Engineering is a profession that couples mathematics and science with creativity and design to solve the current problems of our society. The profession demands high intellectual ability, and the most successful engineers are those who exhibit the leadership and drive needed to bring to fruition unique solutions to difficult technical problems.

The last twenty-five years have been filled with many technological advances. The space program has made space exploration nearly routine, and a satellite communication system connects the world through television. The computer is now a major item of commerce, and many homes have sophisticated personal computing systems. Bioengineering has advanced rapidly and shows promise of making readily available substances of great complexity and value, such as human insulin. Materials science has made important advances in developing high-performance products, particularly in the area of composite materials.

Engineers are problem solvers. Our society, particularly our economy, has become increasingly dependent on technological innovation. The solutions provided by engineers must be economically viable, technically sound, and socially responsible. The training engineers receive is, therefore, intense. It provides the skills required to be productive in research, development, planning, design, construction, manufacturing, management, teaching, and sales. The College of Engineering is a leader in many fields of research such as catalytic science and technology, composite materials, computer networking, environmental engineering, transportation engineering, coastal engineering, and energy conversion. The research activities of the College are incorporated quickly into its courses. Consequently, research and teaching are closely coupled activities.

OPPORTUNITIES FOR ENGINEERS

Engineering graduates have opportunities for employment involving a wide range of activities in industry, government, and private practice. An engineering education produces individuals with good analytical skills who are unafraid of quantitative arguments and who are highly organized and technically competent. Such persons are important members of society and are valued in all aspects of engineering and management. After establishing professional credentials, engineers often become the major decision makers in technology-based organizations.

The University’s engineering program provides an excellent preparation for graduate study. An increasingly
large fraction of engineering graduates continue their engineering education to the master’s or doctoral degree. Some students continue their studies in the allied fields of science or mathematics, and a few elect to pursue other professional programs such as business, law or medicine.

PREPARATION FOR THE STUDY OF ENGINEERING
A sound high school academic program in mathematics, science, computers, and English is essential preparation for engineering. Engineers use mathematics as a language to describe complex problems, and success in mathematics and science courses is a good indicator of proper preparation. Prospective engineering students should take the honors or advanced placement mathematics program in high school and seek to apply mathematics in their science courses. All engineering programs require students to be well grounded in chemistry and physics, and students considering chemical engineering or the environmental area of civil engineering should take advanced high school courses in the biological sciences. Engineers must be skilled in reading, composition, and exposition. Therefore, prospective engineering students should take English courses that stress critical reading and writing. Additionally, although a foreign language is not required for an engineering major, competence in a foreign language can be valuable in the practice of engineering.

ENGINEERING PROGRAMS
The College of Engineering offers instruction leading to the degrees of Bachelor of Chemical Engineering, Bachelor of Civil Engineering, Bachelor of Electrical Engineering, and Bachelor of Mechanical Engineering. These degree programs are accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology. The College has 74 full-time faculty members instructing approximately 1,100 undergraduates. Air Force ROTC is also a department in the College.

In addition to these four-year degree programs, five-year programs are offered jointly by each of the four engineering departments and the College of Arts and Science. These programs lead to a bachelor’s degree from the College of Arts and Science and a bachelor’s degree in the selected engineering field. Descriptions of the individual curricula are given in the Arts and Science-Engineering Curricula section of this catalog.

For those who wish to pursue studies beyond the bachelor’s degree, each of the four engineering departments as well as the interdepartmental Materials Science Program offer specialized instruction leading to a master’s degree and a Ph.D. degree. Advanced undergraduates may take certain graduate-level courses with the approval of their advisor and the course instructor.

A joint 5 1/2-year program offered by the College of Engineering and the College of Business and Economics leads to a baccalaureate degree in one of the four engineering majors and the Master of Business Administration degree. Admission to this joint program is by application to the Dean of Engineering during the third year of engineering study.

The Resources to Insure Successful Engineers (RISE) Program provides financial, academic, and social assistance to minority engineering students. The objective of the program is to increase the number of minority members in the engineering profession. The program begins with a pre-freshman Summer Academy and continues to graduation. Interested individuals should contact the Office of the Dean of Engineering or the University Admissions Office.

ENGINEERING COURSE ORGANIZATION
The curriculum of each engineering department consists of four basic parts: (1) mathematics and science courses, (2) engineering courses, (3) technical elective courses, and (4) general education courses.

The mathematics, chemistry, and physics courses provide the foundation of the engineering program. These courses are a major part of the curriculum in the freshman and sophomore years.

The engineering courses deal with such subjects as chemical kinetics, digital systems, electrical networks, fluid and solid mechanics, materials science, thermodynamics, and transport phenomena. Engineering courses begin in the first semester of the freshman year and are different in each department. Instruction is carried out in both the classroom and the laboratory. In general, sophomore and junior engineering science courses provide the background for the application and design-oriented engineering courses at the senior level.

Technical elective courses allow students to investigate the sciences in more depth and to develop a concentration within their own discipline. Technical electives also make it possible for students to broaden their perspective in interdisciplinary areas such as applied chemistry and catalysis, biomedical engineering, computer-aided design, materials science, composite materials, digital systems, environmental engineering, and coastal engineering. New areas are developing constantly because faculty research is incorporated into course offerings, particularly at the advanced level.

The general education courses are chosen from the liberal arts to provide engineering students with a well-rounded education. The complete General Education
Program consists of 24 to 25 credits of study that include the University’s E 110 freshman writing course and multicultural course requirements, a College requirement for 18 credits chosen from the humanities and social sciences, and certain specific courses required by individual engineering departments. The College’s humanities and social sciences requirement is described in more detail in the following section. The specific requirements of each department are given in the appropriate departmental section.

COLLEGE GENERAL EDUCATION PROGRAM

The College requires that 18 credits (a minimum of six courses) be chosen from the humanities and social sciences subject to the constraints listed below and the approval of the student’s faculty advisor. The University’s multicultural course requirement may be included in this set of six courses.

a) At least two courses (a minimum of six credits) must be in the humanities. Humanities include Art History, English (except E 110 and other writing skills courses), Foreign Languages and Literatures (except introductory skills courses), Foreign Languages (except the student’s native language and introductory skills courses), certain Geography courses (except G 101, G 206, G 220, and other technical courses), History, Linguistics, Literature, certain Music courses (except skills courses), and Philosophy (except PHL 100, PHL 105, and PHL 205).

b) At least two courses (a minimum of six credits) must be in the social sciences. The social sciences include Anthropology (except ANT 102 and ANT 202), Economics (EE majors require EC 151 or another approved course), certain Geography courses (except G 101, G 206, G 220, and other technical courses), Political Science, Psychology (except PSY 309 and PSY 314), and Sociology.

c) At least two of the six courses (a minimum of six credits) must be above the introductory level.

d) At least two of the six courses (a minimum of six credits) must be in the same department or program.

Courses in Women’s Studies, Black American Studies, and Honors Colloquia are individually classified according to content as are courses in Early American Culture and other specialized programs. Courses classified as “Group D” by the College of Arts and Science may not be used to satisfy the General Education Program. Also, due to their technical content, ANT 102, ANT 202, G 101, G 206, G 220, PHL 100, PHL 105, PHL 205, PSY 309, and PSY 314 may not be used to satisfy humanities and social sciences requirements. The student’s faculty advisor must be consulted for the proper classification of general education courses.

The humanities and social science component of the engineer’s education is extremely important. Students should plan a sequence of courses that are connected by some theme. A good program has a minimum of introductory courses followed by two or three advanced courses in the same area. It is often possible to tie together into a common theme courses from both the humanities and social sciences. Courses offered through the Honors Program may be ideal for this purpose. However it is accomplished, an engineering graduate will be rewarded by a carefully planned General Education Program.

COLLEGE REGULATIONS

The College requires each engineering student to consult with his or her academic advisor at least twice a year during the designated University advanced registration periods. Students must also obtain approval from their advisors to take courses during the Winter or Summer Sessions and when adding or dropping courses.

Each of the four engineering departments has established minimum academic standards for certain courses and for progression to the sophomore or junior level. The specific standards for each department are given in the appropriate departmental section.

To graduate, all students must satisfy the University’s writing and multicultural course requirements and attain a cumulative index of at least a 2.0 in all University course work. Additionally, engineering students must have at least a 2.0 average in all engineering, mathematics, and science courses used to fulfill graduation requirements. If a course is repeated, only the last grade will be used to compute the engineering grade-point average; however, all grades are used to compute the University’s cumulative grade-point index.

CLASS OPENINGS FOR NONMAJORS

Most courses in the College of Engineering are closed to nonmajors because of limited classroom and laboratory space. Nonmajors with special reasons for enrolling in engineering courses must contact the department chairperson (not the course instructor) to obtain permission to enroll in closed courses. Students who successfully complete closed engineering courses in which they have enrolled without the prior permission of the department chairperson will not automatically be admitted into the engineering major. No closed engineering course will be accepted for transfer without the prior approval of the department chairperson.

Some engineering courses are open to nonmajors. Students do not need special permission to take engi-
neering courses that are part of their curriculum. Students minoring in Civil Engineering are admitted to a large number of civil engineering courses. The requirements for this minor are described in the Civil Engineering section of this chapter.

TRANSFER STUDENTS

The College of Engineering admits a small number of transfer students each year during the fall and spring semesters. Because enrollment in engineering courses is normally restricted to departmental majors, prospective transfer students may not register for engineering courses without prior approval from the chairperson of the appropriate engineering department. The need to control class size and total enrollment in each of the departments frequently requires that nonmajors be administratively removed from class lists following the registration period. Students who transfer into other colleges at the University with the intention of transferring into the College of Engineering at a later time should be aware that the same evaluation process will be used to determine their eligibility to transfer into engineering from within the University.

The engineering curriculum at the University of Delaware is rigorous and has relatively little flexibility. Engineering courses begin in the first semester of the freshman year. To graduate in four years, a student must follow a rigid sequence of required courses. Once a freshman class has been admitted, only a limited number of spaces become available within that cohort as it moves through to graduation. Transfer students from outside the University who wish to enter the programs of the College of Engineering are considered along with freshman applicants unless it is judged that they have completed sufficient work to be able to finish their engineering program in three years or less. Candidates for admission as sophomores or juniors will be considered in competition with students transferring internally at the University of Delaware. Since the number of openings is limited in each engineering department, selection for transfer into the College is very competitive. Successful transfer applicants will have a good record in mathematics, science, and engineering courses taken during their last year as a full-time student.

University of Delaware students who wish to transfer into a department of the College of Engineering must make a formal request to the appropriate chairperson by May 1 for entrance in the fall semester or by December 1 for entrance in the spring semester. The student should contact the department office well in advance of these deadlines to determine the specific information that must be included in the application.

Students from colleges outside the University of Delaware who wish to transfer into the College of Engineering must make a formal application through the University Admissions Office by March 1 for entrance in the fall semester or by November 15 for entrance in the spring semester.

It is recommended that students who wish to transfer into the College of Engineering contact the Assistant Dean or the Director of Undergraduate Advisement (135 du Pont Hall, 302-451-8659) to discuss curriculum requirements and transfer policies before beginning the application process.

MATERIALS SCIENCE PROGRAM

The basic concepts associated with the engineering properties of materials are presented by the Materials Science Program faculty. The introductory course MAT 302 is required by chemical, civil, and mechanical engineering majors and is a prerequisite for the interdepartmental advanced offerings that are available as technical electives. Students in mechanical engineering may elect a Solid Mechanics and Materials option that consists of twelve credits in the area of mechanics and materials. In addition, all engineering departments offer senior projects concerned with the properties of materials. These technical elective courses are strongly recommended for students intending later to pursue master’s or doctoral degrees in Materials Science and Engineering.

CHEMICAL ENGINEERING

Most individuals outside of the chemical engineering profession have little understanding of the discipline. Engineering in general is a combination of applied science, analysis and creativity that provides practical solutions to some of the most important problems of the society. Chemical engineering, as its name suggests, pays particular attention to applied chemistry, material science, and increasingly to biology. Engineering occurs when these basic sciences are transformed into quantitative models and reliable systems are built. There are a few characteristics for chemical engineering analysis: creative, quantitative, applied, and specific. A high degree of creativity is needed to express problems in chemical engineering in ways that give new and effective solutions. Engineering, and particularly chemical engineering, is quantitative, for our solutions state “how much,” “how many,” and “at what cost.” Chemical engineering is applied in that the work product almost always is aimed toward problems that are to be solved within five years and typically lead to commercial products. Chemical engineering is specific in that our models apply to a particular configuration of equipment or to a defined product.
A B.S. chemical engineer has several kinds of employment opportunities, including process development, product development, manufacturing, research and development, process design, and sales. Process development is the invention and modification of ways for making chemicals and chemical products. Product development is the invention of chemical systems that meet marketplace needs. Manufacturing is the operation of biological, chemical or petrochemical plants. Research and development is the invention of new products and processes. (It should be noted that many research opportunities expect the candidate to have an advanced degree.) Process design is the organization of chemical equipment to make products at acceptable profit margins while paying attention to environmental and safety issues. Finally, chemical engineers who are gifted in the art of persuasion find opportunities in chemical sales.

Some of the highly visible topics of current technology fit naturally into chemical engineering. For example, modification of genes in relatively simple biological systems is called genetic engineering, but actually is an extension of chemical engineering. The development of artificial organs, such as the pancreas, is an application of chemical engineering. Superconductivity has received great attention in the popular press. The development of superconducting materials stems from material science, part of the domain of chemical engineering. The production of complex chips now requires the analysis of chemical engineers to optimize production. Chemical engineering is in the forefront of many areas of current technology.

Delaware’s curriculum in chemical engineering differs from those in most other institutions in that the commitment to an early start in the profession is unusually strong. In the freshman year, the course CHE 112 applies the student’s high school background in science and mathematics to the solution of several engineering problems. Physical Chemistry is introduced earlier than many other schools, and this enables much of the chemical engineering science background to be completed by the end of the third undergraduate year. As a result, the fourth year provides opportunities for pursuit of technical topics of special interest to a depth that may be unique nationally. Furthermore, by obtaining the “flavor” of the discipline early in a college career, students can transfer to other courses of study if chemical engineering turns out to be an inappropriate choice. However, these same characteristics of the program make it difficult for students to transfer into this curriculum during their sophomore or junior years unless the science requirements, especially in chemistry, have been met. Students should note that the course CHE 112 is a prerequisite for CHE 231, which in turn is a prerequisite for the courses CHE 325 and 341. These courses are available only in the semesters indicated in the curriculum outlined below.

The following curriculum has been designed to provide rigorous training in the basic scientific, mathematical, and engineering skills while simultaneously affording motivation and opportunity for application of these skills to the challenges of modern society as posed by faculty who maintain extensive contacts with industry and government.

DEGREE: BACHELOR OF CHEMICAL ENGINEERING

MAJOR: CHEMICAL ENGINEERING

CURRICULUM

CREDITS

UNIVERSITY REQUIREMENTS

- E 110 Critical Reading and Writing .. 3 18
- Three credits in an approved course or courses stressing multicultural, ethnic, and/or gender-related content # .. 3 14

COLLEGE REQUIREMENTS

Mathematics

- M 241 Analytic Geometry and Calculus A ... 4 18
- M 242 Analytic Geometry and Calculus B ... 4 18
- M 243 Analytic Geometry and Calculus C ... 4 18
- M 302 Ordinary Differential Equations I .. 3 18

Physics

- PS 207 General Physics .. 4 18
- PS 208 General Physics .. 4 18

General Education Program

- Humanities and Social Science: Minimum of six courses (18 credits) with the following restrictions:
 - a) At least two courses (minimum of six credits) must be in the Humanities.
 - b) At least two courses (minimum of six credits) must be in the Social Sciences.
 - c) At least two of the six courses (minimum of six credits) must be above the introductory level.
 - d) At least two of the six courses (minimum of six credits) must be in the same department or program.

Humanities courses include Art History, English (except E 110 and other skills courses), Foreign Languages & Literatures, Foreign Languages (other than the student’s native language[s]), certain Geography courses (except G 101, 206 and 220), History, Linguistics, Literature, certain Music courses, and Philosophy (except PHL 100, 105 and 205).

Social Science courses include Anthropology (except ANT 102 and 202), Economics, certain Geography courses (except G 101, 206, and 220), Political Science, Psychology (except PSY 309 and 314), Sociology, and cross-listed Women’s Studies and Black American Studies courses.

Courses in Black American Studies, Honors Colloquia, and Women’s Studies are individually classified as are courses in Early American Culture and other specialized programs Arts and Science “Group D” courses may not be used to satisfy the General Education Program (refer to College of Arts and Science Group Requirements in this catalog). Students can obtain a listing of approved courses for the General Education Program from their respective departments or from the Dean’s Office, College of Engineering (135 du Pont Hall). The faculty adviser must be consulted for classification of courses under General Education.

1 Superior figures indicate semester (fall or spring) and/or year or years in which the course should be taken, i.e., fall of freshman year; spring of sophomore year, etc.
2 This requirement may be fulfilled through a course taken to complete major, group, breadth, or elective requirements. See page 24.
MAJOR REQUIREMENTS

External to the College

Biology
B 207 Introductory Biology I .. 4

Chemistry
C 111 General Chemistry ... 3
C 119 Quantitative Chemistry I 2
C 112 General Chemistry ... 3
C 120 Quantitative Chemistry II 3
C 443 Physical Chemistry ... 3
C 444 Physical Chemistry ... 3
C 351 Organic Chemistry .. 3
C 352 Organic Chemistry .. 3
C 353 Organic Chemistry Laboratory I 2

Computer Science
GIS 106 General Computer Science for Engineers 3

General Education Program
An additional course (minimum of three credits in the humanities or social sciences. Courses listed in the "Group D" classification by the College of Arts and Science may not be used to satisfy this requirement.)

Within the College
MAT 302 Material Science for Engineers 4

Within the Department
CHE 099 Chemical Engineering Freshman Seminar 0
CHE 112 Introduction to Chemical Engineering 3
CHE 231 Chemical Engineering Thermodynamics 3
CHE 341 Fluid Mechanics ... 3
CHE 392 Chemical Engineering Kinetics 3
CHE 345 Chemical Engineering Laboratory I 3
CHE 342 Heat and Mass Transfer 3
CHE 443 Mass Transfer Operations 3
CHE 445 Chemical Engineering Laboratory II 3
CHE 401 Chemical Process Dynamics and Control 3
CHE 432 Chemical Process Analysis 3

Technical Electives

Technical Electives .. 6
The purpose of the technical electives is to advance the scientific or engineering background of the chemical engineers at the intermediate (500-400) level. The technical electives program is a minimum of six credits taken from courses in the following list, normally two courses. Students should select their technical electives in the spring of sophomore year to avoid scheduling conflicts. Students should formulate an academic plan for their technical and chemical engineering electives with the assistance of their academic adviser.

Biology
B 301 Cellular and Molecular Biology 4
B 303 Genetic and Evolutionary Biology 4
B 306 Cell Biology .. 4
B 306 General Physiology 4
B 4xx Biology course chosen with the approval of the adviser 3

Chemistry
C 334 Organic Chemistry Majors Laboratory II 2
C 457 Inorganic Chemistry 3
C 527 Introductory Biochemistry 3
C 6xx Chemistry course chosen with the approval of the adviser 3

C 8xx Chemistry course chosen with the approval of the adviser 3

Computer Science
GIS 300 Introduction to Scientific Computation 3

Mathematics
M 349 Elements of Linear Systems 3
M 389 Discrete Mathematics 3
M 426 Introduction to Numerical Analysis and 3
 Algorithmic Computation
M 427 Approximation Theory 3
M 428 Algorithmic and Numerical Solution of 3
 Differential Equations
M 5xx Mathematics course chosen with the approval of the adviser 3
M 6xx Mathematics course chosen with the approval of the adviser 3

Mechanical Engineering
Applied Mathematics
ME 361 Applied Engineering Analysis 3
ME 863 Engineering Analysis 3
ME 864 Engineering Analysis 3

Physics
FS 419 Analytical Mechanics 3
FS 420 Analytical Mechanics 3
FS 6xx Physics course chosen with the approval of the adviser 3

Statistics
ST 450 Statistics for the Engineering and Physical Sciences 3
ST 6xx Statistics course chosen with the approval of the adviser 3

Electronic Materials
(please note prerequisites)
EE 314 Electronics and Instrumentation 4
EE 540 Solid State Electronics 3
EE 4xx Solid State Fabrication Laboratory 1
EE 623 Electrical Properties of Matter II 3
EE 626 Integrated Circuits 3
EE 629 Digital Structures 3

Polymeric Materials
ME 410 Experimental Mechanics for Composite Materials 3
ME 415 Finite Element Analysis 3

Chemical Engineering Technical Electives

The curriculum provides three chemical engineering technical electives in the senior year. These courses are intended to provide some flexibility in selecting a chemical engineering program at the advanced level. Students should decide with the assistance of their adviser if they should conduct a program of independent research and then choose their course electives.

Chemical engineering technical electives are defined as follows. Any Chemical Engineering course numbered between 470 and 499; any 400- or higher-level Materials and Metallurgy course; U 401-U 402 Senior Thesis; any 600- or 800-level course in Chemical Engineering. Courses at the 600 and 800 level are graduate courses open, with the consent of the instructor, to advanced students in senior standing

Concentrations
The technical electives and the chemical engineering electives can be coupled to provide a more intense concentration in an area of interest. The groupings below are some examples of this approach.

Applied Mathematics
M 426 Introduction to Numerical Analysis and 3
 Algorithmic Computation

†Note: The technical elective program is under constant review by the faculty. An updated list is available in the department office. Students should check with their advisers before selecting courses and should be aware that a formal mechanism exists to provide additional flexibility in selection of their Technical Electives. Students should select their technical electives during the spring of the sophomore year to avoid scheduling conflicts. The Technical Electives may be coupled with the Chemical Engineering Technical Electives to obtain a technical concentration.
DEPARTMENTAL STANDARDS

The department has rigorous standards for admission into the courses in the department. These standards have evolved over time and are intended to promote success in the sequential development of the material. In general students must have a minimum grade of C- in all chemical engineering prerequisite courses to qualify for admission to the next course.

Admission to CHE 231:
1) A minimum grade of C- in CHE 112.
2) A minimum average of 1.7 in each of the following groups of courses:
 Group (a) C 111, 112, 119, 120
 Group (b) M 242, PS 207
3) Coregistration in M 243. (It is better to complete M 243 before enrolling in CHE 231.)

Admission to CHE 325:
1) A minimum grade of C- in CHE 231.
2) A minimum average of C- in M 243 and PS 208.

Admission to CHE 341:
1) A minimum grade of C- in CHE 231.
2) A minimum grade of C- in M 302.

Admission to CHE 332:
1) A minimum grade of C- in CHE 325 or C 444.
2) A minimum grade of C- in M 302.

Admission to CHE 342:
1) A minimum grade of C- in CHE 341.

Admission to CHE 345:
1) A minimum grade of C- in CHE 325.
2) Admission to CHE 342

Admission to CHE 443:
1) A minimum grade of C- in CHE 342.

Admission to CHE 445:
1) A minimum grade of C- in CHE 345.

Admission to CHE 401:
1) A minimum grade of C- in CHE 443.

Graduation Requirements:
1) A “P” (pass) in CHE 009.
2) A minimum grade of C- in all other Chemical Engineering courses counted towards graduation.

TRANSFER STUDENTS

Students within the University who wish to transfer as sophomores in the fall semester should make a formal request to the Chair by May 1. Unless the case is exceptional, a change-of-major application will only be considered after completion of the following minimum requirement:

1) An overall grade-point index of 2.0.
2) A minimum grade of C in CHE 112, Introduction to Chemical Engineering, is required if the course has been taken.
3) A minimum grade of C in each of the following groups of courses: C 111, C 112, General Chemistry; M 241 and 242, Analytic Geometry and Calculus; and PS 207, General Physics.

Completion of these minimum requirements does not guarantee admission as a chemical engineering major.

Prospective students who contemplate beginning the program in Chemical Engineering in February, rather than in September, should consult with the Chemical Engineering Department.

Chemical Engineering courses designated by the CHE prefix are closed to nonmajors. Students seeking exception should contact the Chemical Engineering Department.

CHEMICAL ENGINEERING CURRICULUM—
MASTER'S-BACHELOR'S PROGRAM

This four-year program is designed to enable exceptional students with excellent high school backgrounds to obtain a Bachelor of Chemical Engineering degree and a Master of Chemical Engineering degree in four years. This allows students to take maximum advantage of their
high school education, gives them a considerable jump
over students going the normal bachelor’s degree-master’s degree route, including a year gained, and reduces
redundancy in the total educational program. The
program is designed for each individual; the following is
considered typical.

The requirements and procedures of the program
are:

1) The student is assumed to be qualified for a suffi-
cient amount of credit by advanced placement to
omit the entire freshman year on the basis of
demonstrated ability in mathematics, chemistry,
physics, English and humanities. Certification of
the level of the advanced standing is made in the
usual way on the basis of CEEB or departmental
examinations. CHE 112, Introduction to Chemical
Engineering, is waived upon evidence of suitable
self-study.

2) Formal admission to the program and provisional
admission to graduate school are provided to stu-
dents upon request at the end of their second year
in the program, or to those who have attained the
status of such students, provided an overall grade-
point average of at least 3.25 has been attained.

3) If differences exist between graduate and under-
graduate fees for a particular student, the under-
graduate fee structure applies through the end of
the first semester of the third year.

4) Credit toward the B.Ch.E. degree for two technical
electives is provided by the graduate-level work. The
omitted technical electives would normally be the
two senior project (thesis) courses. Thus, the com-
bined program represents a contraction of 9 credits
from the normal sequence of a B.Ch.E. degree fol-
lowed by enrollment in the usual 30-credit graduate
program; 6 credits are saved by the student’s carry-
ing out only one thesis and the other 3 from wai-
ving CHE 112, as noted earlier.

5) The program involves a light course load in the
final year to enable the student to meet the
requirements of the graduate thesis at that time.

6) It is desirable for purposes of professional regis-
tration that a student be graduated from an accredited
undergraduate program and for this reason both
degrees (B.Ch.E. and M.Ch.E.) are to be awarded.
The student will receive the B.Ch.E. degree upon
completion of the third year of the attached sample
program with a grade-point average at least 2.0.
(This program exceeds the normal credit require-
ments for a B.Ch.E. degree).

A student who elects to return to a standard
B.Ch.E. program and to omit the M.Ch.E. degree
will be awarded the B.Ch.E. upon completion of the
regular requirements for that degree.

7) To obtain the M.Ch.E. degree the student must
meet a grade-point average of at least 3.0 in the 50
credits of graduate work, as usual.

DEGREE: BACHELOR OF CHEMICAL ENGINEERING

MAJOR: CHEMICAL ENGINEERING

CURRICULUM

CREDITS*

UNIVERSITY REQUIREMENTS

E 110 Critical Reading and Writing 3

Three credits in an approved course or courses stressing
multicultural, ethnic, and/or gender-related content. #

COLLEGE REQUIREMENTS

Mathematics

M 243 Analytic Geometry and Calculus C 4

M 302 Ordinary Differential Equations 1 3

Physics

PS 208 General Physics 4

General Education Program 18

Humanities and Social Science: Minimum of six courses (18
credits) with the following restrictions:

a) At least two courses (minimum of six credits) must be in
the Humanities.

b) At least two courses (minimum of six credits) must be in
the Social Sciences.

c) At least two of the six courses (minimum of six credits)
must be above the introductory level.

d) At least two of the six courses (minimum of six credits)
must be in the same department or program.

Humanities courses include Art History, English (except E110
and other skills courses), Foreign Languages & Literatures,
Foreign Languages (other than the student’s native
language(s)), certain Geography courses (except G 101, 206
and 220), History, Linguistics, Literature, certain Music cour-
es, and Philosophy (except PHI 110, 105 and 205).

Social Science courses include Anthropology (except ANT 102
and 202), Economics, certain Geography courses (except G
101, 206 and 220), Political Science, Psychology (except PSY
300 and 314), Sociology, and cross-listed Women’s Studies
and Black American Studies courses.

Courses in Black American Studies, Interdisciplinary,
Women’s Studies are individually classified as are courses in
American Culture and other specialized programs. Arts
and Science “Group D” courses may not be used to satisfy the
General Education Program (refer to College of Arts and
Science Group Requirements in this catalog). Students can
obtain a listing of approved courses for the General Education
Program from their respective departments or from the Dean’s
Office, College of Engineering (135 du Pont Hall). The faculty
adviser must be consulted for classification of courses under
General Education.

* Superior figures indicate semester (fall or spring) and/or year or years in which the course is normally taken, i.e., 1 fall of freshman year, 2 spring of sophomore year, etc.

This requirement may be fulfilled through a course taken to complete major, group, breadth, or elective requirements. See page 50.

Superior figures indicate semester (fall or spring) and/or year or years in which the course is normally taken, i.e., 1 fall of freshman year, 2 spring of sophomore year, etc.

AP Chemistry—8 credits, AP Calculus—8 credits, AP Physics—4 credits, AP English—6 credits, AP Computer Science—5 credits.
MAJOR REQUIREMENTS

External to the College

Biology
- B 207 Introductory Biology I 4

Chemistry
- C 443 Physical Chemistry 3
- C 444 Physical Chemistry 3
- C 331 Organic Chemistry 3
- C 332 Organic Chemistry 3
- C 333 Organic Chemistry Laboratory I 1

General Education Program
An additional course (minimum of three credits in the humanities or social sciences. Courses listed in the “Group D” classification by the College of Arts and Science cannot be used to satisfy this requirement.) 3

Within the College
- ME 863 Engineering Analysis I 3
- ME 864 Engineering Analysis II 3
- MAT 302 Material Science for Engineers 4

Within the Department
- CHE 009 Chemical Engineering Freshman Seminar 0
- CHE 112 Introduction to Chemical Engineering Analysis 3
- CHE 231 Chemical Engineering Thermodynamics 3
- CHE 335 Chemical Engineering Thermodynamics 3
- CHE 341 Fluid Mechanics 3
- CHE 332 Chemical Engineering Kinetics 3
- CHE 345 Chemical Engineering Laboratory I 3
- CHE 342 Heat and Mass Transfer 3
- CHE 443 Mass Transfer Operations 3
- CHE 445 Chemical Engineering Laboratory II 3
- CHE 825 Chemical Engineering Thermodynamics 3
- CHE 401 Chemical Process Dynamics and Control 3
- CHE 432 Chemical Process Analysis 3
- CHE 835 Applied Chemical Kinetics 3
- CHE 883 Diffusion Operations 3
- CHE Graduate Electives 12
- CHE 890 Fluid Mechanics 3
- CHE 869 Master’s Thesis 6

CIVIL ENGINEERING

All divisions of engineering trace their ancestry back to civil engineering. “Civil” was originally used to identify engineering endeavors unrelated to military activities. Because of its origin and history, civil engineering embraces a wide variety of technological areas.

Traditionally, civil engineering has been identified with the planning and design of constructed facilities such as dams, bridges, buildings, transportation networks, harbors, waterways, and tunnels. Civil engineering still encompasses constructed facilities as an important activity, and our students are supplied with a solid background for working in areas such as structural engineering, soil mechanics, and hydraulics. However, modern civil engineering has expanded into a variety of other areas and deals with large proportions of the infrastructure of modern industrialized societies including cities, highways and traffic control, mass transportation systems, utilities networks, irrigation systems, water resources exploration and management, environmental protection facilities, coastal management and protection works, and offshore structures. As the country rebuilds these facilities, the Civil Engineer is the central professional involved. Civil engineers are rapidly becoming of central importance to developing countries as well.

Today’s society also requires civil engineers to be sensitive to, and aware of, the impact that proposed engineering solutions will have on people and the natural environment. Applying technical competence to problems that are central to society’s environmental needs and concerns represents challenges and opportunities for civil engineers.

To meet these challenges, the Civil Engineering Department offers a program with a balanced content varying from the fundamental disciplines to practical engineering methods. Students during the first semester begin to solve civil engineering problems on computers using mathematics and science. Throughout the four year curriculum, the Department emphasizes the application of the methods of engineering science to civil engineering problems and gradually upgrades students’ analytical and computational skills to satisfy the needs of the engineering courses. Additionally, a total of six courses of the program are devoted to studies in the humanities and social sciences with the objective of developing a base for the human and social aspects of the engineering profession. This curriculum of required core courses provides a background in the entire field of civil engineering. The emphasis on developing a sound theoretical foundation also provides a basis for continual learning throughout students’ professional careers.

In the junior and senior year, there is opportunity to gain a deeper insight into one of the civil engineering disciplines through a number of technical electives. A wide variety of courses are available for this part of the program. Below, under the heading of Technical Electives, we have listed some courses that, together with the required course curriculum, will give an in-depth knowledge in each of the listed areas.

DEPARTMENTAL REGULATIONS

To be enrolled in 300- or 400-level civil engineering or mechanics courses, civil engineering majors must have attained at least a C grade in the following courses: C 103, C 104, M 241, M 242, and PS 207. If courses are retaken to meet this requirement, only the most recent grade received in any given course will be used in computing the average for the purposes of this requirement.

Our students also must have a 2.0 grade-point average in all required courses in mathematics, the sciences, and engineering. If courses are retaken to meet this requirement, only the most recent grade received in any repeated course will be used by the department in computing the average.
In general, 300- and 400-level courses in civil engineering are open only to our majors. Students who have declared a Civil Engineering Minor and students enrolled in other departments in the College of Engineering who wish to take civil engineering courses as technical electives can, with the approval of their home department adviser, be enrolled in 300- or 400-level courses in the Civil Engineering Department. In some instances, others may be permitted to enroll in selected 300- and 400-level courses, but they must have the permission of both the course instructor and the chair of the Civil Engineering Department.

DEGREE: BACHELOR OF CIVIL ENGINEERING
MAJOR: CIVIL ENGINEERING

CURRICULUM

UNIVERSITY REQUIREMENTS

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 110</td>
<td>Critical Reading and Writing</td>
<td>3 1/2</td>
</tr>
</tbody>
</table>

Three credits in an approved course or courses stressing multicultural, ethnic, and/or gender-related content.

COLLEGE REQUIREMENTS

Mathematics

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 241</td>
<td>Analytic Geometry and Calculus A</td>
<td>4 1/2</td>
</tr>
<tr>
<td>M 242</td>
<td>Analytic Geometry and Calculus B</td>
<td>4 1/2</td>
</tr>
<tr>
<td>M 243</td>
<td>Analytic Geometry and Calculus C</td>
<td>4 1/2</td>
</tr>
<tr>
<td>M 302</td>
<td>Ordinary Differential Equations I</td>
<td>3 2/5</td>
</tr>
</tbody>
</table>

Physics

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS 207</td>
<td>General Physics</td>
<td>4 1/5</td>
</tr>
<tr>
<td>PS 208</td>
<td>General Physics</td>
<td>4 3/5</td>
</tr>
</tbody>
</table>

General Education Program

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humanities and Social Science: Minimum of six courses (18 credits) with the following restrictions: a) At least two courses (minimum of six credits) must be in the Humanities b) At least two courses (minimum of six credits) must be in the Social Sciences c) At least two of the six courses (minimum of six credits) must be above the introductory level d) At least two of the six courses (minimum of six credits) must be in the same department or program.</td>
<td>18 13</td>
<td></td>
</tr>
</tbody>
</table>

Humanities courses include Art History, English (except E 110 and other skills courses), Foreign Languages & Literatures, Foreign Languages (other than the student’s native language(s)), certain Geography courses (except G 101, 206 and 220), History, Linguistics, Literature, certain Music courses, and Philosophy (except PHL 110, 105 and 205).

Social Science courses include Anthropology (except ANT 102 and 202), Economics, certain Geography courses (except G 101, 206 and 220), Political Science, Psychology (except PSY 309 and 314), Sociology, and cross-listed Women’s Studies and Black American Studies courses.

Courses in Black American Studies, Honors Colloquia, and Women’s Studies are individually classified as are courses in Early American Culture and other specialized programs Arts and Science “Group D” courses may not be used to satisfy the General Education Program (refer to College of Arts and Science Group Requirements in this catalog). Students can obtain a listing of approved courses for the General Education Program from their respective departments or from the Dean’s Office, College of Engineering (155 du Pont Hall). The faculty adviser must be consulted for classification of courses under General Education.

MAJOR REQUIREMENTS

External to the College

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 410</td>
<td>Technical Writing</td>
<td>3 1/2</td>
</tr>
</tbody>
</table>

Chemistry

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 103</td>
<td>General Chemistry</td>
<td>4 1/2</td>
</tr>
<tr>
<td>C 104</td>
<td>General Chemistry</td>
<td>4 1/2</td>
</tr>
<tr>
<td>CIS 106</td>
<td>General Computer Science for Engineers</td>
<td>3 2/5</td>
</tr>
<tr>
<td>GEO 107</td>
<td>General Geology I</td>
<td>4 2/5</td>
</tr>
<tr>
<td>ST 450</td>
<td>Statistics for the Engineering and Physical Sciences</td>
<td>3 1/2</td>
</tr>
</tbody>
</table>

Within the College

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG 125</td>
<td>Introduction to Engineering (CE)</td>
<td>2 1/2</td>
</tr>
<tr>
<td>FG 132</td>
<td>Engineering Graphics/Analysis</td>
<td>2 1/2</td>
</tr>
<tr>
<td>MAT 302</td>
<td>Material Science for Engineers</td>
<td>4 3/5</td>
</tr>
<tr>
<td>MEC 305</td>
<td>Fluid Mechanics</td>
<td>5 2/5</td>
</tr>
<tr>
<td>MEC 306</td>
<td>Fluid Mechanics Laboratory</td>
<td>1 1/5</td>
</tr>
</tbody>
</table>

Within the Department

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 211</td>
<td>Statics</td>
<td>3 2/5</td>
</tr>
<tr>
<td>CE 212</td>
<td>Strength of Materials</td>
<td>3 2/5</td>
</tr>
<tr>
<td>CE 213</td>
<td>Materials Laboratory I</td>
<td>3 2/5</td>
</tr>
<tr>
<td>CE 301</td>
<td>Analysis of Structures</td>
<td>4 3/5</td>
</tr>
<tr>
<td>CE 311</td>
<td>Dynamics</td>
<td>3 2/5</td>
</tr>
<tr>
<td>CE 331</td>
<td>Introduction to Environmental Engineering</td>
<td>3 2/5</td>
</tr>
<tr>
<td>CE 351</td>
<td>Transportation Engineering</td>
<td>3 2/5</td>
</tr>
<tr>
<td>CE 381</td>
<td>Civil Engineering Analysis</td>
<td>3 2/5</td>
</tr>
<tr>
<td>CE 402</td>
<td>Steel Design</td>
<td>3 1/2</td>
</tr>
<tr>
<td>CE 403</td>
<td>Concrete Design</td>
<td>3</td>
</tr>
<tr>
<td>CE 420</td>
<td>Soil Mechanics</td>
<td>4 1/2</td>
</tr>
<tr>
<td>CE 451</td>
<td>Water Supply Engineering</td>
<td>3 1/2</td>
</tr>
<tr>
<td>CE 432</td>
<td>Waste Water Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CE 441</td>
<td>Hydrology</td>
<td>3 1/2</td>
</tr>
<tr>
<td>CE 442</td>
<td>Hydraulic Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CE 461</td>
<td>Senior Design Project</td>
<td>3 1/2</td>
</tr>
<tr>
<td>CE 482</td>
<td>System Design and Operation</td>
<td>3 1/2</td>
</tr>
</tbody>
</table>

Technical Electives

Technical Electives

Four courses: Three additional design points must be satisfied; see current department technical elective listing.

CREDITS TO TOTAL A MINIMUM OF 131

TECHNICAL ELECTIVES

The Civil Engineering curriculum contains four technical elective courses that give students the opportunity to complete their education by concentrating in an area of special interest.

Superior figures indicate semester (fall or spring) and/or year or years in which the course is normally taken, i.e. 1 fall of freshman year, 2 spring of sophomore year, etc.

This requirement may be fulfilled through a course taken to complete majors, group, breadth, or elective requirements. See page 24.

The technical elective program is under constant review by the faculty. An updated list is available in the department office. Students should check with their advisers before selecting courses and should be aware that a formal mechanism exists to provide additional flexibility in the selection of their technical elective courses.
The required course curriculum provides the basis in mathematics, science, the applied engineering sciences, and engineering design that students need for future work and enhances their general education background. However, it only gives students an introduction to each of the major areas of civil engineering offered by our program: Structural Engineering and Soil Mechanics, Environmental Engineering and Water Resources, Hydraulics and Ocean Engineering, and Transportation Engineering.

The following are suggestions for courses to choose from if the student wants to concentrate in one of the above mentioned areas or wants a general civil engineering degree that further supports the breadth of the required course curriculum.

GENERAL CIVIL ENGINEERING

CE 223 Surveying
CE 401 Computer Methods of Structural Engineering
CE 402 Steel Design
CE 403 Concrete Design
CE 421 Foundations and Substructures
CE 422 Transportation Facilities Design
CE 431 Water Supply Engineering
CE 432 Waste Water Engineering
CE 441 Hydrology
CE 442 Hydraulic Engineering
CE 471 Introduction to Coastal Engineering

ENVIRONMENTAL ENGINEERING

CE 403 Concrete Design
CE 4xx Environmental Engineering Laboratory
CE 421 Foundations and Substructures
CE 451 Water Supply Engineering
CE 452 Waste Water Engineering
CE 441 Hydrology
CE 442 Hydraulic Engineering
CE 4xx Hazardous Waste Management
CE 4yy Sludge Management
CE 486 Engineering Management
AGE 628 Land Application of Wastewater
B 371 Introduction to Microbiology
B 472 Principles of Infectious Diseases
B 641 Microbial Ecology
C 213 Elementary Organic Chemistry
C 214 Elementary Biochemistry
C 220 Quantitative Analysis
C 418 Introduction to Physical Chemistry
EE 681 Remote Sensing in Environment
GEO 413 Fundamental Well Logging
GEO 421 Environmental and Applied Geology
GEO 428 Hydrogeology
ME 307 Thermodynamics I

HYDRAULIC AND OCEAN ENGINEERING

CE 441 Hydrology
CE 442 Hydraulics
CE 421 Foundations and Substructures
CE 422 Earth Structures Engineering
CE 431 Water Supply Engineering
CE 401 Computer Methods of Structural Engineering
CE 403 Concrete Design
CE 471 Introduction to Coastal Engineering
CE 442 Hydraulic Engineering
ME 361 Applied Engineering Analysis

STRUCTURES AND GEOTECHNICAL ENGINEERING

CE 223 Surveying
CE 401 Computer Methods of Structural Analysis
CE 402 Steel Design
CE 403 Concrete Design
CE 404 Structural Engineering
CE 414 Structural Dynamics Design
CE 416 Random Vibration
CE 418 Continuously Supported Structures
CE 421 Foundations and Substructures
CE 459 Railroad Engineering
CE 486 Engineering Management
CE 467 Prestressed Concrete
CE 467 Structural Materials
CE 422 Earth Structures Engineering
CE 415 Reliability Design

TRANSPORTATION ENGINEERING

CE 223 Surveying
CE 454 Urban Transportation Planning
CE 452 Transportation Facilities Design
CE 486 Engineering Management
CE 450 Railroad Engineering
G 328 Transportation Geography
ST 420 Data Analysis and Nonparametric Statistics

TRANSFER STUDENTS

Students wishing to transfer into the Department of Civil Engineering from other colleges outside the University are considered along with freshman applicants unless it is judged that they have completed sufficient work to be able to finish their engineering program in three years or less. Candidates for admission as sophomores or juniors will be considered in competition with students transferring internally at the University of Delaware. Successful transfer applicants will have a good record, maintaining at least a "B" average overall and in math, science, and engineering courses taken during their last year as a full-time student.

Students wishing to transfer internally into the Department of Civil Engineering from other departments or colleges within the University of Delaware must have at least sophomore status and have completed M 241, 242, C 103, 104 and PS 207 with a grade of "C" or better and must have maintained at least an overall average of "B" during their last year as a full-time student. To initiate a request for transfer, a change of major form must be turned in to the department prior to May 1 for fall admission and prior to December 1 for spring admission. Compliance with the minimum requirements does not guarantee acceptance for transfer.

MINOR IN CIVIL ENGINEERING

A minor in civil engineering may be earned by a student in any University bachelor's degree program through successful completion of a minimum of 21 credits in civil engineering and engineering mechanics in accord with
the following list and requirements. In addition, before beginning the civil engineering courses, the student must have credit for M 241, 242 and PS 207; must meet the usual course prerequisites; must complete successfully, C 103, 104, M 243, 302 and PS 208 before being certified for the minor in civil engineering; and must have a 2.0 average in the 21 credits of the civil engineering minor and in the eight mathematics and science courses listed above.

The required engineering courses are:

Statistics, CE 211 ... 3
Strength of Materials, CE 212 (Lab optional) 3
Dynamics, CE 311 ... 3
Fluid Mechanics, MEC 305 (Lab optional) 3

Further, an additional 9 credits (3 courses) in civil engineering must be taken of which at least 6 credits must be at the 300 or higher level. Those courses shall be selected with the specific advice of an adviser in the Civil Engineering Department to meet each student’s objectives. For students oriented toward earth sciences these might include CE 420 and CE 421; for those interested in the environment, CE 331 and 451; for those interested in urban topics, CE 351 and 351; for those with interests in construction and structures, CE 301, 303 and 402 or 403; for those interested in the oceans, CE 442, and CE 471.

Accomplishment of a minor in civil engineering has many advantages for students who are earning degrees in other sciences such as geology or in other professional areas such as business administration, but it must be understood that meeting the requirements for a minor in civil engineering without fulfilling the remaining requirements for an accredited engineering degree will not satisfy many employers seeking engineering employees, nor will it satisfy state licensing and registration boards that examine and certify people as professional engineers and engineers-in-training. A minor in civil engineering does not bestow the breadth and depth of knowledge required to be a civil engineer.

Just as electrical engineering has continually grown in scope and changed emphasis in the past, we can expect change in the future. To prepare today’s students for a lifetime of productive engineering, our program emphasizes the basics; that is, basic mathematics and science and the equally important basic principles of engineering analysis and design. To the study of the basics, the Delaware electrical engineering program adds in-depth study of an area or areas of current practice.

The Delaware electrical engineering program is different from many others in that you are “electrical engineering students” upon admission. Coursework in electrical engineering starts with the first term of the freshman year. An advantage of this arrangement is that with four years of electrical engineering courses the program flows better, and better use is made of prerequisite courses. In addition, we are able to limit the size of the electrical engineering class which in turn allows us to offer a program with many more courses with laboratories.

There are three basic parts to the Delaware curriculum in electrical engineering: (1) a core group of technical courses; (2) an elective group of technical courses in an area of concentration; and (3) a “general education” component that includes six courses in the humanities and social sciences and two in written communications.

The core group includes four courses in mathematics (starting with the second calculus course, M 242), two in physics, one in chemistry, two in computer science, and sixteen in electrical engineering.

The technical electives must be chosen to form an area of concentration. Four examples of acceptable concentrations (emphasizing computer engineering, systems and signals, devices and materials, and power systems) are shown on the following pages. In planning their technical elective programs, students must also consider the requirement for a design course in the senior year in which one design project is at least 50% of the course work.

The general education program must include courses from the humanities and from the social sciences, including courses at an advanced level. Electrical engineering students must include a course in microeconomics, two writing courses (E 110 and E 301), and a one-credit course in ethics (PHL 341).

ELECTRICAL ENGINEERING

Electrical engineering is one of the largest of the professions and among the most varied. It involves energy and information and their control, transformation and distribution. It is based on the electrical and information sciences and the related field of materials science. Electrical engineering as a profession has been recognized since the development of telegraphy before the Civil War. It has since grown to include power systems, telephony, electronics, radio, communications systems computers, microelectronics, lasers and fiber optics, solar electric energy, and many other related areas.

DEPARTMENTAL REQUIREMENTS

To qualify for sophomore standing, students must have satisfactorily completed M 242-243, CIS 180-181, C 103, PS 207, and EE 210-211 by the end of the summer session of their freshman year. With few exceptions, electrical engineering students are expected to complete the program in eight regular semesters. With electrical engineering courses being offered only once each year, it is imperative that students follow as closely as possible the course sequence outlined in the following pages.
TRANSFER STUDENTS

Transfer students by definition fall into two categories. Regular transfer students are those students who have obtained college or university course credits after completion of high school, but who cannot be expected to complete their degrees in less than four years. These students will be considered for admission along with normal applicants for the freshman class and will be selected by the Admissions Office. The criteria for admission will be the same as used for all other freshman applicants.

Transfer students with advanced standing in electrical engineering are those students with enough appropriate math, science and engineering transfer credits who can be expected to complete their degrees with three or fewer years of additional study. This group includes both students from other programs at the University as well as those from other colleges and universities. The admission of these students will be decided by the faculty of the electrical engineering department and will be determined by the number of student slots available and the student’s record in math, science and engineering courses as well as his or her overall academic record.

The above guidelines are provided as general information for transfer applicants. The department’s detailed transfer policy is available from the departmental office in 140 Evans Hall.

DEGREE: BACHELOR OF ELECTRICAL ENGINEERING

MAJOR: ELECTRICAL ENGINEERING

CURRICULUM

UNIVERSITY REQUIREMENTS

E 110 Critical Reading and Writing 315
Three credits in an approved course or courses stressing multicultural, ethnic, and/or gender-related content #

COLLEGE REQUIREMENTS

Physics
PS 207 General Physics 415
PS 208 General Physics 415

General Education Program
Humanities and Social Science: Minimum of six courses (18 credits) with the following restrictions:
a) At least two courses (minimum of six credits) must be in the Humanities.
b) At least two courses (minimum of six credits) must be in the Social Sciences. EC 151, Introduction to Microeconomics (or another approved economics course) must be included for electrical engineering majors.
c) At least two of the six courses (minimum of six credits) must be above the introductory level.
d) At least two of the six courses (minimum of six credits) must be in the same department or program.

Humanities courses include Art History, English (except EN 110 and other skills courses), Foreign Languages & Literatures, Foreign Languages (other than the student's native language[s]), certain Geography courses (except G 101, 206 and 220), History, Linguistics, Literature, certain Music courses, and Philosophy (except PHL 110, 105 and 205).
Social Science courses include Anthropology (except ANT 102 and 202), Economics, certain Geography courses (except G 101, 206 and 220), Political Science, Psychology (except PSY 309 and 514), Sociology, and cross-listed Women’s Studies and Black American Studies courses.
Courses in Black American Studies, Honors Colloquia, and Women’s Studies are individually classified as are courses in Early American Culture and other specialized programs. Arts and Science “Group D” courses may not be used to satisfy the General Education Program (refer to College of Arts and Science Group Requirements in this catalog). Students can obtain a listing of approved courses for the General Education Program from their respective departments or from the Dean’s Office, College of Engineering (135 du Pont Hall). The faculty adviser must be consulted for classification of courses under General Education.

MAJOR REQUIREMENTS

External to the College

Mathematics
M 242 Analytic Geometry and Calculus I 415
M 243 Analytic Geometry and Calculus II 415
M 341 Differential Equations with Linear Algebra I 325
M 342 Differential Equations with Linear Algebra II 325

Chemistry
C 103 General Chemistry 415

Computer Science
CIS 180 Introduction to Computer Science I 315
CIS 181 Introduction to Computer Science II 315
E 301 Problems in Composition 385
PHL 341 Ethics of Engineering Profession 145

Within the Department

EE 210 Introduction to Combinational Logic 215
EE 211 Introduction to Sequential Circuits 215
EE 295 Linear Circuit Theory 215
EE 220 Microprocessor Based Systems I 215
EE 309 Electronic Circuit Analysis I 215
EE 221 Microprocessor Based Systems II 215
EE 302 Electrical Properties of Materials 215
EE 305 Signal Processing I 315
EE 312 Electronic Circuit Analysis II 315
EE 320 Field Theory I 315
EE 306 Signal Processing II 315
EE 310 Random Signals and Noise 315
EE 340 Solid State Electronics 315
EE 417 Feedback Control Systems 315
EE 413 Field Theory II 315
EE 433 Energy Systems 315

Note: EE 310 may be taken in the senior year(s) and EE 413 and/or EE 433 in the junior year(s) when appropriate to a plan for a technical concentration.

* Superior figures indicate semester (fall or spring) and/or year or years in which the course is normally taken, i.e., 15 fall of freshman year, 25 spring of sophomore year, etc.
* M 242 is the first mathematics course in our regular program. It is the incoming student's responsibility to assess their own mathematics background and proficiency you have had some calculus, but are not certain that you are ready for M 242, start with M 242. In this case it is easy to drop back to M 241 after a few weeks of M 242 if engineering program on schedule. To remain on schedule with your program, you must be on schedule in mathematics by the start of the sophomore year.

209
MECHANICAL ENGINEERING

Mechanical engineers receive one of the broadest educations of any of the modern engineering disciplines and consequently are well prepared to apply basic engineering principles to a wide variety of society's needs. Some of the many challenging fields requiring the talents of mechanical engineers in both the design and development of new technology are energy, environmental engineering, housing, exploration and use of the space environment and the oceans, materials engineering, medical technology, and transportation.

Since many technologies will reach their zenith and wane in less than the duration of an individual's career, mechanical engineers must have a firm foundation in the more basic and durable engineering sciences to be able to adapt and contribute to new and evolving fields. The educational program set out below has been carefully structured around a basic core program that will enable the Bachelor of Mechanical Engineering graduate to follow many career paths, including research, development, design, production, maintenance, management, patent law, or education. However, the curriculum also allows a student to select engineering fields of particular interest for study, such as aerospace, materials, biomechanics, controls, design and systems, robotics, energy, and fluids.

The degree course is designed to serve not only those students who go into industry or government directly after the B.M.E. degree, but also those who go on to a graduate program in engineering or continue their education in other professions such as medicine, law or business administration. The commitment by the faculty to student advisement, in combination with the curriculum flexibility offered by the technical electives, results in

Students whose primary interest is in electronic devices should take:
EE 626 Integrated Circuits
and
EE 650 Semiconductor Device Design and Fabrication**
Technical electives chosen with the approval of an adviser

Technical Electives—Power Systems Concentration
ME 307 Thermodynamics I
EE 412 Introduction to Power Systems Analysis
EE 414 Electrical Machines, Motors and Generators
EE 618 Modern Control Engineering
ME 408 Power Generation System Design
or
EE 323 Digital Systems Design I

Technical electives chosen with the approval of an adviser

CREDITS TO TOTAL A MINIMUM OF

**Courses must be taken as a sequence, EE 640 and EE 642 or EE 626 and EE 650.
†The technical elective program is under constant review by the faculty. An updated list is available in the department office. Students should check with their advisors before selecting courses and should be aware that a formal mechanism exists to provide additional flexibility in the selection of their technical elective courses.
a program that can be optimized for an individual’s needs, talents and aspirations.

The Mechanical Engineering department contains modern research and teaching laboratories, a fully equipped machine shop and a laboratory dedicated to computer-aided-engineering. Undergraduates are encouraged to participate in research projects with faculty and graduate students involving the use of state-of-the-art instrumentation, electronics and computers. The computer facilities available for student use include networked microcomputers, a department Vax network with color graphics and a variety of university main frames. Laboratory space is set aside exclusively for student project work.

DEPARTMENTAL ACADEMIC STANDARDS

To enroll in the required fourth-semester courses—ME 214, ME 313 and MAT 302—the student must meet the following standards:

a. an overall grade-point average of 2.0
b. a grade of C or better in the courses EG 125, M 243, C 104, PS 207 and ME 213.

Student’s progress and academic records are reviewed each semester to enforce departmental standards.

TECHNICAL ELECTIVE PROGRAM

Technical electives in the senior year of the Bachelor of Mechanical Engineering curriculum provide the student with an opportunity to pursue areas of particular interest. The technical electives are taken after much of the basic engineering science has been mastered and comprise four coordinated courses (a minimum of 12 credits). Although the majority of the available electives are drawn from the Mechanical Engineering department, courses at the 400 level and above from other departments and colleges can be selected with the adviser’s approval.

There are four suggested major areas of concentration, Aerospace Engineering, Fluids and Thermal Engineering, Solid Mechanics and Materials, and Design, Dynamics and Manufacturing. However, technical elective programs can be structured to meet individual interests and students are encouraged to discuss their educational objectives with their adviser early in the junior year and to develop an agreed selection of technical electives.

DEGREE: BACHELOR OF MECHANICAL ENGINEERING

MAJOR: MECHANICAL ENGINEERING

CURRICULUM

CREDITS*

UNIVERSITY REQUIREMENTS

E 110 Critical Reading and Writing ... 3 19
Three credits in an approved course or courses stressing multicultural, ethnic, and/or gender-related content. #

COLLEGE REQUIREMENTS

Mathematics

M 241 Analytic Geometry and Calculus A ... 4 29
M 242 Analytic Geometry and Calculus B ... 4 29
M 243 Analytic Geometry and Calculus C ... 4 29
M 302 Ordinary Differential Equations I ... 3 29

Physics

PS 207 General Physics ... 4 18
PS 208 General Physics ... 4 18

General Education Program .. 18 124

Humanities and Social Science: Minimum of six courses (18 credits) with the following restrictions:

a. At least two courses (minimum of six credits) must be in the Humanities
b. At least two courses (minimum of six credits) must be in the Social Sciences

c. At least two of the six courses (minimum of six credits) must be above the introductory level.

d. At least two of the six courses (minimum of six credits) must be in the same department or program.

Humanities courses include Art History, English (except E 110 and other skills courses), Foreign Languages & Literatures, Foreign Languages (other than the student’s native language(s)), certain Geography courses (except G 101, 206 and 220), History, Linguistics, Literature, certain Music courses, and Philosophy (except PHIL 110, 105 and 205).

Social Science courses include Anthropology (except ANT 102 and 302), Economics, certain Geography courses (except G 101, 206 and 220), Political Science, Psychology (except PSY 309 and 314), Sociology, and cross-listed Women’s Studies and Black American Studies courses.

Courses in Black American Studies, Honors Colloquia, and Women’s Studies are individually classified as are courses in Early American Culture and other specialized programs. Arts and Science “Group D” courses may not be used to satisfy the General Education Program (refer to College of Arts and Science Group Requirements in this catalog). Students can obtain a listing of approved courses for the General Education Program from their respective departments or from the Dean’s Office, College of Engineering (135 du Pont Hall). The faculty adviser must be consulted for classification of courses under General Education.

MAJOR REQUIREMENTS

External to the College

Chemistry

C 103 General Chemistry .. 3 18
C 104 General Chemistry .. 4 18

An additional course (minimum of three credits) that can be either Air Force ROTC or a course outside the College of Engineering (not including mathematics or science or courses in the “Group D” classification of the College of Arts and Science).

* Superior figures indicate semester (fall or spring) and/or year or years in which the course is normally taken, i.e., 19 fall of freshman year, 29 spring of sophomore year, etc.
This requirement may be fulfilled through a course taken to complete major, group, breadth, or elective requirements. See page 24.
Within the College

EG 125 Introduction to Engineering (ME) .. 3 15
EG 152 Engineering Graphics/Analysis .. 2 15
MAT 302 Material Science for Engineers ... 4 25
MEE 306 Fluid Mechanics .. 3 16
MEE 306 Fluid Mechanics Laboratory ... 1 33
EE 314 Electronics and Instrumentation .. 4 11

Within the Department

ME 214 Principles of Mechanics I .. 3 15
ME 214 Principles of Mechanics II ... 3 15
ME 315 Thermodynamics I .. 3 15
ME 315 Thermodynamics II .. 3 15
ME 316 Strength of Materials .. 4 25
ME 316 Materials Engineering ... 3 15
ME 347 Mechanical Design I ... 3 15
ME 348 Mechanical Design II .. 3 15
ME 361 Applied Engineering Analysis ... 3 15
ME 391 Engineering Science Laboratory I ... 4 25
ME 391 Engineering Science Laboratory II ... 4 25
ME 392 Heat Transfer .. 3 15
ME 417 System Dynamics I ... 3 15
ME 447 Design and Systems Synthesis I ... 3 15
ME 448 Design and Systems Synthesis II .. 3 15

Technical Electives

Technical Electives† ... 12 4

400-level or above courses in engineering, science or mathematics selected by the student with the approval of their advisor.

There are four suggested areas of concentration in the technical elective offerings. Students should select a minimum of 12 credits from the following courses or substitute other courses in consultation with their advisor.

Technical Electives—Aerospace Engineering Concentration

ME 411 Structural Mechanics for Mechanical and Aerospace Engineering .. 3
ME 413 Advanced Mechanics of Materials ... 3
ME 415 Finite Element Analysis .. 3
ME 432 Aerodynamics ... 3
ME 435 Propulsion ... 3
ME 436 Fluid Machinery .. 3
ME 445 Senior Research .. 3 6
ME 616 Composite Materials Structures ... 3

Technical Electives—Fluids and Thermal Engineering Concentration

ME 408 Power Generation System Design ... 3
ME 432 Aerodynamics ... 3
ME 435 Propulsion ... 3
ME 436 Fluid Machinery .. 3
ME 4xx Flow of Viscous Materials ... 3
ME 445 Senior Research .. 3 6
ME 6xx Composite Manufacturing .. 3

Technical Electives—Solid Mechanics and Materials Concentration

ME 411 Structural Mechanics for Mechanical and Aerospace Engineering .. 3
ME 413 Advanced Mechanics of Materials ... 3
ME 415 Finite Element Analysis .. 3
ME 4xx Flow of Viscous Materials ... 3
ME 445 Senior Research .. 3 6
ME 616 Composite Materials Structures ... 3
ME 617 Composite Materials .. 3
MAT 602 Structure of Materials ... 3
MAT 615 Mechanical Properties of Materials 3

Technical Electives—Design, Dynamics and Manufacturing Concentration

ME 408 Power Generation System Design ... 3
ME 415 Finite Element Analysis .. 3
ME 445 Senior Research .. 3 6
ME 625 Vehicle Dynamics ... 3
ME 663 Computer Aided Design .. 3
ME 6xx Composite Manufacturing .. 3
ME 6xx Design with Composites ... 3
ME 6xx Design of Composites ... 3

CREDITS TOTAL A MINIMUM OF .. 131

TRANSFER STUDENTS

Students who wish to transfer into the Department of Mechanical Engineering from outside the college but within the University should apply to the chair by May 1 and complete a Change of College/Major/Degree form. Because of the large enrollment in the department, the following guidelines have been established for students wishing to transfer into the department:

1. Completion of M 241, M 242, PS 207, C 105† and C 104† with a grade of C or better in each course.

2. An overall grade-point index above the median of the freshman class (currently 2.5).

These admission criteria are minimum standards, and more stringent requirements may be imposed by enrollment limitations. In any case, admission depends on the being enrollment openings in the class for which the student is applying. Generally, the guidelines specified by the College Transfer Policy will be followed to initiate and process transfer applicants. This general transfer policy should be reviewed carefully by all applicants.

Students should also be aware that by taking ME courses beyond those listed as required for transfer, they are not guaranteed candidacy for the Bachelor of Mechanical Engineering. Efforts to control class size and total enrollment in the department have required that nonmajors be administratively removed from class lists following the registration period. Faculty teaching junior and senior courses are instructed not to admit nonmajors during the drop/add period.

DEPARTMENT OF AIR FORCE ROTC

The Air Force Reserve Officer Training Corps (AFROTC) provides a program for college men and women to earn commissions as Second Lieutenants in the United States Air Force while completing their

†Students are encouraged to develop a technical elective program that meets their own interests and career plans but all technical elective selections must be approved by an advisor.

Note: The technical electives program is under constant review by the faculty. An updated list is available in the department office. Students should check with their advisors before selecting courses and should be aware that a formal mechanism exists to provide additional flexibility in selection of the Technical Elective courses.

‡C 111, 112 and 19 are acceptable substitutes.
University course requirements. Commissioning follows the award of a University bachelor’s degree.

PROGRAMS OFFERED

Four-Year Program. The four-year program is composed of a General Military Course (GMC) and a Professional Officer Course (POC). The first two years, the GMC, provide a general introduction to the Air Force and the various career fields. Students enrolled in the GMC who are not receiving an Air Force Scholarship incur no reserve or active duty service obligation to the Air Force and may elect to discontinue the program at any time. The final two years, the POC, concentrate on developing leadership and management skills and on a study of American defense policy. Students must compete for entry into the POC. If accepted, they must attend four weeks of field training at a designated Air Force base during the summer following their sophomore year of college. When they return to the University in the Fall, they are placed under contract with the Air Force to complete the program and serve a minimum of four years on active duty. Pilot and navigator candidates incur an additional obligation because of specialized training following commissioning. All students under contract receive approximately $1,000 tax free annually.

Two-Year Program. The two-year program is normally offered to prospective juniors and graduate students. The academic requirements for this program are identical to the final two years of the four-year program. During the summer preceding entry into the two-year program, all candidates must complete a six-week field training session at a designated Air Force base.

General Requirements for POC Acceptance. Students competing for acceptance as POC cadets must complete the four-year or two-year program prerequisites, pass the Air Force Officer Qualifying Test, be physically qualified, meet certain age requirements, and be in good academic standing.

THE CURRICULUM

General Military Course (GMC)

Freshman year: The Development of Air Power I/II—AF 100 (fall) and AF 101 (spring). Each of these 1-credit courses consists of approximately one hour of academic class and one-and-a-half hours of leadership laboratory each week. These two GMC courses survey the history of air power from the 18th century to the present.

Sophomore year: The Air Force Today I/II—AF 200 (fall) and AF 201 (spring). Each of these 1-credit courses consists of approximately one hour of academic class and one-and-a-half hours of leadership laboratory each week. In combination, these two courses survey the roles of the Department of Defense and the U.S. Air Force in our society. GMC courses are open to all freshman and sophomore students. Only those interested in entering the POC attend the leadership laboratories.

Professional Officer Course (POC)

Junior year: Leadership and Management I/II—AF 310 (fall) and AF 311 (spring). Each of these three-credit courses consists of two-and-a-half hours of academic classes and one-and-a-half hours of leadership laboratory each week. Here the student is introduced to leadership and management concepts. The courses are designed to provide a foundation for basic leadership and management skills, with emphasis on communications.

Senior year: National Security Forces in U.S. Society I/II—AF 410 (fall) and AF 411 (spring). Each of these three-credit courses consists of two-and-a-half hours of academic classes and one-and-a-half hours of leadership laboratory each week. These courses focus on our national security policy—its evolution, actors, processes, and current issues. Emphasis is also given to military professionalism, military justice, and communication skills.

POC courses are open to all juniors and seniors without regard to enrollment in the AFROTC program. Only the POC cadets attend the leadership laboratories.

Scholarships Available. The AFROTC College Scholarship Program provides four- to eight-semester scholarships to students on a competitive basis. Scholarships are available in technical and nontechnical fields and are based on the whole-person concept. Any University of Delaware student may apply for these scholarships. Opportunity for scholarship selection is enhanced by enrolling in AFROTC. Those selected receive full tuition, lab expenses, incidental and textbook fees, plus a $100 monthly, nontaxable allowance during the year. Students who accept a scholarship enter the AFROTC program as a contract cadet.

Air Force ROTC Nurse Program. Air Force ROTC makes it possible for qualified nursing school applicants to enroll in its programs and, upon completion of all academic requirements, receive a commission as a Second Lieutenant in the United States Air Force Medical Corps. Four- to eight-semester scholarships are available to highly qualified applicants.