the feature-set is created 

using Bowtie (version 2, in the current sPARTA implementation) (Langmead and 

Salzberg 2012) with the default off-rate parameter. PARE reads in tag-count format (a 

tab-separated file of read sequences and normalized frequencies) from each dataset 

were then aligned to the partitioned FM indexes using Bowtie, with default end-to-end 

settings and no mismatch allowed, to generate PARE-fragment maps. PARE datasets 

in format other than tag-count could be easily converted to tag-count using publicly 

available Tally (Davis et al. 2013). The PARE mapping step implements SIMD 

parallel processing on both the involved datasets, i.e. the feature set and the PARE 

reads. The feature set file size for different species could range up to tens of gigabytes, 

while the number of reads in a PARE dataset range from millions to hundreds of 

millions. So, two-way parallelization further enhances both scalability and load 

balancing, improving the parallel processing efficiency of the sPARTA algorithm. The 

parallelization on the number of reads is achieved by Bowtie’s built-in parallel 

processing function that makes use of the pthreads library to distribute reads across 

concurrent search threads (Langmead et al. 2009). 
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2.1.3 Prediction of targets using novel miRferno algorithm 

In the third major step, targets of small RNAs are identified in the sequences of 

the feature set.  sPARTA has a newly developed, built-in target prediction module––

miRferno––which has two prediction modes, greedy and exhaustive, described below. 

In both modes, the miRNA or sRNA sequences used as an input to find targets are 

mapped to the fragmented features using Bowtie. The advantage of using version 2 of 

Bowtie is that it allows gapped alignments, and therefore it can find miRNA-target 

interaction which include gaps and bulges. The inclusion of these mismatches 

substantially increases the sensitivity of target prediction, but gaps also greatly inflate 

the size of the search space and slow down the process of finding targets. Prior 

decomposition of the feature set into smaller partitions (i.e. features) by sPARTA 

reduces the index size and associated search space for gapped alignments. This 

increases the efficiency of alignments, and in combination with parallelization on the 

number of PARE reads and genomic partitions (i.e. two-way parallelization), 

comprises an effective combination of speed, sensitivity and scalability. 

The two prediction modes of miRferno allow the user to optimize for time 

versus sensitivity. The greedy mode is de- signed to be fast but less sensitive. In this 

mode, multiple seeds are extracted from the miRNA or sRNA sequence. These seeds 

are 6 nt in length and extracted in 4 nt intervals, and they are aligned to the FM 

indexes from the partitioned feature set with a maximum allowed mismatch of 1 nt. 

Matched instances of these seeds are further extended to complete the alignment of the 

small RNA, unless three consecutive seed extension attempts fail, resulting in the 

termination of the extension. On other hand, the exhaustive mode is designed for 

improved sensitivity; it extracts a smaller seed of 4 nt spaced in a 3 nt interval from 

miRNA or sRNA sequence. The use of multiple 4 nt seeds from a single miRNA or 
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sRNA along with one allowed mismatch improves the efficiency of finding targets, as 

the probability is high of at least one seed (out of seven in total, for a 21 nt small 

RNA) being extracted from the region of the miRNA which binds its target at a region 

with 3 nt matches. In addition to sensitive mapping parameters, if none of the 

extracted seeds reports a valid alignment, then a second, ‘re- seeded’ pass is allowed. 

In second pass, a new set of seeds is generated, slightly offset, and used to search for 

targets. 

miRferno also offers the user two different systems for target scoring, standard 

and seed-free. Standard scoring pro- vides backward compatibility for earlier miRNA-

target pre- diction or validation experiments; in other words, it is based on previously 

described, complementarity rules based on a seed region (Fahlgren and Carrington 

2010). However, we added the seed-free scoring because several recent studies have 

shown that there exist miRNA-target interactions which deviate from the standard or 

canonical complementarity rules that utilize a seed region (Y. Zheng et al. 2012; 

Brousse et al. 2014). Seed-free scoring may have broader utility: several early (Ha, 

Wightman, and Ruvkun 1996; Wightman, Ha, and Ruvkun 1993) as well as recent 

studies (Didiano and Hobert 2006; Chi et al. 2009; Chi, Hannon, and Darnell 2012; Z. 

Xia et al. 2012; Khorshid et al. 2013) from animals also indicate that formation of a 

functional miRNA-target duplex does not require strict complementarity between a 

miRNA seed and its target. These non- canonical targets in both plants and animals 

have been validated and support an ‘expanded’ range of miRNA-target interactions. 

Moreover, the targets sites from IGRs are of- ten left unanalyzed because target-

prediction tools focus on annotated genes; poorly annotated non-coding RNAs may 

interact differently with miRNAs in ways that are not yet well defined. So, we wanted 
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to avoid over-fitting of complementarity rules based on seed regions that might not 

only restrict our ability to find non-canonical targets but also introduce bias into the 

results. The seed-free scoring achieved this, based on the assumption that a target site 

could be functional even with weak seed-region complementarity. Therefore, unlike 

the standard scoring system, within this region, G:U wobbles, gaps and mismatches 

have the same penalty score as elsewhere in the miRNA-target pairing. Finally, in the 

seed-free scoring system, mismatches at the critical 10th and 11th positions are 

permissible (Y.-F. Li et al. 2010; Nakano et al. 2006). While the seed-free scoring 

system relaxes many of the conventional miRNA-target interaction constraints, by 

assigning strong mismatch penalties, it retains a requirement of a correlation between 

sequence complementarity and cleavage efficacy. Each miRNA-target alignment is 

scored using following position specific rules, starting from the 5’ end of the miRNA:  

(i) mismatches at either the 10th or 11th positions carry a penalty of 2.5, 

(ii) a wobble with a single flanking mismatch or mismatches on both sides carries a 

penalty of 1.5 or 2.0, respectively and 

(iii) a single gap, mismatch and wobble at any position carries a penalty of 1.5, 1.0 or 

0.5, respectively. 

Finally, in sPARTA, the Bowtie scoring system was modified to reject miRNA-

target alignments with more than one gap or six ‘edits’ (mismatches or G:U wobbles). 

These settings are user-configurable and can be relaxed using the depth parameter 

with input values ranging from 0 (default) to 3 (relaxed). 

2.1.4 Indexing and prediction of validated interactions 

In the final step of sPARTA, the PARE read abundances and positions are 

assessed relative to the predicted miRNA or sRNA targets, with the aim of validating 
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‘real’ cleavage events. First, for each PARE library, map files generated for all 

partitions of the feature set (from the second step of sPARTA) are combined and 

transformed into an index. This PARE-Genome (PAGe) index is specific to PARE 

libraries and consists of coordinates in which the 5, end of the PARE reads is mapped 

to the genic or intergenic feature set, along with the read abundance. PAGe indexes 

are used to classify the mapped reads (the evidence of cleavage at a specific site) into 

separate classes on the basis of their abundance (the strength of this evidence of 

cleavage). For a genic feature set, sPARTA implements the same signal classification 

schema described in earlier studies (Addo-Quaye, Miller, and Axtell 2009; Folkes et 

al. 2012). This schema uses five ‘classes’ to rank the evidence of cleavage based upon 

normalized or raw tag count input file; in other words, each PARE read in a gene is 

assigned to one of the five classes: 

Class 0 indicates a PARE signal with abundance greater than one read that is 

also the maximal signal on the transcript; this is ultimately the most promising site for 

miRNA-directed cleavage.  

Class 1 is similar to class 0 except there exists more than one maximal PARE 

signal on the transcript with the same abundance.  

Class 2 is a PARE read above the median for the gene, and with an abundance 

of more than one read.  

Class 3 is a PARE read below the median, but still with an abundance of more 

than one read. 

Class 4 are PARE reads with an abundance of one, essentially not discernable 

from ‘background’. 
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IGRs may be more challenging to analyze than genic regions, for the purposes 

of finding and validating sRNA tar- gets, for several reasons. First and foremost, a 

single IGR might contain more than one transcript and these transcripts could be 

coordinately regulated, potentially by one or more miRNAs. In such a scenario, a 

transcript with the highest expression could impact the signal of a weakly expressed 

transcript sharing the IGR, pushing it to a lower class (2 or 3) and thus diluting the 

score and detection of a genuine cleavage event in the weaker transcript. Second, an 

IGR may contain no transcripts cleaved by an sRNA, with the only mapped PARE 

signals resulting from decay or non- specific effects; in absence of strong signal from 

a cleavage event, these low strength signals will be assigned to class 0 or 1 thereby 

inflating these top categories and confound ing the calculation of the confidence score. 

Therefore, to fit the variable and difficult-to-assess nature of IGRs, sPARTA classifies 

PARE signals on the basis of the global abundance of PARE reads. For each PARE 

library, the signals in the bottom 20% (by abundance) are assigned to class 4 and 

excluded from further calculations. The remaining signals are then classified as 

follows: 

Class 0: > 90th percentile (of all PARE read abundances) 

Class 1: 90th percentile PARE read abundance > 75th percentile 

Class 2: 75th percentile PARE read abundance > median (50th percentile) 

Class 3: median ≥ PARE read abundance 

sPARTA calculates the confidence score (p-value) as de- fined in CleaveLand 

(v3, or ’CL3’) but with slight modification so as to improve the p-value for cases 

where miRNA- target interactions have weak complementarity or when a single 

miRNA cleaves hundreds of targets, for example, the miR2118 or miR2275 targets 
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described previously for rice and maize (13). This P-value is further corrected for the 

noise around the cleavage site. The calculation of the P- value is as follows: 

P-value (at least one significant result)= 1 - pbinom (0, trials, probability of success) 

Corrected P-value = P-value of an interaction/signal to noise ratio 

Where, 

Trials = total number of miRferno predicted targets within a score bracket, i.e. the 

number of predicted targets with score 5 and <6, instead of cumulative number of 

predicted targets for a miRNA at specific score as in CL3. 

Probability of success = fraction of total (eligible) bases in the feature set occupied by 

a specific degradome class (7). 

And, 

P-value of an interaction = PARE-validated interaction with P-value <0.25 and signal-

to-noise ratio >0.25 

Signal to noise ratio = fraction of PARE abundance at cleavage site in a 10 nt window 

around the cleavage site (5 nt in each the 3, and 5, directions). 

This relaxed p-value calculation gives more weight to the evidence from PARE 

data and it yields a greater number of validated targets as compared to CL3, but it 

could also have a higher proportion of false positives. We believe that this trade-off 

can be reasonably reduced by either (i) including replicates of PARE datasets (Folkes 

et al. 2012) or (ii) by establishing the anti-correlation in expression levels between 

miRNA and their targets. 

Finally, for the analyses that we described here, publically available PARE, 

sRNA and RNA-seq datasets for A. thaliana, Oryza sativa, Medicago truncatula and 

Brachypodium distachyon were downloaded from NCBI GEO (Table 2.1). sPARTA 

(in the seed-free mode) was used to generate species-specific sets of PARE-validated 

miRNA-target interactions. The back-end for the comPARE web resource, which 
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stores the data and perform searches, consists of a relational database implemented 

with MySQL on CentOS release 6.4. The graphical user interface (GUI) was 

developed in PHP for seamless integration with our customized genome browser 

(Nakano et al. 2006) for visualization as well as in-depth exploration of data from 

different sources such as PARE, small RNA, RNA-seq (when available) integrated 

with genomic annotations and features. 

2.2 sPARTA - RESULTS 

To assess the performance of sPARTA (greedy mode), real datasets (PARE, 

small RNA, genomes and miRNAs) were used to determine metrics, as it would be in 

an actual miRNA target identification experiment. Publically- available PARE 

datasets generated using Illumina sequencing from four different species (A. thaliana, 

B. distachyon, M. truncatula, and O. sativa; (Table 2.1) were downloaded from our 

Massively Parallel Signature Sequencing database (Nakano et al. 2006), and the 

corresponding genome sequences and annotation information were fetched from their 

respective repositories (Table 2.1). miRNA sequences for all four species were 

downloaded from miRBASE (version 20). CleaveLand (version 3, CL3) and 

PAREsnip (v.2.1) are currently the only publicly-available, command line tools for 

PARE- based miRNA-target validation. We used CL3 for comparative benchmarking 

primarily because it’s is the most cited. 

Table 2.1: Small RNA and PARE data used in sPARTA benchmarks 

Species miRNAs Annotation version PARE datasets Small RNA datasets 

A. thaliana 337 TAIR 10.0 GSM280226 None used. 

   
GSM280227 
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B. 
distachyon 

882 MIPS 1.0 
BDI25, BDI20 

(15)  

GSM506621,GSM5066
20 

M. 
truncatula 

599 JCVI 3.5 MEDFL3 (35),  

GSM767273, 
GSM769274, 

   

GSM643818, 
GSM643817 

GSM769275, 
GSM769276, 

    

GSM729277, 
GSM729279 

O. sativa 713 MSU 7.0 GSM476257 None used. 

      GSM434596   

 

2.2.1 Evaluation of sPARTA runtime performance 

sPARTA was evaluated on a machine equipped with four 64 bit 8-core 2.4 GHz 

Intel Xeon (32 cores total) running CentOS release version 6.4. Python 3.3 and R 3.0 

(R Development Core Team 2011) were installed ‘as is’ available from their 

respective sources. In the comparisons below, the added time to extract features, i.e., 

genic or intergenic transcripts, from the genome is not included as this feature is not 

present in any available tools. All the runtimes reflect an average of five independent 

trials. 
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Figure 2.2: Comparative benchmarking of the sPARTA algorithm in parallelized 

mode and in comparison, to CleaveLand version 3 (CL3). In both 

comparisons, four different plant genomes were used, as indicated on the 

X-axis. In each set of pairwise run comparisons, the minimum fold 

difference is indicated in green text and the maximum in red text.  

A.  Runtime comparisons between sPARTA in serial (blue line) and 

parallel (red line) modes exhibit a minimum speed gain of 16.8× and 

maximum speed gain of 11× for the parallel mode compared to the use 

of a 28-core single node. 

B. sPARTA run in parallel mode (green line) is a minimum of 227× and 

maximum 516× faster than the comparable software package CL3 (red 

line). Using a single core (blue line), the sPARTA package is a 

minimum of 18× and a maximum 39× faster than CL3. 

We first evaluated the total time required by sPARTA to predict and validate 

targets at a whole-genome level for all four species. All available miRNAs for each 

species were used for target prediction, followed by validation using two separate 
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PARE libraries (Table 2.1). Two different scenarios were tested: sequential and 

parallel. As the name suggests, the sequential run used just one core for the analysis, 

whereas the parallel run utilized 85% of the available cores (n = 28). For the total 

runtimes, we excluded the execution time for the step which maps the PARE dataset to 

the genome, as mapping step is performed by Bowtie (Langmead and Salzberg 2012), 

for which the settings can optimize to run using the same number of processors as the 

sPARTA parallel mode. The comparison demonstrated a minimum speed gain of 10.56 

with the genic feature set of O. sativa, and a maximum speed gain of 22.31 with the 

intergenic feature set of A. thaliana. At a whole-genome level, a maximum speed gain 

of 16.7x and minimum speed gain of 11.2x was achieved by the parallel mode of 

sPARTA (Figure 2.2A). 

Next, we compared sPARTA performance to CleaveLand (CL3) which is the 

most-widely used tool for the evaluation of plant miRNA targets. CL3 consists of two 

sequentially executed scripts, requiring input from two third-party tools, TargetFinder 

(Fahlgren and Carrington 2010) and Bowtie (Langmead and Salzberg 2012). To 

enable a comparison with sPARTA, we implemented the CL3-based pipeline using its 

bundled scripts and required tools, with no modification to those original scripts or 

settings. For the fairest comparison between algorithms, the PARE mapping step for 

CL3 was assigned the same number of cores as sPARTA. CL3 lacks the functionality 

to predict intergenic targets, therefore a comparison was made just for the genic 

feature set. Outperforming CL3, sPARTA exhibited a minimum speed gain of 227.39x 

(564.62 to 2.48 min) with A. thaliana and a maximum speed gain of 515.12x (4108 to 

7.964 min) with O. sativa (Figure 2.2B). Even in the serial mode, sPARTA was found 
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to be a minimum 18x (564.62 to 30.36 min) and maximum 39.5x (4108.2 to 104.7 

min) faster than CL3 with A. thaliana and O. sativa respectively (Figure 2.2B). 

2.2.2 Prediction performance of sPARTA 

Strong experimental support is required to validate miRNA-target interactions 

identified by sPARTA. Such experimental data may be either modified 5, RACE, 

applied to individual targets, or genome-level data sets from PARE, an extension of 5, 

RACE to the genome level. For PARE data, there are a number of earlier miRNA-

target validation studies (D. H. Jeong et al. 2013; Gong et al. 2013; Rymarquis, 

Souret, and Green 2011). Yet, since these earlier studies were also computational (i.e. 

had their own set of parameters for PARE validation), their sensitivity is unknown and 

there- fore cannot be used as a ‘gold standard’ to calculate the degree to which the 

sPARTA predictions generated false positives or false negatives. Moreover, since there 

is no earlier published approach or tool to cross-validate miRNA tar- gets from IGRs, 

it is not possible to appraise the sensitivity of these intergenic predictions from 

sPARTA. In the con- text of these limitations, we performed an assessment of the 

predictive power of sPARTA by comparison to CL3. 

A subset of plant miRNAs, including miR2118, miR2275, miR173 and 

miR390 (Johnson et al. 2009; Allen et al. 2005; Axtell et al. 2006) induce the 

production of secondary siRNAs in a phased arrangement from their target RNA 

transcript, via the recruitment of RDR6 and DCL4 or DCL5. The start site of the 

register of this phasing is determined by the position of miRNA-guided cleavage. 

Since the presence of phased sRNAs (phasiRNAs) from a locus indicates a real 

miRNA- target interaction occurred, finding a PARE-validated trigger site that was 

responsible for phasiRNA production further supports the validity of some miRNA-
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target inter- action. We used this cross-validation of a computation-  ally predicted 

miRNA-target interaction with phasiRNA (‘PHAS’) loci as the basis to assess and 

compare the ability of different software tools to identify miRNA target sites. 

 

Figure 2.3: Our approach to assessing the comparative benchmark of the 

prediction power. Loci generating phased sRNAs were identified from 

published small RNA datasets of B. distachyon and M truncatula, while 

genome-wide target prediction and validation was performed using their 

associated PARE datasets against all species-specific miRNAs. GEO 

accession numbers are indicated in the top row of boxes; asterisks 

indicate data either from https://mpss.danforthcenter.org /brachy_pare2 

or https://mpss.danforthcenter.org/mt_pare/. Triggers of phased sRNA 

loci validated by sPARTA and CL3 were identified and used for a 

comparison of predictive power. 
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Figure 2.4: Loci generating phased small RNAs were used in the comparison of 

predictive power. The phase-index consisting of 11 coordinates (+/- 5 

cycles), corresponding to a phase (21 or 24-nt) periodicity from the 

initiation site of the phased locus, or site at which the miRNA cleaves to 

trigger phasiRNA biogenesis. Triggers were identified by searching for 

miRNA-target interactions with cleavage sites matching a specific phase-

index. 

Two recent studies have reported many 21-nt phased loci from genic regions of 

M. truncatula and both 21- and 24-nt phased loci from IGRs of B. distachyon (D. H. 

Jeong et al. 2013; Zhai et al. 2011). Using the small RNA data from these studies, we 

repeated those analyses to identify a total of 310 (24-nt phasing) and 755 (21-nt 

phasing) PHAS loci were identified from IGRs of B. distachyon, and 129 (21-nt 

phasing) PHAS loci from genic regions of M. truncatula (Figure 2.3). For every 

phased locus, an index of potential miRNA target sites was generated. This index 
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consisted of 11 coordinates (+/ -5 cycles) in correspondence to the phased (21- or 24-

nt) periodicity from the initiation site of phased locus (Figure 2.4). PARE datasets 

from both studies were used to generate a list of PARE-validated targets against all 

miRNAs for each species, using sPARTA and CL3 independently. Though the CL3 

functionality is limited to transcriptome or genic regions, our aim was to compare an 

existing algorithm with sPARTA to assess its advantage or disadvantage in its 

prediction power. For this particular analysis, we rectified one of the main technical 

shortcomings of CL-the based pipeline by capacitating a parallelized prediction of 

targets; for this, we developed a parallelized version of TargetFinder (Fahlgren and 

Carrington 2010). No changes were made to the target prediction scoring schema, so 

as to retain the original approach of CL3. Finally, triggers of phased loci were 

identified by searching for a match between the PHAS-index of an individual locus 

and validated cleavage sites from both CL3 and sPARTA. 
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Figure 2.5: sPARTA validates more triggers and exhibit high p-value enrichment 

as compared to CL3. We performed comparative benchmarking of the 

predictive power of sPARTA, as outlined in Figure 2.3. (A) In an analysis 

of only 21-PHAS loci from genic regions from Medicago truncatula, 

sPARTA identified 2.5 times more miRNA triggers than CL3, with 68% 

of correct validations under a p-value of 0.05. (B) For 21- and 24-PHAS 

loci from intergenic regions of Brachypodium distachyon, sPARTA 

identified 3 and 4.5 more miRNA triggers with 70 and 90% of correct 

predictions under a p-value of 0.05, respectively. 

sPARTA demonstrated advantages over CL3 by identifying more triggers, as 

well as by exhibiting a high enrichment in P-value of correct predictions. In the case 

of phased loci from IGR of B. distachyon, 3-fold (total 56) and 4.5-fold (total 88) 

more triggers were validated by sPARTA (P- value 0.05) for 24- and 21-phased loci 

respectively (Figure 2.5A). Of all the miRNA triggers identified by sPARTA, 70% of 

21-phased and 90% of 24-phased triggers were predicted under a p-value of 0.05. 

Interestingly, miR2118 was identified as a trigger in 126 out of 127 validations of 21-

phased loci whereas, for 24-phased loci, miR2275 was identified as a trigger in all the 

validations. This is consistent with earlier reports of the miR2118 and miR2275 

families (Song, Li, et al. 2012, 4; Zhai et al. 2011) as triggers of reproductive-specific 

21- and 24-nt phased loci, respectively. This observation further supports the 
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robustness of our approach used for the comparative benchmark of predictive power, 

by showing that PARE-validated triggers of phased loci are not products of chance. 

For phased loci from genic regions of Medicago, sPARTA identified 2.5-fold more 

triggers under a p-value of 0.05 as compared to CL3 (Figure 2.5B). As in B. 

distachyon, sPARTA exhibited an enrichment of p-values by predicting 68% of 21-

phased loci triggers under a P-value of 0.05. 

 

Figure 2.6: Intergenic targets in B. distachyon for 80 different miRNAs. A total of 

506 credible intergenic targets were validated in B. distachyon from root, 

leaf, stem and panicle tissue. miRNAs bdi-miR2118 and bdi-miR2275 

accounted for half of the intergenic targets. The pie charts show miRNA 

families with more than three targets, with the number of targets 

following the miRNA name. 

2.2.3 Targets identified from intergenic regions 

A total of 506 credible targets (with a corrected P-value ≤ 0.05, degradome 

signal class ≤3) for 70 different miRNA families (Figure 2.6) were identified from the 

IGRs of B. dis- tachyon, using the published PARE datasets from root, leaf, stem and 



 

40 

 

panicle tissues (D. H. Jeong et al. 2013). These targets would certainly have been 

missed by existing PARE validations tools as those tools are limited to analysis of just 

the annotated genic regions. We also found multiple targets from a single IGR, each 

with different expression dynamics; our approach for the classification of PARE reads 

mapped to IGRs was developed with this scenario in mind. From the total set of 

intergenic targets, the panicle data alone accounted for most validated interactions (n = 

344) with 157 and 114 unique cleavages triggered by just two miRNA families, 

miR2118 and miR2275, respectively. Both miRNA families are known to trigger 

phasiRNA biogenesis (Johnson et al. 2009). In 48% of cleavage site identified, we 

found an overlap of the cleavage site within +/-5 phased positions or ‘indexes’ from 

the dominant register of phasing, i.e. the position with the highest phasing score. For 

those cleavage sites which did not match with the phased index, upon inspection, we 

found presence of a phased locus in close vicinity (250 nt). The reason for this 

disagreement between the cleavage site and phase index could be the depletion of 

some sRNAs from a few phasiRNA cycles, consistent with the non-stoichiometric 

abundances of tasiRNAs from Arabidopsis TAS loci, leading to a shift in the predicted 

position of the predominant register for the phasiRNAs. We also observed PARE 

validation of cleavage by miR2118 and miR2275 in leaf with the same cleavage co-

ordinates as panicles. For these interactions shared with those that lead to phased 

sRNA generation in panicles, no associated phased sRNAs were found near the 

cleavage site in leaf, yet the abundance of PARE reads at the cleavage sites indicates 

strong expression of the precursors in both panicle and leaf tissues. These observations 

suggest that there are other factors influencing the production of phased sRNAs. 
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Figure 2.7: miR396 coordinates cell proliferation in leaf meristem by regulating 

transcription factors belonging to the family of GROWTH-

REGULATING FACTOR (GRF). Plots of PARE data (D-Plots) mapped 

to genomic regions with cleavage sites highlighted for genic targets of 

bdi-miR396 in B. distachyon. Green dots indicate PARE reads from leaf 

libraries, and red dots are from panicle libraries. The numbers indicate 

abundance of reads (in TP15M). A) Bradi4g16450 (GRF-8 like), B) 

Bradi1g09900 (GRF-6 like), C) Bradi1g12650 (GRF-9 like) is shared 

between panicle and leaf. These targets encode proteins in the family of 

Growth Regulating Factor (GRFs). D, E and F) Examples of novel 

intergenic targets of miR396 from B. distachyon shared between leaf and 

panicle. 

Unlike miR2118 and miR2275 families, whose activity was found to be 

conserved to leaf and panicle, a few miRNAs like miR396 shared targets across the 

different combination of tissues. miR396 has been previously demonstrated to 

coordinate cell proliferation in leaf meristem by regulating transcription factors 
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belonging to the family of growth- regulating factor (GRF) (Rodriguez et al. 2010). 

Another transcription factor, bHLH74, crucial to margin and vein pattern formation of 

Arabidopsis leaves has been found to be a target of miR396 (Debernardi et al. 2012). 

Recently, it was reported that the miR396 regulatory network and tasiRNA biogenesis 

pathway synergistically interact to regulate leaf development (Mecchia et al. 2013). 

We found miR396 to be highly expressed not only in leaf but also seedling, stem and 

panicle of B. distachyon (D. H. Jeong et al. 2013); it is also found in roots but at a 

comparatively low level. In panicle, a total of nine validated targets of miR396 were 

identified from genic (n = 4) and IGRs (n = 5). All four genic targets from panicle 

were found to be a member of GRF family (Figure 2.7) like earlier published studies 

on leaf development. Moreover, the PARE signal at the cleavage site of all four of 

these targets belonged to class 0, i.e. PARE read abundance 90th percentile of all 

PARE reads mapped to the genic regions (Figure 2.7 A, B and C), suggesting 

moderate expression of cleaved GRF transcripts. There are also several IGRs (Figure 

2.7 D, E and F) with strong signals of miR396 activity, highly enriched in the panicle. 

These observations indicate that in addition to leaf development, miR396 might also 

play a role in panicle development. 
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Figure 2.8: MicroRNAs from families miR5174 and miR5181 originate from 

repetitive regions, rich with heterochromatic (24-nt) small RNAs. A 

resource which allows visualization of miRNAs and their targets in 

genomic context is sought to allow manual review of miRNAs in online 

repositories. At the bottom is a legend indicting that the intensity of the 

fill color indicates the hits (genome matches), while the different colors 

indicate the small RNA sizes. A) bdi-miR5174, B) bdi-miR5181, C) bdi-

miR5174b. 

In the process of these analyses, we noted that reliance on annotated miRNAs 

without their critical assessment can lead to spurious conclusions. As an example, 

three annotated miRNA families, miR5174, miR5181 and miR5180 (Baev et al. 2011), 

accounted for the greatest number of validated tar- gets (n 132), after the miR2118 and 

mi2275 families. Further inspection of these miRNAs revealed that they originate 
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from repetitive regions, rich in heterochromatic small RNAs (24 nt) and their 

abundance is quite low in the libraries used for prediction (Figure 2.8). The approach 

(Baev et al. 2011) implemented to annotate these three miRNA families used default 

Bowtie parameters therefore only first valid sRNA alignment to genome was reported 

instead of all the mappings of sRNA to the genome which lead to ‘clustering’ with 

incomplete set of small RNA mappings, also no hit- or abundance-based filter was 

applied to re- move lowly expressed or reads with large number of hits to genome. 

Moreover, through sPARTA-based analysis, all of the targets of these three families 

were found to be in highly repetitive regions. These data strongly suggested that these 

are incorrectly annotated miRNAs; as miRNAs are largely predicted computationally 

using different pipelines and parameters, mostly by small RNA sequencing datasets 

and submitted to miRBASE without experimental validation, researchers need to be 

wary of such false predictions. The presence of such spurious miRNAs in public 

repositories suggested the need for a resource which allows visualization of miRNAs 

and their targets in their genomic contexts, to allow manual inspection. 

2.2.4 The comPARE web interface 

We developed a web-based tool, which we call ‘comPARE’, for two purposes: 

(i) to serve as a single point of access for plant miRNA-target interactions that we 

have validated with PARE data, (ii) to facilitate connections of those data to our 

custom-built genome browser, specialized for small RNA (Nakano et al. 2006). This 

interface is designed to be easy to use, yet incorporate advanced functionality such as 

modifiable search parameters, combined searches of sRNA or PARE datasets, and 

analysis of library-based data. The comPARE site is accessible at: 

https://mpss.danforthcenter.org/tools/mirna_apps/comPARE.php  

https://mpss.danforthcenter.org/tools/mirna_apps/comPARE.php
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Figure 2.9: The interface to comPARE, web-based access to PARE-validated sets 

of miRNAs targets. A screenshot of the comPARE web interface. The 

red boxes highlight different types of user options. For example, in the 

upper left (i), the user can choose single or multiple species specific 

PARE databases to search for miRNA-target interactions. In the upper 

right (ii), in advanced search could be performed by setting the search 

parameters as per the required confidence level. In the lower left (iii), for 

a miRNA or target of interest, a search could be executed using a miRNA 

name and/or genome-specific target identifier as a query. Lower right 

(iv), if these options are listed, multiple sRNA databases for a species of 

interest other than the initial selection could be made. Finally (v), at the 

very bottom, the links, if clicked, display additional information about 

each interaction. 

To use this site, shown in Figure 2.9, first, a user chooses the PARE database 

for species of interest from the main query page, additional information about the 

available databases and included libraries are found at our lab’s main page 
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https://mpss.danforthcenter.org/. For specific miRNAs and targets of interest, their 

identifiers are entered into the respective textboxes on the main query page, generating 

results by clicking on ‘Search with default values’. This then will display all the 

interactions that pass the criteria, set by default for convenience. A more advanced 

search could be performed by modifying the values of search parameters, including 

the miRNA-target complementarity score (Target score), P-value cutoff, normalized 

abundance of the PARE signal at cleavage site (small window) and signal class (see 

‘Materials and Methods’ section); the search is executed by clicking on ‘Search with 

selected values’. The results for both a simple or modified query are presented in a 

simplified table format consisting of the miRNA name, miRNA sequence and the list 

of targets. However, a detailed view can be opened by clicking on ‘Show extra 

columns’ located in the header of the results table, which displays additional 

information including the target score, p-value, small window (a 1 nt region flanking 

the cleavage site), large window (a 5 nt region flanking the cleavage site), signal class, 

the cleavage site coordinates, and the annotated function of the target (if available) for 

each interaction that passed the selected or default search parameters. A user can also 

search for all the interactions from the selected species with either modified or default 

search parameters. The results from the user query in comPARE then integrate small 

RNA and PARE data, layered on an annotated genome. This provides a 

comprehensive view of cleavage sites, facilitating an in-depth exploration of miRNA-

target interactions. 

In addition to searches, visualization and exploration of miRNA-target 

interactions, one of the main strengths of comPARE is that it enables the discovery of 

conserved miRNA targets across different species. This functionality is of high value 

https://mpss.danforthcenter.org/
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for revealing not only the evolutionary con- served targets of specific miRNAs but, 

most interestingly, the non-conserved targets of different species or libraries. A quick 

search with ‘miR2118’ from the main query page shows that its targets are unrelated, 

genic and intergenic in M. truncatula and B. distachyon respectively, in consensus 

with earlier studies (Zhai et al. 2011; D.-H. Jeong et al. 2013). Such cross-species 

contrasting patterns of miRNA targets are of high biological significance, and 

comPARE could aid in discovering these patterns as it allows identification of 

genome-wide targets for miRNAs from different species. 

2.3 Availability 

sPARTA source is freely available under GNU Public License (v3) from our 

GitHub page:  https://github.com/atulkakrana/sPARTA. sPARTA is updated 

periodically and latest release can be downloaded from its ‘release’ page: 

https://github.com/atulkakrana/sPARTA/releases. To address user queries and for 

users to report any issues with sPARTA, we also maintain an issue reporting a tracking 

system here: https://github.com/atulkakrana/sPARTA/issues 

2.4 Chapter summary 

In this chapter, I 

 developed a new miRNA target prediction algorithm “miRferno”, to enable 

genome-wide prediction of hundreds to thousands of miRNAs in a 

reasonable time 

 implemented a novel genome fragmentation approach, to enable SIMD-

style parallelization at the most basic level 

 implemented two different modes in miRferno – Heuristic and Exhaustive 

to match the user requirements 

https://github.com/atulkakrana/sPARTA
https://github.com/atulkakrana/sPARTA/releases
https://github.com/atulkakrana/sPARTA/issues
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 implemented a ‘novel’ seed-free approach to miRferno to identify targets 

likely neglected by other tools 

 developed a software application that contains miRferno and performs 

validation of targets using experimental PARE or degradome data 

 developed a web-based tool “comPARE” to visualize miRNA targets 

integrations in data rich environment using the custom-built genome 

browser, specialized for small RNA  

 used sPARTA with real data from three different species and compared the 

predictions as well as speed with popular alternative 

 fixed the algorithmic shortcoming of popular alternative to enable its use at 

genome-wide scale, just to be able to compare the prediction performance 

of both tools. 

I observed that 

 sPARTA identifies 2.5-fold more triggers for protein-coding PHAS under a 

p-value of 0.05 as compared to CL3 (the popular alternative) 

 sPARTA identifies 3-and 4.5-fold more triggers for pre-meiotic and meiotic 

PHAS under p-value ≤ 0.05 compared to CL3 

 sPARTA algorithm is minimum 18x times faster than CL3 (the fastest CL 

version) even at single core 

 sPARTA is very fast, up to 516x compared to CL3 in our benchmarks on 

28-core machine 

 sPARTA efficiently identifies PARE-supported targets from intergenic 

regions, which would be missed by other existing options as these can only 

scan annotated portion of genome i.e. genes for targets 

From this work, I concluded that 

 sPARTA is sensitive, scalable and fast compared to existing tools; it has the 

fastest and most resource-efficient algorithm to predict targets till date 

 sPARTA is the “first” and “only available” tools for large scale and genome 

wide discovery of plant miRNA targets 
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 sPARTA maximizes the parallelization efficacy by optimizing 

parallelization schema based on genome-size, number of input miRNAs 

and number of PARE libraries 

 sPARTA reduces the analysis time from days and hours to minutes and 

seconds 

 comPARE, enables discovery, visualization and in-depth exploration of 

genome wide miRNA-target interactions in heterogeneous yet highly 

integrative environment 

 collation of high-throughput small RNA and PARE datasets from different 

genomes further facilitates re-evaluation of existing miRNA annotations, 

resulting in a ‘cleaner’ set of microRNAs 
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A HIGH PERFORMANCE SUITE OF TOOLS FOR IN-DEPTH 

CHARACTERIZATION OF PHASED siRNAs 

Phased siRNAs (phasiRNAs) are secondary siRNAs that are widely prevalent 

across land plants, generated from both protein-coding transcripts and long, non-

coding RNAs and in varying numbers per genome which ranges from tens to 

thousands. Integrated tools for in-depth characterization of “PHAS” loci have not yet 

been developed; and existing options are not only limited in number and function but 

also incompatible or inefficient in handling large volume of small RNA-seq data. In 

this chapter, we describe PHASIS suite which provides a complete tool set for 

discovery, quantification, annotation of phasiRNA loci or genes and rapid 

identification of their miRNA triggers. Benchmarks from five different species 

demonstrates that PHASIS is sensitive, exceedingly scalable and exceptionally fast 

software. Importantly, PHASIS can be run directly on transcript assembly and predicts 

miRNA triggers with high accuracy even without the PARE and degradome data, 

thereby eliminating the crucial requirement of assembled genome and experimental 

data for discovery of PHAS precursors, phasiRNAs and their triggers. The algorithmic 

novelty, flexibility to tailor analysis and the suitability for small to large-scale 

experiments makes PHASIS a de facto choice for discovery and study of phased 

siRNAs. The name “PHASIS” is from the ancient Greek city of Phasis, a destination 

for Jason and the Argonauts according to Greek mythology; we selected the name as it 

Chapter 3 



 

51 

 

links the colloquialism “phasis” as short for phasiRNAs, with the Argonaut proteins 

that bind them. 

3.1 Methods 

Lilium genome is not available. So, to use PHASIS on transcriptome we used it 

mainly due availability of precisely stages samples from our study of phased siRNAs. 

3.1.1 Sample Collection and RNA isolation 

Flowering Lilium plants were purchased from Home Depot (Newark, 

Delaware). Anthers were dissected using a 2 mm stage micrometer (Wards Science, 

cat. #949910) in a stereo microscope, and immediately frozen in liquid nitrogen until 

total RNA isolation was performed. Total RNA was isolated using the PureLink Plant 

RNA Reagent (ThermoFisher Scientific, cat. #12322012) following the manufacturer’s 

instructions. Total RNA quality and quantity were assessed before proceeding to the 

next step. Small RNAs (20 to 30 nt) were size selected in a 15% polyacrylamide/urea 

gel and used for small RNA library preparation as previously described (Mathioni, 

Kakrana, and Meyers 2016) . An aliquot of 3 µg of total RNA was used for size 

selection. Stages were assigned based on the morphology of archesporial (AR) and 

tapetal cells of Lilium anthers. 

3.1.2 Single Molecule Real Time (SMRT) sequencing and transcriptome 

assembly 

The collected plant material was ground in a cold mortar and pestle using 

liquid nitrogen. Total RNA was isolated using the PureLink® Plant RNA Reagent 

(Life Technologies, cat. # 12322-012), treated with DNAse I (NEB, cat. # M0303S) 

cleaned and concentrated with RNA Clean and Concentrator-5 (Zymo Research, cat. # 
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R1015). Then the MicroPoly(A) Purist™ Kit (Ambion, cat. # AM1919) was used for 

isolation of poly(A) RNAs. The poly(A) RNA samples were then converted into 

cDNA using the SMARTer™ PCR cDNA Synthesis Kit (Clontech, cat. # 634926) and 

the SageELF Size Selection System protocol as described by Pacific Biosciences in 

protocol # PN100-574-400-02. The cDNA was size selected and fractionated into 12 

fractions, which were then pooled into three size ranges: 0.8-2.0 kb, 2.0-4.0 kb, and > 

4.0 kb. SMRTbell libraries were prepared for the three cDNA size ranges using the 

DNA Template Library Preparation kit (SMRTbell Template Prep Kit 1.0) following 

the Pacific Biosciences protocol # PN100-574-400-02. A total of 11 SMRT Cells 

(Pacific Biosciences part # 100-171-800) were generated using the P6C4 polymerase 

(Pacific Biosciences part #100-372-700), five cells for transcripts < 2KB length, three 

cells for transcripts between 2KB and 4KB lengths and three cells for all transcripts > 

4kb length. The sequencing was performed on PacBio RS II Instrument at the 

University of Delaware Sequencing and Genotyping Center (Delaware Biotechnology 

Institute, Newark). Raw sequencing data was pre-processed using the pbscript-tofu 

tool set (v2.3.0) using the default settings. The pre-processing included classification 

of reads to full-length and non-full-length categories, followed by clustering of 

transcripts to consensus isoforms by ICE algorithm and final polishing by Quiver 

algorithm (min. accuracy = 0.99). For all downstream analysis, “high QV” transcript 

set generated from Quiver analyses was used. This set was further collapsed based on 

sequence similarity i.e. without the reference genome, to remove any redundancy in 

transcripts, especially for transcripts corresponding to same isoforms, by using the 

CD-HIT with recommended parameters 

https://github.com/PacificBiosciences/cDNA_primer/wiki. The matches to protein 

https://github.com/PacificBiosciences/cDNA_primer/wiki
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transcripts from Uniprot resource were summarized as described here: 

https://github.com/trinityrnaseq/trinityrnaseq/wiki/Counting-Full-Length-Trinity-

Transcripts. 

 

Figure 3.1: PHAS loci or precursors transcripts are predicted through 

phasdetect in the first step. The library-specific list of PHAS predictions 

can be summarized and annotated through phasmerge for libraries of 

interest into a PHAS summary. These summaries from two different 

groups can also be compared using “compare” mode of phasmerge. 

Triggers for PHAS summaries are identified through phasmerge either 

with PARE data in “validation” mode or without any experimental data 

in “prediction” mode. Selection between these two modes is made 

automatically based on a PARE library input or the lack of it. All analysis 

steps are independent and their execution depends upon the requirements 

of the user. 

https://github.com/trinityrnaseq/trinityrnaseq/wiki/Counting-Full-Length-Trinity-Transcripts
https://github.com/trinityrnaseq/trinityrnaseq/wiki/Counting-Full-Length-Trinity-Transcripts


 

54 

 

3.2 Approach and Features 

PHASIS comprises three components that together perform de novo discovery, 

annotation, quantification, comparison and trigger identification for PHAS loci or 

precursor transcripts. We chose a modular approach over the single ‘one-command’ 

style for the following reasons: i) to maximize the flexibility for specific data or study 

requirements; ii) to integrate multiple, connected analyses; and, iii) to reduce overall 

runtime by maximizing phase- and step-specific parallelization.  A description of these 

tools – phasdetect, phasmerge, phasmerge – in order of their utility or phases of study 

is provided below (see also Figure 3.1). PHASIS leverages the Python (v3) process-

based “threading” interface to achieve efficient scalability and significantly reduce 

runtimes through parallel computing. 

3.2.1 phasdetect – scalable and sensitive algorithm for large-scale survey of 

phasiRNA genes or loci 

phasdetect performs de novo prediction of PHAS loci or precursor transcripts 

using user-supplied sRNA libraries along with a reference genome or transcriptome. It 

can efficiently process tens to hundreds of sRNA libraries in parallel, reducing 

runtimes. phasdetect operates via three main steps: i) first, sRNA libraries are 

normalized and mapped to the reference; ii) second, mapped sRNA reads are scanned 

to identify regions rich for specific size classes, such as those generated by Dicer 

activity (typically 21, 22, or 24 nt in plants); 3) finally these regions are stitched into 

clusters and the phasing of the small RNAs is computed as a p-value. We adopted a 

standard approach to compute p-values (Chen, Li, and Wu 2007). Parameters 

controlling these steps can be modified by users via the setting file “phasis.set”, 

including values for phase, mindepth and clustbuffer; these refer to the phasing 

periodicity, minimum sRNA abundance to be included for p-value computation, and 
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the minimum distance separating two clusters. These parameters are explained in 

detail on the PHASIS wiki page (https://github.com/atulkakrana/PHASIS/wiki/). The 

output for phasdetect includes library-specific list of PHAS loci (or transcripts) at 

several different confidence levels plus ancillary data, used to reduce runtime for 

subsequent analyses. For example, in case of a reanalysis after adding new libraries, 

phasdetect checks for any changes in parameters from the earlier analysis, assesses the 

integrity and compatibility of the ancillary data for, and reuses existing data to avoid 

repetition. This ancillary data also enables an array for downstream analyses and 

analysis-specific optimizations directly through phasdetect. 

3.2.2 phasmerge – feature-rich tool to facilitate a tailored analysis, re-analysis 

and optimizations 

phasmerge generates a summarization and performs a comparison between the 

PHAS summaries and annotations using the library-specific PHAS lists and ancillary 

data generated by phasdetect. These operations are selected by using the -mode option 

with the merge (default) or compare values. The merge mode prepares a PHAS 

summary for the libraries of interest, or for libraries that belong to different groups 

based on sample stages, tissues or treatments. The analysis can be tailored to meet the 

study requirements. For example, to maximize discovery, a user might set a lower 

confidence level (p-value) for summarization and consider all loci with a trigger 

predicted without the PARE data (identified through phasmerge) for downstream 

analyses. In contrast, a user motivated to maximize the quality might identify PHAS 

loci with the highest confidence level, followed by pruning of results with stringent 

quality parameters (described on the phasmerge wiki), and use PHAS loci that have 

PARE-supported triggers. PHAS summaries from different groups of libraries can be 
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compared using compare mode. This is particularly useful to identify intersecting and 

exclusive PHAS loci between different groups of stages, tissues or treatments. In 

merge mode, if an additional annotation file is provided, then merged PHAS loci are 

matched to genome annotations so as to identify coding PHAS loci or other available 

annotations. This function also supports quick discovery of precursor transcripts for 

summarized PHAS loci when provided with a GTF file generated from mapping the 

transcriptome assembly to genome. Furthermore, phasmerge attempts to determine the 

correct 5’ terminus of PHAS loci by optimizing for the best 5’ or 3’ coordinates based 

on the user’s sRNA data – a crucial functionality for determination of the correct 

miRNA trigger. phasmerge benefits from the modular PHASIS workflow, allowing 

users to optimize their results for the study which may vary in purpose, and making 

phasmerge independent from other tools. 

The phasmerge workflow has three mandatory and two optional steps: i) via 

merge mode, phasmerge first generates a unique list of PHAS loci (or transcripts) for 

each user-specified library, by selecting predictions with the highest available 

confidence score (lowest p-value) that pass a user-supplied p-value cutoff, after 

comparing predictions from all available confidence levels; ii) phasmerge clusters the 

“best” candidate loci from specified libraries specific by the user, based on the degree 

of overlap in phased positions (or ‘cycles’) to select a representative locus for each 

cluster; finally, iii) phasmerge computes library-specific abundances, a size-class 

ratio, the maximum to total phasiRNAs abundance ratio, and other quality 

information. Optional steps include iv) compare mode, which first reads PHAS loci (or 

transcripts) from user-supplied summaries (n=2) and then identifies matching PHAS 

pairs based on the overlap in phased positions, to report a combined matrix including 
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both shared and unique loci in each PHAS summary file, and v) merge mode;  when 

supplied with annotations, as described above, phasmerge matches a merged set of 

PHAS loci with genome annotations or with a genome-matched transcriptome 

assembly, both provided as GTF file, to report exonic or complete overlaps with 

annotated transcripts. This step requires prior installation of SQLite on user’s machine. 

phasmerge generates several reports as output, most importantly, PHAS summary for 

libraries of interest which includes quality parameters (see online wiki for more 

information), FASTA files for size-specific siRNAs and all the siRNAs from phased 

positions along with detailed information on phased clusters with phasiRNAs, 

positions, associated p-values, etc. 

3.2.3 phastrigs – an ultrafast and exhaustive algorithm for discovery of 

phasiRNA triggers 

phasmerge identifies sRNA triggers for PHAS loci and precursor transcripts 

using the phasmerge summaries and a user-provided list of miRNAs (or any other 

small RNA). It was developed with the idea to minimize the requirement of 

experimental degradome (Addo-Quaye et al. 2008) or PARE (German et al. 2009) 

libraries. However, if such data (‘PARE’, henceforth) are provided, then phasmerge 

reports sRNA triggers with experimental support; these may be of higher confidence 

for some downstream experimental analyses. The strength of phasmerge lies in an 

algorithm designed to be both fast and exhaustive. It uses miRferno, an exhaustive 

target prediction algorithm that we developed (Kakrana et al. 2014) to predict targets 

sites for user-supplied miRNAs. The speed and precision of phasmerge is enhanced by 

a scan focused on 5’ terminus of each PHAS locus (5’-end of the first cycle, the P1 

position) for the trigger site, which reduces the search space and chance of reporting 
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false triggers. This 5’ terminus is inferred at the summarization step by phasmerge 

while collating data from different sRNA libraries. In the case of PHAS transcripts, 

only the 5’ terminus of the phased precursor is scanned, while in case of genomic 

PHAS loci, either the 5’ or 3’ end of the phased region is chosen, based on the strand 

targeted by a specific miRNA. Phasmerge analysis is divided into two main steps: i) 

PHAS transcripts or genomic sequences are extracted, and targets for user-supplied 

miRNAs are predicted; ii) next, a scan of phased positions located at the 5’ or 3’ 

termini of precursor for a target site that corresponds with the production of 

phasiRNAs is performed; this scan looks for target sites within ±3 nt of the ‘PHAS 

index’, defined as theoretical phased positions upstream from the 5’ terminus of P1. If 

PARE data is supplied, then PARE-validated cleavage sites are used for trigger 

identification. The Phasmerge report includes detailed information on miRNA-target 

interactions, PARE abundances at the predicted cleavage site, and the PHAS index of 

the predicted trigger site relative to the P1 position. 
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Table 3.1: Comparison of features from existing tools that can predict 

phasiRNAs generating loci with the PHASIS suite presented in this 

study 

 

Software ShortStack PhaseTank PHASworks

Citation

Axtell	MJ	

(2013)

Guo	et.	al.	

(2015)

Present	

work

Tool-specific	data	format	

requirement?
no yes no

Library	wise	results? no no yes

PHAS	prediction	in	w/o	

genome	assembly?
no no yes

Group	results	based	in	

stage,	tissue	or	

treatments?

no no yes

PHAS	comparison	

between	groups?
no no yes

PHAS	annotation?

yes	(from	

genome	GFF	

only)

no	 yes

PHAS	trigger	prediction	

w/o	PARE	data
no no yes

miRNA/hp	loci	prediction yes no no

whole	genome	report	of	

sRNA	clusters
yes no no
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Table 3.2: Distribution of sRNA and PARE reads along with SMRT sequencing 

transcripts from Arabidopsis, Brachypodium, Lilium, rice and maize. 
For paired-end mRNA-seq, the number of read pairs listed correspond to 

read pairs. For SMRT-seq, the polished reads correspond to corrected, 

high-quality consensus transcripts 

 

 

 

Part	A.	Maize	small	RNA	and	PARE	data

Code Title
Total	

Sequences

Length	of	

Reads
Type

MzRoots Total	RNA	from	maize	root	tissues 7,672,260				 18-34 sRNA

0.2	Fertile_r1 maize	fertile	anthers,	0.2	mm,	rep	1. 12,896,366	 18-34 sRNA

0.4	Fertile_r1 maize	fertile	anthers,	0.4	mm,	rep	1. 35,286,904	 18-34 sRNA

0.7	Fertile_r1 maize	fertile	anthers,	0.7	mm,	rep	1. 34,045,564	 18-34 sRNA

1.0	Fertile_r1 maize	fertile	anthers,	1.0	mm,	rep	1. 34,019,136	 18-34 sRNA

1.5	Fertile_r1 maize	fertile	anthers,	1.5	mm,	rep	1. 37,521,389	 18-34 sRNA

2.0	Fertile_r1 maize	fertile	anthers,	2.0	mm,	rep	1. 35,796,937	 18-34 sRNA

2.5	Fertile_r1 maize	fertile	anthers,	2.5	mm,	rep	1. 55,306,867	 18-34 sRNA

3.0	Fertile_r1 maize	fertile	anthers,	3.0	mm,	rep	1. 26,285,048	 18-34 sRNA

4.0	Fertile_r1 maize	fertile	anthers,	4.0	mm,	rep	1. 40,210,297	 18-34 sRNA

5.0	Fertile_r1 maize	fertile	anthers,	5.0	mm,	rep	1. 29,748,543	 18-34 sRNA

PLN	Fertile_r1 maize	mature	pollen,	rep	1. 33,201,391	 18-34 sRNA

1_0w1_5 Mixed	sizes	of	fertile	anthers:	1.0	and	1.5	mm 50,968,596	 18-20 PARE

2_0w2_5w3_0 Mixed	sizes	of	fertile	anthers:	2.0	mm,	2.5	mm	and	3.0	mm 38,853,899	 18-20 PARE

4_0wPollen Mixture	of	fertile	4.0	mm	anthers	and	mature	pollen 38,138,281	 18-20 PARE

Part	B.	Rice	small	RNA	and	PARE	data

58N_1 Young	panicles	of	Nongken	58,	normal	fertile	line 17,707,755	 18-34 sRNA

58S_1 Young	panicles	of	Nongken	58S,	a	male-sterile	line 19,936,967	 18-34 sRNA

WT2003s WT2003	wildtype	leaf	library	from	epigenome	study	(Stroud	et	al.,	2013) 21,950,616	 18-34 sRNA

YL9522_S3_1 Wild	type	rice,	genotype	9522,	anther	development	stage	3	(S3),	rep	1. 5,357,541				 18-44 sRNA

YL9522_S3_2 Wild	type	rice,	genotype	9522,	anther	development	stage	3	(S3),	rep	2. 5,357,845				 18-44 sRNA

YL9522_S3_3 Wild	type	rice,	genotype	9522,	anther	development	stage	3	(S3),	rep	3, 5,353,223				 18-44 sRNA

YL9522_S5_1 Wild	type	rice,	genotype	9522,	anther	development	stage	5	(S5),	rep	1. 5,364,888				 18-44 sRNA

YL9522_S5_2 Wild	type	rice,	genotype	9522,	anther	development	stage	5	(S5),	rep	2. 5,380,262				 18-44 sRNA

YL9522_S5_3 Wild	type	rice,	genotype	9522,	anther	development	stage	5	(S5),	rep	3. 5,375,868				 18-42 sRNA

YL9522_S7_1 Wild	type	rice,	genotype	9522,	anther	development	stage	7	(S7),	rep	1. 5,024,297				 18-44 sRNA

YL9522_S7_2 Wild	type	rice,	genotype	9522,	anther	development	stage	7	(S7),	rep	2. 5,016,776				 18-44 sRNA

YL9522_S7_3 Wild	type	rice,	genotype	9522,	anther	development	stage	7	(S7),	rep	3. 5,019,313				 18-42 sRNA

msp1_S3_1 msp1,	genotype	AF55,	anther	development	stage	3	(S3),	rep	1. 5,359,511				 18-44 sRNA

msp1_S3_2 msp1,	genotype	AF55,	anther	development	stage	3	(S3),	rep	2. 5,358,885				 18-42 sRNA

msp1_S3_3 msp1,	genotype	AF55,	anther	development	stage	3	(S3),	rep	3. 5,361,304				 18-44 sRNA

INF939 Rice	wildtype	inflorescence	degradome/PARE	library 4,426,044				 18-20 PARE

INF9311a Rice	inflorescence	(93-11)	wildtype	degradome/PARE	library 15,360,571	 18-20 PARE

Part	C.	Brachypodium	small	RNA	and	PARE	data

BDI08 Root 5,139,430				 18-35 sRNA

OBD03 Seedling 2,624,702				 18-30 sRNA

BDI04 Leaf	1 5,207,568				 18-34 sRNA

BDI09 Leaf	2 7,027,246				 18-35 sRNA

BDI06 Stem 3,855,537				 18-34 sRNA

OBD02 Leaf	and	stem 3,603,581				 18-30 sRNA

BDI05 Panicle	1 4,944,182				 18-34 sRNA

OBD01 Panicle	2 3,992,373				 18-30 sRNA

BDI02 Shoot	control	for	stress 2,494,849				 18-34 sRNA

BDI21 Leaf 13,772,836	 18-20 PARE

BDI25 Panicle 29,026,276	 18-20 PARE
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Part	D.	Lilium	small	RNA	data

Lilium_leaf Lilium	maculatum	leaf,	BM14-190 27,227,974 18-34 sRNA

Lilium_4mm_an Lilium	maculatum	L-4,	4	mm	anthers,	BM14-191 35,477,763 18-34 sRNA

Lilium_5mm_an Lilium	maculatum	L-5,	5	mm	anthers,	BM14-192 32,039,303 18-34 sRNA

Lilium_6mm_an Lilium	maculatum	L-6,	6	mm	anthers,	BM14-193 32,024,530 18-34 sRNA

Lilium_8mm_an Lilium	maculatum	L-8,	8	mm	anthers,	BM14-195 32,594,126 18-34 sRNA

Lilium_10mm_anLilium	maculatum	L-10,	10	mm	anthers,	BM14-197 33,533,618 18-34 sRNA

Lilium_leaf Lilium	maculatum	leaf,	BM14-190 68,250,144 2x150 RNA-seq

Lilium_4mm_an Lilium	maculatum	L-4,	4	mm	anthers,	BM14-191 70,492,722 2x150 RNA-seq

Lilium_5mm_an Lilium	maculatum	L-5,	5	mm	anthers,	BM14-192 67,997,742 2x150 RNA-seq

Lilium_6mm_an Lilium	maculatum	L-6,	6	mm	anthers,	BM14-193 62,509,328 2x150 RNA-seq

Lilium_8mm_an Lilium	maculatum	L-8,	8	mm	anthers,	BM14-195 66,675,362 2x150 RNA-seq

Lilium_10mm_anLilium	maculatum	L-10,	10	mm	anthers,	BM14-197 68,302,075 2x150 RNA-seq

Part	E.	Arabidopsis	small	RNA	and	PARE	data

AT_Leaf Leaf	wild	type	col0 21,716,675	 18-34 sRNA

Col_2 	Inflorescence	of	Arabidopsis	Columbia	(Col-0)	plants,	replication	2 11,396,067	 18-34 sRNA

Col_3 Inflorescence	of	Arabidopsis	Columbia	(Col-0)	plants,	replication	3 9,690,024				 18-34 sRNA

AtCM sRNA	library	from	mixed	stage	inflorescence	of	Arabidopsis	wildtype	Col-0 26,084,301	 18-34 sRNA

Wt_d sRNA	library	from	unopened	flower	buds	of	Arabidopsis	wiltype	Col-0	 11,808,921	 18-30 sRNA

Col_d sRNA	library	from	unopened	flower	buds	of	Arabidopsis	wildtype	Col-0	 24,688,934	 18-34 sRNA

TWF Col-0	inflorescence,	control	for	xrn4;	PARE	data 17,711,729	 20 PARE

Tx4F xrn4	mutant	inflorescence;	PARE	data 10,643,828	 20 PARE

Part	F.	Maize	small	RNA	data	used	for	comaprision	to	human-curated	data,	from	Zhai	et	al.,	2015.	

0.2	Fertile_r1 maize	fertile	anthers,	0.2	mm,	rep	1. 12,896,366 18-34 sRNA

0.4	Fertile_r1 maize	fertile	anthers,	0.4	mm,	rep	1. 35,286,904 18-34 sRNA

0.7	Fertile_r1 maize	fertile	anthers,	0.7	mm,	rep	1. 34,045,564 18-34 sRNA

1.0	Fertile_r1 maize	fertile	anthers,	1.0	mm,	rep	1. 34,019,136 18-34 sRNA

1.5	Fertile_r1 maize	fertile	anthers,	1.5	mm,	rep	1. 37,521,389 18-34 sRNA

2.0	Fertile_r1 maize	fertile	anthers,	2.0	mm,	rep	1. 35,796,937 18-34 sRNA

2.5	Fertile_r1 maize	fertile	anthers,	2.5	mm,	rep	1. 55,306,867 18-34 sRNA

3.0	Fertile_r1 maize	fertile	anthers,	3.0	mm,	rep	1. 26,285,048 18-34 sRNA

4.0	Fertile_r1 maize	fertile	anthers,	4.0	mm,	rep	1. 40,210,297 18-34 sRNA

5.0	Fertile_r1 maize	fertile	anthers,	5.0	mm,	rep	1. 29,748,543 18-34 sRNA

PLN	Fertile_r1 maize	mature	pollen,	rep	1. 33,201,391 18-34 sRNA

0.2	Fertile_r2 maize	fertile	anthers,	0.2	mm	rep	2. 21,549,901 18-34 sRNA

0.4	Fertile_r2 maize	fertile	anthers,	0.4	mm	rep	2. 36,257,470 18-34 sRNA

0.7	Fertile_r2 maize	fertile	anthers,	0.7	mm	rep	2. 41,837,825 18-34 sRNA

1.0	Fertile_r2 maize	fertile	anthers,	1.0	mm	rep	2. 37,594,678 18-34 sRNA

1.5	Fertile_r2 maize	fertile	anthers,	1.5	mm	rep	2. 27,713,840 18-34 sRNA

2.0	Fertile_r2 maize	fertile	anthers,	2.0	mm	rep	2. 48,664,038 18-34 sRNA

2.5	Fertile_r2 maize	fertile	anthers,	2.5	mm	rep	2. 50,543,592 18-34 sRNA

3.0	Fertile_r2 maize	fertile	anthers,	3.0	mm	rep	2. 28,476,786 18-34 sRNA

4.0	Fertile_r2 maize	fertile	anthers,	4.0	mm	rep	2. 27,693,417 18-34 sRNA

5.0	Fertile_r2 maize	fertile	anthers,	5.0	mm	rep	2 27,562,227 18-34 sRNA

PLN	Fertile_r2 maize	mature	pollen,	rep	2 33,953,600 18-34 sRNA

0.4	Fertile,	r3 maize	fertile	anthers,	0.4	mm,	rep	3 25,908,576 18-34 sRNA

0.7	Fertile,	r3 maize	fertile	anthers,	0.7	mm,	rep	3 22,135,681 18-34 sRNA

1.0	Fertile,	r3 maize	fertile	anthers,	1.0	mm,	rep	3. 29,761,645 18-34 sRNA

1.5	Fertile,	r3 maize	fertile	anthers,	1.5	mm,	rep	3. 26,530,207 18-34 sRNA

2.0	Fertile_r3 maize	fertile	anthers,	2.0	mm,	rep	3. 23,136,153 18-34 sRNA

2.5	Fertile_r3 maize	fertile	anthers,	2.5	mm,	rep	3. 24,169,553 18-34 sRNA

3.0	Fertile_r3 maize	fertile	anthers,	3.0	mm,	rep	3. 23,155,446 18-34 sRNA

4.0	Fertile_r3 maize	fertile	anthers,	4.0	mm,	rep	3. 23,592,086 18-34 sRNA

5.0	Fertile_r3 maize	fertile	anthers,	5.0	mm,	rep	3. 23,453,249 18-34 sRNA

PollenFertile_r3 maize	mature	pollen,	rep	3. 20,949,777 18-34 sRNA
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3.3 Results 

We first sought to assess the sensitivity and specificity for PHASIS; ideally, 

this would be done with a gold-standard reference set of experimentally-validated 

PHAS loci in plants. While the definition of “gold standard” is as-yet unclear for 

PHAS loci, the recently-described maize loci are among the most exhaustively 

characterized (Zhai et al. 2015), and thus we used these data below. We also compared 

PHASIS predictions and performance with PhaseTank (Guo, Qu, and Jin 2015). 

Currently, two computational tools are capable of de novo discovery of PHAS loci – 

PhaseTank (Guo, Qu, and Jin 2015) and ShortStack (Axtell 2013b). PhaseTank is 

exclusively build for predicting PHAS loci in plants, while ShortStack aims to annotate 

and quantify diverse sRNA-associated genes (or clusters), and it’s typically deployed 

for characterizing miRNAs in plants and animals (Axtell 2013b). A direct comparison 

between PHASIS and ShortStack is not possible due to significant differences in their 

scope, utility and workflow (Table 3.1). So, for comparative benchmarking, we chose 

PhaseTank, mainly because of matching objectives and its published superiority over 

ShortStack in predicting PHAS loci (Guo, Qu, and Jin 2015). Benchmarking was 

performed across five plant species – Arabidopsis thaliana (Arabidopsis), 

Brachypodium distachyon (Brachypodium), Oryza sativa (rice), Zea mays (maize) and 

Lilium maculatum (Lilium). These species were selected based on availability of high-

quality nuclear genome assemblies or anther transcriptomes (in case of Lilium), and 

Part	G.	Distribution	of	full-length	transcripts	in	new	SMRT	sequencing	libraries	generated	for	this	study	

Code Title Reads

polished	

high-

quality	

isoformsd

No	of	cells

Lilium.2kb Lilium,	4-6mm	anther,	<2kb	insert	length 410,768 54,622 5

Lilium.2-3kb Lilium,	4-6mm	anther,	2-3	kb	insert	length 285,133 44,566 3

Lilium.4kb-aboveLilium,	4-6mm	anther,	>3	kb	insert	length 305,581 23,591 3
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deep sRNA libraries from premeiotic and meiotic anther or from at least one of these 

two stages that should contain many reproductive phasiRNAs (Table 3.2). 

Arabidopsis was included because it was originally used in PhaseTank benchmarking 

(Guo, Qu, and Jin 2015). For PhaseTank, the reference genome, transcriptome and 

sRNA libraries were converted to the appropriate formats, and the time for file 

conversion process, although complex and lengthy, was not added in the PhaseTank 

runtimes. PHASIS and PhaseTank use inherently different scoring schemas; because 

of this difference, we used a conservative p-value (1e-05) for PHASIS and the 

recommended score (=15) for PhaseTank.  All benchmarks were performed on a 28 

core, 2.42 GHz machine with 512 GB of RAM, running CentOS 6.6. 
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Figure 3.2: Number of PHAS loci or transcripts and their trigger predicted by 

PHASIS. PHASIS is labelled as ‘PS’ and it is compared to PhaseTank for 

benchmarking. A) 21-PHAS and B) 24-PHAS loci identified by both 

tools along with their triggers in Arabidopsis (ath), Brachypodium (bdi), 

Lilium (lma), rice (osa) and maize (zma). For PHASIS trigger prediction, 

results from both “validation” and “prediction” mode was included. The 

bars for Lilium 24-PHAS loci are split at two different points for display 

purposes. Triggers assigned to PHAS loci that do not match with known 

or published miRNA triggers were represented as ‘unknown’ triggers. 

PHAS prediction and runtime performance 

3.3.1 PHAS prediction and runtime performance 

We first compared PHAS loci and transcript predictions from PHASIS and 

PhaseTank. Since Arabidopsis lacks 24-PHAS loci (none have ever been published, 

nor have we found any), and there are few TAS genes (n=8), these were excluded from 

quantification of prediction and speed comparisons. PHASIS demonstrated an edge 

over PhaseTank in PHAS predictions: in genomic analyses, it predicted up to 2.5 times 

more PHAS loci, ranging from 73 24-PHAS (145% gain) to 380 21-PHAS (24% gain) 

loci in Brachypodium and rice respectively (Table 3.3). The biggest gain was 

observed in an analysis of the Lilium transcriptome, in which PHASIS predicted ~10 

times (n=408) more 21-PHAS and 18 times (n=9065) more 24-PHAS precursor 

transcripts compared to PhaseTank (Figure 3.2B). The specific data format 

requirements of PhaseTank made it difficult to accurately determine the set of 

common PHAS predictions (the ‘common PHAS pool’, hereafter) for transcriptome 

level analysis, however, by matching the sequences we determined that PHASIS 

captured at least 66% of 21-PHAS and 99% of 24-PHAS predictions from PhaseTank. 

For genomic analyses, PHASIS captured >80% of PhaseTank predictions, except in 

rice and Arabidopsis in which PhaseTank predicted additional 24-PHAS loci (Table 

3.3). 
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Table 3.3: Comparison of predictions for PHAS loci (and precursor 

transcripts) and their miRNAs triggers between PHASIS and its direct 

competitor PhaseTank. In all comparisons PHASIS displays clear superiority of 

PhaseTank except in Arabidopsis 24-PHAS where PhaseTank predictions were false-

positives and in rice 24-PHAS where it predicted loci with weak phased patterns. The 

weak phased loci from rice were identified by PHASIS by running it at a lower p-value 

cutoff. PhaseTank also show a little gain in predicting triggers for Arabidopsis 21-

PHAS, these cases are described in detail in paper and could be identified by relaxing 

phasmerge search-space parameters. 

 
 

The additional 24-PHAS loci predicted by PhaseTank in rice and Arabidopsis 

all had significantly lower quality scores (from PhaseTank) compared to the common 

PHAS pool, as did the PhaseTank-exclusive 21- and 24-PHAS predictions from other 

species. The average quality scores computed for each species were 1.7 to 7.8 times 

lower compared to the common PHAS pool (p-value < 0.001, t-test); the predictions 

exclusive to PhaseTank are likely unphased and a misinterpretation of loci yielding 

profuse heterochromatic siRNAs (hc-siRNAs). This may explain the 24-PHAS 

predictions in Arabidopsis by PhaseTank (Figure 3.2B and Table 3.3), as 24-nt 

phasiRNAs have not been reported in Arabidopsis despite exhaustive analyses (Axtell 

2013a). Nonetheless, considering that these PhaseTank predictions could represent 

Species Type

PHAS	locus	

gain	with	

PHASIS	

over	

PhaseTank

Proportion	

of	

PhaseTank	

PHAS	loci	

captured	by	

PHASIS

Gain	in	miRNA	

triggers:	

PHASIS	

(PARE	

supported)	vs.	

PhaseTank	

(PARE	

supported

Gain	in	miRNA	

triggers,	

PHASIS	

(predicted)	vs.	

PhaseTank	

(PARE	

supported)	

Gain	in	miRNA	

triggers,	

PHASIS	

(predicted)	vs.	

PHASIS	(PARE	

supported)

21- PHAS 21.00% 84.00% -54.00% -18.18% 45.45%

24- PHAS -95.00% 1.00% No	predictions No	predictions No	predictions

21- PHAS 145.00% 79.00% 76.09% 178.26% 81.48%

24- PHAS 49.00% 85.00% 35.90% 69.23% 40.28%

21- PHAS 24.00% 96.63% 4.94% 53.55% 51.25%

24- PHAS -33.00% 29.00% No	predictions N.D N.D

21- PHAS 81.00% 96.84% 4.11% 54.80% 56.89%

24- PHAS 59.00% 85.81% 9.09% 63.64% 46.67%

21- PHAS 907.00% 67%* No	PARE	data No	PARE	data No	PARE	data

24- PHAS 1694.00% 94%* No	PARE	data No	PARE	data No	PARE	data

Arabidopsis

Brachypodium

Rice

Maize

Lilium
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weak PHAS loci, we attempted to capture them by running PHASIS at lower p-value 

cutoff (1e-03) but failed to detect >96% of them. Manual investigation of a portion of 

these PHAS loci using our custom sRNA browser which uses a slightly different 

PHAS scoring schema (Allen and Howell 2010), revealed that these are indeed either 

unphased or show typical characteristics of hc-siRNA loci, i.e. are false positives 

predicted by PhaseTank (Figure 3.3A). However, we could detect 70% (n=67) of the 

total 24-PHAS PhaseTank predictions in rice at the lower p-value cutoff (1e-03) of 

PHASIS, and a majority of these showed weak phasing patterns (Figure 3.3B), 

suggesting that PHASIS missed these at the selected cutoff. However, the count of 24-

PHAS loci predicted in rice by both tools in these libraries from a recent study (Fei et 

al. 2016), was lower than earlier estimates (Johnson et al. 2009), indicating that the 

libraries likely missed meiotic peak of accumulation.  These contrasting observations 

– Arabidopsis, in which PHASIS correctly excluded 24-PHAS predictions even at 

relaxed cutoff, versus rice, in which it correctly captured 70% of weakly phased 24-

PHAS loci – highlights differences in scoring in the two tools, with the default 

PHASIS p-value cutoff (1e-05) more stringent than that of PhaseTank (score=15). 

Using a lower p-value cutoff for PHASIS could further increase the gain in PHAS 

predictions over PhaseTank without adding much noise. 
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Figure 3.3: Snapshots of genomic loci with evidence of phasing. A) Examples of 

24-PHAS loci predicted by PhaseTank in Arabidopsis. These are either 

un-phased or display characteristics typical of heterochromatic siRNA-

associated regions. B) Rice 24-PHAS loci predicted by PhaseTank and 

rescued in PHASIS by using a lower p-value cutoff display. Most of these 

had weak phasing scores but display characteristics typical of phased loci 

described in maize (Zhai et al., 2015). Phased scores for all the loci were 

computed as described by Allen et al., 2007. 

We manually investigated 21- and 24-PHAS predictions that are exclusive to 

PHASIS, using the Meyers lab sRNA viewer. The majority of these displayed 

characteristics matching those of the canonical 21- and 24-PHAS loci reported in 

maize (Zhai et al. 2015) (Figure 3.4). Moreover, a major proportion of these PHASIS-

exclusive predictions had PARE-validated miRNA triggers, matching to the earlier 
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reports from maize, rice and Brachypodium (Johnson et al. 2009; Zhai et al. 2015; D. 

H. Jeong et al. 2013).  

 

Figure 3.4: Snapshots of genomic loci from maize with evidence of phasing. 

Examples of A) 21-PHAS and B) 24-PHAS loci identified in maize by 

PHASIS and missed by the PhaseTank. Our small RNA genome browser 

displays robust phasing scores at these loci suggesting that these are 

indeed true phased loci. In 24-PHAS snapshots 24-nt sRNAs (orange 

diamonds) are shadowed by 23-nt sRNAs (violet diamonds) if these have 

close 5’ ends. Blue or orange cross-hatched boxes in were annotated as 

21- or 24-PHAS loci by Zhai et al. (2015). 
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Figure 3.5: Runtime comparisons between PHASIS and PhaseTank. A) Time 

taken by both tools in prediction of 21- and 24-PHAS loci or precursors 

transcripts. Speed gain displayed by PHASIS over PhaseTank, 

approximated for both size classes, is individually marked for each 

species. B) and C) Time taken by both tools in predicting 21- and 24-

PHAS triggers, respectively. Speed gain displayed by PHASIS in 

“validation” and “prediction” mode over PhaseTank is displayed in blue 

and orange colors respectively. In all comparisons, Arabidopsis is 

marked as “ath”, Brachypodium as “bdi”, rice as “osa”, maize as “zma” 

and Lilium as “lma”. 

Next, we compared prediction runtimes of PHASIS and PhaseTank from 

genome- and transcriptome-level experiments. To get the correct runtimes for both 

tools, we excluded the execution time for a common step performed by an external 

tool (Bowtie, version 1) that prepares the index for the reference genome or 

transcriptome. For genome-level experiments, PHASIS displayed a minimum speed 

gain of 3x in Arabidopsis and rice and a maximum speed gain of 7x in maize (Figure 

3.5). In transcriptome-level experiments, both tools took almost equal time (Figure 

3.5). However, PHASIS yielded 10x (n=408) to 17x (n=9065) more PHAS predictions 
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for 21- and 24-PHAS loci, respectively (Table 3.3, Figure 3.6), compared to 

PhaseTank, which means that PHASIS processed a high number of PHAS transcripts 

in the same runtime. Moreover, the time and effort required to convert the reference 

genome as well as the sRNA libraries to meet PhaseTank input requirements were not 

included in these runtime comparisons. Lastly, it should be noted that PHASIS takes 

significantly less time for any subsequent analyses in these species because of its 

unique ability to systematically store ancillary data in the first run, check data integrity 

and compatibility with parameters for subsequent runs, and avoid redoing the slowest 

steps, such as reference pre-processing, index preparation, etc. 
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Figure 3.6: sRNA abundance plot for Lilium PHAS precursor transcripts. 

Examples of A) 21-PHAS and B) 24-PHAS precursor transcripts in 

Lilium that were missed by PhaseTank but identified by PHASIS. Both 

the position and abundance of sRNAs generated from these precursors 

display characteristics typical of reproductive phased loci described in 

rice (Johnson et al., 2009). Gridlines on the x-axis represent a 21- or 24-

nt phased position starting from the 5’ end of first phased cycle. The x-

axis represents abundances for sRNAs in log2 scale. 

3.3.2 Comparison of PHASIS predictions with manually-curated data 

We next wanted to address how well the predictions from PHASIS compare 

with a set of manually-curated PHAS loci. We and collaborators curated a set of 21- 

and 24-PHAS (n= 463 and 163) loci from precisely-staged, premeiotic and meiotic 

maize anthers (Zhai et al. 2015). This curated set was prepared by first combining all 
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libraries from the sampled premeiotic and meiotic stages into a single file, followed by 

genome wide scans to identify phasiRNA generating loci using a score-based 

approach (Allen et al. 2005) and finally curating each PHAS locus to exclude those that 

overlap with repeat-associated regions or display sRNA distribution atypical of hc-

siRNA generating loci (Zhai et al. 2015). PHASIS processes each library separately 

mainly to a) detect phased patterns independently in at least one of the input sRNA 

libraries, b) minimize any noise that could be added by combining sRNAs from 

multiple stages, tissues or treatments, and c) infer the correct 5’-end of PHAS loci by 

collating data from different libraries. Therefore, unlike the original analysis, we did 

not combine the 32 libraries (see Table 3.2) for predictions by PHASIS. Furthermore, 

to emulate ‘real world’ conditions in which PHASIS would be used by non-experts, we 

did not provide a confidence cutoff - i.e. PHASIS was run in the default mode. Of the 

manually-curated 463 21-PHAS and 178 24-PHAS loci, PHASIS capturing 89.0% 

(n=411) and 85.79% (n=151) (Table 3.4). The majority of those missed either lacked 

continuous phased positions or had a very low abundance across all sRNA libraries, 

and some had a single sRNA read accounting for the major proportion (>90%) of the 

abundance at the PHAS locus. The average abundance of siRNAs in the ‘missed’ 21- 

and 24-PHAS set was ~12- and 252-times lower compared to the common pool (p < 

1.02e-09), supporting the observation that those missed by PHASIS were weakly 

phased loci; a portion of these could be captured with a relaxed cutoff. Nonetheless, 

these results demonstrate that PHASIS predictions are largely consistent with the 

manually-curated data, and for most studies, the use of PHASIS may ameliorate the 

need to manually curate PHAS locus predictions, an otherwise complex and 

cumbersome task especially when PHAS loci number in the hundreds to thousands, as 
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reported in many plant genomes (Johnson et al. 2009; Zhai et al. 2011; D. H. Jeong et 

al. 2013; Arikit et al. 2014; R. Xia, Xu, et al. 2015; Zhai et al. 2015). 

Table 3.4: Comparison of PHASIS predictions with the published and 

manually-curated data from maize anthers. *abundances in the last 

two columns are the trimmed mean of abundances. 

 

3.3.3 Trigger prediction and runtime performance 

The identification of the miRNA triggers of PHAS loci is important for 

understanding their potential roles, classification and for discovery of secondary 

siRNA cascades. In addition, a set of PHAS loci or transcripts when combined with 

the trigger identity, may serve as a gold-standard reference set for downstream 

experimental and bioinformatic studies. Given the importance of triggers 

identification, we compared the trigger prediction performance of PHASIS in 

‘validation’ mode with PhaseTank. The PHASIS ‘validation’ mode will identify 

triggers for PHAS loci or transcripts using experimental data such as PARE, 

degradome or GMUCT libraries. PhaseTank by default predicts triggers in ‘validation’ 

mode, i.e. experimental data is required. Since, PHASIS predicted more PHAS loci 

compared to PhaseTank, the number of PHAS loci (and transcripts) with the predicted 

triggers by PHASIS were higher too. So, for a fair comparison, we used only the 

common pool of PHAS loci to evaluate the trigger prediction performances.  

Part	A.	Summary	of	comparison	with	manually-curated	PHAS	loci	from	Zhai	et	al.,	2015

PHASIS	

predicted

Number	of	

curated	PHAS	

loci	(Zhai	et	al.,	

2015)

Number	of	

curated	

PHAS	

captured

Proportion	

of	curated	

PHAS	

captured

Common	set	

of	loci	

(PNAS	&	

PHASIS)	*

Missed	by	

PHASIS	*

21-PHAS 488 463 411 88.98% 30670 2595

24-PHAS 178 176 151 85.79% 134478 534
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Table 3.5: Accuracy of triggers predicted by PHASIS in prediction mode. 

PHASIS ‘prediction’ mode as analysis to predict triggers for PHAS 

loci or transcripts without any supporting experimental data such as 

PARE, degradome or GMUCT libraries. Accuracy was computed as 

the proportion of triggers out of total that match to known triggers of 

phasiRNAs and tasiRNAs, as described in earlier studies. N.D - No 

triggers were identified for rice 24-PHAS loci, as samples for sRNA 

libraries didn't correspond to the precise meiotic stage at which 24-nt 

phasiRNAs accumulate. 
#
A major proportion of 21-PHAS loci 

unexpectedly had miR2275 triggers, the known trigger typically of 

reproductive 24-PHAS loci. 

 
 

PHASIS displayed a gain of up to 76.0% in predicted triggers, except for 21-

PHAS loci in Arabidopsis (Figure 3.2A and B), with a minimum accuracy of 96.0% 

for 24-PHAS maize loci and maximum accuracy of 99.5% in Brachypodium 21-PHAS 

loci (Table 3.5). This accuracy was computed as the proportion of triggers (out of the 

total) that match to known triggers of phasiRNAs and tasiRNAs described in earlier 

studies (Allen et al. 2005; Fei, Xia, and Meyers 2013; Axtell et al. 2006; Allen and 

Howell 2010; Zhai et al. 2011; Y. Zheng et al. 2012; Johnson et al. 2009). These 

Species Type

Trigger	prediction	

accuracy	(PARE	

support)

Trigger	prediction	

accuracy	

(prediction	mode)

21-PHAS 0.99 0.99

24-PHAS No	Prediction No	Prediction

21-PHAS 0.995 0.924

24-PHAS 0.993 0.923

21-PHAS 0.986 0.961

24-PHAS N.D N.D

21-PHAS 0.966 0.951

24-PHAS 0.96 0.891

21-PHAS No	PARE	data 0.439
#

24-PHAS No	PARE	data 0.999
Lilium

Arabidopsis

Brachypodium

Rice

Maize
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estimates of accuracy are likely conservative, given that there might be a few new and 

unknown triggers that we counted as false positives in our accuracy computations. We 

excluded rice 24-PHAS loci from our comparisons because both the tools failed to 

report triggers for these loci, likely due to sRNA libraries that were not precisely 

staged relative to the accumulation of 24-nt phasiRNAs and thereby making it difficult 

to capture the 5’ and 3’ ends of PHAS loci – information crucial to the identification of 

correct triggers. Lilium 21- and 24-PHAS transcripts were also excluded from the 

comparisons because of a lack of PARE data from the corresponding anther stages, 

data required by PhaseTank to predict triggers. Likewise, Arabidopsis 24-PHAS 

couldn’t be included in our comparison as PhaseTank predicted loci (n=146) were 

false positives, and there were no overlapping loci with PHASIS. 

We noticed a decline in number of predicted triggers by PHASIS for 21-PHAS 

loci in Arabidopsis, compared to those predicted by PhaseTank (Figure 3.2A). This 

decline in predicted triggers was traced to seven phased loci corresponding to the 

pentatricopeptide repeat (PPR) gene family, triggered by miR161. We found 

PhaseTank predicted trigger sites for five of these loci that were located towards the 

middle of PHAS loci, 214 nt to 310 nt from the first or last phased cycle. Since, 

phasmerge (the trigger discovery tool of PHASIS) is built with the aim to eliminate the 

need for experimental data and because trigger sites are expected to overlap with 5’ or 

3’ ends of the phased region, it uses a narrow search space at the 5’ and 3’ ends to 

search for triggers. Hence, these particular trigger sites for miR161 were missed by 

PHASIS. In phasmerge, the search space to identify triggers is defined by the number 

of phased positions (PHAS-index) on either side of 5’ and 3’ ends of phased regions, 

and by default it is set to ±3 PHAS-index for both ends. The PHAS-index setting to 
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expand or the narrow search space for triggers is user tunable and can be adjusted to 

capture such cases. Nonetheless, these 21-PHAS loci from Arabidopsis support our 

estimates that trigger identification by phasmerge is conservative, and relaxing the 

phasmerge search parameters could further increase the gain in predicted triggers 

compared to PhaseTank. 

3.3.4 Identifying PHAS triggers without additional experimental data 

We next evaluated the trigger prediction performance of PHASIS in 

‘prediction’ mode by comparing it with PhaseTank and PHASIS in the ‘validation 

‘mode. We define PHASIS ‘prediction’ mode as an analysis to predict triggers for 

PHAS loci or transcripts without any supporting experimental data such as PARE, 

degradome or GMUCT libraries. Lilium was excluded from the comparison of 

predicted triggers due to the lack of PARE data, which is compulsory for PhaseTank 

to predict triggers and required by PHASIS in ‘validation’ mode. Also, for reasons 

mentioned above, 24-PHAS loci from Arabidopsis and rice were excluded from the 

comparisons. PHASIS displayed a minimum gain of 40.3% and maximum gain of 

178.3% over PhaseTank in predicting triggers for 21-PHAS and 24-PHAS loci from 

Brachypodium, respectively (Figure 3.2 and Table 3.3). The gain in number of 

triggers ranged from a minimum of 35 for maize 24-PHAS loci to a maximum of 611 

for rice 21-PHAS loci. In addition to the gain in trigger prediction, PHASIS also 

displayed significant accuracy in prediction mode, with a minimum accuracy of 89.9% 

in predicting triggers for 24-PHAS loci from maize and maximum accuracy of 99.9% 

in the case of Lilium 24-PHAS precursor transcripts, however, with an exception to 

Lilium 21-PHAS triggers. The accuracy of predicted triggers of Lilium 21-PHAS loci 

was significantly lower (43.9%) compared to the other species (Table 3.5). For 
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Lilium, we used miRNAs from well-characterized monocots like rice and maize 

because a complete set of miRNAs were not available due to the absence of a 

sequenced genome. Surprisingly, we found that for Lilium 21-PHAS transcripts a 

majority of triggers corresponded to miR2275 instead of miR2118; this observation 

was puzzling because miR2275 is known to trigger 24-nt phasiRNAs in the grasses, 

and it was the basis for the low recorded accuracy in predicting Lilium 21-PHAS 

triggers; we did not further investigate the miR2275-triggered 21-PHAS transcripts. 

We also noticed that the proportion of 21- and 24-PHAS precursors for which triggers 

could be identified in Lilium, 18.1% and 25.9% respectively (Figure 3.2 and Table 

3.3), was substantially lower compared to the overall average of 73.8% in other 

species for which genomic analysis was performed. Plant PHAS precursor transcripts 

are typically cleaved by the miRNA trigger, converted to dsRNA by an RNA-

dependent RNA polymerase, and then successively diced by a Dicer enzyme. Since no 

data on transcriptional rate, stability and half-life of phasiRNA precursors are 

available, we speculated that a portion of the Lilium PHAS precursor transcripts were 

shortened by processing from the 5’ end, removing the trigger target sites. Identifying 

triggers from such “processed” precursor transcripts is not possible because the P1 site 

corresponding to the first phasiRNA (at the 5’ terminus) could be missing from the 

transcript. In addition, the presence of already-processed mRNAs will confound the de 

novo assembly of precursor transcripts from short-reads. 

To test whether the low yield of triggers by phasmerge resulted from our use 

of processed precursor transcripts and not a technical shortcoming of PHASIS, we 

generated Single Molecule Real Time (SMRT) PacBio sequencing data from Lilium 

anthers 4 mm to 6 mm in length. These sizes represented premeiotic and meiotic 
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stages of anther development (see methods) and were selected based on the 

availability of the samples. Capturing PHAS precursors is complex, not just because 

these are targets of miRNAs presumably rapidly processed by a Dicer, but 

reproductive phasiRNAs are ephemeral in development and thus not easily captured 

(Zhai et al. 2015). SMRT-seq produced 425,897 full-length transcripts for 176,373 

unique isoforms, which were pre-processed to generate 122,779 high quality 

(polished) transcripts. This set had 5,131 unique proteins covered by more than 80% 

protein length, relative to the Uniprot protein-sequence resource, thereby suggesting a 

reasonable assembly of the anther transcriptome. PHASIS identified 87 21-PHAS and 

175 24-PHAS transcripts respectively. This low yield of PHAS transcripts was 

expected, though not to such a degree, because of the combination of the following:  a) 

low read counts for SMRT-seq compared to the deep RNA-seq data, b) the coverage-

based error correction algorithm - ‘Quiver’ implemented in the IsoSeq protocol 

(SMRT Analysis software version 2.3, Pacific Biosciences) which filters out 

transcripts with insufficient coverage, i.e. those that cannot be confidently corrected, 

and c) the aforementioned processive cleavage of PHAS precursors by Dicer 

phasmerge could identify triggers for only 21.8% (n=19) of 21-PHAS precursors, a 

slight increase compared to 18.1% in the RNA-seq assembly, and these triggers 

included miR2275, miR2118 and miR390. This low proportion of triggers detected for 

21-PHAS could result from missing the precise stage at which 21-PHAS precursors 

accumulate in the Lilium samples. However, phasmerge could identify triggers for 

54.2% of the 24-PHAS precursors, a significant increase over the 25.9% in the RNA-

seq assembly, supporting our premise about the completeness of the PHAS precursor 

transcripts. The processed precursors were likely collapsed into the full-length or the 
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longest transcript in SMRT-seq assembly, thereby enriching the proportion of 

uncleaved precursor transcripts. Hence, it should be noted that neither the precursors 

from neither RNA-seq nor SMRT-seq may accurately represent the true total count of 

PHAS loci in Lilium. 

Lastly, we compared runtimes for both tools for miRNA trigger prediction of 

PHAS loci and transcripts. PHASIS showed a minimum speed gain of 3.3x and a 

maximum speed gain of 12.6x over PhaseTank in ‘validation’ mode (Figure 3.5). In 

‘prediction’ mode, PHASIS was at least 5.0x and at most 31.2x faster compared to its 

own ‘validation’ mode without any significant loss in accuracy (Table 3.5). 

PhaseTank requires PARE data to predict triggers, and lacks a functionality equivalent 

to PHASIS ‘prediction’ mode, but since PHASIS, even without the additional 

experimental data (like PARE) displays >89.9% accuracy in trigger prediction, we 

decided to compare runtimes for both. PHASIS in ‘prediction’ mode displayed a 

minimum speed gain of 33.3x and a maximum gain of 104.3x for Arabidopsis 21-

PHAS loci (Figure 3.5). The trigger predictions for 24-PHAS loci from Arabidopsis 

and rice, which displayed even higher speed gains, were excluded from the runtime 

comparisons due to the reasons described above. This gain in PHAS trigger 

identification demonstrates the capacity of PHASIS to predict triggers without 

experimental data. This functionality will save time and the cost of preparing PARE 

libraries; it will also reduce the amount of sample required for phasiRNA analysis. 

Protocols for preparing PARE libraries requires comparatively more input RNA 

relative to RNA-seq or sRNA-seq (Zhai et al. 2014). 
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3.4 Availability 

The methods and algorithm described in this article, implemented as PHASIS 

suite of tools for PHAS discovery, are freely available from 

https://github.com/atulkakrana/PHASIS. PHASIS is released under the OSI Artistic 

License 2.0. Tools and Perl libraries required to use PHASIS along with the 

instructions to install and usage of individual tools is provided in detail in the PHASIS 

wiki (https://github.com/atulkakrana/PHASIS/wiki/) 

3.5 Chapter summary 

In this chapter, I 

 present a new suite for discovery and in-depth characterization of 

phasiRNAs, this suite “PHASIS” includes three independent tools – 

phasdetect, phasmerge and phasmerge 

 developed phasdetect, which performs de novo prediction of PHAS loci or 

precursor transcripts using user-supplied sRNA libraries along with a 

reference genome or transcriptome, by efficiently processing tens to 

hundreds of sRNA libraries in parallel, reducing runtimes  

 developed phasmerge, which generates a summarization and performs a 

comparison between the PHAS summaries and annotations using the 

library-specific PHAS lists and ancillary data generated by phasdetect 

 developed phasdetect, which identifies sRNA triggers for PHAS loci and 

precursor transcripts using the phasmerge summaries and a user-provided 

list of miRNAs 

 performed comparative benchmarking of results and runtimes between 

PHASIS and its direct competitor, on five different plant species 

 compared the predictions from PHASIS with human-curated set of PHAS 

loci from maize 

 tested the hypothesis that in transcriptome assembly, generated to 

compensate for absence of genome, a significant portion of the PHAS 

https://github.com/atulkakrana/PHASIS
https://github.com/atulkakrana/PHASIS/wiki/)
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precursor transcripts were shortened by processing from the 5’ end, 

removing the trigger target sites 

I observed that 

 PHASIS predicts up to 2.5 times more PHAS loci compared to its 

competitor in genome-level experiments - ranging from 73 24-PHAS 

(145% gain) to 380 21-PHAS (24% gain) loci in Brachypodium and rice 

respectively 

 PHASIS predicts ~10 times (n=408) more 21-PHAS and 18 times (n=9065) 

more 24-PHAS precursor transcripts, compared to its competitor in 

transcriptome-level experiments 

 PHASIS captures 66% of 21-PHAS and 99% of 24-PHAS predictions from 

PhaseTank in transcriptome-level analysis; and >80% of PhaseTank 

predictions in genome-level analysis 

 PHASIS is 2.5x to 7x faster in prediction PHAS loci compared to its 

competitor, and these speed gains reflect time consumed by PHASIS to 

process each library individually, unlike its competitor which requires a 

non-redundant set of reads from all libraries in a single file 

 PHASIS displays a minimum gain of 40.3% and maximum gain of 178.3% 

over its competitor in predicting triggers for 21-PHAS and 24-PHAS loci 

from Brachypodium, respectively, with numbers from minimum of 35 for 

maize 24-PHAS loci to a max. of 611 for rice 21-PHAS loci. 

 PHASIS is 3x to 12x faster in predicting miRNA triggers in ‘validation’ 

mode, in which both tools were supplied with additional PARE libraries  

 PHASIS predicts triggers, with a minimum accuracy of 96.0% for 24-PHAS 

maize loci and maximum accuracy of 99.5% in Brachypodium 21-PHAS 

loci, when provided with additional experimental data PARE or degradome 

libraries 

 PHASIS is 33x to 104x faster in ‘prediction’ mode i.e. de novo prediction 

of triggers without any experimental data, such functionality is exclusive to 

PHASIS 

 PHASIS display >89% accuracy in identifying triggers even without the 

experimental data 
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 PHASIS captured >86% of human curated PHAS predictions, and those 

missed have 11.82 and 252.30 times lower average abundance compared to 

those captures 21- and 24-PHAS loci respectively (p < 1.02e-09) 

From this, I conclude that 

 PHASIS is the “first” and “only” suite that enables large-scale survey of 

tens to hundreds of sRNA libraries for discovery, annotation, quantification 

and to identify their miRNA triggers 

 PHASIS simplifies the study of phasiRNAs by waiving off the need for 

additional experimental data for discovery of miRNA triggers, through its 

trigger ‘prediction’ mode 

 The novel trigger ‘prediction’ mode will save time and the cost of 

preparing PARE libraries; it will also reduce the amount of sample required 

for phasiRNA analysis 

 PHASIS also waives the crucial requirement of assembled genome for 

discovery of PHAS transcripts and phasiRNAs 

 PHASIS may ameliorate the need to manually curate PHAS locus 

predictions, an otherwise complex and cumbersome task especially when 

PHAS loci number in the hundreds to thousands 

 PHASIS enables characterization of phasiRNAs in evolutionarily diverse 

plant genomes, which will advance our understanding of phasiRNA 

function and the adaptation of the pathway, and it may yet discover new 

classes of PHAS genes 

 SMRT-Seq for full length transcripts is not an appropriate approach to 

capture PHAS precursors 
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DISCOVERING GERMLINE-ASSOCIATED PHASED siRNA PATHWAYS 

ACROSS MONOCOT EVOLUTION 

In grasses, two pathways generate diverse and numerous 21-nt (pre-meiotic) 

and 24-nt (meiotic) phased siRNAs highly enriched in anthers.  These “phasiRNAs” 

are analogous to mammalian piRNAs, yet their functions remain largely unknown, as 

are their evolutionary origins. The 24-nt meiotic phasiRNAs are as-yet only described 

in grasses (Poaceae), in which their biogenesis is dependent on a specialized Dicer 

(DCL5).  To assess the evolutionary path that gave rise to this pathway, we examined 

reproductive phasiRNA pathways in garden asparagus (Asparagus officinalis), a non-

grass monocot that speciated ~63 mya from MRCA of grasses, and in lily (Lilium 

maculatum) and daylily (Hemerocallis lilioasphodelus), that diverged approximately 

117 mya from Asparagus. We demonstrate that both pre-meiotic and meiotic 

phasiRNAs are prevalent across the monocots included in this study, establishing their 

origins well before grasses. In addition to male germline, we find evidence for their 

accumulation in female and somatic tissues, perhaps suggesting that the narrow 

accumulation of reproductive phasiRNAs in anthers is either not a general 

characteristic or it is the product of evolutionary refinement in the grasses. We also 

show that the miRNA trigger for pre-meiotic (21-nt) phasiRNAs likely shifted in 

evolutionary time from targeting pathogen-defense genes to long, non-coding RNAs 

(observed in grasses) via specialization and sub-functionalization versus neo-

functionalization. Finally, we demonstrate that exceptions to the canonical mechanism 

Chapter 4 
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of biogenesis of phasiRNAs exist in monocot evolution, whereby phasiRNAs are 

produced apparently without a miRNA trigger. I conclude that plants show substantial 

variation in their composition and biogenesis of reproductive phasiRNAs, which have 

broad roles in plant germline development. 

4.1 Methods 

Here we summarize the experimental methods for data generation and 

computational approaches. 

4.1.1 Sample collection and RNA isolation 

Asparagus officinalis samples were collected from a commercial field in the 

T.S. Smith and Son’s Farm (http://www.tssmithandsons.com/), Bridgeville, Delaware. 

Flowering Lilium and daylily plants were purchased from Home Depot (Newark, 

Delaware). Anther stages were examined on propidium iodide-stained (Asparagus and 

Lilium) or cleared tissue (daylily) using confocal microscopy. Samples were collected 

and anthers were dissected using a 2 mm stage micrometer (Wards Science, cat. 

#949910) in a stereo microscope, and immediately frozen in liquid nitrogen until total 

RNA isolation was performed. Total RNA was isolated using the PureLink Plant RNA 

Reagent (ThermoFisher Scientific, cat. #12322012) following the manufacturer’s 

instructions. Total RNA quality and quantity were assessed before proceeding to the 

next step. Small RNAs (20 to 30 nt) were size selected in a 15% polyacrylamide/urea 

gel and used for small RNA library preparation. An aliquot of 3 µg of total RNA was 

used for size selection.  
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4.1.2 Anther stage: size correlation microscopy 

Anthers from Asparagus and Lilium were dissected and vacuum fixed using 

4% paraformaldehyde, and submitted to histology lab (A.I DuPont Hospital for 

Children) for paraffin embedding. Then Lilium samples were examined using PI-

staining (Propidium Iodide). Briefly, the paraffin slides were de-paraffinized with 

histoclear, and washed with 100% ethanol. Then samples were equilibrated in 2x SSC 

(pH 7.0) and stained in 500 mM PI (in 2xSSC) for 1-5 min and mounted in slow-fade 

gold (ThermoFisher Scientific, Inc.). Stages were assigned based on the morphology 

of archesporial AR and tapetum cells. For daylily, anthers were dissected and vacuum 

fixed using 4% paraformaldehyde, then cleared with ScaleP solution for 1 week 

(Warner et al. 2014). Histology and cell division of the longitudinal images of anther 

were examined using confocal microscope for stage determination. 

4.1.3 Small RNA, mRNA and PARE library construction, and Illumina 

sequencing 

Small RNA libraries were constructed using the TruSeq Small RNA Library 

Preparation Kit (Illumina, cat # RS-200-0024) as per manufacturer’s instructions and 

as described by Mathioni et al. (2017). RNA-seq libraries were constructed using the 

TruSeq Stranded Total RNA Library Preparation Kit with Ribo-Zero Plant (Illumina, 

cat # RS-122-2401), and RNA was treated with DNase I (NEB, cat # M0303S) and 

then cleaned using the RNA Clean & Concentrator™-5 (Zymo Research, cat # 

R1015). PARE libraries were constructed as previously described (Zhai et al. 2014), 

with the exception of using 10 ug of total RNA. Small RNA and PARE libraries were 

single-end sequenced with 51 cycles, and stranded RNA-seq libraries were paired-end 

sequenced with either 101 or 151 cycles. All libraries were sequenced on an Illumina 
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HiSeq 2500 instrument at the University of Delaware Sequencing and Genotyping 

Center in the Delaware Biotechnology Institute. 

4.1.4 Pre-processing sRNA, PARE and mRNA-sequencing libraries 

Small RNA and PARE libraries were pre-processed using the script 

“prepro.py” version 0.2 (https://github.com/atulkakrana/helper.github) with default 

settings as described earlier (Patel et al. 2016) and as described by Mathioni et al. 

(2017). Preprocessing included trimming of 5’ and 3’ adapters, cropping of reads to 

20-nt for PARE libraries, and finally retaining 18- to 36-nt and 20nt reads for sRNA 

and PARE libraries, respectively. All the reads in processed files were aligned to the 

Asparagus genome (v.1) using Bowtie (v0.12.8) with no allowed mismatches. Mapped 

reads were finally normalized to empirically derived, 30 million reads base depth. 

Please refer Table S1, for number of sequenced-, mapped-, and distinct-reads, with 

corresponding GEO IDs for each library. RNA-sequencing libraries were processed 

using the same script (as above) with default settings. These reads were cropped by 5 

nt from 3’-ends to increase the proportion of reads mapped to genome. 

4.1.5 Single-molecule real time (SMRT) Sequencing 

The collected plant material was ground in a cold mortar and pestle using liquid 

nitrogen. Total RNA was isolated using the PureLink® Plant RNA Reagent (Life 

Technologies, cat. # 12322-012), treated with DNAse I (NEB, cat. # M0303S) cleaned 

and concentrated with RNA Clean and Concentrator-5 (Zymo Research, cat. # 

R1015). Then the MicroPoly(A) Purist™ Kit (Ambion, cat. # AM1919) was used for 

isolation of poly(A) RNAs. The poly(A) RNA samples were then converted into 

cDNA using the SMARTer™ PCR cDNA Synthesis Kit (Clontech, cat. # 634926) and 

https://github.com/atulkakrana/helper.github
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the SageELF Size Selection System protocol as described by Pacific Biosciences in 

protocol # PN100-574-400-02. The cDNA was size selected and fractionated into 12 

fractions, which were then pooled into three size ranges: 0.8-2.0 kb, 2.0-5.0 kb, and > 

5.0 kb. SMRTbell libraries were prepared for the three cDNA size ranges using the 

DNA Template Library Preparation kit (SMRTbell Template Prep Kit 1.0) following 

the Pacific Biosciences protocol # PN100-574-400-02. A total of 9 SMRT Cells 

(Pacific Biosciences part # 100-171-800), for each species (Asparagus and daylily) 

and three per library, using the P6C4 polymerase (Pacific Biosciences part #100-372-

700) were run on a PacBio RS II Instrument at the University of Delaware Sequencing 

and Genotyping Center (Delaware Biotechnology Institute, Newark). Raw sequencing 

data was pre-processed using the pbscript-tofu tool set (v2.3.0) using the default 

settings. The pre-processing included classification of reads to full-length and non-

full-length categories, followed by clustering of transcripts to consensus isoforms by 

ICE algorithm and final polishing by Quiver algorithm (min. accuracy = 0.99). For all 

downstream analysis, “high QV” transcript set generated from Quiver analyses was 

used. This set was further collapsed based on sequence similarity i.e. without the 

reference genome, to remove any redundancy in transcripts, especially for transcripts 

corresponding to same isoforms, by using CD-HIT with recommended parameters 

https://github.com/PacificBiosciences/cDNA_primer/wiki.  In case of Asparagus, an 

additional step was performed to identify novel isoforms and transcriptional-loci. The 

collapsed “high QV” set was compared with the annotated gene-models using 

MatchAnnot (MA) tool (https://github.com/TomSkelly/MatchAnnot). FL transcripts 

that matched annotated gene structure with MA score > 2 and on same strand were 

considered as known, those with MA score <= 2 on same strand were considered as 

https://github.com/PacificBiosciences/cDNA_primer/wiki
https://github.com/TomSkelly/MatchAnnot
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novel isoforms to known genes, and finally those either with MA score <= 2 on 

opposite strand or no MA assigned score were considered as novel transcription loci. 

Please see main text for species-specific tallies of known, novel isoforms or 

transcriptional loci. 

4.1.6 microRNA prediction 

Mapped sRNA reads from all libraries were used as input to two different 

computational pipelines for discovery of miRNAs – a stringent pipeline for de novo 

identification and a relaxed pipeline for identification of conserved ‘known’ miRNAs 

(D.-H. Jeong et al. 2013). Steps in both pipelines involved processing using perl 

scripts as described earlier (D.-H. Jeong et al. 2011), with modified version of 

miREAP (https://sourceforge.net/projects/mireap/) and CentroidFold (Sato et al. 

2009). In ‘stringent’ criteria pipeline, sRNAs of length between 20 and 24 nt, with 

abundance >= 50 TP30M in at least one library, and total genome hits <= 20 were 

assessed for potential pairing of miRNA and miRNA* using modified miREAP 

optimized for plant miRNA discovery with parameters –d 400 –f 25. Strand bias for 

precursors was computed as ratio of all reads mapped to sense strand against total 

reads mapped to both strands. In addition to strand bias, abundance bias was computed 

as ratio of two most abundant reads against all the reads mapped to same precursor. 

Candidate precursors with strand bias >= 0.9 and abundance bias >= 0.7 were 

selected, and foldback structure for precursor was predicted using Centroid Fold. Each 

precursor was manually inspected to match the criteria as described earlier (D.-H. 

Jeong et al. 2013). All the miRNAs identified through this stringent pipeline were then 

annotated by matching mature sequences to miRBASE (version - 21), and those that 

did not matched to any known miRNA were considered as lineage or species-specific. 

https://sourceforge.net/projects/mireap/
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In ‘relaxed’ criteria pipeline, which is implemented to maximize identification of 

‘known’ miRNAs, relaxed filters were applied – sRNA between 20 and 24nt, with hits 

<= 20 and abundance >= 15 TP30M, and precursors with strand bias >= 0.7 and 

abundance bias >= 0.4. Stem-loop structure of candidate precursors was visually 

inspected, same as the ‘stringent’ pipeline. Mature sequences of identified miRNAs 

were further matched with miRBASE entries (v21), and those with total ‘variance’ 

(mismatches and overhangs) <= 4 were considered conserved miRNAs. 

4.1.7 Computing degree of overlap between two genomic features 

The enrichment or depletion of overlap between sRNA generating locations 

like lmiRNAs and PHAS loci, and genome-features like exons, introns, inverted 

repeats and transposable-elements is computed based on the overlapping nucleotides 

between sRNA and genome-feature. For a pairwise comparison, an enrichment or 

depletion ratio was computed as:  

Overlap Ratio = log2(O) -log2(E) 

Expected Overlap (E) = (x/g) * (y/g) * g 

Where, ‘E’ is the expected number of overlapping nucleotides between sRNA-location 

(feature-A) and genome-feature (feature-B) under null hypothesis of random chance, 

‘O’ is the observed nucleotides of feature-A overlapping with feature-B, ‘x’ is total 

number of non-redundant nucleotides of any feature-A, ‘y’ is total number of non-

redundant nucleotides of any feature-B, ‘g’ is the total genome size. 

4.1.8 PhasiRNA prediction and trigger identification 

Phased siRNA generating (PHAS) loci or precursors were identified using the 

purpose-built tool ‘PHASIS’ (https://github.com/atulkakrana/PHASIS) (Kakrana et al. 

https://github.com/atulkakrana/PHASIS)
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2017). The PHAS loci (or precursors), predicted from different sRNA libraries can 

have different coordinates primarily due to differences in sRNA population and 

abundances. These library-specific lists of PHAS loci were collapsed to a non-

redundant set by selecting the coordinates for sRNA library with most abundant 

phased siRNAs. Triggers for these PHAS loci (or precursors) were further identified 

using the ‘revFerno’ script (https://github.com/atulkakrana/PHASIS), developed as an 

extension to the sPARTA miRNA prediction and validation tool (Kakrana et al. 2014). 

revFerno requires two input files 1) phased-siRNA prediction results from PHASIS 

and predicted targets for a set of candidate miRNAs from sPARTA. Using these files 

revFerno performs a head-scan (from 5’-end) and/or tail-scan (from 3’ end) of PHAS 

loci (or precursor) to identify predicted cleavage sites that match with (+3 to -2) 

phased-siRNA registers, and selects the cleavage site either matching the first register 

or next closest register. We used revFerno with default settings, that is accounted for 

(+1/-1-nt) dicer offset, and (+2/-2-nt) strand-offset for PHAS loci predicted using 

genome. As a control for revFerno predictions, we first predicted PHAS loci in maize 

using publically available sRNA libraries (Zhai et al. 2015), and then tested revFerno 

using genome-wide target sites predicted by sPARTA. It identified triggers for 63% 

and 40% of 21- and 24-nt reproductive PHAS loci. For 21-nt reproductive PHAS loci 

members of miR2118 family members were identified as trigger, and for 24-nt 

reproductive PHAS miR2275 family was identified as trigger. The low proportion of 

PHAS for which triggers were identified could be because of splicing in PHAS 

precursors, so those for which miRNA triggers were not identified are actually spliced 

portion of other PHAS loci in vicinity (S Mathioni, A Kakrana and B. Meyers, in 

preparation). 
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4.1.9 Coding and non-coding assessment 

We built a logical classifier that uses Coding Potential Calculator scores (Kong 

et al. 2007) and Coding Potential Assessment Tool probabilities (L. Wang et al. 2013), 

to use – ORF length, ORF integrity, hit score (with known proteins), ORF coverage, 

Fickett TESTCODE statistics and hexamer usage, for classification of assembled 

transcripts into 1) coding 2) non-coding and 3) transcript of unknown coding potential 

(TUCP). CPC determines coding potential based on sequence homology to known 

proteins, while CPAT assess coding potential purely on transcript sequence using a 

logistic regression model from ORF coverage, Fickett TESTCODE statistics and 

hexamer usage bias. CPAT is particularly useful for less conserved proteins from new 

species, lncRNAs overlapping with protein-coding genes and addresses the issues with 

quality of sequence alignment in case of homology based coding potential prediction 

tools. In order to use CPAT, for which no recommended probability cutoff for plants 

is available, we first determined an optimum probability cutoff by repeatedly 

randomly sampling 100 each of protein-coding and non-coding transcripts and 

optimizing on the balanced accuracy metric (average of specificity and sensitivity 

metrics). For this we used “reviewed” proteins from Uniprot and putative lncRNAs 

submitted to Plant Non-coding RNA Database (Yi et al. 2015) and RNA-central 

database (“RNAcentral: An International Database of ncRNA Sequences” 2015), 

corresponding to maize which is the closest well annotated monocot to species 

included in this study. The average area under curve for 1000 iterations was 0.9092, 

and the average optimal probability cutoff was 0.2212. This cutoff value displayed 

accurate discrimination of protein-coding and non-coding transcripts (sensitivity = 0.8, 

specificity = 0.98 and FDR = 0.061). Using the recommended score for CPC and this 

empirically derived cutoff for CPAT, we classified the transcripts as follows: 
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1) Coding, if a) CPC score >= 1 (strong coding evidence) or b) CPC score 

between 0 to 1 (weak coding evidence) and CPAT cutoff > 0.2213 along with ORF >= 

100 aa, 

2) Non-coding, a) if CPC score <= -1 (strong non-coding evidence) and ORF 

<= 100 aa or b) CPC score between -1 to 0 (weak non-coding evidence) and CPAT 

cutoff < 0.2213 along with ORF <= 100 aa, and finally  

3) TUCP if none of the above criteria matches. 

4.1.10 Transcriptome assembly, quality assessment and comprehensive 

transcriptome 

Pre-processed RNA-seq libraries and polished full-length transcripts from 

SMRT-seq experiments were used to generate species-specific transcriptome libraries. 

For Asparagus, an ab initio assembly was generated by following Tophat-Cufflinks 

protocol (Trapnell et al. 2012). This included mapping of all sample-specific RNA-seq 

libraries, both single- and paired-end, to the Asparagus genome using Tophat with 

default settings, followed by generation of sample-specific transcript assemblies 

through cufflinks, which used annotated gene models as reference and finally merging 

of these assemblies using cuffmerge to give a single combined transcriptome 

assembly. The (de novo) hybrid transcriptome assemblies for Asparagus and daylily 

were generated using Trinity platform (Haas et al. 2013). For this, reads from paired-

end libraries were first combined into two (FASTQ) files, one corresponding to left 

reads and other to right reads. Reads from the single-end libraries were then added to 

the combined left reads (FASTQ) file. These left and right reads files along with full-

length reads supplied through ‘--long-reads’ parameter, were used to generate a hybrid 

assembly with the default settings except for the minimum assembled contig length 
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(set to 250 nt). Similar to Asparagus and daylily, for Lilium, paired-end libraries from 

different samples were first combined into two files, one for left reads and other for 

right reads. These combined files were then used to generate a de novo transcriptome 

assembly using Trinity (v2.1.1) using default settings except the for the minimum 

assembled contig length (set to 250 nt) and an additional digital normalization step to 

reduce memory requirements. ExN50 and the quality of assemblies was accessed as 

recommended in Trinity workflow. Transcripts from hybrid de novo assemblies 

generated for Asparagus and daylily and from de novo assembly generated for Lilium 

were annotated using Trinotate workflow with the default settings 

(https://trinotate.github.io/). Candidate protein transcripts generated as part of the 

Trinotate annotation process were used for further downstream analysis. Expression-

level qualification of transcripts from these species-specific (de novo) assemblies was 

done using the RSEM algorithm (B. Li and Dewey 2011) with default settings, as 

implemented in the Trinity platform. 

4.1.11 dsRNA-sequencing library preparation and pre-processing 

Structure libraries were created as previously described (Li et al., 2012; 

Vandivier, Li, and Gregory, 2015). For each sample, 100ug of purified total RNA was 

split into two 50ug aliquots. One aliquot was treated with 1ul single-stranded RNase 

ONE® (Promega), and the other with 5ul double-stranded RNase V1 (Ambion). Both 

RNase ONE® and RNase V1 were allowed for cut for 1hr at 37C, cutting away 

ssRNA and dsRNA to completion and yielding dsRNA and ssRNA fragments, 

respectively. These fragments were then adapter-ligated, PCR amplified, and barcoded 

using Illumina TruSeq® smRNA adapters. Completed dsRNA-seq and ssRNA-seq 

libraries were sequenced to 51 bp, single-end, on an Illumina HiSeq 2500 instrument. 

https://trinotate.github.io/
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Note that RNase V1 is no longer commercially available, but can be purified from 

commercially available cobra venom (Mahalakshmi, Jagannadham, and Pandit 

2000).All downstream analyses were performed using the Asparagus genome 

assembly and transcriptome annotations. Demultiplexed sequencing reads were first 

trimmed with Cutadapt v1.9.1 to remove 3’ sequencing adapters (adaptor sequence: 

TGGAATTCTCGGGTGCCAAGGAACTCCAGTCACnnnnnnATCTCGTATGCCG

TCTTCTGCTTG). Reads with no detectable adaptor were retained in the trimmed 

read sets. Trimmed reads were mapped to the Asparagus genome using Tophat 

(v2.1.0), allowing up to 10 multi-mappings of each read. 
 

Base-wise structure scores were defined by calculating a normalized ratio of 

reads from dsRNA-seq to ssRNA-seq. For multi-mapping reads (>5 hits), only one 

random mapping was considered in calculating coverage. Raw coverage (rdsi and rssi) 

for each library was then normalized to the total number of primary aligned mapped 

bases in each library (Nds and Nss). Structure score (Si) was calculated as the 

generalized log ratio (glog) of normalized dsRNA-seq (dsi) to normalized ssRNA-seq 

(ssi) 

 

𝑆𝑖 = 𝑔𝑙𝑜𝑔(𝑑𝑠𝑖) − 𝑔𝑙𝑜𝑔(𝑠𝑠𝑖) = 𝑙𝑜𝑔2 (𝑑𝑠𝑖 + √1 + 𝑑𝑠𝑖
2) − 𝑙𝑜𝑔2 (𝑠𝑠𝑖 + √1 + 𝑠𝑠𝑖

2) 

𝑑𝑠𝑖 = 𝑟𝑑𝑠𝑖 ∙
𝑁𝑑𝑠

𝑁𝑠𝑠
 ;  𝑠𝑠𝑖 = 𝑟𝑠𝑠𝑖 ∙

𝑁𝑠𝑠

𝑁𝑑𝑠
  

 

Similarly, strand scores were computed as generalized log ratio (glog) of sense 

versus anti-sense ds-RNA sequencing reads. All structure mapping scripts, including 
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the modified scripts derived from CSAR, are available on 

https://github.com/GregoryLab/structure 

We used hc-siRNA generating loci as one control for PHAS loci for secondary 

structure studies. For this we first identified sRNA-associated clusters using 

ShortStack (Axtell 2013b). All the sRNA libraries (Table 4.1) were used as an input 

to ShortStack. Clusters with phasing p-value >= 0.05, dicer call = 24, showing overlap 

(>30%) with transposable-elements, and not annotated as miRNA or hpRNA were 

considered putative hc-siRNAs generating loci. A representative set for comparison 

with PHAS loci was selected by randomly picking 300 loci. PHAS-, hc-siRNA loci are 

computationally defined regions based on sRNAs population, unlike the protein-

coding regions that have empirically derived 5’ and 3’ co-ordinates along and gene-

structure information based on mRNA data. Therefore, to ensure that sufficient (per-

bp) data is captured for these computationally defined regions in the RNA secondary 

structure libraries, we computed a locus-specific coverage threshold representing 

reliable coverage. This ‘reliable coverage cutoff’ was determined for every locus by 

randomly sampling regions (n=500) of same length and computing 97.5th percentile of 

coverage. This process is repeated 1000 times (iterations) and median of 97.5th 

percentiles from these iterations is considered as coverage cut off for specific locus. 

PHAS-, miRNA- and hc-siRNA loci passing the ‘reliable coverage cutoff’ were 

considered for other downstream analyses.  
 

Average structure- and strand-scores for these sRNA-associated loci was 

computed as described earlier (F. Li et al. 2012). Empirical FDR thresholds for these 

scores was calculated by randomly permuting dsRNA- and ssRNA-sequencing reads 

for structure scores, and shuffling dsRNA-sequencing reads between “Watson” and 

https://github.com/GregoryLab/structure
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“Crick” strands for strand-scores, and finally determining the threshold at which 5% of 

permuted peaks are called as significant. For all analyses involving an average 

structure- or strand-score, positions with a score of ‘0’ were ignored. Regions with 6-

fold or higher structure- and strand-scores were considered as structured and stranded 

respectively.  
 

To infer the structural pattern within the 24-PHAS loci, first, the structured 

strand (one with high structure scores) was selected for these loci and per-base-pair 

scores (including replicates) for each PHAS were congregated into a set of 100 bins 

with median scores representing each bin. Mean of these binned scores were used to 

plot the consensus. 

4.1.12 Identification of isomiRs and putative miRNA loci in sequenced genomes 

The first phased-position from 5’-end of double-stranded region in foldback 

precursors was considered as start-site for phased-siRNA production. The following 

phased positions for which no phasiRNA was detected, their abundance was set to 

zero and an abundance ratio was computed for phasiRNAs emanating from the 5’-start 

(base-side) against those emanating from the 3’-end (loop-side) of fold-back structure 

by dividing double-stranded region into two parts. Foldback precursors that displayed 

8-fold (log2 ratio >= 3) bias in phasiRNAs abundance towards the 3’ end of foldback 

were considered as candidate precursors that are likely processed from loop-to-base 

direction. These precursors were then manually checked for absence of phased-

positions towards 5’-end and to exclude those candidates that showed bias due to one 

or two highly abundant phasiRNAs. The final representative set (n=9 precursors) was 
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used for comparison with those triggered by miR2275 and displaying raggedness at 

first phase-cycle 

4.1.13 Identification of Dicer and AGO families 

Species-specific transcriptome annotations from the Trinotate workflow were 

manually curated to identify Dicer and Argonaute family members in Lilium and 

daylily. In Asparagus, protein- and nucleotide-BLAST was used to identify protein 

transcripts from annotated gene models and genomic copies of AGO and DCL 

members. Orthologs from monocots (rice, maize) and dicot (Arabidopsis and soybean) 

species were used as query sequences in both scans, and their results were manually 

curated. Computationally predicted protein transcripts for these candidates were 

aligned to orthologs from rice, maize, Arabidopsis and soybean using T-COFFEE 

multiple sequence alignment tool (v.3.8) (Notredame, Higgins, and Heringa 2000) in 

‘accurate’ mode. Finally, a phylogenetic tree was generated using PhyML (Guindon et 

al. 2010) with default parameters that the BEST approach used to optimize tree 

topology. The latter combines both nearest neighbor interchanges (NNI), and subtree 

pruning and regrafting (SPR) approach and returns the best solution among two. 

4.1.14 Fluorescent in situ hybridizations for PHAS precursors 

Small RNAs were detected using LNA probes by Exiqon (Woburn, MA). 

Samples were vacuum fixed using 4% paraformaldehyde, and submitted to histology 

lab (A.I DuPont Hospital for Children) for paraffin embedding.  We followed the 

protocols for the pre-hybridization, hybridization, post-hybridization and detection 

steps as previously described (Javelle and Timmermans 2012). For fluorescent in situ 

hybridization of DCL3b mRNA, paraffin slides were de-paraffinized with ‘histoclear’ 
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and then washed in ethanol series (100%, 95%, 80% 70%, 50%, 30% 10% and water). 

Protease treatment for 20 min (final concentration 65 µg/ml) followed by 0.2% 

glycine treatment in 1xPBS 2 min. Then wash in 1x PBS for 2 min, 95% ethanol 1 

min, 100% 1 min. Samples were then hybridized overnight at 55°C in 100 µl of a 

mixture containing 10% dextran sulfate, 2 mM vanadyl-ribonucleoside complex, 

0.02% RNAse-free BSA, 40 µg E. coli tRNA, 2x SSC, 50% formamide, 30 ng of 

probe. After hybridization, samples are washed twice for 45 min at the appropriate 

stringency: 0.2x SSC, 55 °C, and rinsed twice in TBS.  Digoxigenin-labeled probes 

were detected with sheep anti-digoxigenin antibodies (1/500), and then with donkey 

anti-sheep antibodies conjugated to AlexaFluor647 (1/1000). Slides are incubated 

overnight at 4°C with primary antibody, and then washed in washing buffer three 

times for 20 min at room temperature. Slides were incubated overnight at 4°C with 

secondary antibody, and then washed in washing buffer three times for 20 min at room 

temperature. For final mounting, samples were washed in 1X TBS, and mounted in 

slow-fade gold with DAPI (ThermoFisher Scientific, Inc.). 

Table 4.1: Summary of probes used for in situ experiments 

miRNA Probe sequence Probe Tm 
(°C) 

Hybridi
zation 

temper
ature 
(°C) 

Probe 
concentrati

on 

Asp_miR2118 AAGGATTAGGTGGCATCGGGA/3Dig_N/ 85 55 250 nM 
Asp_miR2275 TGAGATGTTGGAGGAAACCGA/3Dig_N/ 85 55 250 nM 
Asp_24-nt PhasiRNA TCCTATGTCGGTTCACAGTT/3Dig_N/ 84 55 250 nM 
Asp_IR_based 21nt-
phasiRNA 

TCTGAGTCCAACCAAGTGT/3Dig_N/ 84 55 250 nM 

Asp_nonIR_based 21nt-
phasiRNA 

GGCGTTCAAGTTGTTTAATGA/3Dig_N/ 85 55 250 nM 

Asp_24-nt phasiRNA 
precursor 

TGGGACAATGAAACAACTCTA/3Dig_N/ 82 55 250 nM 

Lilium_miR2275 AGATATCAGAGGAAATTGA/3Dig_N/ 79 55 250 nM 
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Lilium_inferred IR-
based 24-nt phasiRNA 

AGTCATGCTCAGAGAGTTAACA/3Dig_N/ 84 55 250 nM 

Lilium_inferred IR-
based 24-nt phasiRNA 
precursor 

TCACTAATTTTTACGCATGA/3Dig_N/ 83 55 250 nM 

Lilium_direct IR-based 
24-nt phasiRNA 

AGGCCGGAGGGAGTTATGTT/3Dig_N/ 84 55 250 nM 

Lilium_direct IR-based 
24-nt phasiRNA 
precursor 

AGTTTACTAGGATGACTCCTTCA/3Dig_N/ 84 55 250 nM 

Scrambled control /5DigN/GTGTAACACGTCTATACGCCCA 87 55 250 nM 

 

4.1.15 Confocal microscopy 

Confocal images were taken with Zeiss LSM880 using a C-Apochromat 40X 

(NA=1.3) oil immersion objective lens. For NBT-stained slides, blocks were excited at 

458 nm and auto-fluorescence was detected using a 578 nm – 674 nm band pass 

detector. We also used transmitted light for generating DIC images. For Fluorescent in 

situ hybridization, images were taken under 633 nm excitation and emission 649-758 

4.1.16 Real-Time qRT-PCR 

Total RNA was extracted as described above, treated with DNase I (NEB, cat # 

M0303S), and then cleaned using the RNA Clean and Concentrator-5 (Zymo 

Research, cat # R1015) columns. An aliquot containing 800 ng of clean total RNA 

was used for reverse transcription using the SuperScript IV First-Strand Synthesis 

System (Thermo Fisher Scientific, cat # 18091050). Then, the first-stranded RNA was 

3x diluted and 1 µL was used in the qPCR reaction, for which was used the 

SsoAdvanced Universal SYBR Green Supermix (Bio-Rad, cat # 172-5271) for a 20 µL 

reaction. The qPCR runs were performed in the CFX96 Real-Time PCR Detection 

System (Bio-Rad) and the run condition was as follow: 95.0°C – 30 sec; 40 cycle of 

95.0°C – 5 sec, 61.0°C - 30 sec; Melt curve 65.0°C to 95 with 0.5 increment, for 5 sec. 
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The sequence of primers tested is listed below. Actin (AoAct-2, primer ID-1 29 and 

30) was used as endogenous control. 

Table 4.2: Samples used for quantitative RT PCR for probing expression of 

Asparagus DCL5 in vegetative and reproductive tissues 

Name Description 

Asparagus BM14-72 leaf 

Asparagus BM14-181 <0.5 mm anthers (whole buds) 

Asparagus BM14-182 0.5 - 1.0 mm anthers (whole buds) 

Asparagus BM14-183 1.0 - 1.5 mm anthers (whole buds) 

Asparagus BM14-184 0.5 - 1.0 mm anthers 

Asparagus BM14-185 1.0 - 1.5 mm anthers 

Table 4.3: Primers used for quantitative RT PCR for probing expression of 

Asparagus DCL5 in vegetative and reproductive tissues. 

Primer 

ID-1 

Primer ID-

2 
Sequence 

19 AoDCL5-1F TGA CTC TGC TCA TGT AAA CTA CG 

20 AoDCL5-1R ATT AGC CCA GGT CCC AGA TA 

21 AoDCL5-2F TAT CTG GGA CCT GGG CTA AT 

22 AoDCL5-2R GTT GCC TCT ATC AAG AGA ACA AAT C 

23 AoDCL5-3F ACA TCA TAC TGC GAA CCA TCT AC 

24 AoDCL5-3R GGC CAC CTT TCT CCA TCT TAA T 

25 AoDCL5-4F CTT CGA CCT CTG TCG AAT ACT T 

26 AoDCL5-4R GTT GAA ACC CAT CAC TCC ATT C 

27 AoAct-1F CCA AGG CCA ACA GAG AGA AA 
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28 AoAct-1R GTA CGA CCA CTA GCG TAA AGA G 

29 AoAct-2F CTG GTA TTG CTG ACC GTA TGA G 

30 AoAct-2R CCA ATC CAG ACA CTG TAC TTC C 

31 AoGAPDH-1F CGA CAT TCT GTC AGG AGT ACA A 

32 AoGAPDH-1R CCT CCC AAG CAA TCC TCA TAT C 

33 AoUBC2-1F TGT GAC CCA AAT CCC AAC TC 

34 AoUBC2-1R CTC TGC TCC ACT ATC TCT CTC A 

4.2 Results 

To characterize phasiRNAs in Asparagus, we generated sRNA libraries from 

sequential stages of reproductive tissues, plus a number of vegetative tissues (Table 

4.1).  These included stages of pre- to post-meiotic anthers, as one of our aims was to 

assess the specificity of accumulation in anthers, in comparison to reproductive 

phasiRNAs in grasses (Zhai et al. 2015). The leaf and shoot samples were generated to 

validate patterns of tissue enrichment. In total, we generated 23 sRNA libraries for this 

study, and we combined these with 15 libraries we recently published but had not 

extensively characterized (Harkess et al., 2017). In that work, we annotated 166 

miRNA precursors in Asparagus, generating 105 unique miRNAs from 78 families, 

including both known/conserved miRNAs and some novel miRNAs (Harkess et al., 

2017). Since a saturating level of miRNA identification requires the characterization 

of many tissues and stages, we investigated the newly-generated sRNA libraries for 

miRNAs, using two different set of criteria, followed by manual curation of structures 

(see methods). We identified 15 conserved and 46 lineage- or species-specific 21-nt 

and 22-nt miRNAs, excluding those miRNAs we recently reported. The temporal 
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expression patterns of complete repertoire of miRNAs identified in this study is 

presented in Figure 1.1. 

Table 4.4: Summary statistics of garden asparagus (Asparagus officinalis) 

sequencing libraries used in this study. 

 

Part	A.	Asparagus	small	RNA	data

Code Title
Total	

Sequences

Genome	

Matched	

Reads

Distinct	

Genome	

Matched	Reads

leaf_r1 Asparagus	leaf,	rep1,	BM14-72 30,024,542						 26,088,582					 2,796,076									

ant1_07mm_r1 Asparagus	anther	0.7mm,	male1,	rep1,	BM14-48 44,603,029						 37,868,769					 5,892,680									

ant2_11mm_r1 Asparagus	anther	1.1mm,	male2,	rep1,	BM14-50 51,259,921						 43,323,163					 7,446,886									

ant3_15mm_r1 Asparagus	anther	1.5mm,	male3,	rep1,	BM14-52 42,990,118						 36,641,232					 6,555,377									

ant4_18mm_r1 Asparagus	anther	1.8mm,	male4,	rep1,	BM14-54 53,728,958						 43,957,932					 7,414,084									

ant5_20mm_r1 Asparagus	anther	2.0mm,	male5,	rep1,	BM14-56 30,392,916						 25,408,903					 3,691,026									

pis_ma1_05mm_r1 Asparagus	pistil	0.5mm,	male1	rep1,	BM14-58 39,685,208						 34,496,108					 4,344,113									

pis_ma2_07mm_r1 Asparagus	pistil	0.7mm,	male2	rep1,	BM14-60 28,875,412						 24,855,917					 3,889,869									

pis_ma3_11mm_r1 Asparagus	pistil	1.1mm,	male3	rep1,	BM14-62 31,683,580						 27,569,856					 3,411,535									

pis_ma4_15mm_r1 Asparagus	pistil	1.5mm,		male4,	rep1,	BM14-64 30,283,321						 25,730,428					 3,707,690									

pis_ma5_18mm_r1 Asparagus	pistil	1.8mm,	male5	rep1,	BM14-66 29,394,111						 24,907,377					 3,319,557									

pis_fe1_15mm_r1 Asparagus	pistil	1.5mm,	female1,	rep1,	BM14-74 28,794,913						 24,810,788					 3,503,894									

pis_fe2_20mm_r1 Asparagus	pistil	2.0mm,	female2,	rep1,	BM14-76 31,706,438						 27,193,425					 3,437,506									

pis_fe3_28mm_r1 Asparagus	pistil	2.8mm,	female3,	rep1,	BM14-78 28,882,041						 24,124,807					 3,750,256									

pis_fe4_35mm_r1 Asparagus	pistil	3.5mm,	female4,	rep1,	BM14-80 33,046,715						 27,551,793					 4,760,947									

pis_fe5_42mm_r1 Asparagus	pistil	4.2mm,	female5,	rep1,	BM14-82 32,476,318						 27,107,377					 3,298,178									

pis_fe6_45mm_r1 Asparagus	pistil	4.5mm,	female6,	rep1,	BM14-84 39,544,560						 32,972,952					 4,612,981									

shoot_old_r1 Asparagus	shoot,	old	spear,	rep1,	BM14-68 33,829,729						 28,964,427					 3,122,177									

shoot_you_r1 Asparagus	shoot,	young	plant,	rep1,	BM14-70 30,917,138						 26,512,078					 2,830,267									

88_Fs Spears	from	a	female	plant,	line	88 51,071,610						 44,361,206					 12,174,564						

88_Ms Spears	from	a	male	plant,	line	88 47,521,321						 41,489,178					 11,116,150						

88_SMs Spears	from	a	super	male	plant,	line	88 53,130,780						 46,200,778					 11,821,295						

89_Fs Spears	from	a	female	plant,	line	89 49,631,096						 42,785,176					 9,445,138									

89_Ms Spears	from	a	male	plant,	line	89 44,181,331						 37,349,173					 9,729,097									

89_SMs Spears	from	a	super	male	plant,	line	89 48,687,896						 40,755,331					 9,644,782									

103_Fs Spears	from	a	female	plant,	line	103 53,644,329						 44,843,564					 10,916,426						

103_Ms Spears	from	a	male	plant,	line	103 51,686,019						 43,075,904					 9,482,442									

St_Aspa Asparagus	shoot 48,684,914						 39,392,106					 8,431,386									

Lf_Aspa Asparagus	leaf 44,967,647						 37,868,082					 6,553,948									

Rt_Aspa Asparagus	root 28,265,822						 15,523,108					 2,845,038									

MFE_Aspa Asparagus	male	flower	early	stage 40,926,331						 33,278,523					 8,930,903									

MFM_Aspa Asparagus	male	flower	mid	stage 56,362,666						 46,066,266					 10,196,795						

FeFE_Aspa Asparagus	female	flower	early	stage 43,941,398						 35,592,215					 9,263,600									

FeFM_Aspa Asparagus	female	flower	mid	stage 58,262,210						 48,153,462					 9,493,296									

Asp_0_5_ant_bud Asparagus,	<0.5	mm	anthers	(whole	buds),	BM14-181 36,110,327						 27,770,843					 7,025,326									

Asp_1_ant_bud Asparagus,	0.5	-	1.0	mm	anthers	(whole	buds),	BM14-182 31,534,472						 23,350,045					 5,321,879									

Asp_1_5_ant_bud Asparagus,	1.0	-	1.5	mm	anthers	(whole	buds),	BM14-183 41,127,611						 33,446,841					 4,022,099									

Asp_1_0_ant Asparagus,	0.5	-	1.0	mm	anthers,	BM14-184 33,450,319						 26,021,154					 4,071,462									

Asp_1_5_ant Asparagus,	1.0	-	1.5	mm	anthers,	BM14-185 37,476,488						 29,030,034					 7,179,341									



 

104 

 

 

 

 

 

 

Part	B.	Asparagus	RNA-seq	data

Code Title
Total	

Sequencesa

Genome	

Matched	

Reads

Distinct	

Genome	

Matched	Reads

Asp_leaf Asparagus,	leaf,	BM14-72 31,990,892 14,690,194 3,111,600

Asp_0_5_ant_budr Asparagus,	<0.5	mm	anthers	(whole	buds),	BM14-181 26,788,747 10,593,969 2,705,490

Asp_1_ant_budr Asparagus,	0.5	-	1.0	mm	anthers	(whole	buds),	BM14-182 24,637,152 10,657,889 2,806,443

Asp_le Asparagus,	leaf,	BM14-72 34,433,768 15,163,706 2,791,096

Asp_0_5_ant_b Asparagus,	<0.5	mm	anthers	(whole	buds),	BM14-181 30,330,547 11,162,814 2,399,093

Asp_1_ant_b Asparagus,	0.5	-	1.0	mm	anthers	(whole	buds),	BM14-182 30,145,994 12,319,937 2,626,547

Part	C.	Asparagus	RNA	structure	data

Code Title
Total	

Sequences

Genome	

Matched	

Reads

Distinct	

Genome	

Matched	Reads

05_ant_bud_o Asparagus	dsRNA,	<0.5	mm	anthers	(whole	buds),	BM14-181,	Rnase	ONE 12,342,640 6,897,413 294,724

05_10_ant_bud Asparagus	dsRNA,	0.5	-	1.0	mm	anthers	(whole	buds),	BM14-182,	Rnase	ONE 12,111,370 7,107,136 255,080

05_ant_bud_v Asparagus	dsRNA,	<0.5	mm	anthers	(whole	buds),	BM14-181,	Rnase	V1 20,531,053 15,283,502 215,299

05_10_ant_bud_v Asparagus	dsRNA,	0.5	-	1.0	mm	anthers	(whole	buds),	BM14-182,	Rnase	V1 13,925,322 9,800,453 263,252

Part	D.	Asparagus	PacBio	"SMRT"	data

Code Title
Total	

Sequences Full-length
b

high-quality	

transcriptsc

Aspa-denovo-A-2kb Asparagus,	<=0.5	and	0.5-1.0mm	anther,	<2kb	insert	length	(3	SMRT	cells) 213,951 120,540 30,059

Aspa-denovo-B-2kb-3kb Asparagus,	<=0.5	and	0.5-1.0mm	anther,	2-3	kb	insert	length	(3	SMRT	cells) 294,820 106,233 29,932

Aspa-denovo-C-3kb Asparagus,	<=0.5	and	0.5-1.0mm	anther,	>3	kb	insert	length	(3	SMRT	cells	) 240,945 48,792 13,083

Part	E.	Asparagus	PARE	data

Code Title
Total	

Sequences

Genome	

Matched	

Reads

Distinct	

Genome	

Matched	Reads

88F_d Spears	from	a	female	plant,	line	88 22,588,072						 18,009,351					 5,119,938									

88M_d Spears	from	a	male	plant,	line	88 25,441,003						 20,220,748					 5,756,736									

88SM_d Spears	from	a	super	male	plant,	line	88 20,141,905						 16,066,747					 4,435,945									

89F_d Spears	from	a	female	plant,	line	89 21,201,482						 16,656,387					 4,993,468									

89M_d Spears	from	a	male	plant,	line	89 19,713,775						 15,518,328					 5,178,869									

89SM_d Spears	from	a	super	male	plant,	line	89 22,629,307						 18,002,394					 5,022,618									

103F_d Spears	from	a	female	plant,	line	103 26,367,163						 20,496,055					 6,143,486									

103M_d Spears	from	a	male	plant,	line	103 21,334,611						 16,554,967					 5,335,489									

AspM_mid Male	flower	mid	stage 28,944,491						 23,471,321					 7,666,998									

AspM_ear Male	flower	early	stage 29,656,483						 23,953,176					 7,516,117									

AspFM_mid Female	flower	mid	stage 25,144,959						 20,389,169					 6,740,980									

AspFM_ear Female	flower	early	stage 23,728,164						 19,220,543					 6,678,019									

Asp_shoot Shoot 21,734,779						 17,515,947					 5,978,640									

Asp_Lf Leaf 24,820,749						 20,086,849					 6,155,791									
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Figure 4.1: Heat maps showing normalized expression of conserved and species-

specific miRNAs in Asparagus. miRNA abundances were assessed 

using the small RNA data from vegetative tissues, male flowers, female 

flowers, anthers, degenerate pistils from male flower, and fertile pistils 

from female flowers; all libraries were normalized to transcripts per 20 

million reads (TP20M). Lineage- or species-specific miRNA candidates 

have the “cand” prefix in their names.  Reproductive phasiRNA triggers 

miR2118 and miR2275 are highlighted by blue and orange sidebars. All 

miRNAs are hierarchically clustered based on abundances across tissues 

as indicated by the tree at the left (split across the two portions) using the 

“single” method and “Euclidean” distances. 

 

4.2.1 Presence of miR2118 and miR2275, triggers of reproductive phasiRNAs, 

in Asparagus 

We next sought to examine miRNAs in Asparagus flowers. Asparagus is 

dioecious, and its flowers develop initially as hermaphrodites, but later matures into a 

female or male, primarily due to degeneration of the other sex organ (Harkess et al., 

2017). As a result, male flowers include both an aborted pistil and the fertile anther. 

We collected male flowers, six stages of fertile anthers, and five stages of aborted 

pistils for small RNA analysis. Comparing 105 conserved miRNAs from 78 families, 

we observed a high degree of similarity between fertile anthers and aborted pistils 

(Figure 4.2A), indicating that events leading to cessation of pistil development in 

male flowers might not include significant variation in sRNA regulation or could have 

taken place prior to initiation of stamen primordia. We observed significant disparity 

between pre-meiotic and meiotic anthers, primarily due to seven miRNA families that 

were enriched (fold change ≥ 4, p ≤ 0.05) relative to post-meiotic anthers. These 

miRNAs included miR160, miR166, miR171, miR319 and miR390, all known to play 
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roles in regulation of flowering time (Schommer et al. 2012; Rubio-Somoza and 

Weigel 2011), floral organ formation (A. C. Mallory et al. 2004; Nagasaki et al. 2007) 

and vegetative-to-reproductive phase transition (Curaba et al. 2013). In addition to 

these miRNAs, two triggers of reproductive phasiRNAs – miR2118 and miR2275 – 

were preferentially expressed in all the reproductive libraries, including in pistils from 

female flowers, yet also highly enriched in pre-meiotic and meiotic stages (Figure 

4.1). 
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Figure 4.2: miRNA abundances in Asparagus flowers, and phasiRNAs in female 

pistils. (A) Heat map representing the Pearson’s correlation values for an 

all-versus-all comparison of miRNA abundance levels in developmental 

stages of anther and degenerated pistils from male flowers. The pistil 

length corresponds to the stage of the anther of that specific length. (B) 

The miR2118 family in Asparagus, with heat-map showing enrichment 

or depletion in reproductive tissues relative to the leaf samples; variants 

of miR2118d are described in the main text. The numbers represent 

enrichment level in log (2) scale, as indicated above. Solid lines in 

phylogenetic tree represents genomic variants of miR2118 family while 

the dotted lines represent transcriptional variants of miR2118d found in 

sRNA libraries. (C) Venn diagrams show counts of 24-nt PHAS loci 

identified in aborted male pistils and fertile female pistils, and their 

overlap with the set of 24-nt PHAS loci from anthers of male flowers. (D) 

Bar plots showing enrichment of 24-nt phasiRNAs, tasiRNAs, and hc-

siRNAs in fertile pistils, represented in a log (2) scale. 
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miR2118 and miR2275 both trigger reproductive phasiRNAs and thus we 

analyzed these miRNAs and their precursors in Asparagus. In grasses, miR2118 

triggers reproductive 21-nt phasiRNAs  (Zhai et al. 2015; Johnson et al. 2009), while 

in eudicots, miR2118 members target NB-LRR disease resistance genes (Shivaprasad 

et al. 2012). In Asparagus, five miR2118 members are generated from three loci 

(Figure S3); two members (miR2118d/e) accumulate in both vegetative and 

reproductive stages (Figure 4.1 and 4.2B), while the other three members 

(miR2118a/b/c) from a genomic cluster (Figure 4.3) displayed reproductive 

enrichment that peaks in pre-meiotic anthers (Figure 4.1 and 4.3B), similar to the 

Poaceae (D. H. Jeong et al. 2013; Zhai et al. 2013; Song, Li, et al. 2012). This 

dichotomy in tissue specificity and temporal dynamics may suggest that miR2118 

shifted in evolutionary time from targeting NB-LRRs (observed in mosses and later-

diverged species) to long, non-coding RNAs (observed in grasses) via specialization 

and subfunctionalization versus neo-functionalization.  
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Figure 4.3: Genomic organization and abundances of known and novel miRNAs 

in chromosomes 1 and 4 of the Asparagus genome. miRNAs were 

mapped to the Asparagus genome with chromosomes as indicated at 

right, and the abundance of each miRNA is displayed in a dot with the 

size indicated in a Log10 scale. The miR2118 family is encoded at three 

loci and miR2275 family is encoded in a single cluster on chromosome 4. 

The Y-axis is a representation of genomic positions of miRNAs. 
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Figure 4.4: Reproductive phasiRNAs and their triggers in Asparagus. Heat maps 

depicting abundance of 24-nt phasiRNAs (in red) and their triggers, 

miR2275 (in blue), in developing anthers. Both heat maps are clustered 

on their similarity of expression. Pie charts at left or right represent the 

proportion of all small RNA abundances comprised by the 24-nt 

phasiRNAs (in red), miR2275 (in orange), hc-siRNAs (in yellow) and 

TAS3 tasiRNAs (in green) across anther developmental stages. Box-

whisker plots indicate enrichment (log2) of Asparagus 24-nt phasiRNAs 

abundance from all PHAS loci in the meiotic anther compared to the 

vegetative sample (leaf). (B) and (C) Small RNA in situ hybridization 

with probes for the following, from left to right: (i) miR2118, (ii) a pre-

meiotic phasiRNA from locus 21-PHAS-4, (iii) miR2275, and (iv) a 

meiotic IR-related phasiRNA from locus 24-PHAS-31. The right-most 

images show mRNA in situ hybridizations with probes for the 24-PHAS-

31 precursor. The scale bar indicates 50 μm, for all images. (B) Images 

from pre-meiotic anthers. (C) Images from meiotic-stage anthers. 
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4.2.2 PhasiRNAs in Asparagus 

We next examined loci generating phasiRNAs in Asparagus, coupling the 

small RNA analysis with the identification of the potential miRNA triggers (see 

methods). From the sRNA data described above, we identified 29 loci generating 21-

nt phasiRNAs and 42 loci generating 24-nt phasiRNAs. Of the 29 “21-PHAS” loci, 23 

were vegetatively expressed and 15 (~55%) overlapped annotated protein-coding 

genes. Only three reproductive-enriched 21-PHAS loci were in intergenic regions, 

presumably long, non-coding RNAs (lncRNAs), substantially lower than the hundreds 

or thousands seen in maize or rice (Zhai et al. 2015; Fei et al. 2016). In contrast, all 42 

24-PHAS loci were enriched in reproductive tissues (by 6- to 380-fold), peaked in 

abundance at meiotic stages (t-test, p ≤ 0.05), and correlated with miR2275 

abundances (Figure 4.4A). This spatiotemporal pattern, similar to those of the grasses 

(Komiya et al. 2014; Zhai et al. 2015), is distinct from both TAS3 tasiRNAs and 

heterochromatic siRNAs (hc-siRNAs) (Figure 4.4A). Unlike the lncRNA precursors 

of grasses (Johnson et al. 2009; Zhai et al. 2015), we found 30% (n = 18) of 24-PHAS 

loci overlap annotated protein-coding genes. We also noted that some 24-nt 

phasiRNAs were abundant in the data from aborted pistils from male flowers; prior 

work had associated these phasiRNAs only with the male reproductive organs (Zhai et 

al. 2015). In order to explore the presence of 24-nt phasiRNA in female pistils, we 

examined small RNAs from six sequential stages of fertile pistils from female flowers 

(Table 4.1). Enriched in these data, we identified 22 24-PHAS loci, a subset of those 

identified from anthers and aborted male pistils (Figure 4.2C and 4.2D). Unlike 

anthers, the 24-nt phasiRNAs in fertile pistils lacked a clear peak in temporal 

abundance, most likely due to sampled stages that varied relative to those in anthers.  
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To investigate and validate the 24-PHAS loci that overlap with protein-coding 

genes, we sequenced from meiotic Asparagus anthers a set of 275,565 putative full-

length, polyadenylated transcripts using single molecule real time (SMRT) 

sequencing.  These data included 5,671 annotated genes, at least 23,797 novel 

isoforms, and 1,771 unannotated loci. After updating the genome annotations with 

these data, we identified transcripts overlapping 68% (n = 30) of 24-PHAS clusters; in 

most cases, 24-PHAS loci overlap intronic regions, except for three loci (7%) where at 

least one transcript with an exonic overlap (≤ 50% of PHAS length) was detected. We 

also identified transcripts corresponding to 88% of 21-PHAS loci, and 54% of these 

overlapping transcript(s) showed overlap with exonic regions. 

To better evaluate the coding potential of transcripts overlapping 21- and 24-

PHAS loci, we built a classifier that categorizes transcripts as coding, non-coding or of 

unknown coding potential (TUCP) by using Coding Potential Calculator (Kong et al. 

2007) and Coding-Potential Assessment Tool (L. Wang et al. 2013) scores to integrate 

sequence- and similarity-based features (see methods). Over 62% of 21-PHAS loci and 

42% of 24-PHAS loci overlapped predicted protein-coding transcripts.  The 24-PHAS 

precursors in grasses are thought to be lncRNAs (Johnson et al. 2009; Zhai et al. 

2015). The production of 21-nt phasiRNAs from protein-coding genes is well-

described for vegetative tissues in both eudicots and gymnosperms (R. Xia, Xu, et al. 

2015; Shivaprasad et al. 2012; Zhai et al. 2011; Arikit et al. 2014). In Asparagus, these 

21-PHAS transcripts included five NB-LRRs (disease resistance genes), DCP 

(encoding an mRNA de-capping enzyme), SGS3 (SUPPRESSOR OF GENE 

SILENCING 3), and other gene families. 
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In maize, reproductive phasiRNAs display distinct spatiotemporal patterns of 

accumulation (Zhai et al. 2015); therefore, we decided to assess whether this is also 

the case in Asparagus. We performed small RNA in situ hybridizations using probes 

for the following: (i) miR2118, (ii) a pre-meiotic 21-nt phasiRNA, (iii) miR2275, and 

(iv) a meiotic IR-derived 24-nt phasiRNA. All of these Asparagus small RNAs 

displayed distinct spatiotemporal patterns (Figure 4.1B and 4.1C). miR2118, the 

trigger of limited reproductive-enriched 21-PHAS loci, co-localized with phasiRNAs 

in the middle layer, tapetum and archesporial (AR) cells. Like the maize meiotic 24-nt 

phasiRNAs that require normal tapetal differentiation and localize in the tapetum and 

germinal cells, Asparagus 24-nt phasiRNAs were enriched in meiotic stages and 

predominantly localized in the tapetum and meiocytes, precisely where miR2275 was 

present (Figure 4.2B and C).  

4.2.3 MicroRNA triggers and biogenesis components of 21- and 24-nt 

phasiRNAs in Asparagus 

We next investigated the miRNA triggers for phasiRNAs, focusing on 

reproductive 21-PHAS and 24-PHAS loci. For this, we first generated a list of 

computationally predicted and PARE-supported target sites using sPARTA (Kakrana et 

al. 2014), followed by an exhaustive search for miRNA triggers using the ‘revFerno’ 

extension (see methods). Of 29 21-PHAS loci, we found triggers for 16 (57%), most (n 

= 14) triggered by miR2118 family members. These loci included the three 

reproductive-specific 21-PHAS loci mentioned above, plus seven protein-coding loci. 

Isoforms (22-nt) of miR167 and miR390 triggered 21-nt phasiRNAs from an AUXIN-

RESPONSE FACTOR (ARF) gene and an intergenic locus respectively, the latter 

likely a TAS3 locus (Axtell et al. 2006). The numbers of “pNLs” (phased NB-LRRs) (n 
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= 5) and TAS3 (n = 1) loci identified in Asparagus are substantially lower than in 

Norway spruce or eudicots (R. Xia, Xu, et al. 2015; Shivaprasad et al. 2012; Zhai et al. 

2011; Arikit et al. 2014). The reduction in pNLs may reflect a relatively small 

compositions of NB-LRR genes in Asparagus (n = 46) (Y. Zhang et al. 2016), similar 

to Zostera and Amborella with only 44 (Olsen et al. 2016) and 45 members reported 

respectively (Y. Zhang et al. 2016). The low numbers or absence of pNLs in monocots 

and the concordant presence of miR2118-triggered, reproductive 21-phasiRNAs 

relative to eudicots suggests divergent paths of miR2118 function. 

For the reproductive 24-PHAS loci, our analyses failed to identify a miRNA 

trigger, including miR2275. To date, all 24-nt phasiRNAs were reported in grasses and 

triggered by miR2775 family members (Zhai et al. 2015; Johnson et al. 2009). We did 

identify 15 intergenic and 10 protein-coding targets, supported by PARE data, for 

miR2275 in Asparagus; while none of these targets corresponded to 24-PHAS loci, 

weakly abundant, anther-enriched 22-nt phasiRNAs were found at three intergenic 

targets. We attempted to find miR2275-triggered 22-PHAS loci in maize and rice, in 

both reproductive and vegetative tissues, using published data (Zhai et al. 2015; Fei et 

al. 2016), but none were found. Next, we tested the remote possibility of 22-nt 

phasiRNAs (secondary siRNAs) triggering 24-nt phasiRNAs in a tertiary cycle, 

perhaps analogous to piRNAs production in insects (Brennecke et al. 2007). For 101 

22-nt phasiRNAs, 29,594 targets sites (score < 4) were identified, among which 1,430 

had matched PARE reads at any abundance level, but only one target site passed 

stringent filters (abundance > 5TP30M in at least one library and the ratio of PARE 

signal to a ± 10-nt window ≥ 0.75). This target site and others found using relaxed 

filters showed no evidence of 21-, 22- and 24-nt phasiRNAs. In addition, no 22-nt 
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phasiRNAs were assigned as triggers to 24-PHAS loci using revFerno (see methods). 

These observations left us with no clear functional explanation for the 22-PHAS loci, 

and perhaps more importantly, there were evidently no miRNA triggers of the 42 

reproductive 24-PHAS loci identified in Asparagus. 

 

Figure 4.5: Many Asparagus 24-PHAS loci are derived from inverted repeats. (A) 

Genomic organization of two representative IR-type PHAS loci, 

overlapping with 5’ and 3’-arm of inverted repeats. Phasing scores are 

presented as shown in our custom web viewer. (B) Fold-change 

representing enrichment or depletion of overlap of 24-PHAS loci from 

rice, Asparagus and maize, with exons, introns, transposons and inverted 

repeats, against the random chance. (C) Comparison of abundances and 

counts of sRNAs produced from 24-PHAS loci from rice, Asparagus and 

maize. The values on top represent 2.5% trimmed mean of ratio of 

abundances or counts of 24-nt phasiRNAs from all 24-PHAS loci of 

corresponding species. 

A B

C
chr6:27,326,809-27,328,752

24-PHAS-23a 24-PHAS-23b

12.5

37.5+

score = 37.8 score = 35.4

Asparagus MaizeRice

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

8.0

Exon Intron Transposon IRs

-16.0

-4.0

0.0

4.0

16.0

64.0

Exon Intron Transposon IR

24-PHAS-1a 24-PHAS-1b

chr1:6,568,086-6,569,660

12.5

37.5+

score = 33.0 score = 31.5



 

117 

 

During inspection of the 24-PHAS loci in our sRNA browser, we observed that 

many showed a substantial strand bias, which is inconsistent with the RDR6-

dependent biogenesis of PHAS precursors in grasses (Song, Wang, et al. 2012). 

Moreover, we also noticed that these corresponded to inverted repeats (“IRs”), in other 

plants like Arabidopsis processed by DCL4 or even DCL1 into 21-nt phasiRNAs or 

miRNAs. We performed a genome-wide analysis, and 90% of Asparagus 24-PHAS 

loci corresponded to inverted repeats (IRs); based on their overlap to 5’ or 3’ arms of 

an IR (Figure 4.5A and 4.6). To test the statistical significance of this overlap, we 

computed an enrichment or depletion of 24-PHAS overlap with exons, introns, TE-

related regions and IRs, versus random chance; we also assessed 24-PHAS loci from 

maize and rice using 176 and 111 24-PHAS loci, respectively. Both grasses had few 

24-PHAS loci overlapping IRs (Figure 4.5B), particularly in contrast to the ~55-fold 

enrichment observed in Asparagus. All three species displayed a relative paucity of 

24-PHAS loci in TE-related regions (Figure 4.5B), distinguishing these small RNAs 

from hc-siRNAs. 24-PHAS loci from all three species, whether from IRs or not, 

displayed similar distributions of sizes (Figure 4.5C), suggesting similar efficiencies 

of Dicer processing. 
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Figure 4.6: Secondary structure and small RNA abundance plots of three 

representative hairpin PHAS loci from Asparagus. Foldbacks from 

unspliced genomic sequence display 24-nt siRNAs from both arms, at 

24-nt intervals, a processive signature of Dicer activity. Inset scatterplots 

depict the sRNA distribution on PHAS transcripts, starting from the 5’-

most 24-nt phasiRNA. The abundance is indicated on the Y-axis, shown 

in log2 scale, and axis limits set to 40, 10 and 20 for 24-PHAS-23, 24-

PHAS-3 and 24-PHAS-26 respectively. The position of the first and last 

phasiRNAs for the 5’- and 3’ arms, along with the total phases and arm 

lengths, are described in the header of each scatterplot. The dot colors 

and sizes represent sRNA sizes and abundances, respectively. 
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4.2.4 Inverted repeat precursors of 21- and 24-nt phasiRNAs in Asparagus 

IR-derived 24-PHAS loci were not identified in our earlier work in maize (Zhai 

et al. 2015), so we sought to better characterize them. We found four loci 

corresponding to two clusters (clust-19 and clust-125) from the 5’ and 3’ arms of two 

long inverted repeats of length 1,188 nt and 9,433 nt (Figure 4.7). Both clusters had a 

single miR2275 target site in their 5’ arm. In both cases, the phasiRNAs were 

precisely spaced at the predicted base of the putative foldback, distal to the loop. In 

this regard, clust-125 was more unusual, as it also has a tandem repeat of the IR – i.e. 

two more 24-PHAS loci flanking the foldback, with sequence similarity (>94%) 

(Figure 4.7). 
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Figure 4.7: 24-nt PHAS loci in maize derived from inverted repeats. (A) Maize 

cluster-125, with two 24-nt PHAS loci precisely located at edges of the 5’ 

and 3’ arms of a 9433-nt inverted repeat, and flanked by 24-nt loci that 

are direct repeats. Inset images are screenshots of our browser showing 

the phasing scores of 24-nt sRNAs from this region with the red dot 

indicating the maximum score and orange dots are sRNAs in phase (grey 

are out of phase). Red or blue boxes are annotated genes on the top or 

bottom strand; orange cross-hatched boxes indicate that we have marked 

this as a 24-nt PHAS locus. Positions are from version 2 of the maize 

genome. (B) Maize cluster-19 is a PHAS locus with an internal foldback 

structure, but flanked by another 24-nt PHAS locus on left, both are 

located in the 5’ and 3’ arms of a fragmented but longer inverted repeat. 

The distance between PHAS loci in (A) and sequence similarity between 

the 5’ and 3’ arms of a longer inverted-repeat in (B) suggest that these 

longer inverted repeats are likely disrupted during evolution. Small RNA 

libraries for maize meiotic anthers from Zhai et al., 2016 were used for 

these plots. 
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Finally, to validate the foldback structure of the 24-PHAS precursors in 

Asparagus, we sequenced libraries of mRNA from pre-meiotic and meiotic anthers, 

and from leaf samples (Table 4.1). For analysis, we assembled these data into a 

transcriptome to accommodate assembly errors (gaps and false joins). The assembly 

was done by two different approaches: (i) a genome-based assembly using a step-wise 

Cufflinks protocol (see methods) (Trapnell et al. 2012), and (ii) a de novo hybrid 

assembly using RNA-seq and SMRT libraries (see methods) (Grabherr et al. 2011). 

The genome-based assembly yielded 46,698 transcripts from 26,687 transcriptional 

loci, which included 19,660 transcripts from annotated genes, 17,437 new isoforms 

and 9,601 new transcriptional loci. The de novo hybrid assembly resulted in 6,623 

transcripts matching the annotated Asparagus genes and 69,642 novel isoforms. This 

de novo assembly had an Ex90N50 value of 1,396 and captured near full length 

transcripts (> 80% alignment coverage) for 6,998 unique proteins from Uniprot, 

indicating a good transcriptome quality. 

To identify the 21- and 24-PHAS precursors from the assembled transcripts, 

we first mapped transcripts to the genome, and identified those that overlap with 

predicted PHAS loci. For these mapped transcripts, a foldback potential (FP) was 

computed using einverted (Rice, Longden, and Bleasby 2000), which along with the 

minimum length of overlap with genomic PHAS loci allowed us to divide precursors 

into four categories: I. Phased transcripts with full-length or near full-length 

precursors (> 85% coverage of a PHAS locus), that formed at least 240 nt of foldback 

(FP ≥ 500). II. Processed precursors with ≤ 85% PHAS coverage, and high foldback 

potential (FP ≥ 500). III. Near full-length precursors (> 85% PHAS coverage) with 

low foldback potential (FP < 300). IV. All other PHAS-matched transcripts, i.e. 
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processed or incomplete precursors. This analysis identified 74 precursors from 29 

unique 24-PHAS loci, 11 represented by at least one category I or II precursors. All of 

these eleven precursors were non-coding (one had weak coding potential); these had 

an average arm length of 510 nt and terminal loop of 115 nt. Category I/II precursors 

comprised 38% of the total 24-PHAS precursors, whereas category IV comprised 48%, 

suggesting a high degree of processed transcripts in our data. Only 13.7% of 

precursors were in category III, unstructured or of unknown secondary structure. 

These 24-PHAS precursors all lacked miR2275 trigger sites. In contrast to 24-PHAS 

precursors, 83% of 21-PHAS precursors (n=103 from 22 loci) corresponded to 

category III, a clear absence of secondary structure. However, we found two 2,200 nt 

category I precursors for one 21-PHAS locus, with a PARE-supported miR2118 

trigger site matching the first phasiRNA position in the 5’-arm. The presence of a 

miRNA target site in an IR 21-PHAS precursor is puzzling, as foldback RNAs are 

substrates for Dicer even without RDR6 activity (Henderson et al. 2006; Dunoyer, 

Himber, and Voinnet 2005), yet a miRNA trigger is required to initiate phasing 

(Arribas-Hernández et al. 2016). Coupled with the observation (above) that Asparagus 

24-PHAS loci lack miR2275 trigger sites, including IR precursors, we found 

remarkable diversity in the reproductive phasiRNA precursors of Asparagus 

We next examined RNA secondary structure in the meiotic anther 

transcriptome to confirm if these precursors were indeed processed as foldback 

dsRNAs. For this, we used a structure-mapping approach (Q. Zheng et al. 2010) to 

identify the paired (dsRNA) and unpaired (single-stranded RNA, ssRNA) components 

in meiotic anthers (0.7 to 1.1 mm). This method generated ~32 million dsRNA and 

~37 million ssRNA genome-mapped reads (Table 4.1). We focused on 24-PHAS loci, 
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finding 23 of 42 24-PHAS loci with sufficient coverage (see methods); 22 showed a 

significant (p ≤ 0.05) structure score (log-odds ratio of base-pairing probability  2.5), 

consistent with base pairing, while 13 of these 22 showed significant (p ≤ 0.05) strand 

specificity (log-odds ratio of base-pairing probability  2.5). A higher proportion 

might be found with less stringent filters, or by allowing lower identity between paired 

arms of the IRs. Comparing these loci with those associated with miRNAs, hc-

siRNAs, tasiRNAs, or the IR-derived 21-PHAS locus (above) revealed varying types 

of RNA structure. miRNAs exhibited strong secondary-structure and strand bias 

indicative of intra-molecular interactions (Figure 4.8A); 21-PHAS loci exhibited 

strong secondary structure with low strand specificity. The 24-PHAS loci showed 

intramolecular structure whereas hc-siRNAs showed an intermolecular structure 

(Figure 4.8A) consistent with earlier reports (F. Li et al. 2012) and a role of RDR2 in 

hc-siRNA biogenesis. For the most structured 24-PHAS loci, we observed two 

significant structure ‘peaks’ separated by a ‘valley’, supporting formation of the 

foldback structure from 24-PHAS loci (Figure 4.8B).  
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Figure 4.8: Intra-molecular secondary structure at IR-related 24-nt PHAS loci 

in Asparagus. (A) Scatter plots showing secondary structure scores as 

function of strand-specificity scores for IR-related loci along with 

randomly selected hc-siRNA, miRNA, tasiRNA and IR-related 21-nt loci 

that passed the coverage cutoff. Dotted line represents score medians, red 

for 24-nt PHAS loci and blue for hc-siRNAs. (B) Consensus of dsRNA 

structure scores (red) from five IR-based PHAS loci show two 

statistically significant peaks of paired nucleotides and a “valley” (loop, 

in green) of unpaired nucleotides validating formation of stem-loop 

structure from these IR-related PHAS transcripts. The five loci for this 

figure were selected based on high coverage and similar lengths and loop 

sizes. The control (blue line) represents the mean score from shuffled 

controls. 

4.2.5 The 24-nt phasiRNA pathway exists more broadly in monocots 

We sought to further trace the evolutionary origins of these reproductive-

specific phasiRNA pathways, and thus we extended our study to two more species – 

daylily (H. lilioasphodelus) and Lilium (L. maculatum). These monocots were selected 

based on their availability, ease of dissection of anthers, and most importantly, due to 

their evolutionary distance from Asparagus. Daylily, another member of the 

Asparagales, diverged ~66 mya from the MRCA of Asparagus (Hedges et al. 2015), 

while Lilium diverged ~117 mya from the MRCA of the Asparagales (Hedges et al. 
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2015). We first established a size-stage correlation for developing anthers of both 

species (see methods and Figure 4.9), and then performed large-scale transcriptome 

sequencing of staged anthers and leaf samples, to compensate for the absence of a 

genome for both species. The deep, paired-end libraries from Lilium generated a total 

of 404 million reads with an average of 130 to 140 million reads for pre-meiotic and 

meiotic stages; for the same developmental stages in daylily, a combination of single- 

and paired-end Illumina RNA-seq plus SMRT sequencing generated a total of 140 and 

125 million reads, and 324,879 full-length transcripts respectively (Table 4.2). The 

assemblies for both were generated using Trinity (Haas et al. 2013), including a hybrid 

assembly for daylily which included full length transcripts. This yielded 157,913 and 

182,225 transcripts with normalized expression greater than 1TPM in at least one 

library, for Lilium and daylily respectively. Assemblies for both species displayed a 

significant Ex90N50 statistic (Figure 4.10) and captured near full-length transcripts 

for at least 6,550 and 7,384 different proteins (≥ 90% alignment coverage, relative to 

Uniprot) (The UniProt Consortium 2015). To identify phasiRNAs, sRNA data were 

generated from the same stages (Table 4.2). 
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Table 4.5: Summary statistics of daylily and Lilium sequencing libraries used in 

this analysis. aGenome-matched reads not available due to absence of 

sequenced genomes for Lilium and daylily. bNumber of read pairs listed 

for paired-end data. cFull-length non chimeric isoforms. cPolished 

(corrected) high-quality consensus transcripts. 

 

 

 

 

Part	A.		Daylily	small	RNA	data

Code Title
Total	

Sequences

Len.	of	

Reads
Technology

Daylily_leaf_1Daylily	leaf	rep1,	BM14-01 39,246,683 34 single-end

Daylily_wbudDaylily,	whole	bud,	no	sepals,	with	<1.0	mm	anthers,	BM14-180 37,627,819 34 single-end

Daylily_01mmDaylily,	<1.0	mm	anthers,	BM14-177 52,380,062 34 single-end

Daylily_02mmDaylily,	1.5-2.0	mm	anthers,	BM14-178 30,544,192 34 single-end

Daylily_03mmDaylily,	2.5-3.0	mm	anthers,	BM14-179 41,155,375 34 single-end

Daylily_ant_0_r1Daylily	3.3mm	anther	stage	0	rep1,	BM14-04 48,546,267 34 single-end

Daylily_ant_1_r1Daylily	4.1mm	anther	stage	1	rep1,	BM14-08 45,773,743 34 single-end

Daylily_ant_2_r1Daylily	5.8mm	anther	stage	2	rep1,	BM14-12 32,982,067 34 single-end

Daylily_fem_0_r1Daylily	female	stage	0	rep1,	BM14-06 45,534,573 34 single-end

Daylily_fem_1_r1Daylily	female	stage	1	rep1,	BM14-10 50,177,784 34 single-end

Daylily_fem_2_r1Daylily	female	stage	2	rep1,	BM14-14 35,155,630 34 single-end

Daylily_fem_3_r1Daylily	female	stage	3	rep1,	BM14-18 68,247,257 34 single-end

Daylily_fem_4_r1Daylily	female	stage	4	rep1,	BM14-22 55,651,517 34 single-end

Part	B.		Lilium	small	RNA	data

Lilium_leaf Lilium	maculatum	leaf,	BM14-190 27,227,974 34 single-end

Lilium_4mm_anLilium	maculatum	L-4,	4	mm	anthers,	BM14-191 35,477,763 34 single-end

Lilium_5mm_anLilium	maculatum	L-5,	5	mm	anthers,	BM14-192 32,039,303 34 single-end

Lilium_6mm_anLilium	maculatum	L-6,	6	mm	anthers,	BM14-193 32,024,530 34 single-end

Lilium_8mm_anLilium	maculatum	L-8,	8	mm	anthers,	BM14-195 32,594,126 34 single-end

Lilium_10mm_anLilium	maculatum	L-10,	10	mm	anthers,	BM14-197 33,533,618 34 single-end

Part	C.		Daylily	RNA-seq	data

Daylily_leafr Daylily	leaf	rep1,	BM14-01 42,572,707 100 single-end

Daylily_01mmrDaylily,	<1.0	mm	anthers,	BM14-177 29,999,859 100 single-end

Daylily_02mmrDaylily,	1.5-2.0	mm	anthers,	BM14-178 27,877,362 100 single-end

Daylily_03mmrDaylily,	2.5-3.0	mm	anthers,	BM14-179 37,901,322 100 single-end

Daylily_wbudrDaylily,	whole	bud,	no	sepals,	with	<1.0	mm	anthers,	BM14-180 38,943,956 100 single-end

Daylily_le Daylily	leaf	rep1,	BM14-01 33,520,975 150 paired-end

Daylily_01 Daylily,	<1.0	mm	anthers,	BM14-177 33,705,644 150 paired-end

Daylily_02 Daylily,	1.5-2.0	mm	anthers,	BM14-178 29,568,897 150 paired-end

Daylily_03 Daylily,	2.5-3.0	mm	anthers,	BM14-179 30,750,435 150 paired-end

Daylily_wb Daylily,	whole	bud,	no	sepals,	with	<1.0	mm	anthers,	BM14-180 31,514,569 150 paired-end

Part	D.		Lilium	RNA-seq	data

Lilium_leaf Lilium	maculatum	leaf,	BM14-190 68,250,144 150 paired-end

Lilium_4mm_anLilium	maculatum	L-4,	4	mm	anthers,	BM14-191 70,492,722 150 paired-end

Lilium_5mm_anLilium	maculatum	L-5,	5	mm	anthers,	BM14-192 67,997,742 150 paired-end

Lilium_6mm_anLilium	maculatum	L-6,	6	mm	anthers,	BM14-193 62,509,328 150 paired-end

Lilium_8mm_anLilium	maculatum	L-8,	8	mm	anthers,	BM14-195 66,675,362 150 paired-end

Lilium_10mm_anLilium	maculatum	L-10,	10	mm	anthers,	BM14-197 68,302,075 150 paired-end
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Part	E.	Asparagus	PacBio	"SMRT"	data

Code Title
Total	

Sequences

high-quality	

transcripts
d Technology

DayLily-A-1KBDaylily,	0.5-1.0mm	anther,	<2kb	insert	length	(3	SMRT	cells) 232,523 35,542 SMRT-seq

DayLily-C-2-3KBDaylily,	0.5-1.0mm	anther,	2-3	kb	insert	length	(3	SMRT	cells) 290,648 8,436 SMRT-seq

DayLily-B-3KB-aboveDaylily,	0.5-1.0mm	anther,	>3	kb	insert	length	(3	SMRT	cells	) 212,767 38,539 SMRT-seq
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Figure 4.9: Anther stage and size correlations capture pre-meiotic and meiotic 

anther stages for Lilium and daylily. (A) Paraffin-embedded Lilium 

samples, cross-sectioned and stained with propidium iodide. Histology 

and cell divisions were examined for determination of the cell stages 

using confocal microscopy. Based on the morphology of archesporial 

cells (yellow arrows), 4 mm and 5 mm anthers corresponded to pre-

meiotic stages. The 6 mm and 7 mm anthers were undergoing meiosis, 

and displayed a well-developed tapetum. (B) For daylily, anthers were 

treated with ScaleP clearing buffer for 1 week (see methods), and imaged 

using confocal microscopy. Histology and cell divisions in the 

longitudinal images of anthers were examined for determination of 

stages; the 1 mm anther was at a pre-meiotic stage, while 2 mm and 3 

mm anthers were past meiosis and the tapetum was starting to thin out. 

Scale bars = 100 μm for all images. 

Size 4 mm 5	mm 6 mm 7	mm

Stage Pre-meiosis Pre-meiosis Meiosis I Meiosis	II

Number	of	cell	

layers

NA 5 5 5

Tapetum NA Formed,	intact Intact Start	to	thin out

Size 1	mm 2	mm 3	mm

Stage Pre-meiosis Post-meiosis	(indicated

by	filled	anthers)	

Pollen	developed

Number	of	cell	

layers

5 4 4

Tapetum Formed Thinning Thinned	out

100 μm

100 μm

A

B
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Figure 4.10: Transcriptome and hybrid assemblies developed for Asparagus, 

Lilium and daylily. Precisely-staged pre-meiotic, meiotic anther and leaf 

samples were used to generate transcriptome assemblies for Lilium and 

hybrid assemblies for Asparagus and daylily; a phylogeny of species is at 

left and data types and metrics at right. For single- and paired-end 

libraries, reads are represented in million(s), and for SMRT libraries 

processed full-length transcripts are represented in thousands. The 

E90N50 metric signifies the N50 statistic for transcripts in the 90th 

percentile of normalized expression. Phylogeny of plant species is for 

indicative purpose only and it is derived by comparing (median) 

divergence times from.timetree.org.  

From the sRNA data, we identified triggers of reproductive phasiRNAs in 

daylily and Lilium. In both species, we found miR2118 members that were highly 

enriched in reproductive tissues (Figure 4.11A). We identified at least 19 miR2275 

members in Lilium, and three miR2275 members in daylily, peaking in abundance at 

pre-meiotic and meiotic stages (Figure 4.11a and Figure S9). Both miR2118 and 

miR2275 were measurable in Lilium pistils. Neither family was characterized in 

earlier studies of the basal angiosperm Amborella (Albert et al. 2013) and the early 

diverged monocot Zostera (Olsen et al. 2016), so we reanalyzed the genomes and 

published sRNA data for these two species. By comparing mature miRNA sequences 

from maize and rice to find isomiRs of both families in Zostera and Amborella, we 

identified at least one candidate locus for both miRNA families. Based on presence of 
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isomiRs and presence of candidate loci, we concluded that miR2275 is likely found 

throughout the monocots; miR2118 has previously been shown to have ancient origins 

(Y. Zhang et al. 2016). 
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Figure 4.11: Reproductive PHAS triggers and 24-nt phasiRNAs in Lilium. (A) 

miR2118 (violet) and miR2275 (blue) family members identified in 

Lilium and daylily by comparing mature sRNA sequences to members in 

miRBASE (v.21); matches with total variance ≤ 4 were considered as 

valid candidates. Values on top of bars represent their total abundance 

(TP30M) in anthers. (B) Heat maps depicting abundance of Lilium 24-nt 

phasiRNAs (in red) and miR2275-triggers (in blue) in developing 

anthers. Both heat-maps are clustered on similarity of expression. Pie 

charts represent the proportion of stage-specific abundances for 24-nt 

phasiRNAs (in red), miR2275 (in orange) and miR390 (in green) the 

trigger of tasiRNAs across different anther developmental stages that are 

included in this study. Box-whisker plot shows enrichment (log2) of 

Lilium 24-nt phasiRNAs abundance from all PHAS loci in the meiotic 

anther compared to the vegetative sample (leaf). 
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What do miR2118 and miR2275 target in Lilium and daylily? We identified 

6,277 and 392 24-PHAS transcripts, and 158 and six 21-PHAS transcripts in Lilium 

and daylily, respectively. The extraordinarily high number of 24-PHAS transcripts in 

Lilium matches the expanded, 18-member miR2275 family. The low numbers of 21-

PHAS transcripts might reflect a sampling bias against pre-meiotic stages. 

Nonetheless, in Lilium, 21-nt phasiRNAs peaked in 5 mm anthers, and we infer that 

Lilium has an ~16-fold smaller 21-PHAS repertoire compared to the 24-PHAS loci - 

the opposite ratio relative to maize and rice (Zhai et al. 2015; Fei et al. 2016). As in 

the grasses, the precursors appeared to be mainly non-coding, and enriched in pre-

meiotic and meiotic anther stages respectively (Figure 4.11B and 4.12), with the 

exception of eight 21-PHAS transcripts from Lilium in the post-meiotic stages (8 to 10 

mm) with significant coding potential. We also identified 25 24-PHAS transcripts in 

developing daylily pistils that largely overlapped the anther 24-PHAS repertoire and 

were mostly low abundance.  
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Figure 4.12: Daylily 24-nt phasiRNAs and miR2275 are abundant in meiotic-stage 

anthers. Heat maps depicting abundance of daylily 24-nt phasiRNAs (in 

red) and the miR2275 trigger family (in blue) in developing anther. Both 

heat maps are clustered on similarity of expression. Pie charts represent 

the proportion of stage-specific abundances for 24-nt phasiRNAs (in red), 

miR2275 (in orange) and and miR390 (the trigger of TAS3 tasiRNAs, in 

green) across different anther developmental stages that are included in 

this study. The box-whisker plot shows the enrichment (log2) of daylily 

24-nt phasiRNA abundance from all PHAS loci in the meiotic anther 

compared to the vegetative sample (leaf). 
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Figure 4.13: Distribution of sRNAs in hairpin PHAS (hp-PHAS) and inferred 

inverted-repeat (IR-PHAS) precursor transcripts. (A) Summed sRNA 

abundances from 5’ and 3’ arms of 50 hp-PHAS transcripts show a clear 

24-nt phasing with a 2-nt overhang. Representative hp-PHAS with 

foldback score > 500, arm length > 384 (8 or more phases) were used to 

generate this distribution plot. (B) Scatterplot of sRNA abundances from 

5’ and 3’ arm of inferred IR-related PHAS-transcripts (n= 1,477) show a 

strong 24-nt phasing pattern with a 2-nt overhang between the paired 

arms. 

Knowing that Asparagus produces many 24-nt phasiRNAs from IRs, we next 

examined IR PHAS precursors in daylily and Lilium, looking particularly for the 

characteristic (of Dicer processing) 2-nt 3’ overhang of phasiRNAs from different 
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arms of the IR. We found at least 131 24-PHAS transcripts with strong propensity to 

form a long foldback (≥ 271 bp) (referred to as foldback-PHAS hereafter) with high 

complementarity (≥ 99%), yielding sRNAs with a 2-nt 3’ overhang (Figure 4.13A 

and 4.14). If the precursors are rapidly processed, full-length mRNAs may be rare in 

our data (like category III and IV RNAs, above), obfuscating the detection of 

intramolecular secondary structures. To account for this possibility, we 

computationally inferred pairs of PHAS transcripts that forms a stem-loop structure 

when docked in correct order, and exhibit a 2-nt overhang of overlapped phasiRNAs 

from different arms (see methods). A total of 2,888 (46.6%) and 87 (22.2%) of 24-

PHAS transcripts from Lilium and daylily, respectively, matched these criteria i.e. 

displayed characteristic matching IR-type PHAS from Asparagus (Figure 4.13B). 

Collapsing the entire set of precursors based on sequence similarity and degree of 

overlap, and comparing the final tally to maize, Lilium displays a substantially larger 

(>25-fold) set of meiotic 24-PHAS precursors (n=3,394), with the Lilium 24-nt 

phasiRNAs accounting for more than 55% of total 24-nt sRNAs at their peak, in 

developing anthers. We again used sRNA fluorescent in situ hybridization to examine 

their spatial distribution in anther cells. Both types of precursors (IR-type and 

foldback) and their 24-nt phasiRNAs localized in tapetal and archesporial cells, with 

24-nt phasiRNAs enriched at meiosis (Figure 4.15). 
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Figure 4.14: Secondary structure and sRNAs for three representative hairpin 

(hp-) PHAS precursors from Lilium. Precursors display consistent 

production of 24-nt long siRNAs from both arms, at 24-nt intervals, a 

processive signature of DCL5 activity. Scatter-plot depicts sRNA 

distribution on PHAS precursor transcripts, starting from the first 

detected 24-nt phasiRNAs. The abundance, on Y-axis, is shown in log2 

scale. Position of first and last phasiRNAs for 5’- and 3’-arm along with 

the total phases and arm lengths are described in header of each scatter 

plot. The colors and size, in scatter plot, represent sRNA size class and 

abundance respectively. 

 

Figure 4.15: Localization of 24-nt phasiRNA components in premeiotic (~4mm) 

and meiotic (~5 mm) anthers of Lilium. Small RNA in situ 

hybridizations in pre-meiotic and meiotic anthers of Lilium, using probes 

for miR2275, meiotic phasiRNAs from IR locus 24-PHAS-5505 and hp-

PHAS-5843. These phasiRNAs were not detected in pre-meiotic stages. 

Meiotic anthers were used for these in situ hybridizations. 24-nt phased 

siRNAs were not detected at pre-meiotic stage. 

An investigation of the PHAS precursors from daylily and Lilium provided 

insights into the processing and miRNA triggers. For these precursors with no intrinsic 

foldback potential, we predicted miR2118 and miR2275 target sites using revFerno 

(component of PHASIS suite, see methods), and then validated the triggers using 
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sPARTA (Kakrana et al. 2014). Through this analysis, we could identify triggers for 

1,098 (32.3%) and 29 (11.8%) of 24-PHAS precursors in Lilium and daylily, 

respectively, and for 22 (23.9%) of 21-PHAS precursors in Lilium. The miRNA 

triggers for seven of the 22 Lilium 21-PHAS transcripts were, unexpectedly, miR2275, 

reminiscent of the unusual miR2275-triggered 22-PHAS transcripts in Asparagus, all 

of which (from both species) peaked in abundance at pre-meiotic stages. In these 21-

PHAS precursors, miR2275 target site occurred between 56 and 522 nt inside of the 

transcript 5’ end, indicating that at least a few of these were captured unprocessed and 

likely lack the anticipated miR2118 target site. The predicted miR2275 cleavage sites 

were ‘in phase’ with the first phasiRNA, and had reasonable complementarity (score 

of 1.5 to 4.5). Perhaps the DCL4 vs DCL5 specificity of 21- vs 24-nt phasiRNA 

processing depends on distinct spatiotemporal boundaries of precursor expression, and 

not on recruitment by miR2118 or miR2275. 

We examined IR 24-PHAS precursors with 5’ miR2275 target sites; these were 

puzzling as one role of miR2275 targeting is to recruit RDR6, unnecessary for IR 

processing, and another role is to mark the phasing of sRNAs. As in Asparagus, a 

large number of such transcripts in both Lilium and daylily (530 or 35.8% of IR-type 

and 32 or 27.5% of foldback type in Lilium; and 9 or 18.7% in daylily), had miR2275 

trigger sites, typically located +45 to -18 nt from the ssRNA-dsRNA junction. We 

manually examined a subset of IR precursors (einverted score ≥ 600), these lacked 

sRNAs upstream of the miR2275 target site, consistent with the functionality of the 

site. Precursors with the target site on the stem showed sRNA variability (18- to 23-nt) 

of the first phasiRNA cycle, especially on the 3’ arm, lacking dominant 24-nt 

phasiRNAs (Figure 4.16A, B and 4.17). These siRNAs were largely absent from 
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precursors with miR2275 sites overlapping the dsRNA-ssRNA junction (Figure 

4.16C), as were siRNAs upstream of the trigger site on the paired 5’ and 3’ arms. 

These observations suggest that 5’ and 3’ unpaired (ssRNA) ends are removed, either 

together – perhaps in absence of miRNA trigger like pri-miRNA processing – or 

sequentially, with the 5’ arm first removed via miR2275-directed cleavage, followed 

by trimming of the 3’ arm by an unknown mechanism, consequently releasing the 

stem-loop structure for subsequent processing by DCL5. Perhaps trimming could 

occur as with metazoan miRNA precursors, i.e. recognition of the ssRNA-dsRNA 

junction (J. Han et al. 2006; Kim, Han, and Siomi 2009), or as with piRNAs, in which 

a 3'-5' exonuclease trims excessive nucleotides (Izumi et al. 2016; Tang et al. 2016). 
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Figure 4.16: Processing of miR2275-triggered hairpin PHAS precursors in Lilium. 

(A,B) Foldbacks of two representative miR2275 triggered hp-PHAS 

precursor transcripts in Lilium, 24-PHAS-5 and 24-PHAS-1681. (C) 

Precursor for hp-PHAS-2398 with no unpaired 3’-arm. (D) Precursor for 

hp-PHAS-4395 putatively processed from loop-to-base. The cuts leading 

to release of 24-nt phased siRNAs are shown as orange arrows while 

those that generate siRNAs of other sizes are indicated as grey arrows. 

Counts represents cut frequencies computed from sRNA data. Red 

arrows indicate 5-termini of sRNAs of different sizes at non-triggered 

end along with their prevalence as indicated by sRNA data. In (A) and 

(B) the miR2275 cleavage site is 49 and 24 nucleotides inside the dsRNA 

region, while in (C) the cleavage site is 126 nucleotides from the 5‘-

terminus of the precursor. 
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Figure 4.17: Ratio of 24-nt phasiRNAs abundances in triggered foldback PHAS 

precursor transcripts. Phased siRNAs (24-nt) (orange) and other small 

RNA size classes (grey) in miR2275 triggered foldback PHAS precursor 

transcripts. P1 to P8 represents first eight phasiRNA sites on precursor. 

Foldback precursors with miR2275 trigger site predicted precisely at P1, 

i.e. phase index = 0 (n=18), were used as a representative set. P1 is 

critical in this analysis, and any precursor with trigger site predicted 1 or 

2 (24-nt) phases to left or right of P1 is most likely missing the first phase 

cycle, and therefore cannot be used in this particular analysis.. 

DCL1 functions to cut unpaired ends of miRNA foldback precursors (Cuperus, 

Fahlgren, and Carrington 2011; Bologna et al. 2013), and with this in mind, we 

analyzed foldback PHAS precursors for their inferred direction of processing. Based 

on phasiRNA abundances, we identified a representative set (n=10) displaying 

processing signatures consistent with loop-to-base processing (see supplemental 

methods). These precursors lacked miR2275 target site and showed no major 

raggedness in processing of the first loop-side phasiRNA (Figure 4.16D), compared to 

foldback-precursors likely processed base-to-loop from a miR2275 site (“miR2275-to-

loop”), consistent with the idea that ragged processing could be due to inconsistent 
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trimming of unpaired ends. This leaves unaddressed the enzyme, which makes this 

first, loop-side cut in processing of these reproductive 24-PHAS foldback-precursors. 

It could be any one of the five monocot Dicers, with subsequent processing 

presumably handed off to the DCL5. 

Which Dicer might make this first cut in an IR transcript?  We used public 

Arabidopsis sRNA data (Lee et al. 2012; D.-H. Jeong et al. 2013; Shaofang Li et al. 

2015), and focused on two known IR loci, IR71 and IR2039 (Henderson et al. 2006). 

A clear distribution of highly abundant sRNAs occurred at both loci, consistent with 

intramolecular folding and subsequent dicing. In wild-type, the IR-transcripts were 

mainly processed into 21-, 22- and 24-nt sRNA species (Figure 4.18A), products of 

DCL4, DCL2 and DCL3 respectively. In dcl3 and dcl2/3/4 mutants, 24-nt sRNAs 

were largely absent, with both backgrounds displaying slight accumulation of 21-nt 

sRNAs (Figure 4.18B), suggesting processing of these foldbacks by DCL4 and DCL1 

in the absence of DCL3 and DCL2.  The 24-nt sRNAs were not impacted in nrpe1, 

nrpd1 and rdr2 indicating their independence of the RdDM pathway (Figure 4.18B). 

dcl1 showed a strong reduction (3- to 1400-fold) in levels of all sRNA size classes 

(Figure 4.18B), suggesting a primary role of DCL1 in facilitating the production of 

siRNAs from these IR loci. This reduced processing of fold-backs in dcl1 could be 

related to its activity in cleaving the pri-miRNA stem-loops to release mature miRNA 

duplexes. These observations suggest hierarchical processing of at least some IR loci 

in Arabidopsis, first by DCL1 and subsequently by DCL2, DCL3 and DCL4. We 

conclude that DCL1 might similarly initiate some DCL5-processed IR transcripts that 

yield 24-nt reproductive phasiRNAs. 
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Figure 4.18: Protein partners involved in processing of two endogenous inverted-

repeats in Arabidopsis. (A) Pie-charts represent sRNAs of 21- to 24-nt 

sizes derived from IR-71 and IR-2039 endogenous IR loci. Counts 

represents the normalized abundance in thousands. (B) Heat maps 

representing differential abundance of 21-, 22- 23- and 24-nt sRNAs in 

Arabidopsis dcl3, dcl2/3/4, dcl1, nrpd1, rdr6 and nrpe1 mutants against 

wild-type. 

4.2.6 Protein-partners of the 24-nt phasiRNA pathway:  grass AGO proteins 

are not entirely representative of monocots 

We investigated the Argonaute family members, binding partners of small 

RNAs, identifying 12, nine and eight AGO proteins for Asparagus, daylily and Lilium 
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respectively (Figure 4.19). AGO candidates known for roles in reproductive 

phasiRNA functions are AGO5, a homologue of rice MEL1 which selectively recruits 

21-nt phasiRNAs (Komiya et al. 2014), and AGO1d, AGO2b, and AGO18 for 24-nt 

phasiRNAs based on transcriptome profiling and spatial localization in maize and rice 

(Zhai et al. 2015; Fei et al. 2016). Among these, AGO5 members were present and 

consistently enriched in pre-meiotic or meiotic anthers of Asparagus, Lilium and 

daylily, matching earlier described reproductive enriched expression. AGO5 members 

are also present in the Z. marina and A. trichopoda genomes. In contrast, AGO18 was 

missing from the genome and transcriptome assemblies of all three species plus Z. 

marina and A. trichopoda, consistent with its possible emergence in grasses (H. Zhang 

et al. 2015). Strikingly, we found AGO4 which shares 24 nt spectra with AGO18 and 

predominantly recruits 1A-siRNAs (H. Wang et al. 2011; A. Mallory and Vaucheret 

2010), which is the enriched class in 24-nt phasiRNAs, to be robustly expressed and 

enriched at pre-meiotic and meiotic anther compared to vegetative tissues (Figure 

4.20A). Reproductive enriched AGO1 family members were also identified in study, 

consistent with reports of their potential association with 24-nt phasiRNAs (Fei et al. 

2016), likely due to the diversity in 5’-nucleotide of 24-nt phasiRNAs, suggesting 

possibility of recruitment of multiple AGO members downstream of 24-nt phasiRNA 

production. 
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Figure 4.19: Dicer-like (DCL) and Argonaute gene family members in Asparagus, 

daylily and Lilium. (A) Phylogenetic tree of AGO members from 

Asparagus (Ao), Daylily (Hl) and Lilium (La) identified in this study 

along with four representative species – Arabidopsis (At), rice (Os), 

maize (Zm) and soybean (Gm). AGO9 was renamed to AGO4 family 

because these are closely related in many plants.  (B) DCL phylogeny 

with members from Asparagus (Ao), daylily (Hl) and Lilium (La) 

identified in this study along with four representative species – 

Arabidopsis (At), rice (Os), maize (Zm) and soybean (Gm). (C) Bar plots 

representing the relative expression of DCL5 in Asparagus pre-meiotic & 

meiotic anthers, and leaves, as measured by quantitative, real-time PCR. 
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Figure 4.20: Dicer-like (DCL) gene family and expression in Asparagus, daylily 

and Lilium. (A) Heat-map representing expression profile of Asparagus, 

daylily and Lilium AGO members. Phylogeny of AGO members is 

provided in Figure S13. (B) Heat map of DCL abundances for three 

monocots, that were reliably detected (>1 FPKM) in one of three anther 

stages or the vegetative material. Phylogeny of DCL members is 

provided in Figure 4.19. (C) FISH localizing DCL5 transcripts in the 

cytoplasmic area of the tapetum and archesporial cells in meiotic-stage 

anthers from Lilium. AF647 (green) indicates the DCL5 mRNA 

localization. DAPI (pink) shows the stained nucleus. Scale bar = 20 μm 

for all images. 
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Finally, we examined Dicer-like (DCL) genes. We identified DCL4 and DCL5 

in all three species, with an additional DCL4 in Asparagus (Figure 4.19B). The latter, 

showed higher abundance in anthers compared to leaves but lacked a 5’-helicase 

domain. DCL5 abundance patterns varied among the three species: daylily DCL5 

displayed reproductive-specific expression peaking at meiosis; Lilium DCL5 

abundance peaked at a pre-meiotic stage, although measured with limited meiotic 

stages, and via FISH, co-localized with the 24-PHAS precursors and phasiRNAs in 

tapetal and archesporial cells (Figure 4.15 and 4.20C), matching the patterns 

described in maize (Zhai et al. 2015). We could not detect Asparagus DCL5 using in 

situ localization experiments, and it was absent from the high-quality full-length 

transcripts from SMRT-sequencing, presumably due to its low expression levels in 

Asparagus (Figure 4.20B). Given this low abundance, we validated DCL5 presence in 

Asparagus using quantitative RT-PCR (Figure 4.19C). Surprisingly, its expression in 

Asparagus, as indicated by RNA-seq. and RT-qPCR, was not restricted to anthers, and 

it accumulated to similar levels in the vegetative (leaf) samples as in reproductive 

tissues. 

4.3 Chapter summary 

In this chapter (and with collaborators), I 

 generated extensive sRNA data (n=38 sRNA libraries) for asparagus, a 

non-grass monocot whose genome has been recently sequenced, 

corresponding to 12 different tissues  

 identified 105 miRNAs from 78 distinct families, and performed a 

comparison with miRNA repertoire from all other monocots and eudicots 

species to identify the loss, gain or expansion of miRNA families in 

asparagus, which diverged 114 and 160 MYA from most well 

characterized monocots and dicots, respectively 
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 discovered vegetative- and reproductive-enriched copies for 21-PHAS 

trigger miR2118 and reproductive-specific copies of 24-PHAS trigger 

miR2275 members 

 discovered 21-nt phased siRNA generating loci in male-germline tissue and 

24-nt phasiRNAs in both male and female-germline tissues, using PHASIS 

suite 

 probed the secondary structure of phasiRNA generating loci along with 

miRNA and hc-siRNA loci as control through double-stranded RNA seq 

 established stage-size correlation for anthers from Lilium and daylily, two 

new species based on the morphology of archesporial (AR) and tapetal 

cells of anthers 

 generated deep short-read RNA-seq and single molecule real time seq data 

from sequential cohorts of staged anthers plus dayily pistil, and produced 

‘hybrid’ assembly for both to compensate for absence of sequenced 

genome 

 discovered 21- and 24-PHAS trigger miRNA families, precursors and 

phasiRNAs from Lilium and daylily and established their temporal 

expression patterns across developing anther 

 identified the inverted-repeat related population of 24-PHAS precursors 

and inferred their proportion by considering the fact that a portion of 

precursors are processed, therefore cannot be assembled as complete 

transcript  

 probed the spatial localization of IR-related phasiRNAs, miR2275 using in-

situ hybridizations 

 studied the processing mechanism of these IR-related precursors, because 

presence of trigger site and the foldback tendency is redundant to the 

processing of precursors to generate phasiRNAs 

 probed sRNA data from loss-of-mutant lines of key protein factor involved 

in secondary siRNAs and hc-siRNA pathways to study their roles in 

processing of inverted-repeat transcripts 

 identified key protein partners of phasiRNA pathways – DCL, RDR and 

AGO family members in Asparagus, Lilium and daylily 
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 generated phylogenies of these newly identified members with other well-

studied monocots species, and established the temporal expression patterns 

in all three species. 

 probed the DCL5 expression levels and spatial localization using qRT-PCR 

and fluorescent in situ hybridizations, respectively. 

 I observed that 

 miR2118 family members display a dichotomy in tissue-specificity and 

temporal expression, correlated to loci of origin, and triggers both pNLs 

(n=12) and pre-meiotic PHAS (n=3) precursors in Asparagus. 

 miR2274 likely targets, a few, “non-phased” genic and intergenic 

transcripts, unlike grasses where it triggers meiotic phasiRNAs 

 24-PHAS loci has statistically significant overlap with inverted-repeats 

(IRs), >64 fold compared to random chance and the size-distribution of 

sRNAs at PHAS loci matches to those of canonical PHAS loci reported in 

maize and rice. 

 24-nt phased siRNAs in Asparagus have spatio- and temporal- 

accumulation pattern as canonical phasiRNAs 

 24-PHAS loci display statistically significant base-pairing; and the 

comparison of 24-PHAS with het-siRNA loci, shows distinct differences; 

with PHAS loci displaying intramolecular secondary structure while latter 

shows intermolecular secondary structures 

 24-PHAS loci identified in female germline tissues has a complete overlap 

with those identified in male germline i.e. no loci specific to female 

germline identified in Asparagus 

 Lilium has a 5x and 25x expansion in miR2275 members and PHAS 

repertoire, respectively 

 the proportion of 24-PHAS precursors forming a foldback is very little 

compared to the complete repertoire 

 both type of precursors (fold-back and inferred IR-type), their 

corresponding phasiRNAs and miR2275 localizes in tapetal and AR cells 

of Lilium anther, matching to observation in Asparagus and grasses 
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 miR2275 triggered foldback precursors, which are unique to Lilium and 

Maize, show sRNA variability (18- to 23-nt) in first phasiRNA cycle, 

especially on the 3’ arm, lacking dominant 24-nt phasiRNAs 

 DCL1 loss-of-function mutant, dcl1 in A. thaliana Col0 background, show 

a strong reduction (3- to 1400-fold) in levels of all sRNA size classes 

generated from two well-characterized IRs 

 protein partners of pre-meiotic phasiRNA pathway – DCL4, RDR6 and 

AGO5 are well conserved across all species, matching canonical pathway 

in grasses 

 protein partners of mei-phasiRNA pathway – DCL5 and RDR6 are 

conserved, however, AGO18 is missing from all species included in this 

study, plus Z. Marina (another monocot that diverged even earlier) 

 DCL5 is co-localizes with IR-related phased siRNAs components in 

Asparagus 

 AGO1 and AGO4 members, likely homologs of rice AGO1d and maize 

AGO4d, were consistently enriched in meiotic anther of Asparagus, Lilium 

and Daylily 

From this, I conclude that 

 contrary to earlier beliefs, both pre-meiotic and meiotic phasiRNA 

pathways are widely prevalent beyond grasses, which pushes their origins 

into the monocots 

 presence of meiotic phasiRNA pathways in pistils, the female-reproductive 

organ, identified in this study suggests wider roles for these pathways, 

which might not be restricted to male-germline 

 elaborate pathogen defense regulatory network of NBS-LRR genes 

prevailed in earlier monocots unlike the grasses, displaying an increasingly 

specialized role of miR2118 in Asparagales 

 specialized triggers for both pre-meiotic and meiotic phasiRNA pathways 

emerged before the divergence of Lilium and Asparagus from MRCA of 

Maize, respectively 

 factors for pre-meiotic phasiRNA pathways are well conserved across all 

the species included in this study, supporting their continuing functional 

association across monocots 
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 characterization of maize AGO4d or its homologs, which might serve as 

effector molecule for meiotic phasiRNA in non-grass monocots, holds 

significant potential to provide crucial insights into the functions of meiotic 

phasiRNAs 

 absence of IR-related phasiRNA loci in other species, the parallels in 

spatial localization and temporal dynamics are not sufficient to establish 

these as functional analogues to meiotic phasiRNAs 

 discovery of phasiRNA pathways, in their canonical forms, beyond the 

grasses along with the presence of meiotic phasiRNAs in female 

reproductive tissues suggests a broader role of pre-meiotic and meiotic 

phasiRNA pathways in germline development 

 phasiRNA pathways, especially mei-phasiRNAs, are not dependent upon 

grass-specific components, therefore, their existence even beyond the 

monocots. 
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DISCUSSION AND CONCLUSION 

High-throughput sequencing (HTS) has revolutionized the field of life sciences 

research. Multiple variations of HTS exists today, and these are being continually 

upgraded to improve the resolution, reduce cost and to expand the applications. The 

capacity to sequence hundreds to millions of miRNAs and siRNAs in a single library 

has substantially advanced the field of small RNA biology. Ever-decreasing 

sequencing costs further expanded the scale of experiments. Since each sequencing 

library that we generate can be reused to investigate a related, connected or an entirely 

different question, this massive and continual pile-up of sequencing data necessitate 

the development of i) new scalable algorithms that can efficiently mine large volume 

of data and ii) new approaches to leverage from expanding applications of sequencing 

technology. This tectonic shift towards data-based research has brought the inherently 

different fields of computational and wet-lab research together, making both 

inseparable and complementing each other. In this dissertation, I have aimed to 

maintain a balance between both computational and experimental aspects of plant 

research. The focal point of this dissertation is to investigate the origins and biogenesis 

of germline-associated class of phased secondary siRNA (phasiRNA) pathways. 

However, to research this topic, I required a new set of computational tools, as the 

available tools were insufficient to support my studies. 

Chapter 5 
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5.1 Advanced algorithm for miRNA target prediction and new software for 

leveraging experimental data for targets discovery 

I began by addressing significant bioinformatic gaps in the discovery of 

miRNA targets. Methods that existed before I started my work in this field were 

developed for smaller genomes like A. thaliana (a model eudicot) and focused 

exclusively on annotated portion of the genome. Since annotations for most plant 

genomes are incomplete with target mRNAs remain to be found in intergenic, 

unannotated regions, these tools limited the scope of the study to a small and usually 

incomplete “annotated” portion of the genome. These existing tools also suffered from 

an inductive bias, which is introduced by pre-selecting the potential targets based on 

the degree of sequence complementarity and, especially in the seed regions of 

miRNAs, rather than giving more weight to the experimental data for finding miRNA 

targets. Although, such approaches reduce the search space and accelerate the 

analysis, but most likely miss the actual targets that have comparatively lower 

sequence based complementarity with miRNAs. Another flaw that existed in the 

scoring system of these tools, an extension of issue related to sequence-based 

complementarity scores is that targets for large miRNAs families that range from tens 

to hundreds will get low confidence scores due to the presence of large number of 

binding sites in an (annotated) genome. In addition to these shortcomings, the 

diminishing cost of sequencing had led to sequencing of more and more genomes 

=some even >100 times bigger than A. thaliana. These larger genomes make the 

process of target discovery even more challenging and if factor in the nature of 

miRNA-target interaction, which includes bulges and mismatches, the genome-level 

discovery of miRNA targets is a virtually impossible by tools that existed at the 

beginning of my dissertation. 
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I realized that these issues could only be addressed by developing a new tool, 

with a new scoring system, target scan algorithm, and capability to leverage raw 

computing power. So, I developed “sPARTA”, a powerful tool for plant miRNA target 

prediction and PARE-based validation. sPARTA can also search for targets in 

unannotated genomic regions, which is useful to discover novel regulatory modules, 

completely independent of genome annotations. Earlier tools like PAREsnip use seed-

region complementarity rules to accelerate the analysis, whereas sPARTA introduced a 

novel ‘seed-free’ mode is based on empirical observations regarding miRNA-target 

interactions, and it identifies targets with weak seed-region complementarities or 

mismatches at canonical positions. To fasten the analysis, sPARTA implements true 

parallelization reducing runtime from hours or days to minutes and seconds. These 

significantly reduced runtimes and sPARTA’s capability to efficiently handle large 

genomes, with hundreds to thousands of sRNA/miRNAs and as many as PARE 

libraries facilitates the data-intensive, genome-level scans of miRNA targets without 

comprising on sensitivity. 

sPARTA also forms the core of comPARE, a web resource that allows the 

discovery, visualization and in-depth exploration of genome-wide miRNA-target 

interactions in the heterogeneous yet highly integrative environment. comPARE was 

developed to serve as a repository of our validated miRNA interactions, collating 

small RNA and PARE datasets along with their genomic context. In essence, this 

study presents three novel tools: miRferno for target prediction, sPARTA for PARE-

based target validation and comPARE for visualization, exploration and comparative 

analysis of miRNAs targets. These three tools empowered me to effectively exploit 
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advanced computing power, discover novel regulatory modules and deliver datasets 

containing high-quality, well-supported predictions of miRNA-target interactions. 

5.2 New suite for discovery and in-depth characterization of phased siRNAs  

Next, I developed a new tool set for discovery and in-depth characterization of 

phased siRNA loci (or genes). The reason I had to undertake this work was because 

integrated tools for discovery and computational characterization of phasiRNAs did 

not existed at the time I began my work. Existing options were not only limited in 

number and function but also incompatible or inefficient in handling large volume of 

small RNA-seq data. Importantly, these existing tools for the de novo identification of 

PHAS genes (or loci) required an assembled genome for their discovery and additional 

experimental data (PARE or degradome libraries) to further identify their miRNA 

triggers. These algorithmic limitations restricted the study of phasiRNA pathways to 

species that have assembled genome, therefore did not support my aim to discover and 

trace the origins of male germline pathways beyond the well-studied species like 

maize and rice. So, I decided to develop an advanced computational suite, which we 

call “PHASIS”. 

Loci generating phased siRNAs (21- and 24-nt) are widely prevalent across 

land plants (Allen et al. 2005; Shivaprasad et al. 2012; Johnson et al. 2009; Zhai et al. 

2011; Arikit et al. 2014; R. Xia, Xu, et al. 2015; Fei et al. 2016), varying in numbers 

per genome from tens to thousands, displaying diverse spatial and temporal expression 

patterns, and participating in an array of different functions (Allen et al. 2005; 

Shivaprasad et al. 2012; Zhai et al. 2011, 2015; Dukowic-Schulze et al. 2016). 

Recently, piRNAs in Drosophila too were reported to be phased, generating ‘trailer’ 

piRNAs in 27-nt intervals after cleavage by secondary siRNA and Zucchini-dependent 
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processing of cleaved transcript (Mohn, Handler, and Brennecke 2015; B. W. Han et 

al. 2015). Given the wide prevalence of phasiRNAs and the rate of genome 

sequencing, it is likely that they will be better characterized and studied in the coming 

years.  

The PHASIS suite that I developed provides an integrated solution for the 

large-scale survey of tens to hundreds of sRNA libraries for the following 

applications: a) de novo discovery of PHAS loci and precursor transcripts, b) a 

summarization of PHAS loci or precursor transcripts (referred to as PHAS loci 

hereafter) from specific groups of sRNA libraries, c) a comparison of PHAS 

summaries between groups corresponding to samples from different stages, tissues and 

treatments, d) quantification and annotations of PHAS loci, and e) discovery of their 

miRNA triggers. PHASIS generates easily parsed output files for downstream 

bioinformatics analysis, formatted result files for immediate consumption and 

organized ancillary data to facilitate optimizations like a re-summarization to exclude 

or include libraries. I benchmarked PHASIS on five different plant species and 

compared its performance with its direct competitor, and further compared PHAS 

predictions with a human curated set. The comparative benchmarking with other tool, 

showed that PHASIS is superior to existing alternative in accuracy, yield and speed of 

predictions. It captured more than 86% of manually-curated set of 21- and 24-PHAS 

loci in default mode, i.e. without providing any additional setting to increase or 

decrease the quality of prediction, as it would be used by non-experts.  

PHASIS facilitates the discovery of phasiRNAs and their precursors, and the 

identification of their triggers by eliminating the requirement of a genome assembly 

and experimental PARE/degradome data. It offers flexibility to users to tailor analyses 
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for their own goals and it integrates an array for functions in one package. In essence, 

the PHASIS suite developed in this dissertation is the “first” suite for the in-depth 

characterization of phasiRNAs, their loci or precursors and discovery of triggers; it is 

sensitive, exceedingly scalable and exceptionally fast software. Together, PHASIS and 

sPARTA provided us vital tools to attempt or investigation of phasiRNA pathways.  

5.3 Insights onto the evolution of phasiRNA pathways 

Phased siRNA pathways, associated with the male-germline, were first 

described in rice (Johnson et al. 2009). Since their discovery, large scale sRNA 

profiling along with genetics and biochemical studies from rice and maize have 

elucidated their precise temporal expression, spatial niches and pathway-specific 

factors (Song, Wang, et al. 2012; Song, Li, et al. 2012; Komiya et al. 2014; Zhai et al. 

2015; Fei, Xia, and Meyers 2013; Dukowic-Schulze et al. 2016). However, their 

evolutionary origins and penetration into other non-grass clades are yet to 

characterized, primarily because of their restricted presence in male reproductive 

tissues, narrow window of accumulation of and lack of information on the precise 

stages at which phasiRNAs peak or appear. In this investigation and together with my 

laboratory peers, we first established the size-stage correlations using a combination of 

microscopy imaging techniques and then used precisely staged anthers from 

asparagus, daylily (from order Asparagales) and Lilium, which diverged 120 and 121 

MYA from MRCA of grasses respectively (Chase and Reveal 2009), to reveal that 

both pre-meiotic and meiotic phasiRNA pathways are widely prevalent beyond 

grasses. This discovery of phasiRNAs beyond grasses pushes their origins into the 

monocots, at least 70 million years before earlier estimates. In addition, I found that 

meiotic phasiRNAs are present in pistils, the female-reproductive organ, which 
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suggests the wider roles for these pathways, and these might not be restricted to male-

germline contrary to earlier reports. Our discovery is consistent with the earlier report 

from rice MEL1 mutant, which binds with the 21-nt phasiRNAs, and its knockdown 

impacts female germline development. However, the precise stages and cells in which 

24-nt phasiRNAs peak in abundance in female organs will require additional 

experimentation. Nonetheless, the overlap of 24-nt PHAS repertoire with anthers, 

along with presence of abundant pistil-enriched 24-PHAS loci demonstrates that 24-nt 

phasiRNAs are not restricted to male organs. 

This presence of phasiRNA pathways outside the grasses also provided novel 

insights into the emergence and primitive roles of miRNA triggers, miR2118 and 

miR2275. The trigger for the pre-meiotic phasiRNA pathway showed a dramatic 

functional divergence among eudicots, from regulating the NBS-LRR network to 

targeting non-coding PHAS precursors in pre-meiotic anthers.  The timing of the 

switch from the constitutively expressed to a specialized pre-meiotic phasiRNA 

trigger is an open question. Similarly, the origin of the miR2275 family, which was 

previously reported only in grasses and specifically targets reproductive-enriched 

PHAS precursors in meiotic-stage anthers, is yet unknown. The dichotomy in tissue-

specificity and temporal dynamics, correlating with the clustered precursor loci in the 

asparagus genome, and the presence of miR2275 members perpetuating grass-like 

functions in Lilium showed that specialized triggers for both pre-meiotic and meiotic 

phasiRNA pathways emerged before the divergence of Lilium and asparagus from 

MRCA of maize, respectively. The co-occurrence of temporally distinct reproductive- 

and vegetative miR2118 members targeting both 21-PHAS precursors and NBS-LRRs 

demonstrates that the elaborate pathogen defense regulatory network of NBS-LRR 
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genes was prevalent in earlier monocots than the grasses, perhaps demonstrating an 

increasingly specialized role of miR2118 in the Asparagales. In contrast, miR2275 

display a non-canonical role, specifically in Asparagus, triggering 22-nt instead of 24-

nt phasiRNAs which co-localizes with miR2275 in pre-meiotic stages and diffuses to 

all cell layers of meiotic anther. These 22-nt phasiRNAs lack cleaved targets, and 

show no role in reinforcing meiotic phasiRNA pathways, leaving a gap in our 

understanding of their roles. 

5.4 Status of phasiRNA components and variation of meiotic phasiRNA 

pathways in monocots 

I found that factors for pre-meiotic phasiRNA pathways are well conserved 

across all the species included in this study, spanning 128 million years of evolution 

from Z. marina to maize, thereby supporting their continuing functional association 

across monocots. However, AGO18 the proposed effector molecule for meiotic 

phasiRNAs was absent from Asparagales, Lilium, and Zostera. Instead, I found 

members of AGO1 and AGO4, likely homologs of rice AGO1d and maize AGO4d 

(also referred to as AGO104 and AGO9), consistently enriched in meiotic anther 

across all three species – Asparagus, Lilium and daylily. Both AGO1d and AGO4d, 

were recently proposed by two independent studies in rice (Fei et al. 2016) and maize 

(Dukowic-Schulze et al. 2016) respectively to load meiotic phasiRNAs, in addition to 

the AGO18 proposed earlier (Zhai et al. 2015). Although these associations still need 

to be validated, the diversity of 5’-nucleotide along with results from an earlier study 

where ago18 loss of function mutant shows no obvious developmental defects (Wu et 

al. 2015) supports functional redundancy or co-operative roles of AGOs in phasiRNA 

pathways. Meiotic-enriched expression of AGO1 and AGO4 homologs in non-grass 
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monocots strongly support their candidacy as effector molecules for meiotic 

phasiRNAs. In addition, AGO4 shares the same spectrum of preference for the 24-nt 

size (H. Wang et al. 2011) and is phylogenetically close to AGO18 (phylogram not 

shown here). Although such phylogenetic relationships do not necessarily imply 

functional redundancy, given the importance of maize AGO4d in male and female 

meiosis (Singh et al. 2011), it is a promising candidate to act in meiotic phasiRNA 

pathways in the absence of an AGO18 member. Furthermore, maize AGO4d functions 

in heterochromatic CHH and CHG methylation (Singh et al. 2011). Its homolog in 

Arabidopsis, AtAGO9 is a key component of the RdDM pathway (Matzke and Mosher 

2014); meiotic phasiRNAs too were reported to play role in cis DNA methylation 

(Dukowic-Schulze et al. 2016). This functional overlap between AGO4d and meiotic 

phasiRNAs, although weak at this point but given its enrichment in meiotic anther 

which is consistent across non-grass monocots and phylogenetic closeness to AGO18 

cannot be ignored as a mere coincidence. Further characterization of maize AGO4d or 

its homologs in species included in this study holds significant potential to provide 

crucial insights into the functions of meiotic phasiRNAs. Nonetheless, data from this 

study demonstrates that meiotic phasiRNA pathway is independent of grass-specific 

components, therefore could even extend beyond the monocots. 

This study also revealed substantial variation in phasiRNA pathways compared 

to those described in grasses. Three forms of meiotic phasiRNAs emerge in this study 

– a) the canonical matching grasses, b) phased siRNAs derived from IRs (pird-

siRNAs), triggered by miR2275 and c) phased- (but not secondary) IR-derived 

sRNAs, lacking miR2275 trigger (pird-sRNAs). The pird-siRNAs were detected along 

with canonical phasiRNAs in maize and Lilium, and represent a very small fraction of 



 

162 

 

repertoire. Foldback-PHAS in Lilium, lacking miR2275 target site could also be pird-

siRNA transcripts with processed 5’-end. Considering this possibility, pird-sRNAs are 

identified only in Asparagus. Although, there are a number of 24-nt phased loci 

reported in maize that lacks miR2275 trigger site, but these are not associated with 

inverted repeats (Zhai et al. 2015). In the absence of pird-sRNA loci in other species, 

the parallels in spatial localization and temporal dynamics are not sufficient to 

establish these as functional analogs to meiotic phasiRNAs. The precise nature of 

signals (such as a sequence or structural motif) that guides the processing of pird-

sRNA precursors and mechanism through which these are shuttled to the cell layer 

needs to be determined in future research. Furthermore, genetic characterization of 

loci generating pird-sRNAs in Asparagus and loci generating canonical phasiRNAs in 

maize is required could provide an answer to these being functional analogs. 

5.5 Summary 

This dissertation provides a new set of computational methods and algorithms 

for the field of plant sRNA biology, allowing researchers to accelerate their work to 

catch up with the progress in sequencing technologies. The high-performance, feature-

rich and next-generation software developed here addresses critical bioinformatic gaps 

and significantly expands the capacity of plant researchers in mining small RNA 

sequencing data to characterize miRNA and secondary siRNA pathways. Both the 

PHASIS (Kakrana et al. 2017) suite and sPARTA (Kakrana et al. 2014) are open-

source, released under permissive free software license; they are hosted on GitHub 

with wiki pages, an issue reporting system and progress tracker, to ensure a long-term 

support to the community.  
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My research on phased siRNA pathways, described in this dissertation 

provides substantial new insights into their functional roles, evolution and mechanisms 

of biogenesis. Cells associated with the male germline, in rice and maize (grasses), 

produce massive amounts of reproductive-enriched phased siRNAs (21- and 24-nt). 

Since their first report in rice, parallels with mammalian PIWI-associated RNAs 

(piRNAs) have been consistently highlighted. Earlier reports have shown that these 

siRNAs are a general property of the grasses, specific to male germline and critical for 

reproductive success. My study reports their presence, in canonical forms, beyond the 

grasses, along with presence of meiotic phasiRNAs in female reproductive tissues, 

thereby indicating a broader role of pre-meiotic and meiotic phasiRNA pathways in 

germline development, which coupled with the observation that these pathways are 

not dependent upon grass-specific components proposes their existence even beyond 

the monocots. These novel insights on germline-associated phasiRNA pathways 

warrant a much deeper evolutionary and mechanistic investigation of phasiRNAs in a 

broader range of angiosperms and even eudicots.  
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