THE EFFECTS OF HEAT STRESS ON THE TRANSCRIPTOMICS OF DAY28 SPLEENS IN ROSS 708 AND ILLINOIS BROILERS

by

Amanda Wagner

A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Master of Science in Animal Science

Fall 2016

© 2016 Amanda Wagner
All Rights Reserved
THE EFFECTS OF HEAT STRESS ON THE TRANSCRIPTOMICS OF DAY28 SPLEENS IN ROSS 708 AND ILLINOIS BROILERS

by

Amanda Wagner

Approved: __
Carl Schmidt, Ph.D.
Professor in charge of thesis on behalf of the Advisory Committee

Approved: __
Limin Kung, Jr., Ph.D.
Chair of the Department of Animal and Food Sciences

Approved: __
Mark Rieger, Ph.D.
Dean of the College of Agriculture and Natural Resources

Approved: __
Ann L. Ardis, Ph.D.
Senior Vice Provost for Graduate and Professional Education
ACKNOWLEDGMENTS

First I would like to thank my advisor Dr. Carl Schmidt for providing me with the opportunity to work on this project and answering any and all questions during my time as a graduate student. I would also like to thank Dr. Jason Gleghorn, Dr. Robert Dyer and, Dr. Marlene Emara for serving on my committee and providing insightful comments throughout the writing process. I would like to thank all of the members of the Schmidt lab for their help throughout my time as a graduate student. Last but certainly not least, a huge thank you to my parents, family, and friends. They consistently encouraged and supported me from start to finish during my time in the Master’s program at the University of Delaware.
TABLE OF CONTENTS

LIST OF TABLES .. vi
LIST OF FIGURES .. ix
ABSTRACT ... xii

Chapter

1 INTRODUCTION .. 1

2 LITERATURE REVIEW .. 8

3 HYPOTHESIS AND OBJECTIVES .. 15

4 MATERIALS AND METHODS ... 17
 4.1 Animal Rearing, Experimental Design, and Tissue Collection................................. 17
 4.2 Ethics Statement ... 18
 4.3 RNA Extraction .. 19
 4.4 Library Preparation and Sequencing .. 20
 4.5 Transcriptomic Analysis .. 21
 4.6 Analysis Descriptions .. 22

5 RESULTS AND DISCUSSION .. 25
 5.1 Differential Expression Analysis Results ... 25
 5.2 RTE Analysis using Gene Ontology (GO) and WebGIVI ... 35
 5.3 RTE Analysis of Ross 708 Control genes with the iTerm Spleen 36
 5.4 RTE Analysis of Ross 708 Control genes with AmiGO2 and WebGIVI 38
 5.5 RTE Analysis of Ross 708 Heat-Stressed genes with the iTerm Spleen 43
 5.6 RTE Analysis of Ross 708 Heat-Stressed genes with AmiGO2 and WebGIVI 47
 5.7 RTE Analysis of Illinois Control genes with AmiGO2 and WebGIVI 55
 5.8 RTE Analysis of Illinois Control genes with the iTerm Spleen 57
 5.9 RTE Analysis of Illinois Heat-Stressed genes with AmiGO2 and WebGIVI 61
 5.10 RTE Analysis of Illinois Heat-stressed genes with the iTerm Spleen................. 65
6 CONCLUSION .. 77
7 FUTURE WORK .. 80
REFERENCES .. 88

Appendix

A DIFFERENTIAL EXPRESSION AND RELATIVE TISSUE EXPRESSION ANALYSIS PROTOCOLS... 95
 A.1 Differential Expression Analysis Protocol ... 95
 A.2 Relative Tissue Expression Analysis Protocol ... 96
B DIFFERENTIAL EXPRESSION RAW DATA TABLES FOR ROSS AND ILLINOIS CONTROL AND HEAT-STRESSED GROUPS 101
C RAW DATA TABLES FOR THE RELATIVE TISSUE EXPRESSION ANALYSIS FOR THE ROSS AND ILLINOIS CONTROL AND HEAT-STRESSED GROUPS .. 105
D PERMISSION LETTERS ... 217
E AACUC APPROVAL FORM .. 218
LIST OF TABLES

Table 1: The number of samples used in both control and heat-stressed groups for the Ross 708 and Illinois broiler lines. The total number of spleen samples used in this experiment is also provided and was established after a final RNA quality check. .. 20

Table 2: Bird identification numbers that were used in Differential Expression analysis for Ross 708 D28 Control Liver samples compared to Ross 708 D28 Control Spleen samples. Each row represents a randomly selected broiler for this analysis with a total of nine samples in the spleen and seven in the liver.. 26

Table 3: Bird identification numbers that were used in Differential Expression analysis for D28 Ross 708 D28 Heat-Stressed Liver samples compared to Ross 708 D28 Heat-Stressed Spleen samples. Each row represents a randomly selected broiler for this analysis with a total of ten samples in the spleen and seven samples in the liver.................... 27

Table 4: The average spleen weight and body mass under control and heat-stressed conditions measured in grams for both Ross 708 and Illinois broilers at D7, D21, D28 and D42. There was no statistical significance found between either line under control or heat-stressed conditions when the means of the absolute spleen weight and body mass were evaluated.. 34

Table 5: The top 10 biological processes found in the gene ontology database, AmiGO2 without the Bonferroni correction for the comparison of Ross 708 broilers Control RTE genes with the iTerm Spleen. The biological processes are sorted based on p-value of <0.05. 37

Table 6: 235 enriched genes found in the Ross 708 control RTE analysis were inserted into AmiGO2 and the top 10 biological processes found without the Bonferroni correction. The biological processes were sorted based on a p-value of <0.05. The red boxes signify similar processes containing identical cytokines and differing by one factor found in the regulation of T cell differentiation process. 40
Table 7: Seven of the ten genes found by the gene ontology analysis and relevant to D28 spleen data from the Ross 708 heat-stressed RTE in comparison with the iTerm Spleen (485 genes). 45

Table 8: 225 genes found enriched in D28 Ross 708 heat-stressed RTE were inserted into AmiGO2. The top 10 biological processes were sorted based on a p-value of <0.05 with a disabled Bonferroni correction. The process, cell communication was found to have thirty eight genes containing pertinent information to the present study. 48

Table 9: 249 genes enriched in the Illinois Control RTE genes were assessed in AmiGO2. The top 10 biological processes were selected based on p-value <0.05 without the Bonferroni correction. Each category was then evaluated using the text mining tool WebGIVI. 56

Table 10: 249 enriched Illinois Control RTE genes were compared to the iTerm Spleen (485 genes) using Venn diagram. Six genes were found in common between the two gene lists and further analyzed by AmiGO2 and WebGIVI. 58

Table 11: The top 10 biological processes based on p-value <0.05 found during a GO analysis comparing the 249 enriched genes found in the Illinois Control RTE data and the iTerm spleen. This analysis was conducted without the Bonferroni correction. The first four processes contained the same two gene products, IL-22 and IFNG. 59

Table 12: 170 enriched genes in the heat-stressed Illinois RTE data were examined by AmiGO2 and the top ten biological processes were selected based on a p-value <0.05 with the Bonferroni correction. The biological process leukocyte cell to cell adhesion contained nine which were found to be markers of inflammation. 62

Table 13: 170 enriched Illinois Heat-Stressed RTE genes were compared to the iTerm spleen (485 genes) using Venn diagram. The analysis established five genes in common between the two gene lists and was further investigated through AmiGO2 and WebGIVI. 66

Table 14: The top 10 biological processes based on a p-value <0.05 found in the gene ontology database AmiGO2 without Bonferroni correction between the 170 genes enriched in the Illinois heat stress RTE data and the 485 genes found with the iTerm Spleen. Each biological process was associated with GATA3. 66
Table 15: Raw data table for 44 differentially expressed genes found in the Ross Control and Heat-stressed groups. Control genes are illustrated with a negative \(\log_2 \) HS/C ratio and Heat-stressed genes are illustrated by a positive \(\log_2 \) HS/C ratio. ... 101

Table 16: Raw data table for 52 differentially expressed genes found in the Illinois Control and Heat-stressed groups. Control genes are illustrated with a negative \(\log_2 \) HS/C ratio and Heat-stressed genes are illustrated by a positive \(\log_2 \) HS/C ratio.. 103

Table 17: Raw data table for the enriched genes found in the relative tissue expression data for Ross Control and Heat-stressed groups. The genes enriched in the control group are unbolded and the enriched heat-stressed genes are illustrated in bold. ... 105

Table 18: Raw data table for the enriched genes found in the relative tissue expression data for Illinois Control and Heat-stressed groups. The genes enriched in the control group are unbolded and the enriched genes in the heat-stressed group are illustrated in bold......................... 166
LIST OF FIGURES

Figure 1: Structural differences between Avian (A) and Mammalian spleens (B). The avian and mammalian spleen contains similar anatomical layouts; however, they also differ slightly in structural appearance. The avian spleen contains a closed microcirculation, without a well-defined marginal zone between the red and white pulps [52]. Germinal centers can be found in the PALS, a T lymphocyte dependent area. Germinal center formation can begin when foreign antigen is encountered and an immune response is elicited. The mammalian spleen differs in that it contains a very distinct marginal zone around the PALS and is more defined between the red and white pulp with an open microcirculation allowing blood to flow freely out of the penicillary capillaries [23, 52]. This figure was adopted from Kaiser, P. and Balic, A. 2014..3

Figure 2: Blood flow through the avian spleen. Blood circulating in the body flows out of the aorta into the celiac trunk and down into the trabecula of the spleen. From the trabecula, the blood moves into the central artery which divides and travels into the penicillary capillaries surrounded by the peri-ellipsoid white pulp where B lymphocytes are maintained [68]. Finally, the blood moves out of the capillaries and down through the pulp cords and out of the spleen through the venous sinuses. The avian splenic blood flow demonstrates a closed microcirculation because the blood is enclosed in an artery or vein at all times [9]. This figure was adapted from Kaiser, P. and Balic, A. 2014..6

Figure 3: Recreated diagram representing the possible routes of differentiation into other immune related cells. Pluripotent stem cells (HSC) have the ability to differentiate into a variety of immune cells within the body. Many of these cell types will be used by the spleen to provide surveillance and detect foreign antigens. Others will migrate to other areas of the body when necessary. The image was adapted from https://en.wikipedia.org/wiki/Hematopoietic_stem_cell#/media/File:Hematopoiesis_simple.svg..7
Figure 4: Graph of cyclic heat stress during the Fall 2013 trial and time of necropsy. The graph illustrates the temperature applied (39°C) for eight hours per day to the heat-stressed broiler groups which decreased to 25°C for the remaining 16 hours of the day. The control birds remained at 25°C throughout the entire experiment, while all birds were raised under these conditions until 21 days of age. The red diamond displays the time of necropsy and tissue sample collection. The red circle marks the time frame, estimated to about three to four hours into the heat stress period when the necropsy was performed on D28 broilers.

Figure 5: A flow diagram that represents the different analyses used to identify the enriched genes in the transcriptomic data of the Ross and Illinois broilers. These same methods were also used to compare the enriched genes across broiler lines in each condition.

Figure 6: The graph represents the mean of the normalized spleen weights at D7, D21, D28 and D42 for control and heat-stressed Ross 708 broilers. The control group is represented by the blue bars and the heat-stressed group is represented by the red bars; each time point for both groups contains an error bar ±1 standard error from the mean. The graph illustrates the slight impact of heat stress on D28 spleens, with a statistically significant impact of heat stress (p-value < 0.002) on D42 spleens. The asterisk indicates statistical significance of heat stress on D42 broilers.

Figure 7: The graph represents the Illinois control and heat-stressed broiler groups of the mean normalized spleen weights at D7, D21, D28 and D42. The control group is represented by the blue bars and the heat-stressed group is represented by the red bars; each time point contains an error bar ±1 standard error from the mean. The graph illustrates the slight impact of heat stress on D28 spleens, with a statistically significant impact of heat stress (p-value < 0.002) on D42 spleens. The asterisk indicates statistical significance of heat stress on D42 broilers.
Figure 8: The graph represents both broiler lines for the average normalized spleen weights at D7, D21, D28, D42. The control group is represented by the blue bars and the heat-stressed group is represented by the red bars; each time point contains an error bar ±1 standard error from the mean. The graph shows the proportional impacts of heat stress on both broiler lines when compared to one another. The line with asterisks indicates statistical significance found in both broiler lines at D42 when comparing control groups to heat-stressed groups.

Figure 9: Simplified version of the concept map from WebGIVI. The concept map converted the initial gene list (CD83, FOXN1, SASH3, and IL-6) from the Ross 708 control RTE data, into a visual representation. It illustrates the four terms associated with two of the four genes inserted for the analysis. Differentiate, immune, mature and lymphoid were the four terms found by this analysis and only CD83 and FOXN1 were found with an association.

Figure 10: Recreated Venn diagram results. Venn diagram gives a visual representation of the genes enriched in the Ross 708 broiler line RTE data. There were a total of 1,212 genes with 751 enriched genes in common to both conditions with 235 specifically enriched genes in the control broilers and 225 genes enriched in the heat-stressed broilers.

Figure 11: This figure was taken from Leon and Helwig, 2010 illustrating the numerous aspects heat stress can effect in broiler chickens. Heat stress has the ability to cause vasoconstriction in various areas of the body (brain and gut) and initiate a cascade of effects, activating various cytokines. Activation of cytokines and other factors can result in activation of the immune system and in severe cases cause organ failures [33].

Figure 12: An example of cell differentiation in a mouse model adopted from Korn et al., 2009. This diagram demonstrates the relationship between innate immune cells, naïve T cells, TH17 cells in combination with TGF-β, IL-6 and the production of cytokines, such as IL-17 [27].

Figure 13: A spectrum describing the activation of different parts of the immune system as inflammation increases over time. When heat stress acts on a broiler, the bird will continue to perform normal physiological functions until an exogenous antigen is encountered and helps promote inflammation. As inflammation increases, the innate immune system will be activated followed by the adaptive immune response.

xi
ABSTRACT

Heat stress negatively affects the agricultural industry today. With global temperatures on the rise, evaluating the response of hyperthermia on broiler chickens is a vital application for poultry production. Heat stress can cause immunosuppression and we hypothesize that heat stress suppresses the immune response and negatively affects the splenic function. We predict there will be changes in gene expression seen in the transcriptomic profile comparisons of the D28 spleens from the Ross 708 and Illinois broiler chickens. Broiler eggs were obtained and following hatch, the males were divided into control and heat-stressed groups. The control groups were raised at a constant temperature of 25°C. The heat-stressed groups received eight hours of 39°C cyclic hyperthermia starting at D21 through D28 and maintained at 25°C for the remaining 16 hours of the day. Necropsies were performed approximately three to four hours into the heat cycle on D28 to obtain spleens. RNA extraction was performed and transcriptome libraries were constructed. Morphometric analysis revealed an impact on normalized spleen weights of both lines at D28 and a significant impact at D42. A minimal response was elicited by the spleen and the immune system in all control broiler groups suggesting normal physiological functions. The Ross 708 heat-stressed group highlighted possible occurrence of an intestinal epithelial barrier degradation resulting in the leakage of bacterial toxins into the systemic circulation, and eliciting an innate immune response from the spleen. Several genes products, IL-6, IL-17F, and...
TGF-β were found to require further investigation to definitively establish a connection with leaky gut syndrome. Overall, heat stress had an impact on the spleen as well as the immune system but, the extent of this effect is not completely understood.
Chapter 1

INTRODUCTION

The domestication of today’s chicken occurred between 7,000 and 10,000 years ago from a species known as the Red Jungle Fowl (RJF), *Gallus gallus*. Chickens originated from South East Asia with supporting evidence found in other parts of China, Asia and Europe [17, 26, 50]. The introgression of other species, like the gray jungle fowl has contributed to certain desirable traits in the poultry industry such as the golden color of the skin according to Schmidt, et al. Golden skin color was selected for in the meat industry of Ross 708 broilers [50]. The selection process began more than 50 years ago starting in the 1940’s. The separation of layers (egg type birds) and broilers (meat type birds) has also helped drive this selection process. Since the 1940’s, broilers were genetically selected for increased feed efficiency and body weight gain, allowing birds to reach market weight in about six weeks compared to the 16 weeks back in the 1940’s and 1950’s [20, 50].

In this study, commercial broilers are represented by the Ross 708 line which has undergone intense genetic selection. Birds modeled after the broilers from the 1950’s are known as the Illinois line and have not undergone intense genetic selection. Although high breast muscle yield, increased feed efficiency and, fast grow-out are desirable traits, they also have several implications in the poultry industry [50]. Faster growth has led to an increased metabolic rate, resulting in higher internal heat production. In addition, fast growth appears to have led to other issues including
immunosuppression which causes increases in susceptibility to disease, pathogens and increasing mortality rates in response to heat stress [54].

Many tissues in the avian body have been studied including the spleen, a vital organ to the immune system of a bird. The avian spleen is a small round, oval-shaped organ located “dorsally and to the left of the proventriculus” [23]. This organ does not begin to develop until embryonic day ten along with other immune organs such as the thymus and cloacal bursa. The endoderm germ layer is solely responsible for the emergence of the spleen and other immune related organs [1]. The main function is to filter the circulating blood that comes into the spleen which subsequently expands in size upon exposure to antigens. It contains both red pulp and white pulp, and the white pulp is comprised of the peri-arteriolar lymphoid sheath (PALS) and the Ellipsoids. The red and white pulp areas within the avian spleen are not clearly distinguished from one another, unlike the mammalian spleen [23]. Figure 1 illustrates the structural differences between the two.
Figure 1: Structural differences between Avian (A) and Mammalian spleens (B). The avian and mammalian spleen contains similar anatomical layouts; however, they also differ slightly in structural appearance. The avian spleen contains a closed microcirculation, without a well-defined marginal zone between the red and white pulps [52]. Germinal centers can be found in the PALS, a T lymphocyte dependent area. Germinal center formation can begin when foreign antigen is encountered and an immune response is elicited. The mammalian spleen differs in that it contains a very distinct marginal zone around the PALS and is more defined between the red and white pulp with an open microcirculation allowing blood to flow freely out of the penicillary capillaries [23, 52]. This figure was adopted from Kaiser, P. and Balic, A. 2014.
Lymphoid organs throughout the avian system are divided into two groups, primary and secondary. Maturation of immature lymphocytes occurs in primary lymphoid organs while secondary lymphoid organs allow lymphocytes to become activated when they interact with antigens. In the avian system, the Bursa of Fabricius (where B lymphocytes develop in birds) is an example of a primary lymphoid organ and the spleen is an example of a secondary lymphoid organ. Unlike the mammalian immune system, the avian immune system does not contain lymph nodes; instead, it contains lymph nodules which are aggregates of lymphoid tissue that are located throughout the bird’s body. Thus, the spleen is the predominant secondary lymphoid organ in birds and it is actively involved in antigen-specific immune responses, as evidenced by the presence of germinal centers [Emara, personal communication, 55]. This secondary lymphoid organ consists of many interactions of lymphoid and non-lymphoid cells, such as macrophages, dendritic cells, and heterophils (the avian equivalent to the mammalian neutrophil) [23].

The blood flow through the spleen is similar to that of mammals. However, in avian species, blood travels from the heart through the aorta into the celiac trunk, through the splenic artery, into the encapsulated trabecula and into the splenic pulp. Once in the splenic pulp, it moves through the central artery, surrounded by the peri-arteriolar lymphoid sheath (PALS) [23]. In the avian spleen the red pulp includes the blood-filled sinusoids and the white pulp is the lymphatic tissue. The PALS is a dense area of lymphatic tissue surrounding the central artery and it contains T lymphocytes along the central artery.

The blood continues through the smaller arterioles which arise from the central artery and into the ellipsoids and peri-ellipsoid white pulp. This area is where the first
exposure of antigens is detected and where B lymphocytes along with dendritic cells and macrophages (ellipsoid associated cells, EAC) reside. This interface is where the marginal zone is located and like many other features of the avian spleen, this zone is not well-defined, but separates the red and white pulp. These central arterioles divide further into the penicillary capillaries which contain no muscular layers and they are directly associated with the sinuses of the red pulp. In chickens, these penicillary capillaries are continuous with the venous sinuses, demonstrating a closed circulation through the spleen [9]. In the mammalian counterpart, the penicillary capillaries open in to the pulp cords allowing erythrocytes to migrate through the endothelial cells and into the venous sinuses [23]. In the chicken, the pulp cords are what separate the arterial and venous systems (See Figure 2).
Figure 2: Blood flow through the avian spleen. Blood circulating in the body flows out of the aorta into the celiac trunk and down into the trabecula of the spleen. From the trabecula, the blood moves into the central artery which divides and travels into the penicillary capillaries surrounded by the peri-ellipsoid white pulp where B lymphocytes are maintained [68]. Finally, the blood moves out of the capillaries and down through the pulp cords and out of the spleen through the venous sinuses. The avian splenic blood flow demonstrates a closed microcirculation because the blood is enclosed in an artery or vein at all times [9]. This figure was adapted from Kaiser, P. and Balic, A. 2014.
The red pulp in the spleen is mainly responsible for erythrocyte production from a common hematopoietic stem cell (HSC) progenitor but only after the spleen begins to mature [23]. The hematopoietic stem cells divide and differentiate to yield a variety of cell types including erythrocytes lymphoid/non-lymphoid cells, as well as platelets. Figure 3 illustrates the division from hematopoietic stem cells into a plethora of cells that will be used by the spleen and the immune system. Once erythrocytes have formed, the primary job of the red pulp is to filter and recycle the aged red blood cells. Other areas of the red pulp are also needed to regulate adhesion and/or migration of immune-related cells [23].

Figure 3: Recreated diagram representing the possible routes of differentiation into other immune related cells. Pluripotent stem cells (HSC) have the ability to differentiate into a variety of immune cells within the body. Many of these cell types will be used by the spleen to provide surveillance and detect foreign antigens. Others will migrate to other areas of the body when necessary. The image was adapted from https://en.wikipedia.org/wiki/Hematopoietic_stem_cell#/media/File:Hematopoiesis_simple.svg.
Chapter 2

LITERATURE REVIEW

Heat stress has many implications in the broiler chicken, including physiological, behavioral and molecular effects. By definition, “heat stress results from a negative balance between the net amount of energy flowing from the animal’s body to its surrounding environment and the amount of heat energy produced by the animal” [30, 54]. Heat stress can be divided into two main categories, acute and chronic. Acute is defined as 0-4 hours while chronic is five hours or more [14, 18]. Both acute and chronic heat stress have detrimental effects on the poultry industry [2, 14, 18, 30, 54].

Chickens are very sensitive to changes in temperature. They have a narrow core body temperature range of approximately 40.5-41.5°C [15, 62]. This sensitivity is due to a higher metabolic rate produced by broilers whose main purpose is to produce high quality skeletal muscle with a 42 day grow-out period. There are several factors that need to be taken into account for the thermoregulatory mechanisms of temperature homeostasis in chickens. The thermo-neutral zone is an important factor and by definition, it is when a bird at rest does not alter its oxygen consumption with temperature; meaning the metabolic rate is static. Temperatures above or below this zone are the upper critical temperature (UCT) and the lower critical temperature points (LCT). The UCT is a point at which a bird must relieve heat by evaporative cooling (through panting) because chickens do not contain sweat glands. However, if a chicken’s core body temperature is below the LCT, then birds will shiver to increase
their metabolic rate and produce more heat. Much of a broiler’s energy is spent producing skeletal muscle; i.e., breast muscle (BM) at a high turnover rate.

Birds initiate several behavioral and physiological changes in response to heat stress. A behavioral response to thermal challenge is panting (up to 300 times per minute). This permits chickens to utilize their air sacs and remove up to 20% of heat through evaporative cooling because they lack sweat glands. However, this method of evaporative cooling can also cause dehydration. Other responses include decreased feed intake, increased water intake, and lethargy [30]. A physiological response to heat stress comprises the interaction and relay of signals from the central nervous system (CNS). The CNS has been found to integrate three different systems within the body, nervous, endocrine, and immune. More importantly, the hypothalamic-pituitary-adrenal axis (HPA) and sympathetic-adrenal medullar (SAM) axes specifically control responses of the immune system providing an avenue to alter an immune response [30].

Immune cells such as lymphocytes and macrophages contain receptors that when bound by molecules or products from the HPA and SAM axes can modify various cellular activities (cell proliferation, secretion of cytokines etc). Many studies have also indicated a suppressed immune system in both broilers and layers when exposed to heat stress [41]. Wolowczuk, I., et al., 2008 indicated two main energy sources for immune cells, glucose and lipids. Lipids play a dual role as both an energy source and they also help maintain structural integrity of the immune cell membranes. They are supplied by the diet and by adipose tissue. Glucose on the other hand is considered to be the primary energy source for the cells of the immune system. It is required to prevent and recover from infection as well as eliciting an immune response.
for both innate and adaptive responses [61]. Activation of cells such as lymphocytes requires glycolysis to generate energy for cellular activities. Once an immune response is generated, the body has to change cellular activity shifting from homeostasis to a state of increased metabolic activity, demanding higher energy [61].

In response to high environmental temperatures, physical evidence has appeared in the form of reduced organ weights of the spleen, thymus, and liver [5, 30, 34]. In human models protein clumping has been observed within the spleen when exposed to chronic heat stress [33]. Many studies have also pointed out that thermal stress can increase the heterophil to lymphocyte blood ratio [51] and cause decreased intestinal integrity [30]. Loss of the intestinal permeability barrier integrity and function has been seen in both acute and chronic heat stress studies [41, 42]. Because of this permeability loss due to heat stress, the gut microflora can be altered and negatively affect body weight gain and other aspects of the chicken. This allows an influx of toxins or bacteria within the systemic circulation, contributing to inflammatory response and infection [41, 42].

Heat stress can be detrimental to the poultry industry through a variety of factors. In the poultry industry alone there has been an estimate of $128-165$ million of economic losses contributing to the overall economic loss of the U.S. livestock production totaling around $1.7-2.4$ billion [30, 54]. Some of these losses could be prevented by providing sprinkler systems to keep chickens cool during heat waves. If heat stress continues to cause high mortality rates in the poultry industry, there may be a decline in the total number of broilers available for human consumption. In 2015 the U.S. consumed an estimated 106lbs of poultry per capita (this number encompasses all poultry, turkey, chickens etc). The average person consumed about 89lbs in the broiler
category. In 2016, the U.S projected the average person will consume an estimated 90lbs of chicken (strictly broiler meat) and 108lbs across all categories of poultry [54].

This study exploits transcriptomics to understand the spleens response to heat stress in the chicken. A transcriptome is composed of DNA sequences that are transcribed into RNA transcripts found within the cells of an organism [36]. From this information one can identify those genes that respond to a particular environmental stress, such as heat stress. The transcriptome is important because external and internal factors can alter cellular activity, leading to detrimental outcomes. It identifies and quantifies every gene that has been annotated to the chicken genome (annotated in 2004, updated in 2015).

Transcriptomics are useful because it permits tissues to be analyzed and compile evidence as to what may be considered normal for a specific tissue in comparison to a diseased state. This in depth analysis would give scientists the opportunity to resolve problems across an array of disciplines. This is an excellent means for comprehending what is occurring at the cellular and molecular levels of a broiler and contributes to the overall understanding of the different chemical reactions and pathways [16, 19]. In the human and chicken genomes, as a whole, we do not know the function of every gene in the body and what they express [16, 19]. The chicken, like the human, is also used as a model organism for disease and vaccination research to maintain the highest health standards for meat processing and human consumption [10]. The more we comprehend the functionality of genes within model organisms, the better we can utilize them to our advantage for production purposes and overcome issues during the advancement of chicken genetics allowing farmers to raise healthy birds.
Several actions have been taken to counteract thermal stress including studying the effects of embryo thermal conditioning. Many studies have highlighted the possibility of improving a chicken’s ability to handle heat stress later in life [38, 60]. According to Moraes, V. M. B. et al., 2003 and Renaudeau, D. et al., 2012, pre-natal thermal conditioning may lead to improved thermo-tolerance. Thermoregulation and homeostasis is regulated by thyroid hormones triiodothyronine (T3) and thyroxine (T4) [53, 59]. Stojevic et al., 2000 found T3 to have a greater role in metabolic activity compared to that of T4 and indicating T3’s part in energy and heat production. The results of this study illustrated reduced levels of T3, to be correlated with stunted growth in deficient birds [53]. This was supported by evidence found in Moraes et al., 2003 which saw decreased T3 levels and triglycerides in blood plasma in response to heat stress. Overall lower levels of T3 would indicate a positive response to pre-natal thermo-conditioning and resistance to heat stress in older birds.

Although studies have been conducted on preventing the detrimental effects of heat stress, the consequences have also been reviewed to understand how heat stress can affect the broiler industry as a whole. Hyperthermia can cause significant damage to the body regardless of species. In a human study conducted by Lambert, G. P., 2008, intestinal permeability was observed in maintaining the balance of gut microbiota ensuring endotoxins (lipopolysaccharides) do not leak into systemic circulation. However, the study showed that a prolonged hyperthermia can erode the intestinal permeability barrier by disrupting tight junctions of enterocytes in the gut leading to local and systemic reactions. As a result of lipopolysaccharide leakage into the environment outside of the gut, cytokines can be released from monocytes or macrophages monitoring the area as endotoxins are encountered. Hyperthermia can
also cause a reduction in blood flow to core organs through vasoconstriction creating hypoxic conditions and oxidative stress. This further contributes to tissue damage within and outside of the gut [29]. The terminology used to describe this issue in the human model is known as leaky gut syndrome. The immune system responds by producing pro-inflammatory cytokines such as IL-6 and interferon gamma (IFNG) which can also be seen when high levels of LPS’s are found in systemic circulation. Sustaining elevated levels of LPS’s and pro-inflammatory cytokines can lead to multiple organ failures and a reaction similar to sepsis and heat stroke [29].

In the liver, heat stress has been known to cause oxidative stress leading to an increase in enzymatic activity (higher levels of glutathione and oxidized glutathione GSSH) and lower levels of the reduced glutathione GSH: GSSH ratio [32]. The result of this is a possible adaptive mechanism used by the body to cope and protect the liver. Similar results in a mouse study were also seen in response to chronic heat stress [4, 11]. Many studies have marked oxidative stress as a negative effect of heat stress in the liver however; it is unclear if the spleen also exhibits a similar response.

Comparative studies focusing on the differences between Ross 708 and Illinois broilers have shown the impact of human’s genetically altering broiler lines for increased production [50]. Illinois birds were produced from New Hampshire males crossed with females carrying the Columbian feather pattern which have been maintained and inbred at the University of Illinois since the 1940’s. This particular cross allows for easy male and female identification and represents a bird that has not been genetically selected for rapid growth [50]. This study evaluates the transcriptomic gene expression between Ross 708 and Illinois broilers (birds modeled after meat production types from the 1940’s). In this study, the first three weeks of life
(21 days) for both broiler lines were unstressed at 25°C. The heat-stressed groups were then introduced to a cyclic heat stress of 39°C starting at D21 and were maintained for eight hours each day until the birds reached D28.

Analyses revealed activation of the innate immune system in response to heat stress in both broiler lines along with the suggestion of leaky gut syndrome. This study found more enriched gene transcripts in the Ross 708 broilers in response to heat stress compared to the Illinois broilers. One explanation as to why this may have occurred could be due to the fact that Ross 708 broilers may not be adapted to their fast growth rate. This growth rate may be acting as an additional stressor in combination with the heat stress within these birds. Future studies may provide a better explanation as to the mechanisms underlying the current findings in both broiler lines while also providing clarification as to why the spleen did not exhibit a robust response as hypothesized.
Chapter 3

HYPOTHESIS AND OBJECTIVES

Heat stress is one of many factors negatively affecting the broiler industry. Broiler chickens genetically selected for higher meat yield and faster body weight gain (Ross 708 line) are more susceptible to heat stress than broilers with slower growth rates and lower body weight gains (Illinois line). Qualities such as increased growth and weight gain have led to increases in metabolic rates allowing broilers to generate greater amounts of internal heat. The spleen being the main secondary lymphoid organ in a chicken is responsible for regulating immune responses. Studies have shown heat stress alone can cause immune suppression and disease susceptibility [5] however; the addition of increased metabolic rates in some broiler lines may exacerbate these types of responses. We believe that heat stress suppresses the immune response and negatively affects the spleen in various aspects. We predict there will be changes in gene expression seen in the transcriptomic profile comparisons of D28 spleens from the Ross 708 and Illinois broilers. The transcriptomic profile comparisons may reveal negative effects of thermal stress on the erythrocyte, as well as the B and T lymphocyte populations. The hypotheses on the effect of heat stress on gene expression in the chicken spleen include:

1. **Hypotheses 1:** The erythrocyte population will be damaged as a result of the thermal stress and express more genes responsible for blood clearance and hemoglobin production.
2. **Hypothesis$_{1.2}$**: B and T lymphocyte populations will be negatively affected by decreasing their total number of cells because of heat stress. As a result, there may be less gene expression from B and T lymphocytes along with antigen recognition and presentation cells because of immune suppression.

3. **Hypothesis$_{1.3}$**: There may be an increase in the expression of genes responsible for inducing a systemic response.

With these hypotheses in mind, this study was also established to explore the following three objectives:

1. Study the effects of heat stress on the spleen’s normalized growth rate in both Ross 708 and Illinois broilers.

2. Identify genes unique to the control and heat-stressed groups in both Ross 708 and Illinois broilers and understand the differences in gene expression by evaluating their relative tissue expression data. By understanding what genes respond to heat stress in the spleen, we can begin to describe the implications on the immune system.

3. To understand which broiler line demonstrates a larger overall response in the spleen and to identify immune-related genes affected by heat stress.
Chapter 4

MATERIALS AND METHODS

4.1 Animal Rearing, Experimental Design, and Tissue Collection

Broiler eggs were acquired from the University of Illinois (Illinois broilers) and Mountaire farms (Ross 708) in Millsboro, Delaware. All eggs were incubated at 37°C with 60% humidity and hatched out at the University of Delaware (UD). Once hatched, females were culled and the male chicks were divided evenly into control (C) and heat-stressed (HS) groups. They were then placed into separate housing on the UD Farm and given food and water ad libitum. Both groups remained at 37°C and decreased by 4°C each week until the temperature reached 25°C on day 21 (D21) post-hatch. After D21, the heat-stressed groups received 39°C for eight hours a day representing a heat wave condition while the control birds remained at 25°C until D42. The temperature of the heat stress houses was brought down to 25°C for the remaining sixteen hours of the day after receiving the eight hours of heat stress. For this study, splenic gene expression was evaluated on D28 (7 days of heat stress). On D28, the birds were euthanized by cervical dislocation and various tissues, including the spleen were collected for analysis. Each tissue was placed in a two milliliter tube, flash frozen in liquid nitrogen, and stored at -80°C until total RNA isolation. Figure 4 demonstrates the application of cyclic heat during the experiment.
Figure 4: Graph of cyclic heat stress during the Fall 2013 trial and time of necropsy. The graph illustrates the temperature applied (39°C) for eight hours per day to the heat-stressed broiler groups which decreased to 25°C for the remaining 16 hours of the day. The control birds remained at 25°C throughout the entire experiment, while all birds were raised under these conditions until 21 days of age. The red diamond displays the time of necropsy and tissue sample collection. The red circle marks the time frame, estimated to about three to four hours into the heat stress period when the necropsy was performed on D28 broilers.

4.2 Ethics Statement

This study was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the Committee on the Ethics of Animal Experiments of the University of Delaware (Permit Number: 2703-12-10).
4.3 RNA Extraction

Total RNA was extracted from approximately 45mg of spleen tissue using the MirVana Total RNA Isolation Kit (Thermo Fisher Scientific, Waltham, MA, USA) following the manufacturer’s protocol. The total RNA was extracted from thirty six, D28 samples. The Ross 708 line had a total of 19 spleen samples. Nine of the samples were controls and the remaining ten were from heat-stressed birds. The remaining 17 samples were from the Illinois broilers. Eight of these samples represented the control birds and the remaining nine were from heat-stressed broilers. Table 1 displays the total number of tissues used in this experiment from both broiler lines in each condition after a RNA quality check was performed. After RNA extraction, each sample was treated with a DNA-free™ DNA Removal Kit following the manufacturer’s protocol (Thermo Fischer Scientific, Waltham, MA, USA) to remove any impurities and debris left behind from RNA isolation. Next, the concentration of each sample was determined using the Qubit 2.0 Fluorometer and sent to the Delaware Biotechnology Institute (DBI) in Newark, Delaware for a final quality check. All RNA samples from the 36 birds had a RNA Integrity Number of 3.1 or higher and they were used to construct transcriptomic libraries.
Table 1: The number of samples used in both control and heat-stressed groups for the Ross 708 and Illinois broiler lines. The total number of spleen samples used in this experiment is also provided and was established after a final RNA quality check.

<table>
<thead>
<tr>
<th>Day</th>
<th>Line</th>
<th>Number of Control Samples</th>
<th>Number of Heat-stressed Samples</th>
<th>Total Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Ross 708</td>
<td>9</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>28</td>
<td>Illinois</td>
<td>8</td>
<td>9</td>
<td>17</td>
</tr>
</tbody>
</table>

| | | | | 36 |

4.4 Library Preparation and Sequencing

After verifying the quality of each sample, a total of 4µg of RNA in conjunction with magnetic oligo-dt beads were used to purify the mRNA samples to generate cDNA constructs from reverse transcriptase. From these constructs, transcriptomic libraries were produced for each spleen sample and prepared using the Illumina TruSeq RNA Sample Preparation Kit (Illumina Inc., San Diego, CA, US) as per the manufacturer’s protocol. The 36 samples were then taken to DBI sequencing core facility in Newark, DE to be sequenced using the Illumina Highseq 2500 instrument. Each library was sequenced approximately at a depth of thirty million reads per library. Sequence reads were then mapped against the Galgal4 version (2011) of the chicken reference database.
4.5 Transcriptomic Analysis

Analysis was conducted after sequencing using an in house pipeline known as fRNAkenseq where Fragment per Kilobase of Exon per Million Fragment (FPKM) values were generated. The data was further analyzed using the statistical program JMP Pro 12 to determine the Differential Expression (Diff Express/DE) and Relative Tissue Expression (RTE) of each sample (See Appendix A).

To find differentially-expressed genes within the data, genes with mean values larger than 0.1 were identified as important because this would allow other methods such as qRT-PCR analysis, to confirm these results. Log$_2$ ratios of FPKM values for the control and heat-stressed chickens were established at D28 for both Illinois and Ross 708 broilers. Any genes with Log$_2$ values of ≥ 1 and ≤ -1 were further analyzed because they demonstrated a two-fold difference in expression. Genes were then recognized as differentially-expressed after a paired t-test was conducted and p-values of < 0.05 were established. This analysis compares the splenic tissues of both control and heat-stressed samples from both broiler lines. It identifies what genes are significant, if at all, in the 36 samples when compared to all of the spleen tissues analyzed by the lab (See Appendix A for protocol).

Relative tissue expression establishes what genes are enriched in the experimental spleen compared to the remaining tissues of the chicken (See Appendix A for protocol). The Maximum (Max), Median, and Log$_2$ ratio of the Max Tissue divided by the Median Tissue were calculated for each spleen sample from the two chicken lines. Then the Median of all other Tissues (those other than the eight control or heat-stressed spleen samples) was calculated along with the Log$_2$ ratio of Max Tissue divided by Median all Tissue. A means/anova/pooled T–test was performed and genes with a p-value of < 0.05 were examined in further detail. The control and
heat-stressed genes were separated at the end of the data transformation to assess the genes in each condition, individually. After completing the differential expression and relative tissue expression analyses, the transcriptomic data was then inserted into multiple bioinformatics tools including Path Rings, the gene ontology database AmiGO2 and WebGIVI. Figure 5 illustrates the different analyses conducted in this study.

Figure 5: A flow diagram that represents the different analyses used to identify the enriched genes in the transcriptomic data of the Ross and Illinois broilers. These same methods were also used to compare the enriched genes across broiler lines in each condition.

4.6 Analysis Descriptions

The bioinformatics tool Path Rings [67], reviews the pathways of genes found to be enriched in the relative tissue expression and differential expression analyses.
Once the expression data was uploaded, it was then visualized based on a color scale. From here, each pathway can be further expanded to evaluate the enriched genes with the Log$_2$ ratios and determine which genes are rate-limiting, along with their gene symbol and gene ID (entrez ID). This tool also allows for each gene to be described through the National Center for Biotechnology Information database (NCBI) by left clicking on the gene of interest and following the link to the NCBI database site.

AmiGO2 [8] is a gene ontology database that searches for gene annotations in relation to their molecular function, cellular components, and biological processes. For the purposes of this data, only the biological processes were examined. To utilize AmiGO2 the gene symbol associated with each gene from the JMP RTE and DE analysis was placed into the Term Enrichment Service box. The biological process was then selected along with *Gallus gallus* as the species. After launching the analysis, panther provided a list of phrases which can then be sorted based on the number of references found in relation to *Gallus Gallus*, number of genes identified, expected occurrence, fold-enrichment, or p-values. The Bonferroni correction was left marked because it helps to minimize errors and control for true p-values with a statistical significance of p <0.05. Panther also provided the number of mapped and unmapped ID’s. The purpose of this analysis was to grasp a better understanding of each gene’s functionality and determine their role in the avian spleen.

To utilize WebGIVI, the gene ID from Path Rings can be downloaded and inserted into this program to find informative terms (iTerms) and publications associated with those terms through eGIFT (a text mining tool). WebGIVI allows the viewer to manually remove any terms based on the p-value. This text mining tool also allows for deletion of any term that may not be associated with the tissue being
examined. For example, the iTerm spleen would not provide further knowledge on this specific tissue. This data inserted into this program can then be converted from a textual list to a visual aid through a concept map containing data on the inner and outer circles. The outer data is typically sorted based on frequency and the inner data is usually organized alphabetically. For the intents and purposes of this study, the present data was sorted by frequency on the outer circle and alphabetically on the inner circle. The middle of the circle contains a list of genes that can be selected and highlight associated terms on the outer part of the circle. Each gene can be described by right clicking on the gene of interest and following the link to the NCBI database. When a gene is selected in the middle of the inner data circle, a red highlight connects it to the terms on the outer circle. When these highlighted lines are selected, that particular term can then be explored using eGIFT.

An additional bioinformatics tool used was the program, Venn diagram. This program was beneficial because it allowed for transcriptomic data to be compared between different analyses. For example, the Ross 708 enriched genes in the control group could be inserted and compared to the enriched genes of the Illinois control group. Multiple gene lists can be inserted and compared at the same time. Venn diagram was also beneficial in finding the intersections and the complements of those intersections. This tool provides both a textual outcome, as well as a graphical representation of the data inserted.
Chapter 5

RESULTS AND DISCUSSION

5.1 Differential Expression Analysis Results

The differential expression analysis revealed very low numbers of enriched genes in the D28 spleen samples compared to other tissues that were not examined in the current study. A total of 44 differentially expressed genes were found in the Ross 708 broiler line with 18 differentially expressed genes in the control group and 26 enriched genes in the heat-stressed group. The Illinois broilers had a total of 52 differentially expressed genes with 31 genes enriched in the control group and 21 genes enriched in the heat-stressed. It was unclear why there were so few differentially expressed genes observed in the D28 spleen samples in both broiler lines. However, other tissues, such as the liver contained as many as 1,620 differentially-expressed genes with 1,389 genes enriched in the Ross 708 heat-stressed group and 231 genes enriched in the control group (Jastrebski, personal communication). The Ross 708 spleen and liver samples were comparable in this study because seven of the same birds were used. Tables 2 and 3 illustrate the bird identification numbers in the differential expression analysis for both control and heat-stressed D28 spleen tissue samples compared to the D28 liver samples. This finding demonstrates a robust response elicited by other organs which was not observed in the spleen. Other analyses, such as normalized spleen weights and RTE, however, did show a strong effect in the heat-stressed groups of both bird lines.
Table 2: Bird identification numbers that were used in Differential Expression analysis for Ross 708 D28 Control Liver samples compared to Ross 708 D28 Control Spleen samples. Each row represents a randomly selected broiler for this analysis with a total of nine samples in the spleen and seven in the liver.

<table>
<thead>
<tr>
<th>D28 Liver Bird Numbers</th>
<th>D28 Spleen Bird Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>204</td>
</tr>
<tr>
<td>212</td>
<td>212</td>
</tr>
<tr>
<td>223</td>
<td>223</td>
</tr>
<tr>
<td>228</td>
<td>228</td>
</tr>
<tr>
<td>235</td>
<td>235</td>
</tr>
<tr>
<td>302</td>
<td>302</td>
</tr>
<tr>
<td>318</td>
<td>318</td>
</tr>
<tr>
<td>N/A</td>
<td>328</td>
</tr>
<tr>
<td>360</td>
<td>360</td>
</tr>
</tbody>
</table>
Table 3: Bird identification numbers that were used in Differential Expression analysis for D28 Ross 708 D28 Heat-Stressed Liver samples compared to Ross 708 D28 Heat-Stressed Spleen samples. Each row represents a randomly selected broiler for this analysis with a total of ten samples in the spleen and seven samples in the liver.

<table>
<thead>
<tr>
<th>D28 Liver Bird Numbers</th>
<th>D28 Spleen Bird Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>207</td>
<td>207</td>
</tr>
<tr>
<td>208</td>
<td>208</td>
</tr>
<tr>
<td>219</td>
<td>219</td>
</tr>
<tr>
<td>N/A</td>
<td>234</td>
</tr>
<tr>
<td>246</td>
<td>246</td>
</tr>
<tr>
<td>331</td>
<td>331</td>
</tr>
<tr>
<td>335</td>
<td>335</td>
</tr>
<tr>
<td>341</td>
<td>341</td>
</tr>
<tr>
<td>N/A</td>
<td>357</td>
</tr>
</tbody>
</table>

Spleen weights were normalized (weight of spleen compared to the total weight of the bird) to account for weight differences between birds. This data encompasses every spleen that was collected during the fall 2013 heat stress trial conducted at the UD. A graph was constructed in JMP for each line to visualize the differences between heat-stressed and control. Figures 6 and 7 represent the average normalized weight of the spleen starting at day 7 (D7) post-hatch to day 42 post-hatch (D42). D28 and D42 were the only time points to receive heat stress (see materials and methods).
Figure 6: The graph represents the mean of the normalized spleen weights at D7, D21, D28 and D42 for control and heat-stressed Ross 708 broilers. The control group is represented by the blue bars and the heat-stressed group is represented by the red bars; each time point for both groups contains an error bar ±1 standard error from the mean. The graph illustrates the slight impact of heat stress on D28 spleens, with a statistically significant impact of heat stress (p-value < 0.002) on D42 spleens. The asterisk indicates statistical significance of heat stress on D42 broilers.
Figure 7: The graph represents the Illinois control and heat-stressed broiler groups of the mean normalized spleen weights at D7, D21, D28 and D42. The control group is represented by the blue bars and the heat-stressed group is represented by the red bars; each time point contains an error bar ±1 standard error from the mean. The graph illustrates the slight impact of heat stress on D28 spleens, with a statistically significant impact of heat stress (p-value < 0.002) on D42 spleens. The asterisk indicates statistical significance of heat stress on D42 broilers.

Figure 6 illustrates the mean weight of the Ross 708 control spleen group for D7, D21, D28 and D42. At D7 the graph shows an average normalized spleen weight of 0.056 grams which increased by 0.0319 grams (63.7%) giving a total organ weight of 0.0879 grams for the D21 control group. D21 and D28 control were similar in weight, differing by 0.0019 grams (increased by ~2.1%). When D7 was compared to D28 the spleen increased in weight by 0.0338 grams. When the three previous time points were compared to a market ready bird, the graph also showed an increase in weight demonstrating a normal growth pattern for Ross 708 broilers. As seen in the
graph, D7, D21 and D28 compared to D42 normalized spleens increased by 0.127 grams, 0.0951 grams and 0.0932 grams (49.1%).

The Ross 708 birds had a steady increase in organ weight under control conditions. Although, there was not much progress occurring between D21 and D28 time points, growth is still happening. The highest growth percentage was seen in the first three weeks of life (from D7 to D21 at 63.7%) suggesting the spleen grows more quickly between D7 and D21 compared to D21 and D28 or D28 and D42. This observation is suggestive of how energy is partitioned to the spleen and the immune system during the first three weeks of life. It is possible that D14 may have been an indicator of fast growth; however, this time point was not sampled during the fall 2013 heat stress trial. The second greatest amount of growth transpired from D28 to D42 which can be seen in Figure 6 (49.1%).

Heat stress did impact the normalized spleen weights as shown in Figure 6 represented by the last two bars on the right side of the graph. The heat-stressed D28 broilers had normalized spleen values that were slightly smaller, differing by 0.0109 grams (12.1%) compared to the control group. After reviewing D42 control birds in relation to D42 heat-stressed birds, the heat-stressed group was 0.0862 grams (~52.9%) smaller and this difference was found statistically significant in JMP with a p-value < 0.002. Lastly, D21 and D28 control birds in comparison to D42 heat stress birds had similar differences.

Although Ross 708 broiler D28 spleens reveal a small difference and less of a robust response to heat stress, there is an indication that heat stress had an impact on the spleen. The birds most likely were not sufficiently heat-stressed at D28 for the spleen or the immune system to manifest a vigorous response. D42 provides the most
evidence, demonstrating the greatest impact on the spleen in response to heat and most likely one of statistical significance. As shown in Figure 6, one can visualize the impact of heat stress on market weight bird spleens because they are half the size of the controls. Heat stress, in this case significantly impacts the overall growth, and growth rate and it suggests the possibility of impacting other activities of the spleen at both cellular and molecular levels. A similar result was also illustrated in the Ross 708 broiler graph when contrasting D21 control birds and D42 heat-stressed birds. This comparison was done to show that heat-stressed D42 normalized spleens were only slightly bigger than healthy D21 control spleens that are not fully developed.

Figure 7 represents the growth of the control and heat-stressed groups in the Illinois line. D7 had an average spleen weight of 0.0454 grams and grew by 0.0786 grams over seven days to reach a total organ weight of 0.124 grams at D21. This growth represents a 36.6% increase in weight and most likely size, of the spleen. However, when comparing D21 control birds to D28 control birds, they differed by 0.024 grams which approximated to a 16.2% increase in weight. Even though there was a small difference in weight between these two time points, there was a larger gap between D28 controls and D42 controls. These two time points differed by 0.145 grams estimating to be a 50.5% increase in weight (total of 0.293 grams at market age). A similar result was seen when comparing D21 to D42 control birds which showed a difference of 0.169 grams or about 42.3%.

Figure 7 also represents the implications heat stress had on the overall mean of normalized weight of the spleen for the Illinois broilers. The D28 heat-stressed spleen weight in comparison to the control D28 spleen weight is 0.02 grams or 13.5% smaller than the control birds. With these numbers in mind, it can be seen that D28 heat-
stressed spleens are very similar to the size of D21 control broilers. There was a larger
difference in normalized organ weight when D28 heat-stressed broilers were
contrasted with D42 control broilers. This comparison differs by 0.165 grams or about
43.7%. Similar results were seen with D42 heat-stressed birds paralleled with D42
control birds. The heat stress reduced the spleen weight by 0.138 grams which
estimated to be about 52.9% lighter than the control spleens. This comparison was also
found to be statistically significant when evaluated in JMP with a p-value < 0.002.
Finally when looking at the graph it can also be seen that heat challenged market
weight birds were only 0.031 grams (~20%) heavier than D21 control. This provides
evidence that heat stress does have an impact on normalized spleen weight. However,
the Illinois broilers just like the Ross 708 line may not have been exposed to adequate
heat stress at D28 to see a strong response.

As seen in Figure 8 overall, Ross control spleens were smaller in size
compared to that of the Illinois except at D7. A normalized spleen weight at D7 in the
Ross 708 line was 0.0106 grams or 18.9% larger than the Illinois D7 spleens. However,
for the remaining time points, Ross 708 broiler normalized spleen weights were
smaller. The D21 Ross 708 broilers spleen was 0.0361 grams (29.1%) smaller than that
of the Illinois; 0.0582 grams (39.3%) lighter at D28; and at D42, the normalized
spleen weight of the Ross 708 broiler was smaller by 0.11 grams (37.5%) compared to
the Illinois broiler. Table 4 demonstrates the average and normalized spleen weights
among both Illinois and Ross 708 broilers from D7 until D42. When a T-test was
performed in JMP pro 12, there was no statistical significance found in the spleen
weight between or within the two broiler lines looking at the control and heat stressed
groups.
Figure 8: The graph represents both broiler lines for the average normalized spleen weights at D7, D21, D28, D42. The control group is represented by the blue bars and the heat-stressed group is represented by the red bars; each time point contains an error bar ±1 standard error from the mean. The graph shows the proportional impacts of heat stress on both broiler lines when compared to one another. The line with asterisks indicates statistical significance found in both broiler lines at D42 when comparing control groups to heat-stressed groups.
Table 4: The average spleen weight and body mass under control and heat-stressed conditions measured in grams for both Ross 708 and Illinois broilers at D7, D21, D28 and D42. There was no statistical significance found between either line under control or heat-stressed conditions when the means of the absolute spleen weight and body mass were evaluated.

<table>
<thead>
<tr>
<th>Day & Line</th>
<th>Absolute Spleen Control Mean (g)</th>
<th>Absolute Spleen Heat Stress Mean (g)</th>
<th>Normalized Spleen Control Mean (g)</th>
<th>Normalized Spleen Heat Stress Mean (g)</th>
<th>Control Body Mass Average (g)</th>
<th>Heat Stress Body Mass Average (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D7 Illinois</td>
<td>0.054545455</td>
<td>0.041666667</td>
<td>0.052090909</td>
<td>0.039416667</td>
<td>103.2090909</td>
<td>105.1833333</td>
</tr>
<tr>
<td>D7 Ross</td>
<td>0.090909091</td>
<td>0.083333333</td>
<td>0.056272727</td>
<td>0.055833333</td>
<td>158.2727273</td>
<td>146.2166667</td>
</tr>
<tr>
<td>D21 Illinois</td>
<td>0.6</td>
<td>0.56</td>
<td>0.124454545</td>
<td>0.1245</td>
<td>473.9</td>
<td>448.77</td>
</tr>
<tr>
<td>D21 Ross</td>
<td>0.791666667</td>
<td>0.85</td>
<td>0.079666667</td>
<td>0.098666667</td>
<td>995.975</td>
<td>859.5888889</td>
</tr>
<tr>
<td>D28 Illinois</td>
<td>1.058333333</td>
<td>1.111111111</td>
<td>0.133090909</td>
<td>0.14625</td>
<td>767.0727273</td>
<td>765.5555556</td>
</tr>
<tr>
<td>D28 Ross</td>
<td>1.408333333</td>
<td>1.236363636</td>
<td>0.084166667</td>
<td>0.083727273</td>
<td>1669.416667</td>
<td>1448.245455</td>
</tr>
<tr>
<td>D42 Illinois</td>
<td>2.6</td>
<td>3.666666667</td>
<td>0.189636364</td>
<td>0.272166667</td>
<td>1364.372727</td>
<td>1327.6</td>
</tr>
<tr>
<td>D42 Ross</td>
<td>4.641666667</td>
<td>2.533333333</td>
<td>0.144083333</td>
<td>0.088333333</td>
<td>3151.208333</td>
<td>2863.083333</td>
</tr>
</tbody>
</table>

When reviewing the heat stress impact within and between both lines it can be seen that D28 Illinois bird’s heat stress decreased the size of the spleen by 0.02 grams (~13.5%) in comparison to the control group. The heat-stressed Ross 708 birds at D28 only differed from the C by 0.0109 grams (12.1%). D42 also showed a similar result in each graph. Illinois D42 control bird’s spleens were 0.138 grams (52.9%) heavier than the heat challenged spleens, while the spleens of Ross 708 control market weight birds were 0.0862 grams (52.8%) heavier than the heat challenged spleens.
The above results suggest that both lines are taking a comparable decrease in the normalized spleen weight by heat stress at D28 and D42. Originally it was thought that the Illinois broilers would be more affected because they have a larger overall normalized organ mass compared to the Ross 708 broilers. The entirety of heat stress and its implications on the spleen is not seen at D28, but as shown in Figure 8, the effects were greater at market weight. It may be that the spleen is avoiding or dampening down a vigorous response at earlier time points and only beginning an inflammatory reaction. This could be due to less proliferation of B and T lymphocytes or a decreased blood flow through the spleen. However, the exact cause for a smaller normalized spleen is still unknown. These graphs demonstrate a turning point at D28 for broilers who have been subjected to heat stress. Overall in both broiler lines, the spleen grew more quickly between D7 and D21 compared to the rest of the body as reflected by both graphs. This suggests that the first three weeks of life may be more vital for growth and immune expansion than in the fourth week of life.

5.2 RTE Analysis using Gene Ontology (GO) and WebGIVI

Gene ontology (GO) analysis was conducted using AmiGO2 to find genes in the RTE analysis (17,493 genes were analyzed for broiler lines) for both Illinois and Ross 708 broilers. For each line, the genes specific to control and heat-stressed groups were inserted into AmiGO2 separately followed by WebGIVI. For further information on the functionality of the genes found in both bioinformatics tools, the genes were then examined by the text mining tool eGIFT, as well as NCBI if sufficient information was not found (Not all genes were found in each tool). After this analysis was performed, the informative term (iTerm) spleen was evaluated for the number of
genes associated with it in eGIFT and compared to the list of genes found in both chicken lines for each condition.

5.3 RTE Analysis of Ross 708 Control genes with the iTerm Spleen

A total of 1,212 genes were enriched in the Ross 708 D28 RTE analysis comprising the control and heat-stressed data. Of those genes, 751 were in common between both conditions while the control birds contained 235 genes; this data was found using Venn diagram. This list of 235 genes found in the control birds was then compared to the iTerm spleen list which contained 485 genes. The genes in common between the two lists were determined using JMP and checked by Venn diagram. From this, only three genes were highlighted by this analysis and assessed by AmiGO2. Upon GO evaluation, there were no biological processes found with Bonferroni correction.

A few biological processes were found when the Bonferroni correction was disabled (See Table 5). The top 10 GO processes were sorted, based on p-values with a statistical significance of <0.05 (smallest to largest) and the genes within each process were investigated further. The CD83 gene was the only genetic factor linked with each process during this analysis. However, CD83, tumor necrosis factor receptor superfamily, member 18 (TNFRSF18) and retinol binding protein 3, interstitial (RBP3) were all recognized by WebGIVI and their roles were determined through eGIFT.
Table 5: The top 10 biological processes found in the gene ontology database, AmiGO2 without the Bonferroni correction for the comparison of Ross 708 broilers Control RTE genes with the iTerm Spleen. The biological processes are sorted based on p-value of <0.05.

<table>
<thead>
<tr>
<th>GO biological process complete</th>
<th>#</th>
<th>#2</th>
<th>expected</th>
<th>Fold</th>
<th>Enrichment</th>
<th>+/-</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>negative regulation of interleukin-4 production</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>> 100</td>
<td>+</td>
<td>1.90E-04</td>
<td></td>
</tr>
<tr>
<td>positive regulation of interleukin-10 production</td>
<td>13</td>
<td>1</td>
<td>0</td>
<td>> 100</td>
<td>+</td>
<td>8.23E-04</td>
<td></td>
</tr>
<tr>
<td>regulation of interleukin-4 production</td>
<td>13</td>
<td>1</td>
<td>0</td>
<td>> 100</td>
<td>+</td>
<td>8.23E-04</td>
<td></td>
</tr>
<tr>
<td>positive regulation of CD4-positive, alpha-beta T cell differentiation</td>
<td>14</td>
<td>1</td>
<td>0</td>
<td>> 100</td>
<td>+</td>
<td>8.87E-04</td>
<td></td>
</tr>
<tr>
<td>positive regulation of CD4-positive, alpha-beta T cell activation</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td>> 100</td>
<td>+</td>
<td>1.01E-03</td>
<td></td>
</tr>
<tr>
<td>regulation of CD4-positive, alpha-beta T cell differentiation</td>
<td>17</td>
<td>1</td>
<td>0</td>
<td>> 100</td>
<td>+</td>
<td>1.08E-03</td>
<td></td>
</tr>
<tr>
<td>regulation of interleukin-10 production</td>
<td>18</td>
<td>1</td>
<td>0</td>
<td>> 100</td>
<td>+</td>
<td>1.14E-03</td>
<td></td>
</tr>
<tr>
<td>regulation of CD4-positive, alpha-beta T cell activation</td>
<td>20</td>
<td>1</td>
<td>0</td>
<td>> 100</td>
<td>+</td>
<td>1.27E-03</td>
<td></td>
</tr>
<tr>
<td>positive regulation of interleukin-2 production</td>
<td>24</td>
<td>1</td>
<td>0</td>
<td>> 100</td>
<td>+</td>
<td>1.52E-03</td>
<td></td>
</tr>
<tr>
<td>positive regulation of alpha-beta T cell differentiation</td>
<td>24</td>
<td>1</td>
<td>0</td>
<td>> 100</td>
<td>+</td>
<td>1.52E-03</td>
<td></td>
</tr>
</tbody>
</table>
In the control birds normal expression levels of CD83 regulates B and T cells which produces CD4 + cells. TNFRSF18 (also known as glucocorticoid inducible tumor necrosis factor receptor related protein, GITR) also affects T and B cells, macrophages and regulatory T cells (Tregs). RBP, nonetheless, can be found everywhere in the body. It can be found in areas including, but not limited to, blood, (plasma and serum) digestive tract, and organs, such as the liver (hepatocytes). These three factors are expected in the control birds because of their basic functions and properties. The cytokines were inserted into the NCBI database to obtain more information and understand their role in the spleen.

Expression of CD83 in control broilers could indicate B and T lymphocytes encountering antigen from the environment and removing it. CD83 is typically expressed on various immune cells including, B cells, T cells and dendritic cells. At D28, these control broilers would express low levels of CD83 on resting lymphocytes to generate tolerance. If CD83 was detected in the heat-stressed broilers, it would be a good marker of activation of the immune system. If this occurred, the spleen could increase or decrease a response depending on what type of cytokines were present. Several anti-inflammatory and pro-inflammatory cytokines that could be secreted include interleukins 6, 10 (IL-6, IL-10) and tumor necrosis factor (TNF), all of which are recognized by the CD83 receptor. With invading pathogens, the spleen could dampen down the immune response or exacerbate a response to foreign pathogens.

5.4 RTE Analysis of Ross 708 Control genes with AmiGO2 and WebGIVI

The 235 genes enriched in the control RTE Ross 708 broiler line were evaluated through gene ontology with the Bonferroni correction. The major biological
process represented by the data set was sensory perception and unclassified. The 10 genes observed in sensory perception contained information related to auditory and visual perception with the exception of RBP. The gene list was then evaluated by WebGIVI which found visual perception genes that were strictly related to the retina and photoreceptors. There was no evidence linking the sensory perception genes to the spleen or immune response. The list of 235 enriched genes was then re-evaluated in AmiGO2 without the Bonferroni correction and sorted based on a p-value <0.05. The top ten processes were then examined and found to have biological processes related to regulation of T cell differentiation. Numerous processes relating to lymphocyte differentiation was also observed within the data (See Table 6).
Table 6: 235 enriched genes found in the Ross 708 control RTE analysis were inserted into AmiGO2 and the top 10 biological processes found without the Bonferroni correction. The biological processes were sorted based on a p-value of <0.05. The red boxes signify similar processes containing identical cytokines and differing by one factor found in the regulation of T cell differentiation process.

<table>
<thead>
<tr>
<th>GO biological process complete</th>
<th>#</th>
<th># expected</th>
<th>Fold Enrichment</th>
<th>+/-</th>
<th>P -value</th>
</tr>
</thead>
<tbody>
<tr>
<td>sensory perception</td>
<td>284</td>
<td>10</td>
<td>1.58</td>
<td>6.32</td>
<td>+</td>
</tr>
<tr>
<td>visual perception</td>
<td>95</td>
<td>6</td>
<td>0.53</td>
<td>11.33</td>
<td>+</td>
</tr>
<tr>
<td>sensory perception of light stimulus</td>
<td>100</td>
<td>6</td>
<td>0.56</td>
<td>10.77</td>
<td>+</td>
</tr>
<tr>
<td>positive regulation of CD4-positive, alpha-beta T cell differentiation</td>
<td>14</td>
<td>3</td>
<td>0.08</td>
<td>38.45</td>
<td>+</td>
</tr>
<tr>
<td>positive regulation of CD4-positive, alpha-beta T cell activation</td>
<td>16</td>
<td>3</td>
<td>0.09</td>
<td>33.64</td>
<td>+</td>
</tr>
<tr>
<td>regulation of CD4-positive, alpha-beta T cell differentiation</td>
<td>17</td>
<td>3</td>
<td>0.09</td>
<td>31.66</td>
<td>+</td>
</tr>
<tr>
<td>regulation of CD4-positive, alpha-beta T cell activation</td>
<td>20</td>
<td>3</td>
<td>0.11</td>
<td>26.91</td>
<td>+</td>
</tr>
<tr>
<td>neurological system process</td>
<td>478</td>
<td>10</td>
<td>2.66</td>
<td>3.75</td>
<td>+</td>
</tr>
<tr>
<td>positive regulation of alpha-beta T cell differentiation</td>
<td>24</td>
<td>3</td>
<td>0.13</td>
<td>22.43</td>
<td>+</td>
</tr>
<tr>
<td>regulation of T cell differentiation</td>
<td>59</td>
<td>4</td>
<td>0.33</td>
<td>12.16</td>
<td>+</td>
</tr>
</tbody>
</table>
Four processes within Table 6 had three identical gene products; IL-6, sterile alpha motif (SAM) and Src homology-3 domain containing (SH3) (SASH3), and CD83. IL-6 is a cytokine involved with maturing B cells, as well as acute and chronic inflammation. However, this cytokine can be anti-inflammatory or pro-inflammatory, based on the physiological state of the bird [49] (IL-6 is typically pro-inflammatory, in most cases) and SASH3 encodes a protein involved in cell signaling which may also be involved with lymphocytes. Several of the biological processes signified by the red boxes contained three identical gene products as the regulation of T cell differentiation process in Table 6. The regulation of T cell differentiation contained an extra gene known as Forkhead box N1 (FOXN1). CD83, FOXN1, SASH3, and IL-6 were inserted into WebGIVI for additional information and four terms were established as follows; differentiate, immune, lymphoid and mature. However; they were only related to CD83 and FOXN1 as illustrated in Figure 9.
Figure 9: Simplified version of the concept map from WebGIVI. The concept map converted the initial gene list (CD83, FOXN1, SASH3, and IL-6) from the Ross 708 control RTE data, into a visual representation. It illustrates the four terms associated with two of the four genes inserted for the analysis. Differentiate, immune, mature and lymphoid were the four terms found by this analysis and only CD83 and FOXN1 were found with an association.

FOXN1 is responsible for differentiation and development of the CNS and it may signify normal maintenance and upkeep within the Ross 708 broiler. However, mutations in this gene could lead to immunodeficiency in T cells and ultimately, causing immune diseases. This idea was confirmed by gene knockout studies completed on mice [66]. CD83, although described above, is found to be expressed on several cells including macrophages, dendritic cells and lymphocytes. It may be an indicator of the activation of the immune system because at D28 these broilers are still quite young. These broilers may be generating tolerance to an antigen picked up in their environment. This may be the reason why CD83 was enriched in the Ross 708 control RTE. With this in mind these enriched genes may be indicators of a properly functioning immune system and spleen. Further studies would provide additional
information on these specific genes and gene products as well as others possibly involved in later stages of broiler development. These enriched genes offer evidence of normal physiological processes taking place in the Ross 708 control broilers.

5.5 RTE Analysis of Ross 708 Heat-Stressed genes with the iTerm Spleen

Out of the 1,212 genes found to be enriched in the Ross 708 RTE data, 225 genes were identified in the Ross 708 heat-stressed condition by Venn diagram and then re-analyzed with the iTerm Spleen (485 genes). Figure 10 represents a typical result from the Venn diagram program. This comparison found ten genes in common which were then inserted into AmiGO2 to find the biological process, immune system. This process had seven genes in association with it (See Table 7). Three of the ten genes, acid phosphate, prostate (ACPP), colony stimulating factor 3 (CSF3) and tyrosine aminotransferase (TAT) were not found by AmiGO2. Two of the three genes, ACCP and TAT, were unclear as to what their role may be in the spleen, while CSF3 was found to have a relation to granulocytes and therefore, further examined. The relevance of these three genes to the current data was determined through utilization of the NCBI database. Table 7 contains the seven genes along with their entrez ID, gene symbol and gene names observed in the gene ontology analysis.
Figure 10: Recreated Venn diagram results. Venn diagram gives a visual representation of the genes enriched in the Ross 708 broiler line RTE data. There were a total of 1,212 genes with 751 enriched genes in common to both conditions with 235 specifically enriched genes in the control broilers and 225 genes enriched in the heat-stressed broilers.
Table 7: Seven of the ten genes found by the gene ontology analysis and relevant to D28 spleen data from the Ross 708 heat-stressed RTE in comparison with the iTerm Spleen (485 genes).

<table>
<thead>
<tr>
<th>Entrez ID</th>
<th>Gene Symbol</th>
<th>Gene Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>395733</td>
<td>BLNK</td>
<td>B cell linker protein</td>
</tr>
<tr>
<td>374075</td>
<td>BTK</td>
<td>Tyrosine-protein kinase BTK</td>
</tr>
<tr>
<td>420129</td>
<td>IFI30</td>
<td>Lysosomal thiol reductase</td>
</tr>
<tr>
<td>430409</td>
<td>IRF5</td>
<td>Interferon Regulatory Factor 5</td>
</tr>
<tr>
<td>396460</td>
<td>LCK</td>
<td>Proto-oncogene tyrosine protein kinase LCK</td>
</tr>
<tr>
<td>423165</td>
<td>RAG2</td>
<td>V(D)J recombination – activating protein 2</td>
</tr>
<tr>
<td>418638</td>
<td>TLR7</td>
<td>Toll Like Receptor 7</td>
</tr>
</tbody>
</table>

Three of the seven genes, B-cell linker (BLNK), Bruton tyrosine kinase (BTK) and Recombination activating gene 2 (RAG2), all are involved with BCR signaling pathways, B cell development and a small overlap with B and T cell rearrangement. Interferon regulatory transcription factor 5 (IRF5) and Toll like receptor 7 (TLR7) were both observed to have relations with pro-inflammatory cytokine processes, while Non-receptor tyrosine kinase (LCK/P56LCK) and Interferon gamma-inducible protein 30 (IFI30/GILT) were unrelated to either of the previous topics. They were shown to be involved with the innate immune system when challenged with bacteria.
Several of these genes were found to be involved in the innate immune system (BTK, IFI30, IRF-5 and TLR-7) although; most of them also have a role in the adaptive immune system (BTK, BLNK, and TLR-7). IRF5, TLR-7, (Within literature, the chicken TLR7 has been identified to be or have similar functionality compared to its mammalian counterpart [24] and IFI30 are particularly important because they interact with one another when they are challenged with bacteria. IRF-5 for example, is a transcription factor that can be expressed from various types of cells (e.g. dendritic cells and B cells). It typically has anti-viral containing properties to disrupt viral production; however, recent studies have demonstrated its role in “cell cycle, apoptosis, microbial infection and inflammation” [46]. Interestingly, studies have shown IRF-5 deficient mice cannot mount a response to bacteria (e.g lipopolysaccharides) and therefore, would not elicit TH1/TH17 responses; similar effects can be seen in autoimmune diseases [46]. Myeloid differentiation factor 88 (MyD88) can interact with IRF5 to secret pro-inflammatory cytokines and type 1 interferons; without such interaction, IL-6 production could be reduced [13]. These genes and their secreted products are important for eliciting a proper innate immune response.

According to several studies, heat stress can cause immunosuppressive activity through a variety of factors, such as oxidative stress [13, 35]. Oxidative stress is typically indicated by heat shock proteins (HSP); however, there were no HSP’s found in the D28 Ross 708 heat-stressed data. Another study conducted at UD observed oxidative stress occurring in D28 livers. This information can be supported by avian literature. Literature also indicates the liver and the intestines to be the first organs affected by hyperthermia and oxidative stress [21]. Another reason why this is
important is due to the numerous genes found at D28 for Ross 708 heat-stressed broilers regarding bacterial challenge. G. P. Lambert, 2008 identified how hyperthermia can be a source of leaky gut syndrome synergistically with oxidative stress or independently, and cause an increase in intestinal permeability to endotoxins, for example, lipopolysaccharides (LPS). Although these endotoxins normally inhabit the gut of a broiler, they can diffuse through damaged enterocytes and leak into the general circulation, causing a robust inflammatory response by the body [29]. The genes found in this analysis may imply an active innate immune response, while beginning to mount an adaptive immune response. Evidence can be seen in the immunoglobulin gene rearrangement expression of RAG2, along with the presence of TLR7. The interaction of these genes may provide an explanation on how chronic heat challenge negatively affects the spleen and immune response. The extent of this challenge on the broiler’s immune system is still unknown.

5.6 RTE Analysis of Ross 708 Heat-Stressed genes with AmiGO2 and WebGIVI

Another analysis was conducted with the 225 genes found to be enriched in D28 Ross 708 heat-stressed RTE using AmiGO2. Once analyzed, (without the Bonferroni correction), the major biological process of greatest interest was found to be cell communication. The remaining processes were very broad and provided minimal information on how heat stress affects the spleen. Thirty eight genes were associated with this process; however, two of the genes identified, LOC101748451 and LOC101749876 had very little information available pertaining to their function when reviewed by NCBI and WebGIVI. The thirty six genes were then inserted into WebGIVI of which nineteen were identified and described (See Table 8). The major
concepts found within those nineteen genes consisted of serotonin, LPS signaling, energy homeostasis, pro-inflammatory cytokines and relation to B cell activity.

Table 8: 225 genes found enriched in D28 Ross 708 heat-stressed RTE were inserted into AmiGO2. The top 10 biological processes were sorted based on a p-value of <0.05 with a disabled Bonferroni correction. The process, cell communication was found to have thirty eight genes containing pertinent information to the present study.

<table>
<thead>
<tr>
<th>GO biological process complete</th>
<th>#</th>
<th>#</th>
<th>expected</th>
<th>Fold Enrichment</th>
<th>+/-</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>single-organism process</td>
<td>7871</td>
<td>79</td>
<td>55.33</td>
<td>1.43</td>
<td>+</td>
<td>4.09E-06</td>
</tr>
<tr>
<td>single organism signaling</td>
<td>2872</td>
<td>38</td>
<td>20.19</td>
<td>1.88</td>
<td>+</td>
<td>4.09E-05</td>
</tr>
<tr>
<td>signaling</td>
<td>2875</td>
<td>38</td>
<td>20.21</td>
<td>1.88</td>
<td>+</td>
<td>4.19E-05</td>
</tr>
<tr>
<td>cell communication</td>
<td>2933</td>
<td>38</td>
<td>20.62</td>
<td>1.84</td>
<td>+</td>
<td>6.55E-05</td>
</tr>
<tr>
<td>signal transduction</td>
<td>2680</td>
<td>35</td>
<td>18.84</td>
<td>1.86</td>
<td>+</td>
<td>1.25E-04</td>
</tr>
<tr>
<td>immune response-activating signal transduction</td>
<td>114</td>
<td>6</td>
<td>0.8</td>
<td>7.49</td>
<td>+</td>
<td>1.68E-04</td>
</tr>
<tr>
<td>immune response-regulating signaling pathway</td>
<td>122</td>
<td>6</td>
<td>0.86</td>
<td>7</td>
<td>+</td>
<td>2.41E-04</td>
</tr>
<tr>
<td>activation of immune response</td>
<td>133</td>
<td>6</td>
<td>0.94</td>
<td>6.42</td>
<td>+</td>
<td>3.80E-04</td>
</tr>
</tbody>
</table>
Table 8 continued

<table>
<thead>
<tr>
<th>synaptic transmission, cholinergic</th>
<th>30</th>
<th>3</th>
<th>0.21</th>
<th>14.22</th>
<th>+</th>
<th>1.31E-03</th>
</tr>
</thead>
<tbody>
<tr>
<td>regulation of cellular process</td>
<td>6374</td>
<td>61</td>
<td>44.81</td>
<td>1.36</td>
<td>+</td>
<td>1.33E-03</td>
</tr>
</tbody>
</table>

Two genes in this data were identified with a connection to serotonin. One was recognized in eGIFT as Arrestin 3, retinal (ARR3) and the other gene, 5-hydroxytryptamine (serotonin) receptor 1F, G protein-coupled receptor (HTR1F) was found in the NCBI database. The three factors containing information related to lipopolysaccharides were Antigen receptor (CD14), Lymphocyte antigen (LY96) and, a C-X-C3 motif chemokine receptor (CX3CR1), while Angiopoietin-like 3 (ANGPTL3), Galanin receptor 3 (GALR3), Hypocretin (orexin) neuropeptide precursor (HCRT) and Prolactin releasing hormone receptor (PRLHR) were found to have an established connection to energy homeostasis. Each of these genes and/or gene products was found using the gene ontology database and text mining tool eGIFT.

The remaining ten components in this analysis contained two involved with pro-inflammatory cytokines; Interleukin 17F (IL-17F) and Interferon regulatory factor 5 (IRF-5). Three other elements within this group were found to be involved with BCR signaling; BLNK, BTK and CD24. The remaining five genes that were detected in WebGIVI were unrelated to the spleen and the five concepts recognized by the gene list.
The remaining seventeen genes (out of the thirty six analyzed) were then reviewed using the NCBI database, and they were grouped based on their descriptions and relativity to the spleen and immune system. Three genes out of this group were found with a relationship to the CNS; BR serine/threonine kinase 2 (BRSK2), gamma-aminobutyric acid type A receptor rho 3 subunit (GABRR3/GABA) and reticulon 4 receptor (RTN4R). BRSK2 was involved in polarizing neurons through the use of serine threonine kinase which also stimulates axonogenesis, cell cycle and the secretion of insulin when glucose levels are high. GABRR3 is a neurotransmitter (NT) receptor in the CNS regulating neurotransmitter passage across the synapses of neurons while RTN4R inhibits axon growth, but may be involved with axonal regeneration. Genes that were unrelated to either the spleen or the immune system was not mentioned in the paragraphs to follow.

The genes enriched in this data were found to interact with one another and were all related to serotonin, LPS and pro-inflammatory cytokines [25]. It was previously shown that serotonin is derived from the gut and transported into the blood (main function of the spleen is to filter the blood) which is why ARR3 and HTR1F may have shown up in the spleen tissue. However, according to this article, the recognition of serotonin is due to heat stress which can cause the aggregation of platelets when thermal challenge is sustained for long periods of time. The serotonin can be “released by agitation and lysis of platelets” [25]. Figure 11 which was taken from the Leon and Helwig 2010 study demonstrates the multiple effects of heat stress on different aspects of the body. Heat stress can cause coagulation and increased gut permeability, leading to LPS leakage into the systemic circulation. These endotoxins
as mentioned previously can cause inflammation when they are recognized by the innate immune system resulting in the release of several cytokines [33].

Figure 11: This figure was taken from Leon and Helwig, 2010 illustrating the numerous aspects heat stress can effect in broiler chickens. Heat stress has the ability to cause vasoconstriction in various areas of the body (brain and gut) and initiate a cascade of effects, activating various cytokines. Activation of cytokines and other factors can result in activation of the immune system and in severe cases cause organ failures [33].
Chronic heat stress may be causing the broilers to produce anti-inflammatory factors preventing them from eliciting a vigorous inflammatory immune response. Since the birds received seven days of heat stress by D28, their bodies may have begun to acclimate to an increase in ambient temperature. Factors such as cytokines would help dampen down an immune response in response to a thermal challenge. Observing IL-17F in this data suggests the broilers are mounting an immune response. Korn et al., 2009 showed that, IL-17 and IL-17F are produced by T helper 17 cells (TH17). TH17 cells are a newly discovered subset of TH cells which are beneficial in removing pathogens during immunogenic responses. IL-17 and IL-17F could also be an indicator of shifts in the gut microbiome as well as germinal center formation. Korn et al., 2009 concluded that TGF-β and IL-6 are required for TH17 cells to manufacture IL-17 along with IL-21 because it synergizes with IL-6 to turn the TGF-β driven Treg response into a TH17 response. Figure 12 shows the relationship between these genes and their products within a mouse model. Although TGF-β was not detected by the RTE analysis, TGF-β was found in the preliminary spleen data for the Ross 708 heat-stressed broilers. TGF-β is expressed everywhere in the body which may be the reason it was not enriched in the RTE analysis.
Figure 12: An example of cell differentiation in a mouse model adopted from Korn et al., 2009. This diagram demonstrates the relationship between innate immune cells, naïve T cells, TH17 cells in combination with TGF-β, IL-6 and the production of cytokines, such as IL-17 [27].

Heat stress alone can reduce blood flow, shunting the blood towards the skin by initiating vasoconstriction in splanchnic tissues for evaporative cooling purposes. If vital organs such as the spleen, liver, and gut do not receive proper blood flow, then the effects could be detrimental to overall tissue health. With vasoconstriction, a reduced blood flow can create a hypoxic environment and oxidative stress. In turn, the oxidative stress can cause a cascade of effects, permitting the passage of endotoxins out of the gut, through damaged enterocytes and, into systemic circulation. These endotoxins can then enter other organs and initiate an immune response. (LPS’s was not evaluated in the spleen in the present study). Figure 11 demonstrates the effects of a decreased blood flow in the gut [33]. With this in mind, energy is spent repairing the damage caused initially by an increased ambient temperature and not on the bird’s
growth and development. This may be why ANGPTL3, GALR3, HCRT and PRLHR are enriched in the heat-stressed group of Ross 708 broilers which help to maintain energy balance.

CD247, TLR7, IRF5 and IL-17F may be enriched in the Ross 708 heat-stressed data because they tend to be expressed when there is an innate, innate/adaptive, or an adaptive immune response occurring. Although the term autoimmune and autoimmune disease was found in the WebGIVI analysis, these genes are most likely indicative of an innate immune response. In humans, literature has shown how hyperthermia can occur when core temperatures reach between 41°C-47°C and cause certain diseases, such as warm hemolytic anemia. Although this can occur when temperatures are hot enough, in the chicken, the heat stress may cause damage to the erythrocyte population instead of inducing warm hemolytic anemia.

Warm antibody hemolytic anemia occurs when temperatures rise above the average body temperature (~41°C for chickens) causing hemolysis of RBC’s at a rate faster than they are produced. The national organization for rare disorders (NORD) stated that this anemia could be produced by low enzymatic levels of pyruvate kinase or glucose-6-phosphate dehydrogenase (G6PDH) [3]. The red blood cells were not analyzed in this current study but, it would be interesting to evaluate them at D42 to understand how heat stress (39°C) affected erythrocyte morphology and function. According to the study conducted by Mahmoud and Edens 2003 basal diets (diets without selenium supplementation) demonstrated a reduction in G6PDH in conjunction with heat stress in the liver. The same concept may be taking place in the spleen however, further experiments are needed in order to accept or reject this theory.
Finally, it would be interesting to see if there were more genes found to be enriched in the RTE analysis of D42 heat-stressed spleens of the Ross 708 broiler with a relationship to CNS. GABA, BRSK2 and RTN4R as stated earlier were found in this data. According to the article by Lara, L., and Rostagno, M., 2013 the HPA axis can be activated when high environmental temperatures are reached \[7, 42\]. (See literature review for the relationship of HPA and SAM axes with the CNS). Many lymphoid cells such as macrophages and granulocytes for example, contain receptors that can bind to neuroendocrine products such as cortisol. The result of these products binding macrophage surface receptors can alter various cellular activities such as proliferation and the secretion of cytokines. Many studies have shown how heat can alter these different pathways and ultimately affect the CNS \[30\]. Figure 11 illustrates how heat stress can directly affect the CNS through decreased cerebral blood flow.

5.7 RTE Analysis of Illinois Control genes with AmiGO2 and WebGIVI

A total of 991 genes were enriched in Illinois RTE data, among those 571 genes were shared among the control and heat-stressed groups. 249 genes were enriched in the control birds and 170 genes enriched in the heat-stressed birds. The 249 enriched genes in the control Illinois RTE data were evaluated in AmiGO2 with the Bonferroni correction and resulted in the biological phrase unclassified. This biological process contained 17 genes, many of which were uncharacterized and a possible indicator of an unknown function based on the current annotated chicken genome. Out of the 17 genes in the analysis with the Bonferroni correction, Growth hormone releasing hormone (GHRH) and Inducible T-cell co-stimulator (ICOS) were the only genes found by WebGIVI and eGIFT. ICOS helps stimulate T cells within the body to proliferate and secret other immune cells while aiding the secretion of
antibodies from B lymphocytes against foreign antigens. GHRH allows other immune
cells to produce and secret hormones such as Insulin like growth factor 1 (IGF-1) to
protect the spleen from foreign pathogens. These genes suggest the Illinois control
birds are performing normal immune and spleen functions.

Another analysis was launched without the Bonferroni correction to find other
genes vital to normal spleen function. Out of the ten processes seen in Table 9 there
were only two to three genes found under each biological process. However, it was
interesting to find forelimb morphogenesis among the top ten processes. Within this
process were the genes, Homeobox D10 (HOXD10), T-box 5 (TBX5) and, short
stature homeobox2 (SHOX2). SHOX2 was not relevant to the Illinois data. However,
HOXD10 was found to be important for normal cell differentiation and TBX5 was
found to be involved with regulating development. At D28 broiler chickens are not
fully grown and are still undergoing development until D42 when they are market
ready. This may be the reason why these genes were enriched in this data set.

Table 9: 249 genes enriched in the Illinois Control RTE genes were assessed in
AmiGO2. The top 10 biological processes were selected based on p-
value <0.05 without the Bonferroni correction. Each category was then
evaluated using the text mining tool WebGIVI.

<table>
<thead>
<tr>
<th>GO biological process complete</th>
<th>#</th>
<th>#2</th>
<th>expected</th>
<th>Fold Enrichment</th>
<th>+/-</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>neutrophil apoptotic process</td>
<td>2</td>
<td>2</td>
<td>0.01</td>
<td>> 100</td>
<td>+</td>
<td>4.67E-05</td>
</tr>
<tr>
<td>inflammatory cell apoptotic process</td>
<td>3</td>
<td>2</td>
<td>0.01</td>
<td>> 100</td>
<td>+</td>
<td>1.05E-04</td>
</tr>
<tr>
<td>myeloid cell apoptotic process</td>
<td>3</td>
<td>2</td>
<td>0.01</td>
<td>> 100</td>
<td>+</td>
<td>1.05E-04</td>
</tr>
</tbody>
</table>
Table 9 continued

<table>
<thead>
<tr>
<th>Process</th>
<th>+Log2 Ratio</th>
<th>FDR</th>
<th>P-Value</th>
<th>Log2 Fold Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>glycinergic import</td>
<td>3</td>
<td>2</td>
<td>0.01</td>
<td>> 100</td>
</tr>
<tr>
<td>L-amino acid import</td>
<td>5</td>
<td>2</td>
<td>0.02</td>
<td>82.02</td>
</tr>
<tr>
<td>regulation of cytolysis</td>
<td>6</td>
<td>2</td>
<td>0.03</td>
<td>68.35</td>
</tr>
<tr>
<td>neutrophil homeostasis</td>
<td>7</td>
<td>2</td>
<td>0.03</td>
<td>58.59</td>
</tr>
<tr>
<td>cellular protein metabolic process</td>
<td>2257</td>
<td>2</td>
<td>11.01</td>
<td>< 0.2</td>
</tr>
<tr>
<td>forelimb morphogenesis</td>
<td>35</td>
<td>3</td>
<td>0.17</td>
<td>17.58</td>
</tr>
<tr>
<td>synaptic transmission, glycinergic</td>
<td>8</td>
<td>2</td>
<td>0.04</td>
<td>51.26</td>
</tr>
</tbody>
</table>

The other processes that are listed in Table 9 were expected in a properly functioning immune system. For example, two genes under neutrophil apoptotic process were IL-6 and Interferon gamma (IFNG). The IL-6 is involved in B cell maturation and it is produced in response to chronic stress, while IFNG is involved with immune responses in relation to bacterial and viral pathogens. If either of these genes were not regulated and they were produced unnecessarily, then, the homeostatic balance of housekeeping genes and products could cause damage to the surrounding tissue, depending on the other signals present.

5.8 RTE Analysis of Illinois Control genes with the iTerm Spleen

Next the 249 control genes enriched in the Illinois RTE were compared to the genes associated with the iTerm spleen (485 genes). Six genes were found in common between the two lists (See Table 10). Among these genes were ICOS and IFNG which...
were also seen in the AmiGO2, WebGIVI and eGIFT analyses. Four genes that were not seen in previous analyses include Lymphocyte activating gene 3 (LAG3), TAT, Aryl-hydrocarbon receptor repressor (AHRR) and Interleukin 22 (IL-22). In human studies, LAG-3 is a cell surface molecule displayed by stimulated T cells, natural killer cells, B cells, dendritic cells and IL-22. Most of this gene’s function is still undiscovered.

Table 10: 249 enriched Illinois Control RTE genes were compared to the iTerm Spleen (485 genes) using Venn diagram. Six genes were found in common between the two gene lists and further analyzed by AmiGO2 and WebGIVI.

<table>
<thead>
<tr>
<th>Entrez ID</th>
<th>Gene Symbol</th>
<th>Gene Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>420989</td>
<td>AHRR</td>
<td>aryl-hydrocarbon receptor repressor</td>
</tr>
<tr>
<td>424105</td>
<td>ICOS</td>
<td>inducible T-cell co-stimulator</td>
</tr>
<tr>
<td>396054</td>
<td>IFNG</td>
<td>interferon, gamma</td>
</tr>
<tr>
<td>417838</td>
<td>IL22</td>
<td>interleukin 22</td>
</tr>
<tr>
<td>418287</td>
<td>LAG3</td>
<td>lymphocyte-activation gene 3</td>
</tr>
<tr>
<td>415884</td>
<td>TAT</td>
<td>tyrosine aminotransferase</td>
</tr>
</tbody>
</table>
After a GO analysis, no biological processes were detected with the Bonferroni correction. However, without the Bonferroni correction, the biological processes were identified and sorted, based on p-value <0.05 and the top ten biological processes were investigated (See Table 11). Under the first four biological processes, the same two gene products (IFNG and IL-22) were detected. The remaining biological processes only contained IFNG with the tyrosine catabolic process containing TAT.

Table 11: The top 10 biological processes based on p-value <0.05 found during a GO analysis comparing the 249 enriched genes found in the Illinois Control RTE data and the iTerm spleen. This analysis was conducted without the Bonferroni correction. The first four processes contained the same two gene products, IL-22 and IFNG.

<table>
<thead>
<tr>
<th>GO biological process complete</th>
<th>#1</th>
<th>#2</th>
<th>expected</th>
<th>Fold Enrichment</th>
<th>+/-</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive regulation of STAT cascade</td>
<td>39</td>
<td>2</td>
<td>0.01</td>
<td>> 100</td>
<td>+</td>
<td>3.65E-05</td>
</tr>
<tr>
<td>positive regulation of JAK-STAT cascade</td>
<td>39</td>
<td>2</td>
<td>0.01</td>
<td>> 100</td>
<td>+</td>
<td>3.65E-05</td>
</tr>
<tr>
<td>regulation of STAT cascade</td>
<td>95</td>
<td>2</td>
<td>0.02</td>
<td>83.1</td>
<td>+</td>
<td>2.15E-04</td>
</tr>
<tr>
<td>regulation of JAK-STAT cascade</td>
<td>95</td>
<td>2</td>
<td>0.02</td>
<td>83.1</td>
<td>+</td>
<td>2.15E-04</td>
</tr>
<tr>
<td>positive regulation of CD4-positive, CD25-positive, alpha-beta regulatory T cell differentiation involved in immune response</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>> 100</td>
<td>+</td>
<td>2.53E-04</td>
</tr>
<tr>
<td>regulation of CD4-positive, CD25-positive, alpha-beta regulatory T cell differentiation involved in immune response</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>> 100</td>
<td>+</td>
<td>2.53E-04</td>
</tr>
</tbody>
</table>
Table 11 continued

positive regulation of CD4-positive, CD25-positive, alpha-beta regulatory T cell differentiation	1	1	0	> 100	+	2.53E-04
regulation of CD4-positive, CD25-positive, alpha-beta regulatory T cell differentiation	1	1	0	> 100	+	2.53E-04
tyrosine catabolic process	1	1	0	> 100	+	2.53E-04
regulation of carbohydrate phosphatase activity	1	1	0	> 100	+	2.53E-04

After reviewing the genes and gene products found in the Illinois control RTE broilers, it most likely demonstrates a fully functional spleen and immune system. As mentioned previously, IFNG is needed to respond to bacterial and viral pathogens acquired on a daily basis. IL-22 is also an indicator of normality, but studies have shown that it can play a role in chronic inflammatory conditions and it can stimulate production of anti-apoptotic and anti-microbial molecules [65]. This mechanism would help preserve the spleen if any tissue damage developed. The results of one study showed that IL-22 can provide a protective and inflammatory role, but both are duration and tissue-dependent. This study also exemplified the aryl hydrocarbon receptor as a necessary component for IL-22 production but it is unclear whether AHRR affects the expression of this gene [65].
5.9 RTE Analysis of Illinois Heat-Stressed genes with AmiGO2 and WebGIVI

170 genes were enriched in the Illinois HS RTE data and analyzed through multiple bioinformatics tools (AmiGO2, WebGIVI and eGIFT). From this exploration, the top ten biological processes were assessed based on p-value (<0.05). Table 12 illustrates the top ten processes that were explored in AmiGO2 with the Bonferroni correction. Although many of the processes within Table 12 were broad, leukocyte cell to cell adhesion provided insight as to what may be occurring in the heat-stressed Illinois broilers. Nine genes were explored in the leukocyte cell to cell adhesion process. The remaining processes contained the same genes drawing the conclusion that more research is needed to provide further evidence.
Table 12: 170 enriched genes in the heat-stressed Illinois RTE data were examined by AmiGO2 and the top ten biological processes were selected based on a p-value <0.05 with the Bonferroni correction. The biological process leukocyte cell to cell adhesion contained nine genes which were found to be markers of inflammation.

<table>
<thead>
<tr>
<th>GO biological process complete</th>
<th>#</th>
<th>#2</th>
<th>expected</th>
<th>Fold Enrichment</th>
<th>+/-</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>4299</td>
<td>21</td>
<td>22.6</td>
<td>0.93</td>
<td>-</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>protein ADP-ribosylation</td>
<td>19</td>
<td>5</td>
<td>0.1</td>
<td>50.06</td>
<td>+</td>
<td>4.04E-04</td>
</tr>
<tr>
<td>leukocyte cell-cell adhesion</td>
<td>170</td>
<td>9</td>
<td>0.89</td>
<td>10.07</td>
<td>+</td>
<td>1.86E-03</td>
</tr>
<tr>
<td>T cell aggregation</td>
<td>147</td>
<td>8</td>
<td>0.77</td>
<td>10.35</td>
<td>+</td>
<td>7.14E-03</td>
</tr>
<tr>
<td>T cell activation</td>
<td>147</td>
<td>8</td>
<td>0.77</td>
<td>10.35</td>
<td>+</td>
<td>7.14E-03</td>
</tr>
<tr>
<td>lymphocyte aggregation</td>
<td>149</td>
<td>8</td>
<td>0.78</td>
<td>10.21</td>
<td>+</td>
<td>7.89E-03</td>
</tr>
<tr>
<td>leukocyte aggregation</td>
<td>153</td>
<td>8</td>
<td>0.8</td>
<td>9.95</td>
<td>+</td>
<td>9.59E-03</td>
</tr>
<tr>
<td>lymphocyte activation</td>
<td>217</td>
<td>9</td>
<td>1.14</td>
<td>7.89</td>
<td>+</td>
<td>1.37E-02</td>
</tr>
<tr>
<td>single organismal cell-cell adhesion</td>
<td>283</td>
<td>10</td>
<td>1.49</td>
<td>6.72</td>
<td>+</td>
<td>1.51E-02</td>
</tr>
<tr>
<td>positive regulation of T cell mediated immunity</td>
<td>18</td>
<td>4</td>
<td>0.09</td>
<td>42.27</td>
<td>+</td>
<td>1.72E-02</td>
</tr>
<tr>
<td>single organism cell adhesion</td>
<td>303</td>
<td>10</td>
<td>1.59</td>
<td>6.28</td>
<td>+</td>
<td>2.74E-02</td>
</tr>
</tbody>
</table>

Four of the nine genes were markers of inflammation: Selectin-P (SELP), radical S-adenosyl methionine domain containing 2 (RSAD2), purinergic receptor P2X, ligand gated ion channel, 7 (P2RX7), and CD8A. SELP is more involved with leukocytes and platelets when inflammation is detected, while RSAD2 is involved.
with DNA or RNA products that will stimulate the secretion of cytokines. P2RX7 is very similar to RSAD2 in that it will stimulate cytokines, but it promotes pro-inflammatory cytokines to be secreted from cells that are challenged with LPS. Lastly, CD8A has more of a role with an adaptive immune response. (Note: Adaptive immunity has two responses, cell-mediated and antibody-mediated. Cell-mediated is the predominate immune response in association with CD8A).

Several of the genes, SELP, RSAD2, P2RX7 and CD8A provide evidence that the immune system is responding to the chronic heat stress and exhibiting inflammation. Most of the genes are associated with the activation of the innate immune system. They could provide an explanation of the response seen in the Illinois heat-stressed broilers as the result of an elicited innate immune system. According to many studies involving the immune system, the adaptive immune system can take anywhere from ten days to two weeks to mount a response. Enriched CD8A expression could indicate an increased expression of cytotoxic T lymphocytes on conventional dendritic cells involved with antigen presentation and T lymphocyte activation. RTE analysis only identifies what genes are enriched and responded to heat stress. It does not identify genes that are up- or down-regulated. With this in mind, CD8a could suggest activation of the acquired immune response; however, more data is needed to confirm this theory. Inferences drawn from this data could be that a widespread response is developing in the Illinois broilers at D28 (Dyer, personal communication).

The remaining five genes were RAG2, protein tyrosine phosphatase, non-receptor type 22 (lymphoid) (PTPN22), GATA binding protein 3 (GATA3), basic leucine zipper transcription factor, ATF-like (BTAF) and, amyloid beta (A4) precursor
protein binding, family B, member 1 interacting protein (ApBB1IP). ApBB1IP and BTAF had very little information available however; in humans, BTAF is seen in hematopoietic cells when an allergic response is present.

These genes produce products that are typically involved with a TH2 lymphocyte response. This may suggest involvement of a B cell response that might be occurring in the splenic germinal centers (Dyer, personal communication). Although RTE only looks at what genes are enriched, enrichment of GATA3 could suggest TH2 lymphocytes are driving the development of B lymphocytes. This would then allow the B cells to differentiate into plasma cells and produce antibodies against an unknown encountered foreign antigen.

In humans, an allergic response can stimulate vast amounts of IgE which can bind to mast cells and basophils for example. A second contact with the allergen can then cause the degranulation of a mast cell or basophil, resulting in an inflammatory response (Examples of substances released: enzymes and cytokines). Evidence suggests that chickens express IgE antibody and therefore, it may be possible for heat stress to induce a similar reaction. However, whether this response can drive an autoimmune disease is unknown. The data in the current study do not suggest the involvement or development of an autoimmune disease (Emara, personal communication).

PTPN22, GATA3 and RAG2 were all identified with some relationship to autoimmune diseases in AmiGO2 and WebGIVI. Although it is possible for chickens to acquire autoimmune diseases within their lifetime, there is no evidence suggesting one is occurring in the present data. With the confirmation of GATA3 being enriched in the RTE data; it could cause naïve T cells to differentiate into mature TH2 cells.
These cells can then produce and secrete IL-6 (typically pro-inflammatory) and IL-10 (typically anti-inflammatory). This might suggest a humoral response to an unknown antigen that may have entered into the circulation and was identified by the spleen. RAG2 was also seen in the Ross 708 heat-stressed RTE data. This gene starts immunoglobulin rearrangement by breaking double-stranded DNA (dsDNA) bonds which could introduce mutations into immune cells and enhance the probability of recognizing a pathogen. PTPN22 had a close association in regulating TCR and BCR’s. It could identify increased expression of both TCR’s and BCR’s allowing them to recognize foreign antigen that was released in the systemic circulation. An increase in antigen recognition by both B and T lymphocytes may allow the body to initiate a systemic response as a result of heat stress.

5.10 RTE Analysis of Illinois Heat-stressed genes with the iTerm Spleen

Out of 485 genes with the iTerm Spleen only five genes were shared with the 170 genes enriched in the Illinois heat-stressed RTE data (See Table 13). The five genes, Paired box 5 (PAX5), RAG2, GATA3, Interleukin 2 receptor, gamma (IL2RG) and, IRF5 were examined by gene ontology without the Bonferroni correction. (No biological processes were found with the Bonferroni correction). The terms were sorted based on p-values with a statistical significance of <0.05 and the top ten were investigated further. Each process was found to have a relationship with one gene, GATA3. Table 14 shows the biological processes found in this analysis. The entrez ID’s of all five genes were then inserted into WebGIVI to obtain more information utilizing eGIFT.
Table 13: 170 enriched Illinois Heat-Stressed RTE genes were compared to the iTerm spleen (485 genes) using Venn diagram. The analysis established five genes in common between the two gene lists and was further investigated through AmiGO2 and WebGIVI.

<table>
<thead>
<tr>
<th>Entrez ID</th>
<th>Gene Symbol</th>
<th>Gene Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>419106</td>
<td>GATA3</td>
<td>GATA binding protein 3</td>
</tr>
<tr>
<td>395199</td>
<td>IL2RG</td>
<td>interleukin 2 receptor, gamma (severe combined immunodeficiency)</td>
</tr>
<tr>
<td>430409</td>
<td>IRF5</td>
<td>interferon regulatory factor 5</td>
</tr>
<tr>
<td>387330</td>
<td>PAX5</td>
<td>paired box 5</td>
</tr>
<tr>
<td>423165</td>
<td>RAG2</td>
<td>recombination activating gene 2</td>
</tr>
</tbody>
</table>

Table 14: The top 10 biological processes based on a p-value <0.05 found in the gene ontology database AmiGO2 without Bonferroni correction between the 170 genes enriched in the Illinois heat stress RTE data and the 485 genes found with the iTerm Spleen. Each biological process was associated with GATA3.

<table>
<thead>
<tr>
<th>GO biological process complete</th>
<th>#</th>
<th>#2</th>
<th>expected</th>
<th>Fold Enrichment</th>
<th>+/-</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pro-T cell differentiation</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>> 100</td>
<td>+</td>
<td>6.33E-05</td>
</tr>
<tr>
<td>negative regulation of glial cell-derived neurotrophic factor receptor signaling pathway involved in ureteric bud formation</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>> 100</td>
<td>+</td>
<td>6.33E-05</td>
</tr>
<tr>
<td>Pathway</td>
<td>p-value</td>
<td>q-value</td>
<td>Fold Change</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>---------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulation of glial cell-derived neurotrophic factor receptor signaling</td>
<td>1</td>
<td>1</td>
<td>>100</td>
<td>+ 6.33E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pathway involved in ureteric bud formation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative regulation of fibroblast growth factor receptor signaling</td>
<td>1</td>
<td>1</td>
<td>>100</td>
<td>+ 6.33E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pathway involved in ureteric bud formation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulation of fibroblast growth factor receptor signaling</td>
<td>1</td>
<td>1</td>
<td>>100</td>
<td>+ 6.33E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pathway involved in ureteric bud formation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulation of cellular response to X-ray</td>
<td>1</td>
<td>1</td>
<td>>100</td>
<td>+ 6.33E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive regulation of thyroid hormone generation</td>
<td>1</td>
<td>1</td>
<td>>100</td>
<td>+ 6.33E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulation of thyroid hormone generation</td>
<td>1</td>
<td>1</td>
<td>>100</td>
<td>+ 6.33E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative regulation of cell proliferation involved in mesonephros development</td>
<td>1</td>
<td>1</td>
<td>>100</td>
<td>+ 6.33E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulation of cell proliferation involved in mesonephros development</td>
<td>1</td>
<td>1</td>
<td>>100</td>
<td>+ 6.33E-05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
During this examination, PAX5 was highlighted as a rate-limiting gene. PAX5 and RAG2 were related to immunoglobulin rearrangement, while GATA3 and IL2RG were associated with T cell growth and expansion, and IRF5 was previously described (See Ross 708 heat-stressed RTE vs. iTerm spleen for description).

PAX5 (also known as ALL3 and BSAP) is a transcription factor that can work in conjunction with RAG1 and RAG2 to rearrange immunoglobulin genes. (Only RAG2 was found in this analysis). When IL-7 is expressed, this can affect the V (H) arrangement during B cell development. This gene is imperative for hematopoietic stem cell differentiation and it is vital to the expression of other genes that are needed for cell signaling and adhesion. With enriched genes in the data like PAX5 and RAG2, one can infer that a humoral, adaptive immune response could be occurring in the spleen. Further studies need to be completed to confirm up- or down-regulation of these genes and the adverse effects that they may cause in the broiler industry. (RAG2 was confirmed in this analysis as it was also seen in the GO and WebGIVI analyses of the Illinois heat-stressed RTE).

GATA3 extends beyond its function of regulating the immune system by also regulating immune cells such as T lymphocytes through every step of development. An increase or decrease in this gene’s expression may lead to mutations in T cells or over/under production. If this were to occur during the embryonic stages of broiler growth, then the overall development of the bird may not be up to industry standards. The same can be said for IL2RG which was also enriched in this analysis. IL2RG is also imperative in the growth of lymphoid tissue through different receptors for interleukins and can be seen during both innate and adaptive immune responses. This may infer as stated in the Ross 708 heat-stressed RTE in comparison to the iTerm
Spleen analysis that the innate immune system has mounted, while the adaptive response is just beginning.

There were a few indicators of oxidative stress in the Ross 708 broiler line, but none were observed in the Illinois data, except the basics of inflammation occurring in leukocytes and platelets (SELP gene found in Illinois heat-stressed RTE data). Brooker et al., 2011 and Kregel et al., 2002 stated that HSP’s are very common and can be found in all genomes, including bacteria, plants and animals [6, 28]. One interesting fact found in the article by Pockley, A. G., 2003 was that HSP’s could also be recognized by the body as autoantigens. This was also found in arthritis and diabetes studies in mammalian models. This finding would be an interesting point to evaluate for future data because no HSP’s were found in the current study. There may not have been enough stimulation of the immune system in the current experiment to understand the entirety of the spleens’ response in the RTE analysis for both broiler lines [22].

Previous studies have shown that tissues, such as the pituitary exhibit peak transcript levels of HSP’s at two hours post heat stress. These studies also showed HSP’s levels to drop approximately at four hours post heat stress with a very minimal response (Pritchett, personal communication). The cyclic heat that was applied during the experiment made the protocol reproducible, but it also gave the birds a chance to acclimate to the time frame in which the heat was applied. Differences in HSP transcript levels and the heat-stressed RTE data for both chicken lines may have been seen, if heat were applied over twenty four hours for seven days, without any time to recuperate. This method may have caused a bigger response to be exhibited, by the spleen and the immune system. It may also be possible that because the spleens were
extracted between four and six hours post-heat stress, that they were in a HSP “trough”.

Studies have determined that HSP’s can be released from both necrotic and non-necrotic cells, such as those undergoing oxidative stress [39]. Neither line demonstrated enriched hypoxia-inducible factors (HIF) or heat shock proteins in the RTE data. This result suggested normal oxygen levels but, with little to no evidence to support the absence of HIF or HSP’s, more data would need to be collected and analyzed to determine why this absence occurred. Both D28 Illinois and Ross 708 spleens had no physical evidence of the spleen cells undergoing necrosis when they were extracted and observed grossly. Microscopic and histological analysis could provide additional information on the state of the spleen cells at the time of extraction. To confirm these hypotheses, more research would need to be conducted on both the Illinois and Ross 708 broilers.

Several studies have recognized heat shock proteins as inducers of autoimmune diseases. Routsias, J. G., and Tzioufas, A. G., 2006 established a connection between stressors, like heat stress and heat shock proteins. The main purpose of a HSP is to assist in proper folding of polypeptides, ensuring proper functionality, as well as repairing or conducting protein degradation [28]. The HSP’s are divided into two main categories, major and minor. Major heat shock proteins reside in the cytosol (e.g HSP70 and HSP90), while minor HSP’s reside in the endoplasmic reticulum. If enough stress acts on a cell, it can cause the cell to lyse and release its internal contents. The contents would be recognized as damaged “self” proteins. If both T and B lymphocytes responded and antibodies were produced, an autoimmune response could be generated. This response is possible because of
conservation of these proteins across many species, including bacteria. Bacteria for example, have HSP’s that are similar in structure and function in comparison to HSP’s of avian species. They are sometimes not recognized as foreign by other species which is why autoantibodies could be generated against “self” HSP’s and bacterial HSP’s. This is also known as molecular mimicry [45]. These proteins also have the ability to elevate the number of pro-inflammatory cytokines which could exacerbate inflammation and start an immune response within five to seven days [39, 45].

As seen in the normalized spleen weight data for both bird lines, a possible explanation of a decrease in spleen size may be due to a response dampening down or down-regulation of genes being expressed. However, RTE analysis does not indicate if genes are up- or down-regulated; RTE illustrates what gene transcripts are enriched in the data. Other research conducted has shown that muscle catabolism occurs when there are high levels of cytokines to the extent of which they become toxic within the body. For example, macrophages and dendritic cells can secrete several of the same cytokines including IL-6, IL-1, TNF etc and act on various organs. The liver, bone marrow and hypothalamus are examples of a few areas that can be negatively impacted by high levels of these circulating cytokines. Accumulation of such cytokines could result in muscle wasting and be a possible avenue for smaller spleen size in the current study, as shown in the normalized data [57]. However, further research may provide insight as to what other cytokines are being expressed in both bird lines.

The only enriched gene transcript found in common between both control RTE analyses of the Ross and Illinois broilers was IFNG (This gene was not found by other analytical methods performed in this study). IFNG can be activated by a
multitude of factors such as MCH II antigen presentation, B lymphocytes or macrophages. Young and Hardy 1995, established that IFNG could be inhibited by glucocorticoids (Glucocorticoid levels cannot be detected through transcriptome analysis). Other results from the in vitro and in vivo studies also found IFNG to have possible feedback mechanisms to enhance its own mRNA expression in both human and mouse models. This cytokine can play a role in different aspects of the immune system and it can be manufactured by T cells and large granular lymphocytes in which the memory cells, have demonstrated to increase IFNG levels in the presence of IL-12 (pro-inflammatory) [64]. Although IL-12 was not found in spleen RTE control or heat-stressed data of either broiler line, it does not mean it could not be found by techniques other than transcriptomic comparison.

IFNG was observed in the control RTE Illinois data while Ross birds contained this cytokine in both control and heat-stressed groups. After reviewing the FPKM values between the Ross control and heat-stressed RTE preliminary data sets, a conclusion could not be made. No statistical tests were performed to evaluate the relationship before and after heat stress treatment. PCR methods [56] may suggest the presence or lack of specific gene expression markers. Evaluating D28 and later time points in both experimental groups of each chicken line could provide validation.

After reviewing the enriched genes in both broiler lines, it can be inferred that these two broiler lines regulate physiological processes in similar ways. However, the present data suggests the involvement of different genes and gene products. Ross birds are selected for high meat yield and quality, while Illinois birds are a representation of broilers from the 1950’s. From other studies conducted in this area of research, we can infer why certain genes and cytokines may be enriched in this data.
Calefi et al., 2016 and Quinteiro-Filho et al., 2015 established a connection between heat stress and the levels of corticosterone in the blood. Heat stress in both studies demonstrated increased corticosterone levels which activated the HPA axis as a response to stress. Increased levels led to a decline in body weight gain and feed intake. Both studies also reported an increase in gut inflammation, suggesting that gut inflammation also contributed to the decrease in feed intake. With changes in the gut microbiota, this could potentiate and further drive intestinal irritation (leaky gut) in response to heat stress. Overall, both studies seemed to stress the association of stress responses elicited by the spleen as a result of hyperthermia.

In the review by Sapolsky et al., 2000 glucocorticoids were identified to have immune depressive and enhancement effects. Other findings indicated the capability of glucocorticoids to induce apoptosis within naïve T and B cells and mature T cells, leading to atrophy on a smaller scale in lymphoid organs. This review documented the deterioration of the thymus as a response to the secretion of glucocorticoids [48]. Sapolsky et al., 2000 also found glucocorticoids capable of preventing antigen-major histocompatibility presentation to T lymphocytes, decreasing T and B cell expansion, activation and moving cellular responses from TH1 to TH2. Cvoro, A. et al., 1998 found that heat stress (41°C) can modify hormone receptors such as those needed for glucocorticoids, adding additional information on the theory of thermal stress suppressing the immune system. These findings may provide a possible explanation why heat stress caused a reduction in normalized spleen weight and why a robust response was not detected in the present study.

Post et al., 2003 suggested chronic heat stress in broiler chickens to be the primary reason for a rise in plasma corticosterone levels. These elevated levels
resulted in lower spleen and body weights, concluding immune organs are susceptible to high corticosterone levels [7, 40]. Studies have also shown these high levels to be correlated with increased counts of heterophils in the blood [40]. Studies suggest a feedback mechanism implemented by the body to control corticosterone levels in future responses to heat stress. This mechanism could also regulate the release of other glucocorticoids from the adrenal gland [63]. Calefi et al., 2016 demonstrated how heat stress did not have a large impact on the spleen. In conclusion, the spleen may have an underlying protective mechanism preventing it from exhibiting a robust response to thermal challenge in both broiler lines.

As mentioned previously, interleukins and cytokines like IL-17F were enriched in the Ross 708 heat-stressed RTE data and identified by other studies. Korn et al., 2009 and Sano et al., 2015 found cytokine production of IL-17F and IL-17 by Th17 cells (a subset of CD4+ T cells) in response to different stimuli. Sano et al., 2015 reviewed the effects of segmented filamentous bacteria (SFB) on the gut, determining a relationship with the gut microbiota. The conclusions of the study highlighted the importance of homeostasis and how stress can disrupt this state and activate the immune system in mice. The generation of TH17 in the gut could also migrate to the spleen and be the source of IL-17. IL-17 is an important cytokine in assisting germinal center formation where B cells can respond to antigens and start producing antibodies. Once antibody formation starts, the innate immune system can then be activated. In the present study, heat stress caused a decrease in the Ross 708 and Illinois broiler’s appetite, suggesting a change and disruption in the gut homeostatic balance. This may have been a contributing factor to the enriched genes found during transcriptomic analysis of D28 spleens.
McGonagle and McDermott, 2006 emphasized the idea of categorizing inflammation on a scale with autoimmune at one end and auto-inflammatory at the other. The results of the current study do not suggest an autoimmune or auto-inflammatory response. However, the data does suggest the activation of the innate immune response and possibly the start of the adaptive immune response. Using the concept described in McGonagle and McDermott, 2006 the broilers could be described on a spectrum of inflammation. At one end of the spectrum would be the normal physiological processes of a broiler with a gradual increase toward the involvement of the innate and the adaptive immune response as inflammation increases (See Figure 13). Further research on the present study may identify how the spleen elicits an immune response. It may also identify the degree of the response and determine if the gut is involved and how that may relate to a systemic reaction.
Figure 13: A spectrum describing the activation of different parts of the immune system as inflammation increases over time. When heat stress acts on a broiler, the bird will continue to perform normal physiological functions until an exogenous antigen is encountered and helps promote inflammation. As inflammation increases, the innate immune system will be activated followed by the adaptive immune response.
Chapter 6

CONCLUSION

In conclusion, this study highlighted the differences of heat stress in the transcriptomic gene expression of D28 spleens of Ross 708 and Illinois broilers. During this study it was clear that the Illinois broilers had a decreased growth rate compared to that of the Ross 708 birds. The reduction in body weight gain in the Illinois broilers most likely contributed to their ability to compensate and possibly adapt to the high ambient temperatures they were exposed to during this study. Ross 708 broilers, having a considerably faster growth rate and most likely had a very low ability to tolerate the thermal stress applied.

After reviewing the entirety of the results, Path Rings did not show any differences between the heat-stressed and control broilers within or across broiler lines. However, the normalized spleen weights for both lines illustrated proportional differences between the control and heat-stressed groups for both D28 and D42 spleens. Although these proportional differences were seen, D42 illustrated significant differences (p-value <0.002) between the control and heat stress groups in both broiler lines. The D42 normalized spleen weights were approximately 53% smaller than the controls. Even though both lines were proportional, these results provide evidence of heat stress having an impact on the spleen, but the extent of that is still unknown.

The transcriptomic analysis provided some insight on the differences in gene expression between the Ross 708 and Illinois broilers in the present study. The transcriptomic expression data from the Illinois control broilers suggested a competent immune system and spleen. There was no evidence found to suggest a deviation
within these birds, from normal physiological functions. However, data from the heat-stressed group did suggest a mounted innate immune response with the possibility of developing an adaptive immune response if thermal stress persisted or worsened.

The transcriptomic analysis of the Ross 708 control birds also revealed typical genes expected in broilers with a proficient immune system and spleen. Conversely, the heat-stressed data from these chickens provided greater awareness as to the possible consequences of hyperthermia. One of the consequences included possible HPA activation, which integrates the immune system and the central nervous system. Pro-inflammatory cytokines identified within the study such as IL-17F highly suggests that heat stress caused the breakdown of the intestinal epithelial barrier. The result of this is leakage of bacterial toxins into systemic circulation (leaky gut syndrome) causing the spleen to respond by eliciting an immune response. Literature proposed an idea of heat stroke with these pro-inflammatory cytokines and the addition of others only, if higher temperatures were achieved and sustained for long periods of time. However, ethical concerns may prevent such a study from occurring. Finally, according to mammalian studies, the after effects of heat stroke can take years to develop which would be difficult to evaluate with the short life span of a typical broiler.

The enriched genes found in the transcriptomic analysis could indicate a mechanism deployed by the spleen to cope with damaging external factors. Other studies have provided similar evidence demonstrating a small and insignificant response in the spleen to heat stress [7]. Reviewing the genes found in the present study along with other literature, we can hypothesize that the spleen may be protected from extrinsic factors by allowing other organs in the body to defend off pathogens.
Overall, it was unclear to the extent of damage heat stress caused on the immune system and the spleen in both broiler liners. The significance of this study was identifying that these birds experienced heat stress and responded by demonstrating a relationship between IL-6, IL-17 and LPS. D28 boiler immune systems may not be fully developed to see a large enough response to thermal stress. D42 however, may provide a better explanation on the effects of hyperthermia in broiler chickens and the detrimental effects it may have on the immune system as well as the spleen. Expanded studies of the present experiment may discover the link between the lack of response produced by the spleen and the immune system in both broiler lines.

Finally, it was evident that there were changes in the gene expression seen in the transcriptomic comparisons of the spleen in both broiler lines. Although changes were observed, there were no enriched transcripts in the current study suggesting a damaged erythrocyte population or an increase in genes responsible for erythrocyte clearance or hemoglobin production. There was also no evidence suggesting a decrease in the B and T lymphocyte populations or antigen recognition and presentation. The enriched gene transcripts found in the study were most likely indicative of an immune response with the possibility of inducing leaky gut syndrome and a systemic response. Lastly, the study illustrated more detectable differences in the Ross 708 broilers in response to heat stress compared the Illinois broilers.
Chapter 7

FUTURE WORK

After conducting this experiment, several limitations were discovered. One limitation found was tissue degradation by RNases. Certain tissues such as the spleen can easily be degraded by endogenous RNases (every tissue contains RNases) [31]. Flash freezing tissues immediately after extraction reduces this effect in combination with preservation solutions like RNAlater (this solution conserves the integrity of the RNA within a tissue). Other studies conducted at the University of Delaware using RNAlater demonstrated a greater level of RNA integrity after total RNA extraction and quality check was performed on spleen samples. For future work it would be highly recommended to use solutions such as RNAlater to preserve spleen tissue or any tissue susceptible to degradation by RNases [31].

Another limitation of this study was only collecting temperature data for liver samples. The liver was found to be nearly equivalent to the temperature of the cloaca in the heat-stressed birds (Schmidt, personal communication). Measuring the temperature of the spleen may have shown similar findings and provided an explanation to unanswered questions. It can be theorized that the spleen could have had an increased temperature similar to that of cloaca because it is located deep inside the bird, and it is surrounded by tissues superior and inferior to it. An optimal experiment would be to repeat the current study and collect temperature measurements on various tissues at D28 for comparison. This could provide an explanation as to why
heat stress did not present a vigorous response in the transcriptomic profiles of the spleen.

Other caveats of the present study included collecting transcriptome data from only D28 samples. It would be interesting to know if D42 had a more dynamic response to heat stress or if those spleens achieved thermo-tolerance. Setting up a future experiment to evaluate the signals present in the current study would be an ideal way to obtain this information. For example, a similar study with an increased environmental temperature, we might expect a more robust response from the spleen. A future study such as this may detect increases in expression of IL-6, IL-17, and LPS’s. We also might expect an increase in mortality and morbidity depending on the severity of the heat stress and the duration of the study. Cell culture work and other studies conducted on the pituitary have revealed peak levels of HSP’s to be detected approximately two hours into a heat stress cycle. During this parallel study it would be optimal to perform necropsies on broilers and extract tissues samples two hours into the thermal stress period. The expectation would be to observe increased HSP transcripts in the transcriptome data after relative tissue expression and differential expression analyses.

Investigating the blood of the chickens may also provide valuable information on the physiological state of the broilers on both a cellular and molecular level. By reviewing the levels of GSH in the blood, (reduce glutathione form) we would be able to cross confirm that the broilers were experiencing heat stress. Cui, Y. et al., 2016 concluded that the liver is a designated storage center for GSH and when heat stress acts on the liver, GSH becomes mobile and migrates into the blood stream. Based on these findings, if GSH was not detectable in the blood of a future study, it could
suggest removal by the spleen. Other useful information that could be evaluated in the blood includes collecting samples before, during and after a future experiment to assess the heterophil to lymphocyte ratio. This would permit a baseline to be established and conduct comparisons throughout the study. Mack et al., 2013 pointed out heat stress as the principal cause of an increased heterophil to lymphocyte ratio [51]. During the fall 2013 trial, blood samples and rectal temperatures were not collected but, they would have been a valuable asset based off the current results of both broiler lines and avian literature.

A follow up analysis utilizing PCR methods may shed light as to why a vigorous response by the spleen was not observed. From the current findings the data suggests, a systemic immune response and it also points to leaky gut syndrome. Several cytokines could be analyzed within spleen tissues such as IL-6, IL-17, TLR-2 and TLR-4, all of which are capable of inducing a pro-inflammatory response [45]. Establishing a significant number of markers in this analysis could confirm the theory of leaky gut syndrome. A future study could also comprise an exploration of B and T lymphocyte markers at both D28 and D42. Comparing these time points would provide evidence of an expected exacerbated response based on the current findings of the present study. This might only be feasible if the future study introduced an antigenic challenge in combination with heat stress.

A typical immunological response to antigens initiated by the spleen causes surveillance cells (e.g. dendritic cell and macrophages) to bind or phagocytize foreign antigens with the involvement of both T and B cells (Emara, personal communication). A response will only be generated if antibodies are produced against the foreign antigen. Only then, can a response be mounted and germinal centers
formed. PCR would be advantageous in identifying which T and B cells were stimulated in response to thermal stress with antigenic challenge [56]. It could potentially highlight the factors initiated by heat stress that caused immunosuppression or it might establish the underlying reason for a lack of a response observed in the D28 spleens. Assessing tissue samples for anti-inflammatory cytokines (e.g. TGF-B and IL-10) may also provide cross confirmation by demonstrating as inflammation increases, anti-inflammatory factors increase to dampen down and maintain hemostasis in the immune system. A lack of these factors may lead to the assumption of a systemic response throughout the body causing havoc and damaging tissues. Many questions remained unanswered until a study such as this is conducted.

A future experiment could expand the current study to explore tissue samples from D28 and D42 comparing the spleen, liver and intestine. Although there was minimal information supplied by the present study, D42 may attest to a more vigorous response elicited by the spleen due to a longer duration of thermal stress. In literature, the liver and gut have demonstrated robust responses to chronic heat stress [41, 44] however; only liver tissue at the University of Delaware has been analyzed for D28 and D42 in the Ross 708 broiler line. Evaluating the liver and intestines in both lines using both time points, could provide a definitive answer as to why these other tissues exhibit a far greater response compared to the spleen. Ideas of why this might be occurring could be that the spleen is protected in some manner but the answer to this remains unclear.

Finally, a future study may include challenging the immune system of either the Ross 708 or Illinois broilers by injecting the broilers with an infectious agent. A typical healthy bird would mount an appropriate immunological response and generate
germinal centers. However, if the birds were unable to mount an immune response, the result of death may indicate thermal stress increasing hormones such as glucocorticoids (e.g. corticosterone) and causing immunosuppression. If death was not observed, heat stress may not be solely responsible for the lack of a response elicited by the spleen and other factors may be influencing the immune response (Emara, personal communication).

Specifics of such a study would entail a similar experimental design and temperatures from the present study with a slight adaptation from the experiment conducted by Calefi et al., 2016. In this proposed study, only one bird line would be evaluated to control confounding variables and focus strictly on the effects of an immune challenge in combination with heat stress. Four groups would be established as follows, a control group, a heat-stressed group, a control group with the addition of an infectious agent, and finally, a heat-stressed group with the addition of an infectious agent. Male birds would be hatched out and reared at 25°C until D21. Then on D21 the infectious agent would be injected and cyclic heat stress would be applied for eight hours a day at 39°C until D42 and decrease to 25°C for the remaining sixteen hours.

On D22, broilers would be randomly selected from each group to collect various parameter measurements at two, four, six, and eight hours into the cyclic heat period and final necropsies would be performed on D28 and D42 broilers. Morphometric data such as spleen temperature, spleen weight, body weight, blood samples (to analyze corticosterone levels) and rectal temperatures would be collected during these various time points. These parameters would provide a baseline starting at D22 to compare later time points to. Only the control with heat stress and the heat stress with the infectious agent groups would experience the cyclic thermal stress.
Once analyzed, this information could reveal the answers to various questions about how acute and chronic heat stress affects the spleen at various developmental stages and the underlying mechanisms involved. Evaluating the same parameters at D28 and D42 for all four proposed groups, would be interesting none the less. It would provide clarification and help us understand the exact mechanisms in which the spleen responds to acute and chronic heat stress in conjunction with an immunological challenge. Possible questions to address during this proposed study may include those listed below.

1. Does acute heat stress and/or chronic heat stress dampen the immune response and/or the functionality of the spleen?
2. What type of mechanisms may be protecting the spleen?
3. Does the spleen respond by undergoing apoptosis and reduce its overall size?
4. How does acute heat stress response differ from that of chronic heat stress?
5. Does acute and chronic heat stress alter the gut microbiota and intensify the overall immune response of the bird?

Another way to evaluate functionality of the spleen in such a study would be to analyze the different populations of T lymphocytes present. Several ways to conduct this test could include, collecting heat-stressed broiler spleens and using a mesh separation technique to isolate the T lymphocytes. According to Trizio, D., and Cudkowicz, G., 1974, nylon wool will separate T lymphocytes from the remaining cell populations in spleens without causing cells to lyse [58]. Trizio, D., and Cudkowicz, G., 1974 proposed mixing different concentrations of B and T lymphocytes after
isolation to evaluate efficacy in vivo. The in vivo studies demonstrated an elicited immune response when the cell populations were injected back into mice. A similar test could be set up for the proposed study described above [58].

Other methods of obtaining similar results might be to collect blood samples and centrifuge the isolated concentration of cells to separate the plasma, buffy coat, and erythrocytes. Then the cells within the buffy coat could be plated for cell culture analysis. Different fluorescent markers could then be added to the cell plates to fluorescently mark various T cell populations. For example, adding a CD4+ marker and anti-sera would identify the T helper population while CD8+ with the addition of anti-sera would identify cytotoxic T cells. Using a wash to remove unbound T lymphocytes, may help in identifying the T cell population primarily present. In addition, complement could be added to deplete the remaining white blood cell populations on the plates. An in vitro study could be completed to identify functionality of the isolated cells and if they are efficient in producing antibodies (Emara, personal communication).

Calefi et al., 2016 suggested chronic heat stress in addition to intestinal inflammation could create an environment to manufacture a feedback mechanism through activation of the HPA axis. This negative feedback mechanism was proposed to decrease the total concentration of corticosterone in the blood resulting in reduction of adrenocorticotropic hormone (ACTH) from the pituitary. The results of this secretion would be a dampened down immune response to maintain homeostasis and allow the birds to live longer by generating a more immunologically equipped broiler. Rout et al., 2016, found HSP stimulation in response to chronic heat stress to “induce
acclimation to the stressor and involves reprogramming gene expression and metabolism” [44].

A study such as the one proposed above may provide definitive answers or strongly suggest what is causing the spleen to produce a weak response and how gene expression is altered. Future studies may illustrate specific changes in the erythrocyte, B and T lymphocyte populations and how signals are initiating leaky gut syndrome. Based off the current study’s results the answers to these questions are not well defined. It will be important to understand the mechanisms behind immune responses on a larger scale to benefit the poultry industry. It will also be vital to understand the effects of modifying broiler genetics with rising temperatures to ensure maximum production while maintaining the highest health standards for broilers.
REFERENCES

http://dx.doi.org/10.1016/j.cbpa.2012.12.008

Appendix A

DIFFERENTIAL EXPRESSION AND RELATIVE TISSUE EXPRESSION ANALYSIS PROTOCOLS

A.1 Differential Expression Analysis Protocol

Step 1: Add 4 new columns after locus of Library_(library number will be here). Go to columns add multiple then type 4. Now double click on each new column and change the names of each to the following categories Mean_Control, Mean_HS, HS/Control Ratio, and Log\textsubscript{2}HS/Cratio.

- Mean_Control
- Mean_HS
- HS/Control_Ratio
- Log2_of_Ratio_(HS/C)

To find the Mean, right click on a column, select formula, click statistical in the right handed section and then mean. Then select all of the control libraries, hit apply and ok. Now repeat this for heat stress. Then for HS/C ratio column right click on this column, select formula, then click HS / (this button on the keyboard and the control, apply and ok. Finally, for the Log\textsubscript{2} HS/C ratio right click this column, select formula, transcendental, LOG then click the small box and add a comma then double click to put the number 2. Now select the entire box and click the HS/C ratio. When you are finished click apply and ok.

Step 2: Now click on the log\textsubscript{2} ratio, tables (located at the top of screen), sort then click log\textsubscript{2} ratio HS/C and click by. Then apply and ok. Now press shift and select
all the dots and delete these rows in the log₂ HS/C ratio. Now go to analyze, distribution on the Log₂ ratio then click Y, column and ok. Then select all of the dots and it will remove the nonsignificant ones. Lastly, go to tables, subset, selected rows, and all columns.

Step 3: Stay in the Log₂ ratio and go to tables (located up at the top of the screen) click transpose. Then transpose columns (select all library numbers control and heat stress) label by gene short name and click ok. Then add a new column after label and rename this as condition. Then go to analyze, fit x by y. The genes are your Y and the condition is your X, select ok. While holding down the command key on a MAC or control on a PC, choose means/anova/pooledT. In the t-test area hold the command or control key and click test and click in the area with all the different numbers and combined data table. Now in the new table sort by ascending and remove everything in Column 4 that is not the probability of the absolute value of T. Then click the left side of the table and delete those rows (Delete Prob<t) then do the same for the opposite. You want to keep all Prob>|t|. Now delete everything except column Y and column 6. Save this table as p-value.

Once saved, sort by p-value and delete everything greater than or equal to 0.05 and save. Click tables, join, log₂ ratio then select gene name and gene short. Click the drop multiples with table and then ok. You can delete gene short name column but keep gene name. Finally, sort by the log₂ and choose ascending.

A.2 Relative Tissue Expression Analysis Protocol

Step 1: Start with RTE_TABLE_JUNE2016 in Google drive in folder titled 4RTE in Data section. Open the NCBI2016 file in the “4RTE” file in JMP Expression file for use in step 3.
Step 2: If gene names are in columns, Click tables, transpose, all genes in transpose columns, Column label if not, skip this step. Replace all zeros with 0.001. This is done to ensure genes of interest are not lost when performing log transformations.

Step 3: Click tables, join, and choose symbol under columns then select NCBI2016 file to join (in white box above. Note, this file must be open for it to appear in the white box and select match). **Recommended Action:** save this file (in a new file in the JMP expression folder with your initials) so you can begin with this table for future analysis. Lastly be sure to save all future files after this step in your corresponding folder.

Step 4: On the left side of the JMP table, find the libraries for the tissue of interest, select all and drag them to the top so these libraries are at the beginning of the library list.

Step 5: Now select the description column, select columns, add multiple columns and add three new columns. This will allow you to add new columns just after your selected the description column and label the columns as follows, maximum “tissue name”, median “tissue name”, and Log\(_2\) MaxTiss/MedTiss.

Step 6: To calculate maximum values, right click the column heading and click formula, statistical, maximum and the select all of the libraries for that tissue (or tissues if you are doing the maximum of all other tissues).

Step 7: To calculate median values, right click the column heading and click formula, statistical quantile, type 0.5 and present enter. Now click the ^ button (the JMP ^ button above your displayed formula next to the + and – and not on the
keyboard). To create a new empty box select the first tissue, hold shift, and select the last tissue library. This should include all libraries now press apply and ok

Step 8: To calculate $\log_2 \text{MaxTiss}/\text{MedTiss}$ values, right click column heading and click formula, select maximum tissue column on left and press Divide button. Then select median tissue column on left select the whole formula (red box around entire formula) and choose transcendental, log, select the formula again and press the comma key. Now change the ten to a two, select apply then ok. It is highly recommended to save this file.

Step 9: Select the $\log_2 \text{MaxTiss}/\text{MedTiss}$ column, analyze, distribution and put the $\log_2 \text{MaxTiss}/\text{MedTiss}$ in the Y column and choose ok. Now remove all rows and/or genes with increased ratios of maximum to median by selecting the outlier genes (black dots). To do so, simply click and drag a box to cover the black dots.

Step 10: Select rows, row selection and invert row selection.

Step 11: Click tables, subset, selected rows, all columns and hit ok.

Step 12: Click tables, sort and select $\log_2 \text{MaxTiss}/\text{MedTiss}$ and change the symbol from smallest to largest and choose ok.

Step 13: Delete all of the rows that contain a dot in the $\log_2 \text{MaxTiss}/\text{Med Tiss}$ column by selecting the first row and scrolling to last row. Now hold shift and click. Then right click and delete those selected rows.

Step 14: In the table just created, add two new columns and label them, Median of All Tissues (median of all tissues other than the tissue being analyzed) and $\log_2 \text{MaxTiss}/\text{MedAllTiss}$. Refer back to steps seven, eight and nine for these calculations. It is highly recommended to save this file.
Step 15: Select the Log2 MaxTiss/MedAllTiss column, analyze, distribution, and place the Log2 MaxTiss/MedAllTiss in the Y column, now hit ok.

Step 16: Now select the outlier genes (black dots). If there are outlier genes on both the positive and negative, select both by holding the shift key down.

Step 17: Click table, subset, selected rows, all columns and then ok. It is highly recommended to save this file.

Step 18: Click tables transpose and transpose all libraries and label by gene symbol.

Step 19: Click columns and add multiple columns, add 1 column and title it condition placing it after the library name column. Now label tissue as tissue name and all other tissues as other.

Step 20: Then click analyze, Fit X by Y and all genes should be included in the Y response and the X factor should be condition. Now hit ok. While holding down control, click the red arrow located next to the first graph and select “means/anova/pooled t.

Step 21: Hover the mouse over the t-test table under first graph. While holding down control on the keyboard, right click and select make into combined data table. Now select column four and sort (ascending or descending is fine)

Step 22: Highlight all the rows labeled prob>|T|. Then click tables, subset, selected rows and all columns. Now label column six as p-value and delete the remaining columns except for Y and p-value.

Step 23: Click tables, join and join this table onto the last saved file. It is highly recommended to save the file.
Step 24: Select \(\log_2 \) MaxTiss/MedAllTiss and sort. Then select all genes with a positive \(\log_2 \) value and subset these genes. It is highly \textbf{recommended to save this file because this file will be used for further analysis}.
Appendix B

DIFFERENTIAL EXPRESSION RAW DATA TABLES FOR ROSS AND ILLINOIS CONTROL AND HEAT-STRESSED GROUPS

Table 15: Raw data table for 44 differentially expressed genes found in the Ross Control and Heat-stressed groups. Control genes are illustrated with a negative Log\(_2\) HS/C ratio and Heat-stressed genes are illustrated by a positive Log\(_2\) HS/C ratio.

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Description</th>
<th>Log(_2) RatioHS/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC416500</td>
<td>uncharacterized LOC416500</td>
<td>-2.972153376</td>
</tr>
<tr>
<td>FKBP6</td>
<td>FK506 binding protein 6, 36kDa</td>
<td>-2.678017939</td>
</tr>
<tr>
<td>PI15</td>
<td>peptidase inhibitor 15</td>
<td>-1.714001352</td>
</tr>
<tr>
<td>PDK4</td>
<td>pyruvate dehydrogenase kinase, isozyme 4</td>
<td>-1.629398436</td>
</tr>
<tr>
<td>DPT</td>
<td>dermatopontin</td>
<td>-1.498553577</td>
</tr>
<tr>
<td>FIGF</td>
<td>c-fos induced growth factor (vascular endothelial growth factor D)</td>
<td>-1.319823567</td>
</tr>
<tr>
<td>CIDEA</td>
<td>cell death-inducing DFFA-like effector a</td>
<td>-1.31760101</td>
</tr>
<tr>
<td>HSD17B2</td>
<td>hydroxysteroid (17-beta) dehydrogenase 2</td>
<td>-1.25845163</td>
</tr>
<tr>
<td>P4HA3</td>
<td>prolyl 4-hydroxylase, alpha polypeptide III</td>
<td>-1.227338631</td>
</tr>
<tr>
<td>LOC417962</td>
<td>uncharacterized LOC417962</td>
<td>-1.225404802</td>
</tr>
<tr>
<td>TMEM2</td>
<td>transmembrane protein 2</td>
<td>-1.219374042</td>
</tr>
<tr>
<td>ELN</td>
<td>elastin (supravalvular aortic stenosis, Williams-Beuren syndrome)</td>
<td>-1.213016229</td>
</tr>
<tr>
<td>AGRP</td>
<td>agouti related protein homolog (mouse)</td>
<td>-1.065093368</td>
</tr>
<tr>
<td>RPL31</td>
<td>ribosomal protein L31</td>
<td>-0.996933487</td>
</tr>
<tr>
<td>CRISPLD2</td>
<td>cysteine-rich secretory protein LCCL domain containing 2</td>
<td>-0.995448506</td>
</tr>
<tr>
<td>KCNE3</td>
<td>potassium voltage-gated channel, lsk-related family, member 3</td>
<td>-0.990330128</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>Score</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>EDAR</td>
<td>ectodysplasin A receptor</td>
<td>-0.906436841</td>
</tr>
<tr>
<td>IL1RL1</td>
<td>interleukin 1 receptor-like 1</td>
<td>-0.821938908</td>
</tr>
<tr>
<td>NR5A1</td>
<td>nuclear receptor subfamily 5, group A, member 1</td>
<td>0.809367772</td>
</tr>
<tr>
<td>RASL10B</td>
<td>RAS-like, family 10, member B</td>
<td>0.8263707</td>
</tr>
<tr>
<td>LAPTM4B</td>
<td>lysosomal protein transmembrane 4 beta</td>
<td>0.844854862</td>
</tr>
<tr>
<td>NELL2</td>
<td>NEL-like 2 (chicken)</td>
<td>0.8476245</td>
</tr>
<tr>
<td>GGT1</td>
<td>gamma-glutamyltransferase 1</td>
<td>0.862093566</td>
</tr>
<tr>
<td>SKA3</td>
<td>spindle and kinetochore associated complex subunit 3</td>
<td>0.865038645</td>
</tr>
<tr>
<td>LOC769174</td>
<td>C-type lectin-like receptor variant</td>
<td>0.906552922</td>
</tr>
<tr>
<td>CLDN5</td>
<td>claudin 5</td>
<td>0.907201453</td>
</tr>
<tr>
<td>ATP8A2</td>
<td>ATPase, aminophospholipid transporter, class I, type 8A, member 2</td>
<td>0.934420674</td>
</tr>
<tr>
<td>KIF9</td>
<td>kinesin family member 9</td>
<td>0.979619021</td>
</tr>
<tr>
<td>LGALS2</td>
<td>lectin, galactoside-binding, soluble, 2</td>
<td>1.001902507</td>
</tr>
<tr>
<td>LOC769421</td>
<td>heparan sulfate glucosamine 3-O-sulfotransferase 3B1-like</td>
<td>1.011920481</td>
</tr>
<tr>
<td>FAM40B</td>
<td>family with sequence similarity 40, member B</td>
<td>1.012093535</td>
</tr>
<tr>
<td>W5CD1</td>
<td>WSC domain containing 1</td>
<td>1.018402566</td>
</tr>
<tr>
<td>OLFM1</td>
<td>olfactomedin 1</td>
<td>1.042285014</td>
</tr>
<tr>
<td>FSTL4</td>
<td>follistatin-like 4</td>
<td>1.062433796</td>
</tr>
<tr>
<td>EMID2</td>
<td>EMI domain containing 2</td>
<td>1.096438084</td>
</tr>
<tr>
<td>GGT5</td>
<td>gamma-glutamyltransferase 5</td>
<td>1.123759115</td>
</tr>
<tr>
<td>SHISA2</td>
<td>shisa homolog 2 (Xenopus laevis)</td>
<td>1.125131535</td>
</tr>
<tr>
<td>HS3ST6</td>
<td>heparan sulfate (glucosamine) 3-O-sulfotransferase 6</td>
<td>1.205730758</td>
</tr>
<tr>
<td>ANKDD1A</td>
<td>ankyrin repeat and death domain containing 1A</td>
<td>1.209397975</td>
</tr>
<tr>
<td>CACNG3</td>
<td>calcium channel, voltage-dependent, gamma subunit 3</td>
<td>1.210029841</td>
</tr>
<tr>
<td>HS3ST3A1</td>
<td>heparan sulfate (glucosamine) 3-O-sulfotransferase 3A1</td>
<td>1.307975896</td>
</tr>
</tbody>
</table>
Table 15 continued

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Description</th>
<th>Log₂ Ratio HS/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDPD4</td>
<td>glycerophosphodiester phosphodiesterase domain containing 4</td>
<td>1.499691217</td>
</tr>
<tr>
<td>RTN4R</td>
<td>reticulon 4 receptor</td>
<td>1.803914417</td>
</tr>
<tr>
<td>KCNA1</td>
<td>potassium voltage-gated channel, shaker-related subfamily, member 1 (episodic ataxia with myokymia)</td>
<td>2.295530035</td>
</tr>
</tbody>
</table>

Table 16: Raw data table for 52 differentially expressed genes found in the Illinois Control and Heat-stressed groups. Control genes are illustrated with a negative Log₂ HS/C ratio and Heat-stressed genes are illustrated by a positive Log₂ HS/C ratio.

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Description</th>
<th>Log₂ Ratio HS/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC101751242</td>
<td>uncharacterized LOC101751242</td>
<td>-5.209302225</td>
</tr>
<tr>
<td>TRNAA-AGC</td>
<td>transfer RNA alanine (anticodon AGC)</td>
<td>-4.746199087</td>
</tr>
<tr>
<td>LOC101751970</td>
<td>uncharacterized LOC101751970</td>
<td>-2.707595711</td>
</tr>
<tr>
<td>LOC769339</td>
<td>fatty acyl-CoA hydrolase precursor, medium chain-like</td>
<td>-2.21941452</td>
</tr>
<tr>
<td>TXNDC5</td>
<td>thioredoxin domain containing 5 (endoplasmic reticulum)</td>
<td>-2.102477296</td>
</tr>
<tr>
<td>C8ORF22</td>
<td>chromosome 2 open reading frame, human C8orf22</td>
<td>-1.933605283</td>
</tr>
<tr>
<td>MMP13</td>
<td>matrix metallopeptidase 13 (collagenase 3)</td>
<td>-1.860037345</td>
</tr>
<tr>
<td>LOC101747372</td>
<td>uncharacterized LOC101747372</td>
<td>-1.750561296</td>
</tr>
<tr>
<td>PRIMA1</td>
<td>proline rich membrane anchor 1</td>
<td>-1.73082845</td>
</tr>
<tr>
<td>GZMA</td>
<td>granzyme A (granzyme 1, cytotoxic T-lymphocyte-associated serine esterase 3)</td>
<td>-1.706739092</td>
</tr>
<tr>
<td>FAM46C</td>
<td>family with sequence similarity 46, member C</td>
<td>-1.686212723</td>
</tr>
<tr>
<td>LOC100857334</td>
<td>60S ribosomal protein L17-like</td>
<td>-1.621733558</td>
</tr>
<tr>
<td>LOC100857546</td>
<td>uncharacterized LOC100857546</td>
<td>-1.524082995</td>
</tr>
<tr>
<td>BVES</td>
<td>blood vessel epicardial substance</td>
<td>-1.491193443</td>
</tr>
<tr>
<td>MINPP1</td>
<td>multiple inositol-polyphosphate phosphatase 1</td>
<td>-1.237389676</td>
</tr>
<tr>
<td>LOC101751282</td>
<td>RANBP2-like and GRIP domain-containing protein 2-like</td>
<td>-1.189103358</td>
</tr>
<tr>
<td>ASB5</td>
<td>ankyrin repeat and SOCS box containing 5</td>
<td>-1.186350909</td>
</tr>
<tr>
<td>EAF2</td>
<td>ELL associated factor 2</td>
<td>-1.166793669</td>
</tr>
<tr>
<td>CIDEA</td>
<td>cell death-inducing DFFA-like effector a</td>
<td>-1.163525573</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Description</td>
<td>Expression Ratio</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>CEP97</td>
<td>centrosomal protein 97kDa</td>
<td>-1.159943231</td>
</tr>
<tr>
<td>LOC776577</td>
<td>T-cell receptor gamma chain V region V108A-like</td>
<td>-1.125103715</td>
</tr>
<tr>
<td>LOC101751594</td>
<td>uncharacterized LOC101751594</td>
<td>-1.115761592</td>
</tr>
<tr>
<td>CCR9</td>
<td>chemokine (C-C motif) receptor 9</td>
<td>-1.099090036</td>
</tr>
<tr>
<td>PPP2R3A</td>
<td>protein phosphatase 2, regulatory subunit B', alpha</td>
<td>-1.095514485</td>
</tr>
<tr>
<td>COL6A3</td>
<td>collagen, type VI, alpha</td>
<td>-1.062887815</td>
</tr>
<tr>
<td>LOC100859106</td>
<td>envelope glycoprotein gp95-like</td>
<td>-1.059285853</td>
</tr>
<tr>
<td>BMP6</td>
<td>bone morphogenetic protein 6</td>
<td>-1.053106622</td>
</tr>
<tr>
<td>GDA</td>
<td>guanine deaminase</td>
<td>-1.046552776</td>
</tr>
<tr>
<td>HPGDS</td>
<td>hematopoietic prostaglandin D synthase</td>
<td>-0.995023148</td>
</tr>
<tr>
<td>EDAR</td>
<td>ectodysplasin A receptor</td>
<td>-0.984323735</td>
</tr>
<tr>
<td>ANKRD26</td>
<td>ankyrin repeat domain 26</td>
<td>-0.983726905</td>
</tr>
<tr>
<td>WDR74</td>
<td>WD repeat domain 74</td>
<td>0.939443067</td>
</tr>
<tr>
<td>SARS2</td>
<td>seryl-tRNA synthetase 2, mitochondrial</td>
<td>0.96245558</td>
</tr>
<tr>
<td>LOC101749414</td>
<td>uncharacterized LOC101749414</td>
<td>0.964320429</td>
</tr>
<tr>
<td>MTG1</td>
<td>mitochondrial ribosome-associated GTPase 1</td>
<td>0.996154818</td>
</tr>
<tr>
<td>LOC101749974</td>
<td>uncharacterized LOC101749974</td>
<td>1.001649483</td>
</tr>
<tr>
<td>LOC424872</td>
<td>zinc finger protein DZIP1L-like</td>
<td>1.068418048</td>
</tr>
<tr>
<td>LOC101752009</td>
<td>kaptin-like</td>
<td>1.069424512</td>
</tr>
<tr>
<td>LOC101751192</td>
<td>protein timeless homolog</td>
<td>1.089566264</td>
</tr>
<tr>
<td>LOC429445</td>
<td>forkhead box protein I1-ema-like</td>
<td>1.089590544</td>
</tr>
<tr>
<td>RASAL1</td>
<td>RAS protein activator like 1 (GAP1 like)</td>
<td>1.109969659</td>
</tr>
<tr>
<td>COL16A1</td>
<td>collagen, type XVI, alpha</td>
<td>1.136194441</td>
</tr>
<tr>
<td>HS3ST6</td>
<td>heparan sulfate (glucosamine) 3-O-sulfotransferase 6</td>
<td>1.177699717</td>
</tr>
<tr>
<td>SRR</td>
<td>serine racemase</td>
<td>1.206049069</td>
</tr>
<tr>
<td>PAQR3</td>
<td>progestin and adipoQ receptor family member III</td>
<td>1.247349329</td>
</tr>
<tr>
<td>LOC101750092</td>
<td>battenin-like</td>
<td>1.287085408</td>
</tr>
<tr>
<td>G6PCE</td>
<td>glucose 6 phosphatase, catalytic, 3</td>
<td>1.29072614</td>
</tr>
<tr>
<td>C11ORF49</td>
<td>chromosome 5 open reading frame, human C11orf49</td>
<td>1.320214282</td>
</tr>
<tr>
<td>ZP1</td>
<td>zona pellucida glycoprotein 1 (sperm receptor)</td>
<td>1.486874975</td>
</tr>
<tr>
<td>ENGASE</td>
<td>endo-beta-N-acetylglucosaminidase</td>
<td>1.494900646</td>
</tr>
<tr>
<td>MFSD8</td>
<td>major facilitator superfamily domain containing 8</td>
<td>2.039350008</td>
</tr>
<tr>
<td>TMEM220</td>
<td>transmembrane protein 220</td>
<td>2.687208501</td>
</tr>
</tbody>
</table>
Appendix C

RAW DATA TABLES FOR THE RELATIVE TISSUE EXPRESSION ANALYSIS FOR THE ROSS AND ILLINOIS CONTROL AND HEAT-STRESSED GROUPS

Table 17: Raw data table for the enriched genes found in the relative tissue expression data for Ross Control and Heat-stressed groups. The genes enriched in the control group are unbolded and the enriched heat-stressed genes are illustrated in bold.

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Description</th>
<th>Log2MaxSpleen/MedAllTiss</th>
</tr>
</thead>
<tbody>
<tr>
<td>LITAF</td>
<td>lipopolysaccharide-induced TNF factor</td>
<td>5.428884444</td>
</tr>
<tr>
<td>LOC101748229</td>
<td>nuclear factor interleukin-3-regulated protein-like</td>
<td>5.429411393</td>
</tr>
<tr>
<td>SAMD9L</td>
<td>sterile alpha motif domain containing 9-like</td>
<td>5.433580259</td>
</tr>
<tr>
<td>FUT5</td>
<td>fucosyltransferase 5 (alpha (1,3) fucosyltransferase)</td>
<td>5.433627167</td>
</tr>
<tr>
<td>TLR15</td>
<td>toll-like receptor 15</td>
<td>5.43535711</td>
</tr>
<tr>
<td>LOC101750425</td>
<td>uncharacterized LOC101750425</td>
<td>5.436961338</td>
</tr>
<tr>
<td>LOC101750207</td>
<td>uncharacterized LOC101750207</td>
<td>5.437960088</td>
</tr>
<tr>
<td>MBOAT1</td>
<td>membrane bound O-acyltransferase domain containing 1</td>
<td>5.43942454</td>
</tr>
<tr>
<td>LOC101749657</td>
<td>uncharacterized LOC101749657</td>
<td>5.441616269</td>
</tr>
<tr>
<td>RUFY4</td>
<td>RUN and FYVE domain containing 4</td>
<td>5.448854806</td>
</tr>
<tr>
<td>LOC101749391</td>
<td>uncharacterized LOC101749391</td>
<td>5.457134594</td>
</tr>
<tr>
<td>LOC101748449</td>
<td>uncharacterized LOC101748449</td>
<td>5.457134594</td>
</tr>
<tr>
<td>FAM132A</td>
<td>family with sequence similarity 132, member A</td>
<td>5.457199023</td>
</tr>
<tr>
<td>MYO7L1</td>
<td>myosin-7-like 1</td>
<td>5.465974465</td>
</tr>
<tr>
<td>HOXB5</td>
<td>homeobox B5</td>
<td>5.467933219</td>
</tr>
<tr>
<td>ICOS</td>
<td>inducible T-cell co-stimulator</td>
<td>5.475042571</td>
</tr>
<tr>
<td>BIN2</td>
<td>bridging integrator 2</td>
<td>5.477605949</td>
</tr>
<tr>
<td>RGS20</td>
<td>regulator of G-protein signaling 20</td>
<td>5.484742479</td>
</tr>
<tr>
<td>LOC101749208</td>
<td>GTPase IMAP family member 7-like</td>
<td>5.484946749</td>
</tr>
<tr>
<td>OR52R1</td>
<td>olfactory receptor, family 52, subfamily R, member 1</td>
<td>5.485426827</td>
</tr>
<tr>
<td>LOC101750917</td>
<td>uncharacterized LOC101750917</td>
<td>5.494008452</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>LogFoldChange</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>FUT7</td>
<td>Fucosyltransferase 7 (alpha (1,3) fucosyltransferase)</td>
<td>5.49959481</td>
</tr>
<tr>
<td>LCP2</td>
<td>Lymphocyte cytosolic protein 2 (SH2 domain containing leukocyte protein of 76kDa)</td>
<td>5.500846883</td>
</tr>
<tr>
<td>LOC768553</td>
<td>E3 SUMO-protein ligase RanBP2-like</td>
<td>5.504310335</td>
</tr>
<tr>
<td>LOC101750697</td>
<td>uncharacterized LOC101750697</td>
<td>5.509243069</td>
</tr>
<tr>
<td>MYH1G</td>
<td>Myosin, heavy chain 1G, skeletal muscle (similar to human myosin, heavy chain 1, skeletal muscle, adult)</td>
<td>5.512319402</td>
</tr>
<tr>
<td>BCL11A</td>
<td>B-cell CLL/lymphoma 11A (zinc finger protein)</td>
<td>5.52499576</td>
</tr>
<tr>
<td>DDX43</td>
<td>DEAD (Asp-Glu-Ala-Asp) box polypeptide 43</td>
<td>5.526068812</td>
</tr>
<tr>
<td>LOC101749765</td>
<td>E3 ubiquitin-protein ligase ICP0-like</td>
<td>5.527007761</td>
</tr>
<tr>
<td>LOC101747558</td>
<td>uncharacterized LOC101747558</td>
<td>5.547819957</td>
</tr>
<tr>
<td>LOC101748830</td>
<td>inositol 1,4,5-trisphosphate receptor-interacting protein-like 1-like</td>
<td>5.548128324</td>
</tr>
<tr>
<td>ARHGAP27</td>
<td>Rho GTPase activating protein 27</td>
<td>5.550637773</td>
</tr>
<tr>
<td>GPLD1</td>
<td>Glycosylphosphatidylinositol specific phospholipase D1</td>
<td>5.553680411</td>
</tr>
<tr>
<td>SLC24A4</td>
<td>Solute carrier family 24 (sodium/potassium/calcium exchanger), member 4</td>
<td>5.554520235</td>
</tr>
<tr>
<td>LOC415661</td>
<td>uncharacterized oxidoreductase-like</td>
<td>5.560116032</td>
</tr>
<tr>
<td>GPR64</td>
<td>G protein-coupled receptor 64</td>
<td>5.561285692</td>
</tr>
<tr>
<td>IL1B</td>
<td>Interleukin 1, beta</td>
<td>5.564330842</td>
</tr>
<tr>
<td>WNT10A</td>
<td>Wingless-type MMTV integration site family, member 10A</td>
<td>5.567119488</td>
</tr>
<tr>
<td>LOC101747536</td>
<td>uncharacterized LOC101747536</td>
<td>5.56894145</td>
</tr>
<tr>
<td>LOC101748672</td>
<td>uncharacterized LOC101748672</td>
<td>5.576522138</td>
</tr>
<tr>
<td>ADAM33</td>
<td>ADAM metallopeptidase domain 33</td>
<td>5.583007701</td>
</tr>
<tr>
<td>ZPLD1</td>
<td>Zona pellucida-like domain containing 1</td>
<td>5.583392389</td>
</tr>
<tr>
<td>LOC101747499</td>
<td>uncharacterized LOC101747499</td>
<td>5.58345891</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>Log2 Fold Change</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>LOC101752282</td>
<td>uncharacterized LOC101752282</td>
<td>5.591260525</td>
</tr>
<tr>
<td>LOC101750317</td>
<td>uncharacterized LOC101750317</td>
<td>5.59812696</td>
</tr>
<tr>
<td>LOC101749017</td>
<td>platelet binding protein GspB-like</td>
<td>5.600929031</td>
</tr>
<tr>
<td>APBB1IP</td>
<td>amyloid beta (A4) precursor protein-binding, family B, member 1 interacting protein</td>
<td>5.600976919</td>
</tr>
<tr>
<td>FAM13C</td>
<td>family with sequence similarity 13, member C</td>
<td>5.603186259</td>
</tr>
<tr>
<td>LOC101751758</td>
<td>uncharacterized LOC101751758</td>
<td>5.605553596</td>
</tr>
<tr>
<td>PMCH</td>
<td>pro-melanin-concentrating hormone</td>
<td>5.608364628</td>
</tr>
<tr>
<td>LOC101750314</td>
<td>uncharacterized LOC101750314</td>
<td>5.612352499</td>
</tr>
<tr>
<td>LOC100858347</td>
<td>disintegrin and metalloproteinase domain-containing protein 9-like</td>
<td>5.613236955</td>
</tr>
<tr>
<td>LOC101750519</td>
<td>uncharacterized LOC101750519</td>
<td>5.616769366</td>
</tr>
<tr>
<td>IFITM5</td>
<td>interferon induced transmembrane protein 5</td>
<td>5.623770519</td>
</tr>
<tr>
<td>LOC101750889</td>
<td>platelet glycoprotein Ib alpha chain-like</td>
<td>5.624543788</td>
</tr>
<tr>
<td>LOC422002</td>
<td>GTPase SLIP-GC-like</td>
<td>5.626799801</td>
</tr>
<tr>
<td>MATN1</td>
<td>matrilin 1, cartilage matrix protein</td>
<td>5.630089944</td>
</tr>
<tr>
<td>LOC101747400</td>
<td>uncharacterized LOC101747400</td>
<td>5.631686366</td>
</tr>
<tr>
<td>MYO3AL</td>
<td>myosin IIIA-like</td>
<td>5.633056016</td>
</tr>
<tr>
<td>SLC15A1</td>
<td>solute carrier family 15 (oligopeptide transporter), member 1</td>
<td>5.640245371</td>
</tr>
<tr>
<td>LOC101748544</td>
<td>uncharacterized LOC101748544</td>
<td>5.645969587</td>
</tr>
<tr>
<td>SASH3</td>
<td>SAM and SH3 domain containing 3</td>
<td>5.650497532</td>
</tr>
<tr>
<td>CD83</td>
<td>CD83 molecule</td>
<td>5.650686046</td>
</tr>
<tr>
<td>LOC100859088</td>
<td>uncharacterized LOC100859088</td>
<td>5.653346693</td>
</tr>
<tr>
<td>FYB</td>
<td>FYN binding protein</td>
<td>5.653503803</td>
</tr>
<tr>
<td>FBXO47</td>
<td>F-box protein 47</td>
<td>5.670443812</td>
</tr>
<tr>
<td>SAMSN1</td>
<td>SAM domain, SH3 domain and nuclear localization signals 1</td>
<td>5.671299274</td>
</tr>
<tr>
<td>SLA</td>
<td>Src-like-adaptor</td>
<td>5.683666218</td>
</tr>
<tr>
<td>LOC426820</td>
<td>deleted in malignant brain tumors 1 protein-like</td>
<td>5.696386082</td>
</tr>
<tr>
<td>SPO11</td>
<td>SPO11 meiotic protein covalently bound to DSB homolog (S. cerevisiae)</td>
<td>5.699051844</td>
</tr>
<tr>
<td>LOC101750963</td>
<td>uncharacterized LOC101750963</td>
<td>5.702380502</td>
</tr>
<tr>
<td>BCL2L14</td>
<td>BCL2-like 14 (apoptosis facilitator)</td>
<td>5.703561282</td>
</tr>
<tr>
<td>LOC101751033</td>
<td>uncharacterized LOC101751033</td>
<td>5.706254254</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Description</td>
<td>Log2 Fold Change</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>LOC101750271</td>
<td>peroxisome proliferator-activated receptor gamma coactivator-related protein 1-like</td>
<td>5.71635949</td>
</tr>
<tr>
<td>LOC101750155</td>
<td>diacylglycerol kinase kappa-like</td>
<td>5.718818248</td>
</tr>
<tr>
<td>LOC101748450</td>
<td>uncharacterized LOC101748450</td>
<td>5.736063628</td>
</tr>
<tr>
<td>LOC101748471</td>
<td>uncharacterized LOC101748471</td>
<td>5.738689184</td>
</tr>
<tr>
<td>BATF</td>
<td>basic leucine zipper transcription factor, ATF-like</td>
<td>5.741336106</td>
</tr>
<tr>
<td>LOC428958</td>
<td>lysosomal acid lipase/cholesteryl ester hydrolase-like</td>
<td>5.748945727</td>
</tr>
<tr>
<td>LOC100858919</td>
<td>receptor-type tyrosine-protein phosphatase S-like</td>
<td>5.749090106</td>
</tr>
<tr>
<td>LOC101750328</td>
<td>NAD(P)(+)--arginine ADP-ribosyltransferase 1-like</td>
<td>5.751769965</td>
</tr>
<tr>
<td>LOC101749148</td>
<td>uncharacterized LOC101749148</td>
<td>5.755141843</td>
</tr>
<tr>
<td>LOC101750313</td>
<td>uncharacterized LOC101750313</td>
<td>5.756756451</td>
</tr>
<tr>
<td>LOC101750776</td>
<td>uncharacterized LOC101750776</td>
<td>5.756867907</td>
</tr>
<tr>
<td>LOC101749039</td>
<td>uncharacterized LOC101749039</td>
<td>5.759422186</td>
</tr>
<tr>
<td>LOC101748978</td>
<td>uncharacterized LOC101748978</td>
<td>5.762880293</td>
</tr>
<tr>
<td>FAM46C</td>
<td>family with sequence similarity 46, member C</td>
<td>5.776690062</td>
</tr>
<tr>
<td>TRIM27.2</td>
<td>tripartite motif containing 27.2</td>
<td>5.778263802</td>
</tr>
<tr>
<td>LOC101751570</td>
<td>uncharacterized LOC101751570</td>
<td>5.787380222</td>
</tr>
<tr>
<td>LOC101751424</td>
<td>uncharacterized LOC101751424</td>
<td>5.788424707</td>
</tr>
<tr>
<td>NMU</td>
<td>neuromedin U</td>
<td>5.789250607</td>
</tr>
<tr>
<td>SELP</td>
<td>selectin P (granule membrane protein 140kDa, antigen CD62)</td>
<td>5.789278163</td>
</tr>
<tr>
<td>LOC426456</td>
<td>uncharacterized LOC426456</td>
<td>5.789287081</td>
</tr>
<tr>
<td>CCLI10</td>
<td>chemokine</td>
<td>5.790102381</td>
</tr>
<tr>
<td>LOC101747817</td>
<td>uncharacterized LOC101747817</td>
<td>5.794415866</td>
</tr>
<tr>
<td>MAFA</td>
<td>v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog A</td>
<td>5.796154315</td>
</tr>
<tr>
<td>LOC101748334</td>
<td>uncharacterized LOC101748334</td>
<td>5.798050515</td>
</tr>
<tr>
<td>LOC101749293</td>
<td>uncharacterized LOC101749293</td>
<td>5.803005045</td>
</tr>
<tr>
<td>RRH</td>
<td>retinal pigment epithelium-derived rhodopsin homolog</td>
<td>5.807612523</td>
</tr>
<tr>
<td>LOC101750640</td>
<td>translation initiation factor IF-2-like</td>
<td>5.816087659</td>
</tr>
<tr>
<td>FKBP6</td>
<td>FK506 binding protein 6, 36kDa</td>
<td>5.818831802</td>
</tr>
<tr>
<td>TNFRSF18</td>
<td>tumor necrosis factor receptor superfamily, member 18</td>
<td>5.823899278</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Description</td>
<td>Log Fold Change</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>LOC101750753</td>
<td>serine/arginine repetitive matrix protein 2-like</td>
<td>5.825022364</td>
</tr>
<tr>
<td>ARHGAP15</td>
<td>Rho GTPase activating protein 15</td>
<td>5.825981405</td>
</tr>
<tr>
<td>LOC101750568</td>
<td>uncharacterized LOC101750568</td>
<td>5.827819025</td>
</tr>
<tr>
<td>LOC101752116</td>
<td>E3 ubiquitin-protein ligase Topors-like</td>
<td>5.832130501</td>
</tr>
<tr>
<td>NKX1-2</td>
<td>NK1 homeobox 2</td>
<td>5.836429131</td>
</tr>
<tr>
<td>LOC769174</td>
<td>C-type lectin-like receptor variant</td>
<td>5.83750883</td>
</tr>
<tr>
<td>OTOA</td>
<td>otoancorin</td>
<td>5.839137927</td>
</tr>
<tr>
<td>KCNK12</td>
<td>potassium channel, subfamily K, member 12</td>
<td>5.840956049</td>
</tr>
<tr>
<td>SLC5A11</td>
<td>solute carrier family 5 (sodium/inositol cotransporter), member 11</td>
<td>5.844988157</td>
</tr>
<tr>
<td>LOC101751635</td>
<td>uncharacterized LOC101751635</td>
<td>5.849931144</td>
</tr>
<tr>
<td>EOMES</td>
<td>eomesodermin</td>
<td>5.853790818</td>
</tr>
<tr>
<td>LOC101749262</td>
<td>protein lifeguard 2-like</td>
<td>5.855513745</td>
</tr>
<tr>
<td>ATP8B1</td>
<td>ATPase, class I, type 8B, member 1</td>
<td>5.856826393</td>
</tr>
<tr>
<td>LPAR5</td>
<td>lysophosphatidic acid receptor 5</td>
<td>5.858494665</td>
</tr>
<tr>
<td>TBX10</td>
<td>T-box 10</td>
<td>5.859721129</td>
</tr>
<tr>
<td>GABRA1</td>
<td>gamma-aminobutyric acid (GABA) A receptor, alpha 1</td>
<td>5.864088691</td>
</tr>
<tr>
<td>PTPN7</td>
<td>protein tyrosine phosphatase, non-receptor type 7</td>
<td>5.867671821</td>
</tr>
<tr>
<td>LOC101750411</td>
<td>uncharacterized LOC101750411</td>
<td>5.872582545</td>
</tr>
<tr>
<td>LIPI</td>
<td>lipase, member I</td>
<td>5.873562563</td>
</tr>
<tr>
<td>LOC100859805</td>
<td>EF-hand calcium-binding domain-containing protein 4B-like</td>
<td>5.874163811</td>
</tr>
<tr>
<td>F11</td>
<td>coagulation factor XI</td>
<td>5.884353707</td>
</tr>
<tr>
<td>KPNA7</td>
<td>karyopherin alpha 7 (importin alpha 8)</td>
<td>5.884503693</td>
</tr>
<tr>
<td>GFRA4</td>
<td>GDNF family receptor alpha 4</td>
<td>5.889228063</td>
</tr>
<tr>
<td>LOC101748016</td>
<td>uncharacterized LOC101748016</td>
<td>5.889473543</td>
</tr>
<tr>
<td>IKZF1</td>
<td>IKAROS family zinc finger 1 (Ikaros)</td>
<td>5.894933338</td>
</tr>
<tr>
<td>KRT12</td>
<td>keratin 12 (Meesmann corneal dystrophy)</td>
<td>5.895060213</td>
</tr>
<tr>
<td>HPSE</td>
<td>heparanase</td>
<td>5.90183674</td>
</tr>
<tr>
<td>ORM1</td>
<td>orosomucoid 1 (ovoglycoprotein)</td>
<td>5.903112978</td>
</tr>
<tr>
<td>LOC101752331</td>
<td>uncharacterized LOC101752331</td>
<td>5.908547152</td>
</tr>
<tr>
<td>LOC768635</td>
<td>uncharacterized LOC768635</td>
<td>5.910076084</td>
</tr>
<tr>
<td>DES</td>
<td>desmin</td>
<td>5.910737393</td>
</tr>
<tr>
<td>RGS1</td>
<td>regulator of G-protein signaling 1</td>
<td>5.916484696</td>
</tr>
<tr>
<td>LOC101748243</td>
<td>uncharacterized LOC101748243</td>
<td>5.923386916</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Description</td>
<td>Log2 Fold Change</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>LOC421584</td>
<td>solute carrier family 22 member 2-like</td>
<td>5.926157762</td>
</tr>
<tr>
<td>IL20RA</td>
<td>interleukin 20 receptor, alpha</td>
<td>5.927054978</td>
</tr>
<tr>
<td>RGS19</td>
<td>regulator of G-protein signaling 19</td>
<td>5.933206952</td>
</tr>
<tr>
<td>FAM65B</td>
<td>family with sequence similarity 65, member B</td>
<td>5.937895905</td>
</tr>
<tr>
<td>P2RX7</td>
<td>purinergic receptor P2X, ligand gated ion channel, 7</td>
<td>5.938320202</td>
</tr>
<tr>
<td>COL21A1</td>
<td>collagen, type XXI, alpha 1</td>
<td>5.944659398</td>
</tr>
<tr>
<td>LOC101750748</td>
<td>uncharacterized LOC101750748</td>
<td>5.948564101</td>
</tr>
<tr>
<td>LOC100858002</td>
<td>T-box transcription factor TBX21-like</td>
<td>5.968316136</td>
</tr>
<tr>
<td>ASB11</td>
<td>ankyrin repeat and SOCS box containing 11</td>
<td>5.969242604</td>
</tr>
<tr>
<td>LOC101750016</td>
<td>uncharacterized LOC101750016</td>
<td>5.972003304</td>
</tr>
<tr>
<td>BCL11B</td>
<td>B-cell CLL/lymphoma 11B (zinc finger protein)</td>
<td>5.975091396</td>
</tr>
<tr>
<td>LOC428196</td>
<td>atrial natriuretic peptide receptor 2-like</td>
<td>5.97819563</td>
</tr>
<tr>
<td>LOC101749663</td>
<td>uncharacterized LOC101749663</td>
<td>5.981624361</td>
</tr>
<tr>
<td>LOC101749436</td>
<td>uncharacterized LOC101749436</td>
<td>5.986865972</td>
</tr>
<tr>
<td>DOCK8</td>
<td>dedicator of cytokinesis 8</td>
<td>5.9921875</td>
</tr>
<tr>
<td>ART5</td>
<td>ADP-ribosyltransferase 5</td>
<td>5.992369953</td>
</tr>
<tr>
<td>ALB</td>
<td>albumin</td>
<td>5.994051951</td>
</tr>
<tr>
<td>LOC415325</td>
<td>uncharacterized LOC415325</td>
<td>6.010041816</td>
</tr>
<tr>
<td>AMICA1</td>
<td>adhesion molecule, interacts with CXADR antigen 1</td>
<td>6.013793887</td>
</tr>
<tr>
<td>LOC101751353</td>
<td>uncharacterized LOC101751353</td>
<td>6.018338518</td>
</tr>
<tr>
<td>LOC101750247</td>
<td>uncharacterized LOC101750247</td>
<td>6.018551227</td>
</tr>
<tr>
<td>LOC101747470</td>
<td>lg kappa chain V-III region MOPC 63-like</td>
<td>6.018651653</td>
</tr>
<tr>
<td>LOC101748295</td>
<td>uncharacterized LOC101748295</td>
<td>6.020146573</td>
</tr>
<tr>
<td>LOC770271</td>
<td>uncharacterized LOC770271</td>
<td>6.034303768</td>
</tr>
<tr>
<td>LOC101750729</td>
<td>uncharacterized LOC101750729</td>
<td>6.03760186</td>
</tr>
<tr>
<td>DOCK2</td>
<td>dedicator of cytokinesis 2</td>
<td>6.039501343</td>
</tr>
<tr>
<td>PIK3AP1</td>
<td>phosphoinositide-3-kinase adaptor protein 1</td>
<td>6.040766223</td>
</tr>
<tr>
<td>LOC101752290</td>
<td>uncharacterized LOC101752290</td>
<td>6.04111535</td>
</tr>
<tr>
<td>RAC2</td>
<td>ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2)</td>
<td>6.042038313</td>
</tr>
<tr>
<td>LOC423822</td>
<td>heparan sulfate glucosamine 3-O-sulfotransferase 1-like</td>
<td>6.042863176</td>
</tr>
<tr>
<td>LOC100857428</td>
<td>uncharacterized LOC100857428</td>
<td>6.043081982</td>
</tr>
<tr>
<td>LOC101751615</td>
<td>uncharacterized LOC101751615</td>
<td>6.04775266</td>
</tr>
</tbody>
</table>
Table 17 continued

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Description</th>
<th>Log2 Fold Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTRK1</td>
<td>neurotrophic tyrosine kinase, receptor, type 1</td>
<td>6.054197294</td>
</tr>
<tr>
<td>LOC101751981</td>
<td>uncharacterized LOC101751981</td>
<td>6.054659645</td>
</tr>
<tr>
<td>LOC101750027</td>
<td>uncharacterized LOC101750027</td>
<td>6.055282436</td>
</tr>
<tr>
<td>LOC101751857</td>
<td>uncharacterized LOC101751857</td>
<td>6.055716264</td>
</tr>
<tr>
<td>ITGA4</td>
<td>integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor)</td>
<td>6.058092669</td>
</tr>
<tr>
<td>DMRT2</td>
<td>doublesex and mab-3 related transcription factor 2</td>
<td>6.058965822</td>
</tr>
<tr>
<td>TMEM154</td>
<td>transmembrane protein 154</td>
<td>6.0628542</td>
</tr>
<tr>
<td>FOXI1</td>
<td>forkhead box 11</td>
<td>6.064189025</td>
</tr>
<tr>
<td>CCDC89</td>
<td>coiled-coil domain containing 89</td>
<td>6.066735029</td>
</tr>
<tr>
<td>LOC101748348</td>
<td>E3 ubiquitin-protein ligase ICP0-like</td>
<td>6.066735029</td>
</tr>
<tr>
<td>GFI1</td>
<td>growth factor independent 1 transcription repressor</td>
<td>6.068473354</td>
</tr>
<tr>
<td>LOC101752278</td>
<td>uncharacterized LOC101752278</td>
<td>6.088523257</td>
</tr>
<tr>
<td>LOC101749162</td>
<td>uncharacterized LOC101749162</td>
<td>6.091699834</td>
</tr>
<tr>
<td>LOC100857983</td>
<td>G-protein coupled receptor 35-like</td>
<td>6.097070324</td>
</tr>
<tr>
<td>EDN3</td>
<td>endothelin 3</td>
<td>6.102922086</td>
</tr>
<tr>
<td>TCF21</td>
<td>transcription factor 21</td>
<td>6.105512983</td>
</tr>
<tr>
<td>LOC770881</td>
<td>uncharacterized LOC770881</td>
<td>6.109820522</td>
</tr>
<tr>
<td>LOC430303</td>
<td>low-density lipoprotein receptor-related protein 2-like</td>
<td>6.110404145</td>
</tr>
<tr>
<td>OVSTL</td>
<td>ovostatin-like</td>
<td>6.117674558</td>
</tr>
<tr>
<td>LOC771021</td>
<td>feather keratin 2-like</td>
<td>6.122051448</td>
</tr>
<tr>
<td>GINS1</td>
<td>GINS complex subunit 1 (Psf1 homolog)</td>
<td>6.123183485</td>
</tr>
<tr>
<td>LOC101749798</td>
<td>uncharacterized LOC101749798</td>
<td>6.12742693</td>
</tr>
<tr>
<td>LOC101751741</td>
<td>uncharacterized LOC101751741</td>
<td>6.12763328</td>
</tr>
<tr>
<td>LOC101748577</td>
<td>uncharacterized LOC101748577</td>
<td>6.128664587</td>
</tr>
<tr>
<td>IL17REL</td>
<td>interleukin 17 receptor E-like</td>
<td>6.133217414</td>
</tr>
<tr>
<td>CCR8</td>
<td>chemokine (C-C motif) receptor 8</td>
<td>6.13430084</td>
</tr>
<tr>
<td>RUNX3</td>
<td>runt-related transcription factor 3</td>
<td>6.136192773</td>
</tr>
<tr>
<td>LOC101751707</td>
<td>uncharacterized LOC101751707</td>
<td>6.147306699</td>
</tr>
<tr>
<td>LHX9</td>
<td>LIM homeobox 9</td>
<td>6.150559677</td>
</tr>
<tr>
<td>PTPRO</td>
<td>protein tyrosine phosphatase, receptor type, O</td>
<td>6.155214923</td>
</tr>
<tr>
<td>LOC101750143</td>
<td>PHD finger protein 7-like</td>
<td>6.156639311</td>
</tr>
<tr>
<td>LOC100858514</td>
<td>homeobox protein Hox-A7-like</td>
<td>6.15850246</td>
</tr>
<tr>
<td>LOC100858856</td>
<td>homeobox protein Hox-A7-like</td>
<td>6.160243969</td>
</tr>
<tr>
<td>Gene Name</td>
<td>Description</td>
<td>Score</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>LOC101747776</td>
<td>uncharacterized LOC101747776</td>
<td>6.161887682</td>
</tr>
<tr>
<td>LOC100857125</td>
<td>NAD--arginine ADP-ribosyltransferase 1-like</td>
<td>6.162439346</td>
</tr>
<tr>
<td>Gnat1</td>
<td>guanine nucleotide binding protein (G protein), alpha transducing activity polypeptide 1</td>
<td>6.16470584</td>
</tr>
<tr>
<td>LOC101749563</td>
<td>uncharacterized LOC101749563</td>
<td>6.167580909</td>
</tr>
<tr>
<td>Ventx</td>
<td>VENT homeobox</td>
<td>6.169524197</td>
</tr>
<tr>
<td>SCML4</td>
<td>sex comb on midleg-like 4 (Drosophila)</td>
<td>6.169524197</td>
</tr>
<tr>
<td>LECT1</td>
<td>leukocyte cell derived chemotaxin 1</td>
<td>6.169946111</td>
</tr>
<tr>
<td>CD40LG</td>
<td>CD40 ligand</td>
<td>6.17239792</td>
</tr>
<tr>
<td>C14H16ORF89</td>
<td>chromosome 14 open reading frame, human C16orf89</td>
<td>6.173926932</td>
</tr>
<tr>
<td>LOC101748442</td>
<td>uncharacterized LOC101748442</td>
<td>6.176522247</td>
</tr>
<tr>
<td>SBK2</td>
<td>SH3 domain binding kinase family, member 2</td>
<td>6.178913785</td>
</tr>
<tr>
<td>VSX2</td>
<td>visual system homeobox 2</td>
<td>6.189626916</td>
</tr>
<tr>
<td>Grxcr2</td>
<td>glutaredoxin, cysteine rich 2</td>
<td>6.19000139</td>
</tr>
<tr>
<td>LOC101751633</td>
<td>uncharacterized LOC101751633</td>
<td>6.191602129</td>
</tr>
<tr>
<td>Omd</td>
<td>osteomodulin</td>
<td>6.19305749</td>
</tr>
<tr>
<td>LOC101750991</td>
<td>uncharacterized LOC101750991</td>
<td>6.19357464</td>
</tr>
<tr>
<td>LOC101749827</td>
<td>uncharacterized LOC101749827</td>
<td>6.196921734</td>
</tr>
<tr>
<td>DTX1</td>
<td>deltex 1, E3 ubiquitin ligase</td>
<td>6.201302343</td>
</tr>
<tr>
<td>LOC418668</td>
<td>cytokine receptor-like factor 2-like</td>
<td>6.202128844</td>
</tr>
<tr>
<td>LOC101750335</td>
<td>uncharacterized LOC101750335</td>
<td>6.206526016</td>
</tr>
<tr>
<td>LOC101750958</td>
<td>uncharacterized LOC101750958</td>
<td>6.211012194</td>
</tr>
<tr>
<td>LOC101750447</td>
<td>uncharacterized LOC101750447</td>
<td>6.213736096</td>
</tr>
<tr>
<td>SLA2</td>
<td>Src-like-adaptor 2</td>
<td>6.222119936</td>
</tr>
<tr>
<td>LOC101750703</td>
<td>uncharacterized LOC101750703</td>
<td>6.224001674</td>
</tr>
<tr>
<td>IL18rap</td>
<td>interleukin 18 receptor accessory protein</td>
<td>6.224616358</td>
</tr>
<tr>
<td>TBX5</td>
<td>T-box 5</td>
<td>6.230741003</td>
</tr>
<tr>
<td>SRCRB4D</td>
<td>scavenger receptor cysteine rich domain containing, group B (4 domains)</td>
<td>6.236492618</td>
</tr>
<tr>
<td>Fanci</td>
<td>Fanconi anemia, complementation group I</td>
<td>6.243698875</td>
</tr>
<tr>
<td>LOC101752117</td>
<td>uncharacterized LOC101752117</td>
<td>6.249824549</td>
</tr>
<tr>
<td>LOC101748985</td>
<td>uncharacterized LOC101748985</td>
<td>6.254279284</td>
</tr>
<tr>
<td>TRPC4</td>
<td>transient receptor potential cation channel, subfamily C, member 4</td>
<td>6.257285797</td>
</tr>
<tr>
<td>LOC101752164</td>
<td>uncharacterized LOC101752164</td>
<td>6.258895755</td>
</tr>
</tbody>
</table>
Table 17 continued

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Description</th>
<th>Log2FoldChange</th>
</tr>
</thead>
<tbody>
<tr>
<td>MADCAM1</td>
<td>mucosal vascular addressin cell adhesion molecule 1</td>
<td>6.280028747</td>
</tr>
<tr>
<td>LOC101747977</td>
<td>uncharacterized LOC101747977</td>
<td>6.283551423</td>
</tr>
<tr>
<td>LOC101748119</td>
<td>uncharacterized LOC101748119</td>
<td>6.286141873</td>
</tr>
<tr>
<td>LOC101748503</td>
<td>uncharacterized LOC101748503</td>
<td>6.287572566</td>
</tr>
<tr>
<td>LOC101749303</td>
<td>secretoglobin family 1C member 1-like</td>
<td>6.294620749</td>
</tr>
<tr>
<td>LOC101747708</td>
<td>uncharacterized LOC101747708</td>
<td>6.300123725</td>
</tr>
<tr>
<td>VCAM1</td>
<td>vascular cell adhesion molecule 1</td>
<td>6.30278863</td>
</tr>
<tr>
<td>LOC101749947</td>
<td>uncharacterized LOC101749947</td>
<td>6.302867361</td>
</tr>
<tr>
<td>LOC101751039</td>
<td>uncharacterized LOC101751039</td>
<td>6.30323785</td>
</tr>
<tr>
<td>LOC101747473</td>
<td>uncharacterized LOC101747473</td>
<td>6.30560579</td>
</tr>
<tr>
<td>LOC101748845</td>
<td>uncharacterized LOC101748845</td>
<td>6.306881946</td>
</tr>
<tr>
<td>MNX1</td>
<td>motor neuron and pancreas homeobox 1</td>
<td>6.308885057</td>
</tr>
<tr>
<td>LOC101752085</td>
<td>uncharacterized LOC101752085</td>
<td>6.312701473</td>
</tr>
<tr>
<td>GPR174</td>
<td>G protein-coupled receptor 174</td>
<td>6.316002149</td>
</tr>
<tr>
<td>TNFSF13B</td>
<td>tumor necrosis factor (ligand) superfamily, member 13b</td>
<td>6.327328402</td>
</tr>
<tr>
<td>LOC101749562</td>
<td>uncharacterized LOC101749562</td>
<td>6.328585177</td>
</tr>
<tr>
<td>RHCG</td>
<td>Rh family, C glycoprotein</td>
<td>6.33163567</td>
</tr>
<tr>
<td>SHOX2</td>
<td>short stature homeobox 2</td>
<td>6.333244817</td>
</tr>
<tr>
<td>BFSP1</td>
<td>beaded filament structural protein 1, filensin</td>
<td>6.335180502</td>
</tr>
<tr>
<td>LOC419545</td>
<td>uncharacterized LOC419545</td>
<td>6.335257194</td>
</tr>
<tr>
<td>TNR</td>
<td>tenascin R</td>
<td>6.337737518</td>
</tr>
<tr>
<td>LOC101752088</td>
<td>uncharacterized LOC101752088</td>
<td>6.34536089</td>
</tr>
<tr>
<td>LOC101752262</td>
<td>uncharacterized LOC101752262</td>
<td>6.348197003</td>
</tr>
<tr>
<td>LOC101749769</td>
<td>uncharacterized LOC101749769</td>
<td>6.349612972</td>
</tr>
<tr>
<td>CRYAA</td>
<td>crystallin, alpha A</td>
<td>6.351910961</td>
</tr>
<tr>
<td>BANK1</td>
<td>B-cell scaffold protein with ankyrin repeats 1</td>
<td>6.360301907</td>
</tr>
<tr>
<td>CRTAM</td>
<td>cytotoxic and regulatory T cell molecule</td>
<td>6.363012301</td>
</tr>
<tr>
<td>LOC101751535</td>
<td>uncharacterized LOC101751535</td>
<td>6.372429792</td>
</tr>
<tr>
<td>PROKR2</td>
<td>prokineticin receptor 2</td>
<td>6.377944872</td>
</tr>
<tr>
<td>LOC101748365</td>
<td>uncharacterized LOC101748365</td>
<td>6.378338212</td>
</tr>
<tr>
<td>EFCA4B3</td>
<td>EF-hand calcium binding domain 3</td>
<td>6.37920506</td>
</tr>
<tr>
<td>KIAA0408</td>
<td>KIAA0408</td>
<td>6.380883885</td>
</tr>
<tr>
<td>LOC101751498</td>
<td>uncharacterized LOC101751498</td>
<td>6.381629467</td>
</tr>
<tr>
<td>TTLL10</td>
<td>tubulin tyrosine ligase-like family, member 10</td>
<td>6.382840145</td>
</tr>
<tr>
<td>LOC101750358</td>
<td>uncharacterized LOC101750358</td>
<td>6.385258456</td>
</tr>
<tr>
<td>LOC101752010</td>
<td>uncharacterized LOC101752010</td>
<td>6.392690265</td>
</tr>
<tr>
<td>LOC101747430</td>
<td>uncharacterized LOC101747430</td>
<td>6.394891366</td>
</tr>
<tr>
<td>LOC101752111</td>
<td>uncharacterized LOC101752111</td>
<td>6.394891366</td>
</tr>
<tr>
<td>RUNX1</td>
<td>runt-related transcription factor 1</td>
<td>6.399167893</td>
</tr>
<tr>
<td>LOC101751232</td>
<td>epiplakin-like</td>
<td>6.401391545</td>
</tr>
<tr>
<td>LOC101751568</td>
<td>uncharacterized LOC101751568</td>
<td>6.402515138</td>
</tr>
<tr>
<td>SOX14</td>
<td>SRY (sex determining region Y)-box 14</td>
<td>6.403267722</td>
</tr>
<tr>
<td>LOC419425</td>
<td>rho guanine nucleotide exchange factor 7-like</td>
<td>6.406937218</td>
</tr>
<tr>
<td>LOC101749523</td>
<td>uncharacterized LOC101749523</td>
<td>6.408540241</td>
</tr>
<tr>
<td>LOC101747899</td>
<td>uncharacterized LOC101747899</td>
<td>6.409254</td>
</tr>
<tr>
<td>LOC101748903</td>
<td>uncharacterized LOC101748903</td>
<td>6.410578549</td>
</tr>
<tr>
<td>LOC769422</td>
<td>T-cell receptor alpha chain V region 2B4-like</td>
<td>6.411468206</td>
</tr>
<tr>
<td>ANO4</td>
<td>anoctamin 4</td>
<td>6.412197927</td>
</tr>
<tr>
<td>LOC101749834</td>
<td>orexin receptor type 2-like</td>
<td>6.41869595</td>
</tr>
<tr>
<td>MEOX1</td>
<td>mesenchyme homeobox 1</td>
<td>6.426859584</td>
</tr>
<tr>
<td>CCR8L</td>
<td>C-C chemokine receptor 8 like</td>
<td>6.431598193</td>
</tr>
<tr>
<td>IL7</td>
<td>interleukin 7</td>
<td>6.437934136</td>
</tr>
<tr>
<td>LOC101751811</td>
<td>uncharacterized LOC101751811</td>
<td>6.438958148</td>
</tr>
<tr>
<td>LOC101749943</td>
<td>uncharacterized LOC101749943</td>
<td>6.438958148</td>
</tr>
<tr>
<td>LOC101752265</td>
<td>uncharacterized LOC101752265</td>
<td>6.442445929</td>
</tr>
<tr>
<td>LOC101752159</td>
<td>uncharacterized LOC101752159</td>
<td>6.4452611804</td>
</tr>
<tr>
<td>IL9R</td>
<td>interleukin 9 receptor</td>
<td>6.443750256</td>
</tr>
<tr>
<td>LOC101748453</td>
<td>uncharacterized LOC101748453</td>
<td>6.446421667</td>
</tr>
<tr>
<td>K123</td>
<td>K123 protein</td>
<td>6.446684855</td>
</tr>
<tr>
<td>LOC101751131</td>
<td>uncharacterized LOC101751131</td>
<td>6.454011343</td>
</tr>
<tr>
<td>LHX3</td>
<td>LIM homeobox 3</td>
<td>6.462870312</td>
</tr>
<tr>
<td>LOC101747695</td>
<td>uncharacterized LOC101747695</td>
<td>6.464014725</td>
</tr>
<tr>
<td>LOC101751062</td>
<td>uncharacterized LOC101751062</td>
<td>6.465484779</td>
</tr>
<tr>
<td>MYH1C</td>
<td>myosin, heavy chain 1C, skeletal muscle (similar to human myosin, heavy chain 1, skeletal muscle, adult)</td>
<td>6.4659592</td>
</tr>
<tr>
<td>LOC101751113</td>
<td>titin-like</td>
<td>6.467116418</td>
</tr>
<tr>
<td>FTCD</td>
<td>formimidoyltransferase cyclodeaminase</td>
<td>6.471675214</td>
</tr>
<tr>
<td>LOC101751073</td>
<td>uncharacterized LOC101751073</td>
<td>6.472975086</td>
</tr>
</tbody>
</table>
Table 17 continued

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Description</th>
<th>Log2 Fold Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC770890</td>
<td>lipase member M-like</td>
<td>6.478486512</td>
</tr>
<tr>
<td>LOC101752126</td>
<td>uncharacterized LOC101752126</td>
<td>6.481395824</td>
</tr>
<tr>
<td>LOC100858647</td>
<td>beta-microsemionoprotein-like</td>
<td>6.486226259</td>
</tr>
<tr>
<td>PI15</td>
<td>peptidase inhibitor 15</td>
<td>6.489745864</td>
</tr>
<tr>
<td>ZC3H12D</td>
<td>zinc finger CCCH-type containing 12D</td>
<td>6.499544306</td>
</tr>
<tr>
<td>FUT4</td>
<td>fucosyltransferase 4 (alpha (1,3) fucosyltransferase, myeloid-specific)</td>
<td>6.49971982</td>
</tr>
<tr>
<td>CLRN3</td>
<td>clarin 3</td>
<td>6.511584864</td>
</tr>
<tr>
<td>LOC101751431</td>
<td>uncharacterized LOC101751431</td>
<td>6.513332824</td>
</tr>
<tr>
<td>ACSM3</td>
<td>acyl-CoA synthetase medium-chain family member 3</td>
<td>6.516645558</td>
</tr>
<tr>
<td>LOC429682</td>
<td>GTPase IMAP family member 7-like</td>
<td>6.519031014</td>
</tr>
<tr>
<td>LOC101750147</td>
<td>uncharacterized LOC101750147</td>
<td>6.520265084</td>
</tr>
<tr>
<td>CD3E</td>
<td>CD3e molecule, epsilon (CD3-TCR complex)</td>
<td>6.521550975</td>
</tr>
<tr>
<td>LOC415913</td>
<td>high mobility group protein HMGI-C-like</td>
<td>6.52341263</td>
</tr>
<tr>
<td>LOC101752189</td>
<td>PHD finger protein 7-like</td>
<td>6.528883827</td>
</tr>
<tr>
<td>SLAMF8</td>
<td>SLAM family member 8</td>
<td>6.530915438</td>
</tr>
<tr>
<td>LOC425497</td>
<td>T-cell receptor alpha chain V region 2B4-like</td>
<td>6.537414829</td>
</tr>
<tr>
<td>GPR141</td>
<td>G protein-coupled receptor 141</td>
<td>6.542416702</td>
</tr>
<tr>
<td>HSD17B2</td>
<td>hydroxysteroid (17-beta) dehydrogenase 2</td>
<td>6.551856044</td>
</tr>
<tr>
<td>PINLYP</td>
<td>phospholipase A2 inhibitor and LY6/PLAUR domain containing</td>
<td>6.558949223</td>
</tr>
<tr>
<td>TDRD5</td>
<td>tudor domain containing 5</td>
<td>6.568336182</td>
</tr>
<tr>
<td>LOC101749557</td>
<td>uncharacterized LOC101749557</td>
<td>6.57167681</td>
</tr>
<tr>
<td>FOXN1</td>
<td>forkhead box N1</td>
<td>6.572434966</td>
</tr>
<tr>
<td>LOC101750099</td>
<td>uncharacterized LOC101750099</td>
<td>6.588264894</td>
</tr>
<tr>
<td>MMP1</td>
<td>matrix metallopeptidase 1 (interstitial collagenase)</td>
<td>6.592457037</td>
</tr>
<tr>
<td>LOC101748537</td>
<td>uncharacterized LOC101748537</td>
<td>6.600804955</td>
</tr>
<tr>
<td>LOC101748032</td>
<td>Fc receptor-like protein 3-like</td>
<td>6.601917076</td>
</tr>
<tr>
<td>TXLNB</td>
<td>taxilin beta</td>
<td>6.604139385</td>
</tr>
<tr>
<td>TRBV6-5</td>
<td>T cell receptor beta variable 6-5</td>
<td>6.604354501</td>
</tr>
<tr>
<td>LOC101750061</td>
<td>E3 ubiquitin-protein ligase Topors-like</td>
<td>6.610434315</td>
</tr>
<tr>
<td>LOC415472</td>
<td>uncharacterized LOC415472</td>
<td>6.611488115</td>
</tr>
<tr>
<td>LOC101747792</td>
<td>uncharacterized LOC101747792</td>
<td>6.614839019</td>
</tr>
<tr>
<td>LOC101750137</td>
<td>uncharacterized LOC101750137</td>
<td>6.615151418</td>
</tr>
<tr>
<td>LOC101749965</td>
<td>uncharacterized LOC101749965</td>
<td>6.617798026</td>
</tr>
<tr>
<td>LOC101751756</td>
<td>uncharacterized LOC101751756</td>
<td>6.619413011</td>
</tr>
</tbody>
</table>
Table 17 continued

<table>
<thead>
<tr>
<th>Protein ID</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC419851</td>
<td>complement component 4 binding protein, alpha chain</td>
<td>6.622851282</td>
</tr>
<tr>
<td>LOC101751684</td>
<td>uncharacterized LOC101751684</td>
<td>6.628336172</td>
</tr>
<tr>
<td>GRP</td>
<td>gastrin-releasing peptide</td>
<td>6.632292954</td>
</tr>
<tr>
<td>LOC101750441</td>
<td>SH3 domain-containing protein 19-like</td>
<td>6.633576519</td>
</tr>
<tr>
<td>LOC101750079</td>
<td>uncharacterized LOC101750079</td>
<td>6.634302842</td>
</tr>
<tr>
<td>LOC100859222</td>
<td>B-cell lymphoma/leukemia 11B-like</td>
<td>6.641612772</td>
</tr>
<tr>
<td>PCDH15</td>
<td>protocadherin-related 15</td>
<td>6.64251987</td>
</tr>
<tr>
<td>CYBB</td>
<td>cytochrome b-245, beta polypeptide</td>
<td>6.651604029</td>
</tr>
<tr>
<td>LOC101750315</td>
<td>uncharacterized LOC101750315</td>
<td>6.653060017</td>
</tr>
<tr>
<td>SCNN1D</td>
<td>sodium channel, non-voltage-gated 1, delta subunit</td>
<td>6.658925512</td>
</tr>
<tr>
<td>LAT2</td>
<td>linker for activation of T cells family, member 2</td>
<td>6.671428172</td>
</tr>
<tr>
<td>CD1C</td>
<td>CD1c molecule</td>
<td>6.671828765</td>
</tr>
<tr>
<td>MLKL</td>
<td>mixed lineage kinase domain-like</td>
<td>6.677158727</td>
</tr>
<tr>
<td>GPR65</td>
<td>G protein-coupled receptor 65</td>
<td>6.679863876</td>
</tr>
<tr>
<td>LOC100859314</td>
<td>uncharacterized LOC100859314</td>
<td>6.683058337</td>
</tr>
<tr>
<td>RN5S</td>
<td>5S ribosomal RNA</td>
<td>6.685196392</td>
</tr>
<tr>
<td>CCR10</td>
<td>chemokine (C-C motif) receptor 10</td>
<td>6.707345108</td>
</tr>
<tr>
<td>TMEM213</td>
<td>transmembrane protein 213</td>
<td>6.708739041</td>
</tr>
<tr>
<td>LOC101752039</td>
<td>uncharacterized LOC101752039</td>
<td>6.710530953</td>
</tr>
<tr>
<td>CD3D</td>
<td>CD3d molecule, delta (CD3-TCR complex)</td>
<td>6.719012547</td>
</tr>
<tr>
<td>ZAP70</td>
<td>zeta-chain (TCR) associated protein kinase 70kDa</td>
<td>6.731996074</td>
</tr>
<tr>
<td>GRAP</td>
<td>GRB2-related adaptor protein</td>
<td>6.734013773</td>
</tr>
<tr>
<td>LOC101751089</td>
<td>uncharacterized LOC101751089</td>
<td>6.738497644</td>
</tr>
<tr>
<td>LOC101750953</td>
<td>uncharacterized LOC101750953</td>
<td>6.74281467</td>
</tr>
<tr>
<td>PDC</td>
<td>phosducin</td>
<td>6.744564778</td>
</tr>
<tr>
<td>LOC101747249</td>
<td>uncharacterized LOC101747249</td>
<td>6.751677946</td>
</tr>
<tr>
<td>MCOLN2</td>
<td>mucolipin 2</td>
<td>6.759137023</td>
</tr>
<tr>
<td>LOC101752018</td>
<td>uncharacterized LOC101752018</td>
<td>6.765667341</td>
</tr>
<tr>
<td>AGXT</td>
<td>alanine-glyoxylate aminotransferase</td>
<td>6.76897825</td>
</tr>
<tr>
<td>GPR35</td>
<td>G protein-coupled receptor 35</td>
<td>6.771606579</td>
</tr>
<tr>
<td>P2RY10</td>
<td>purinergic receptor P2Y, G-protein coupled, 10</td>
<td>6.772981373</td>
</tr>
<tr>
<td>LOC101748783</td>
<td>uncharacterized LOC101748783</td>
<td>6.777419716</td>
</tr>
<tr>
<td>LOC101747938</td>
<td>uncharacterized LOC101747938</td>
<td>6.77925972</td>
</tr>
<tr>
<td>LOC101752109</td>
<td>uncharacterized LOC101752109</td>
<td>6.782932705</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Description</td>
<td>Log2 Fold Change</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>NDST4</td>
<td>N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 4</td>
<td>6.783709011</td>
</tr>
<tr>
<td>LOC101749194</td>
<td>uncharacterized LOC101749194</td>
<td>6.784765696</td>
</tr>
<tr>
<td>S100A9</td>
<td>S100 calcium binding protein A9</td>
<td>6.787109372</td>
</tr>
<tr>
<td>LOC417130</td>
<td>uncharacterized LOC417130</td>
<td>6.792595103</td>
</tr>
<tr>
<td>LOC101747687</td>
<td>uncharacterized LOC101747687</td>
<td>6.796234335</td>
</tr>
<tr>
<td>LOC101748835</td>
<td>uncharacterized LOC101748835</td>
<td>6.798439399</td>
</tr>
<tr>
<td>LOC100858579</td>
<td>granzyme G-like</td>
<td>6.802377395</td>
</tr>
<tr>
<td>EN1</td>
<td>engrailed homeobox 1</td>
<td>6.80382068</td>
</tr>
<tr>
<td>CEL</td>
<td>carboxyl ester lipase</td>
<td>6.818390445</td>
</tr>
<tr>
<td>LOC101747814</td>
<td>uncharacterized LOC101747814</td>
<td>6.82527683</td>
</tr>
<tr>
<td>LOC101748222</td>
<td>uncharacterized LOC101748222</td>
<td>6.827565007</td>
</tr>
<tr>
<td>LOC101751304</td>
<td>uncharacterized LOC101751304</td>
<td>6.842853156</td>
</tr>
<tr>
<td>LOC101749177</td>
<td>uncharacterized LOC101749177</td>
<td>6.845740933</td>
</tr>
<tr>
<td>LOC101751926</td>
<td>uncharacterized LOC101751926</td>
<td>6.85124932</td>
</tr>
<tr>
<td>GPR20</td>
<td>G protein-coupled receptor 20</td>
<td>6.85312999</td>
</tr>
<tr>
<td>IRF4</td>
<td>interferon regulatory factor 4</td>
<td>6.855699126</td>
</tr>
<tr>
<td>LOC101747759</td>
<td>uncharacterized LOC101747759</td>
<td>6.85872024</td>
</tr>
<tr>
<td>MC1R</td>
<td>melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor)</td>
<td>6.862947248</td>
</tr>
<tr>
<td>ANXA10</td>
<td>annexin A10</td>
<td>6.86727874</td>
</tr>
<tr>
<td>LOC769964</td>
<td>T-cell receptor alpha chain V region 2B4-like</td>
<td>6.870516214</td>
</tr>
<tr>
<td>LOC101747663</td>
<td>uncharacterized LOC101747663</td>
<td>6.872213144</td>
</tr>
<tr>
<td>LOC100857680</td>
<td>uncharacterized LOC100857680</td>
<td>6.880073254</td>
</tr>
<tr>
<td>LOC101750706</td>
<td>uncharacterized LOC101750706</td>
<td>6.881909289</td>
</tr>
<tr>
<td>GRM4</td>
<td>glutamate receptor, metabotropic 4</td>
<td>6.887179441</td>
</tr>
<tr>
<td>HOXA7</td>
<td>homeobox A7</td>
<td>6.8926962</td>
</tr>
<tr>
<td>LOC101749158</td>
<td>uncharacterized LOC101749158</td>
<td>6.899659026</td>
</tr>
<tr>
<td>LOC770609</td>
<td>T-cell receptor alpha chain V region 2B4-like</td>
<td>6.902853584</td>
</tr>
<tr>
<td>LOC769317</td>
<td>olfactory receptor 52R1-like</td>
<td>6.909533115</td>
</tr>
<tr>
<td>LOC101749173</td>
<td>uncharacterized LOC101749173</td>
<td>6.910427969</td>
</tr>
<tr>
<td>IL16</td>
<td>interleukin 16</td>
<td>6.91518634</td>
</tr>
<tr>
<td>SLC9A4</td>
<td>solute carrier family 9, subfamily A (NHE4, cation proton antiporter 4), member 4</td>
<td>6.916834885</td>
</tr>
<tr>
<td>LOC101751934</td>
<td>uncharacterized LOC101751934</td>
<td>6.919220886</td>
</tr>
<tr>
<td>LOC101751168</td>
<td>tumor necrosis factor ligand superfamily member 13B-like</td>
<td>6.921398941</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>E-value</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>GRAP2</td>
<td>GRB2-related adaptor protein 2</td>
<td>6.925246021</td>
</tr>
<tr>
<td>LOC770026</td>
<td>OX-2 membrane glycoprotein-like</td>
<td>6.935465828</td>
</tr>
<tr>
<td>CD4</td>
<td>CD4 molecule</td>
<td>6.937187291</td>
</tr>
<tr>
<td>LOC101751057</td>
<td>uncharacterized LOC101751057</td>
<td>6.943921327</td>
</tr>
<tr>
<td>LOC101749022</td>
<td>butyrophilin-like protein 1-like</td>
<td>6.946262984</td>
</tr>
<tr>
<td>LOC101748113</td>
<td>zinc finger matrin-type protein 1-like</td>
<td>6.952333566</td>
</tr>
<tr>
<td>XCR1</td>
<td>chemokine (C motif) receptor 1</td>
<td>6.964805408</td>
</tr>
<tr>
<td>LOC419276</td>
<td>bactericidal permeability-increasing protein-like</td>
<td>6.965674193</td>
</tr>
<tr>
<td>LOC101752170</td>
<td>uncharacterized LOC101752170</td>
<td>6.970901492</td>
</tr>
<tr>
<td>LOC101752292</td>
<td>uncharacterized LOC101752292</td>
<td>6.980992804</td>
</tr>
<tr>
<td>LOC100858705</td>
<td>GC-rich sequence DNA-binding factor-like</td>
<td>6.982993575</td>
</tr>
<tr>
<td>OVALX</td>
<td>ovalbumin-related protein X (SERPINB14C)</td>
<td>7.001239284</td>
</tr>
<tr>
<td>LOC101749764</td>
<td>uncharacterized LOC101749764</td>
<td>7.003827078</td>
</tr>
<tr>
<td>GDF9</td>
<td>growth differentiation factor 9</td>
<td>7.005923098</td>
</tr>
<tr>
<td>AHRR</td>
<td>aryl-hydrocarbon receptor repressor</td>
<td>7.007195501</td>
</tr>
<tr>
<td>LOC100857665</td>
<td>uncharacterized LOC100857665</td>
<td>7.019813092</td>
</tr>
<tr>
<td>PLD4</td>
<td>phospholipase D family, member 4</td>
<td>7.02422016</td>
</tr>
<tr>
<td>PTPRC</td>
<td>protein tyrosine phosphatase, receptor type, C</td>
<td>7.032842557</td>
</tr>
<tr>
<td>LOC416927</td>
<td>carbonic anhydrase 15-like</td>
<td>7.032982417</td>
</tr>
<tr>
<td>GPR18</td>
<td>G protein-coupled receptor 18</td>
<td>7.037570705</td>
</tr>
<tr>
<td>LOC100858088</td>
<td>growth/differentiation factor 9-like</td>
<td>7.037684658</td>
</tr>
<tr>
<td>LOC101748202</td>
<td>uncharacterized LOC101748202</td>
<td>7.048323387</td>
</tr>
<tr>
<td>IL8L2</td>
<td>interleukin 8-like 2</td>
<td>7.057172952</td>
</tr>
<tr>
<td>LOC101748087</td>
<td>uncharacterized LOC101748087</td>
<td>7.061236166</td>
</tr>
<tr>
<td>IL21R</td>
<td>interleukin 21 receptor</td>
<td>7.064755231</td>
</tr>
<tr>
<td>LOC101749945</td>
<td>acid-sensing ion channel 2-like</td>
<td>7.065658471</td>
</tr>
<tr>
<td>RBP3</td>
<td>retinol binding protein 3, interstitial</td>
<td>7.073713141</td>
</tr>
<tr>
<td>LOC101748333</td>
<td>uncharacterized LOC101748333</td>
<td>7.078097423</td>
</tr>
<tr>
<td>TXK</td>
<td>TXK tyrosine kinase</td>
<td>7.083439205</td>
</tr>
<tr>
<td>LOC416633</td>
<td>class II, major histocompatibility complex, transactivator-like</td>
<td>7.090824312</td>
</tr>
<tr>
<td>LOC101749048</td>
<td>uncharacterized LOC101749048</td>
<td>7.090959258</td>
</tr>
<tr>
<td>LOC101747883</td>
<td>uncharacterized LOC101747883</td>
<td>7.093602429</td>
</tr>
<tr>
<td>LOC101752134</td>
<td>PHD finger protein 7-like</td>
<td>7.103077947</td>
</tr>
<tr>
<td>LOC101750590</td>
<td>uncharacterized LOC101750590</td>
<td>7.104965605</td>
</tr>
<tr>
<td>LOC101751347</td>
<td>striated muscle preferentially expressed protein kinase-like</td>
<td>7.105908509</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Gene Name</td>
<td>Expression Value</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>LOC101749538</td>
<td>UDP-glucuronosyltransferase 1-9-like</td>
<td>7.106746128</td>
</tr>
<tr>
<td>LOC101749298</td>
<td>uncharacterized LOC101749298</td>
<td>7.108344101</td>
</tr>
<tr>
<td>LOC768665</td>
<td>dual specificity protein phosphatase 22-A-like</td>
<td>7.112695628</td>
</tr>
<tr>
<td>NLRC3</td>
<td>NLR family, CARD domain containing 3</td>
<td>7.116198317</td>
</tr>
<tr>
<td>LOC101751134</td>
<td>uncharacterized LOC101751134</td>
<td>7.130210166</td>
</tr>
<tr>
<td>GALR2</td>
<td>galanin receptor 2</td>
<td>7.134118239</td>
</tr>
<tr>
<td>LOC776309</td>
<td>Ig kappa chain V-III region PC 4050-like</td>
<td>7.1389034</td>
</tr>
<tr>
<td>LOC101750758</td>
<td>uncharacterized LOC101750758</td>
<td>7.140820394</td>
</tr>
<tr>
<td>LOC101752315</td>
<td>uncharacterized LOC101752315</td>
<td>7.141289724</td>
</tr>
<tr>
<td>LOC101750509</td>
<td>uncharacterized LOC101750509</td>
<td>7.142300582</td>
</tr>
<tr>
<td>LOC769232</td>
<td>Ig heavy chain Mem5-like</td>
<td>7.146512871</td>
</tr>
<tr>
<td>LOC101748412</td>
<td>uncharacterized LOC101748412</td>
<td>7.158559199</td>
</tr>
<tr>
<td>LOC101751553</td>
<td>uncharacterized LOC101751553</td>
<td>7.174526265</td>
</tr>
<tr>
<td>LYPD2</td>
<td>LY6/PLAUR domain containing 2</td>
<td>7.19357464</td>
</tr>
<tr>
<td>DNTT</td>
<td>DNA nucleotidylexotransferase</td>
<td>7.208253556</td>
</tr>
<tr>
<td>LOC769044</td>
<td>uncharacterized LOC769044</td>
<td>7.213258711</td>
</tr>
<tr>
<td>DTHD1</td>
<td>death domain containing 1</td>
<td>7.218684313</td>
</tr>
<tr>
<td>LOC101751137</td>
<td>uncharacterized LOC101751137</td>
<td>7.223712141</td>
</tr>
<tr>
<td>LOC101748034</td>
<td>uncharacterized LOC101748034</td>
<td>7.224291149</td>
</tr>
<tr>
<td>LOC101749809</td>
<td>connector enhancer of kinase suppressor of ras 2-like</td>
<td>7.235666317</td>
</tr>
<tr>
<td>LOC101747775</td>
<td>uncharacterized LOC101747775</td>
<td>7.235918488</td>
</tr>
<tr>
<td>LOC101749644</td>
<td>uncharacterized LOC101749644</td>
<td>7.246027981</td>
</tr>
<tr>
<td>LOC101750597</td>
<td>protein transport protein SEC31-like</td>
<td>7.246218046</td>
</tr>
<tr>
<td>LOC428295</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>7.252286971</td>
</tr>
<tr>
<td>LOC101748885</td>
<td>uncharacterized LOC101748885</td>
<td>7.253800222</td>
</tr>
<tr>
<td>TRAT1</td>
<td>T cell receptor associated transmembrane adaptor 1</td>
<td>7.260249849</td>
</tr>
<tr>
<td>HAND1</td>
<td>heart and neural crest derivatives expressed 1</td>
<td>7.260307993</td>
</tr>
<tr>
<td>LOC101749880</td>
<td>uncharacterized LOC101749880</td>
<td>7.2663541</td>
</tr>
<tr>
<td>LOC101748551</td>
<td>uncharacterized LOC101748551</td>
<td>7.270902649</td>
</tr>
<tr>
<td>LOC101750775</td>
<td>WAS/WASL-interacting protein family member 1-like</td>
<td>7.273236126</td>
</tr>
<tr>
<td>LOC101748463</td>
<td>uncharacterized LOC101748463</td>
<td>7.280863545</td>
</tr>
<tr>
<td>LOC100858835</td>
<td>uncharacterized LOC100858835</td>
<td>7.28722335</td>
</tr>
<tr>
<td>LOC424523</td>
<td>epithelial chloride channel protein-like</td>
<td>7.28965006</td>
</tr>
<tr>
<td>LOC101747764</td>
<td>uncharacterized LOC101747764</td>
<td>7.301679092</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Description</td>
<td>Log2 Fold Change</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>LOC101751711</td>
<td>uncharacterized LOC101751711</td>
<td>7.304328503</td>
</tr>
<tr>
<td>LOC101749241</td>
<td>heat shock transcription factor, X-linked-like</td>
<td>7.314243347</td>
</tr>
<tr>
<td>ITK</td>
<td>IL2-inducible T-cell kinase</td>
<td>7.315303132</td>
</tr>
<tr>
<td>GRID2IP</td>
<td>glutamate receptor, ionotropic, delta 2 (Grid2) interacting protein</td>
<td>7.326159799</td>
</tr>
<tr>
<td>LOC101748127</td>
<td>uncharacterized LOC101748127</td>
<td>7.332081317</td>
</tr>
<tr>
<td>LOC100859360</td>
<td>uncharacterized LOC100859360</td>
<td>7.333870929</td>
</tr>
<tr>
<td>ENPP7</td>
<td>ectonucleotide pyrophosphatase/phosphodiesterase 7</td>
<td>7.338959175</td>
</tr>
<tr>
<td>LOC101748400</td>
<td>uncharacterized LOC101748400</td>
<td>7.341896821</td>
</tr>
<tr>
<td>LOC101750650</td>
<td>uncharacterized LOC101750650</td>
<td>7.350497247</td>
</tr>
<tr>
<td>DOK3</td>
<td>docking protein 3</td>
<td>7.357074223</td>
</tr>
<tr>
<td>LOC431235</td>
<td>chymotrypsinogen 2-like</td>
<td>7.360627646</td>
</tr>
<tr>
<td>RAG1</td>
<td>recombination activating gene 1</td>
<td>7.365447589</td>
</tr>
<tr>
<td>VGLL2</td>
<td>vestigial-like family member 2</td>
<td>7.376516134</td>
</tr>
<tr>
<td>LOC101749084</td>
<td>uncharacterized LOC101749084</td>
<td>7.382214806</td>
</tr>
<tr>
<td>LOC101751521</td>
<td>uncharacterized LOC101751521</td>
<td>7.38249434</td>
</tr>
<tr>
<td>LOC101751647</td>
<td>GTPase IMAP family member 7-like</td>
<td>7.384573125</td>
</tr>
<tr>
<td>FLT3</td>
<td>fms-related tyrosine kinase 3</td>
<td>7.384917511</td>
</tr>
<tr>
<td>LOC101749110</td>
<td>uncharacterized LOC101749110</td>
<td>7.388361768</td>
</tr>
<tr>
<td>IL7R</td>
<td>interleukin 7 receptor</td>
<td>7.39392539</td>
</tr>
<tr>
<td>STK31</td>
<td>serine/threonine kinase 3</td>
<td>7.395001089</td>
</tr>
<tr>
<td>LOC431250</td>
<td>G-protein coupled receptor 183-like</td>
<td>7.396282182</td>
</tr>
<tr>
<td>LOC101751292</td>
<td>uncharacterized LOC101751292</td>
<td>7.401050159</td>
</tr>
<tr>
<td>LOC101748036</td>
<td>uncharacterized LOC101748036</td>
<td>7.405566974</td>
</tr>
<tr>
<td>TOX</td>
<td>thymocyte selection-associated high mobility group box</td>
<td>7.411047083</td>
</tr>
<tr>
<td>JAK3</td>
<td>Janus kinase 3</td>
<td>7.416556409</td>
</tr>
<tr>
<td>LOC101751953</td>
<td>uncharacterized LOC101751953</td>
<td>7.417261817</td>
</tr>
<tr>
<td>LOC101749679</td>
<td>UDP-glucuronosyltransferase 1-9-like</td>
<td>7.417599388</td>
</tr>
<tr>
<td>LOC770268</td>
<td>uncharacterized LOC770268</td>
<td>7.422347761</td>
</tr>
<tr>
<td>TRAF3IP3</td>
<td>TRAF3 interacting protein 3</td>
<td>7.424373623</td>
</tr>
<tr>
<td>LOC101749201</td>
<td>peptide methionine sulfoxide reductase Msra-like</td>
<td>7.4260131</td>
</tr>
<tr>
<td>SLAMF1</td>
<td>signaling lymphocytic activation molecule family member 1</td>
<td>7.435059362</td>
</tr>
<tr>
<td>LOC416186</td>
<td>uncharacterized LOC416186</td>
<td>7.440287821</td>
</tr>
</tbody>
</table>
Table 17 continued

<table>
<thead>
<tr>
<th>Gene symbol</th>
<th>Description</th>
<th>Log2 Fold Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUPD1</td>
<td>dual specificity phosphatase and pro isomerase domain containing 1</td>
<td>7.440287821</td>
</tr>
<tr>
<td>LOC101748021</td>
<td>uncharacterized LOC101748021</td>
<td>7.444517993</td>
</tr>
<tr>
<td>LOC101750906</td>
<td>uncharacterized LOC101750906</td>
<td>7.482848283</td>
</tr>
<tr>
<td>NEIL2</td>
<td>nei-like DNA glycosylase 2</td>
<td>7.50016468</td>
</tr>
<tr>
<td>LOC428451</td>
<td>prostatic acid phosphatase-like</td>
<td>7.505017556</td>
</tr>
<tr>
<td>LOC101750639</td>
<td>uncharacterized LOC101750639</td>
<td>7.507556814</td>
</tr>
<tr>
<td>LOC101749109</td>
<td>uncharacterized LOC101749109</td>
<td>7.509062386</td>
</tr>
<tr>
<td>LOC101749567</td>
<td>uncharacterized LOC101749567</td>
<td>7.514674609</td>
</tr>
<tr>
<td>S1PR4</td>
<td>sphingosine-1-phosphate receptor 4</td>
<td>7.517444985</td>
</tr>
<tr>
<td>LOC101751992</td>
<td>uncharacterized LOC101751992</td>
<td>7.518377768</td>
</tr>
<tr>
<td>LOC101751041</td>
<td>uncharacterized LOC101751041</td>
<td>7.518613818</td>
</tr>
<tr>
<td>WDFY4</td>
<td>WDFY family member 4</td>
<td>7.518673729</td>
</tr>
<tr>
<td>LOC101749595</td>
<td>uncharacterized LOC101749595</td>
<td>7.526147081</td>
</tr>
<tr>
<td>LOC100858638</td>
<td>forkhead box protein N4-like</td>
<td>7.529040056</td>
</tr>
<tr>
<td>CD7</td>
<td>CD7 molecule</td>
<td>7.532632465</td>
</tr>
<tr>
<td>LOC101747267</td>
<td>uncharacterized LOC101747267</td>
<td>7.535741941</td>
</tr>
<tr>
<td>ST18</td>
<td>suppression of tumorigenicity 18 (breast carcinoma) (zinc finger protein)</td>
<td>7.539611029</td>
</tr>
<tr>
<td>CECR6</td>
<td>cat eye syndrome chromosome region, candidate 6</td>
<td>7.543186525</td>
</tr>
<tr>
<td>NGFR</td>
<td>nerve growth factor receptor</td>
<td>7.543807788</td>
</tr>
<tr>
<td>TSPAN8</td>
<td>tetraspanin 8</td>
<td>7.55266042</td>
</tr>
<tr>
<td>LOC101751793</td>
<td>collagen alpha-1(XXIII) chain-like</td>
<td>7.552899603</td>
</tr>
<tr>
<td>LOC100857766</td>
<td>uncharacterized LOC100857766</td>
<td>7.554895775</td>
</tr>
<tr>
<td>CTLA4</td>
<td>cytotoxic T-lymphocyte-associated protein 4</td>
<td>7.582861722</td>
</tr>
<tr>
<td>LOC101747521</td>
<td>Ig-like V-type domain-containing protein FAM187A-like</td>
<td>7.585112774</td>
</tr>
<tr>
<td>LOC101750181</td>
<td>uncharacterized LOC101750181</td>
<td>7.590886411</td>
</tr>
<tr>
<td>GPR132</td>
<td>G protein-coupled receptor 132</td>
<td>7.592817859</td>
</tr>
<tr>
<td>LOC101750526</td>
<td>uncharacterized LOC101750526</td>
<td>7.597165779</td>
</tr>
<tr>
<td>PLA2G2A</td>
<td>phospholipase A2, group IIA (platelets, synovial fluid)</td>
<td>7.597456684</td>
</tr>
<tr>
<td>LOC101750386</td>
<td>uncharacterized LOC101750386</td>
<td>7.597829098</td>
</tr>
<tr>
<td>UBASH3A</td>
<td>ubiquitin associated and SH3 domain containing A</td>
<td>7.597901677</td>
</tr>
<tr>
<td>LOC101747397</td>
<td>uncharacterized LOC101747397</td>
<td>7.598350316</td>
</tr>
<tr>
<td>LOC101748775</td>
<td>probable G-protein coupled receptor 141-like</td>
<td>7.603063664</td>
</tr>
<tr>
<td>CD6</td>
<td>CD6 molecule</td>
<td>Log2 Fold Change</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>LOC101749366</td>
<td>uncharacterized LOC101749366</td>
<td>7.605452976</td>
</tr>
<tr>
<td>SLC34A2</td>
<td>solute carrier family 34 (type II sodium/phosphate cotransporter), member 2</td>
<td>7.610138984</td>
</tr>
<tr>
<td>LOC101748319</td>
<td>uncharacterized LOC101748319</td>
<td>7.612573664</td>
</tr>
<tr>
<td>STAT4</td>
<td>signal transducer and activator of transcription 4</td>
<td>7.61960616</td>
</tr>
<tr>
<td>KCNV2</td>
<td>potassium channel, subfamily V, member 2</td>
<td>7.620073165</td>
</tr>
<tr>
<td>LOC101750228</td>
<td>uncharacterized LOC101750228</td>
<td>7.62497818</td>
</tr>
<tr>
<td>WNT11B</td>
<td>wingless-type MMTV integration site family, member 11b</td>
<td>7.63292516</td>
</tr>
<tr>
<td>GUCA1C</td>
<td>guanylate cyclase activator 1C</td>
<td>7.636189572</td>
</tr>
<tr>
<td>LAMP3</td>
<td>lysosomal-associated membrane protein 3</td>
<td>7.639049533</td>
</tr>
<tr>
<td>LOC425854</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>7.642181956</td>
</tr>
<tr>
<td>LOC100857102</td>
<td>synapson-3-like</td>
<td>7.646736898</td>
</tr>
<tr>
<td>LOC101750198</td>
<td>uncharacterized LOC101750198</td>
<td>7.64709607</td>
</tr>
<tr>
<td>AVPR1B</td>
<td>arginine vasopressin receptor 1B</td>
<td>7.658925512</td>
</tr>
<tr>
<td>LOC101751864</td>
<td>uncharacterized LOC101751864</td>
<td>7.661778098</td>
</tr>
<tr>
<td>HAAO</td>
<td>3-hydroxyanthranilate 3,4-dioxygenase</td>
<td>7.671358022</td>
</tr>
<tr>
<td>LOC101747410</td>
<td>uncharacterized LOC101747410</td>
<td>7.671364147</td>
</tr>
<tr>
<td>LOC417142</td>
<td>uncharacterized LOC417142</td>
<td>7.671593815</td>
</tr>
<tr>
<td>LOC101748712</td>
<td>uncharacterized LOC101748712</td>
<td>7.680605666</td>
</tr>
<tr>
<td>LOC100857863</td>
<td>uncharacterized LOC100857863</td>
<td>7.688180359</td>
</tr>
<tr>
<td>LOC101748507</td>
<td>uncharacterized LOC101748507</td>
<td>7.688180359</td>
</tr>
<tr>
<td>LOC101750845</td>
<td>uncharacterized LOC101750845</td>
<td>7.705632387</td>
</tr>
<tr>
<td>LOC101750869</td>
<td>uncharacterized LOC101750869</td>
<td>7.705770603</td>
</tr>
<tr>
<td>LOC101746888</td>
<td>uncharacterized LOC101746888</td>
<td>7.708463165</td>
</tr>
<tr>
<td>LOC427180</td>
<td>E3 ubiquitin-protein ligase Topors-like</td>
<td>7.711494907</td>
</tr>
<tr>
<td>NKKX3-1</td>
<td>NK3 homeobox 1</td>
<td>7.71630504</td>
</tr>
<tr>
<td>SCEL</td>
<td>sciell</td>
<td>7.717607885</td>
</tr>
<tr>
<td>LOC101749251</td>
<td>uncharacterized LOC101749251</td>
<td>7.723012396</td>
</tr>
<tr>
<td>TMEM81</td>
<td>transmembrane protein 81</td>
<td>7.724650272</td>
</tr>
<tr>
<td>ASMT</td>
<td>acetylserotonin O-methyltransferase</td>
<td>7.729144865</td>
</tr>
<tr>
<td>LOC101752303</td>
<td>uncharacterized LOC101752303</td>
<td>7.73470962</td>
</tr>
<tr>
<td>LOC101748580</td>
<td>maestro heat-like repeat-containing protein family member 2A-like</td>
<td>7.746783017</td>
</tr>
<tr>
<td>LOC101751980</td>
<td>uncharacterized LOC101751980</td>
<td>7.746984506</td>
</tr>
<tr>
<td>Gene Name</td>
<td>Description</td>
<td>Log2FC</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>WNT3A</td>
<td>wingless-type MMTV integration site family, member 3A</td>
<td>7.749266084</td>
</tr>
<tr>
<td>C8A</td>
<td>complement component 8, alpha polypeptide</td>
<td>7.753083005</td>
</tr>
<tr>
<td>LOC101749939</td>
<td>uncharacterized LOC101749939</td>
<td>7.7573052</td>
</tr>
<tr>
<td>IFNG</td>
<td>interferon, gamma</td>
<td>7.758482037</td>
</tr>
<tr>
<td>LOC101751236</td>
<td>uncharacterized LOC101751236</td>
<td>7.763743526</td>
</tr>
<tr>
<td>ANKRD33</td>
<td>ankyrin repeat domain 33</td>
<td>7.767257526</td>
</tr>
<tr>
<td>LOC101749526</td>
<td>uncharacterized LOC101749526</td>
<td>7.769573408</td>
</tr>
<tr>
<td>LOC101752136</td>
<td>uncharacterized LOC101752136</td>
<td>7.769573408</td>
</tr>
<tr>
<td>LOC772126</td>
<td>uncharacterized LOC772126</td>
<td>7.779916297</td>
</tr>
<tr>
<td>LOC101749213</td>
<td>uncharacterized LOC101749213</td>
<td>7.787510824</td>
</tr>
<tr>
<td>OTX1</td>
<td>orthodenticle homeobox 1</td>
<td>7.788750954</td>
</tr>
<tr>
<td>LOC771474</td>
<td>envelope glycoprotein gp95-like</td>
<td>7.793765857</td>
</tr>
<tr>
<td>LOC100858973</td>
<td>TRAF family member-associated NF-kappa-B activator-like</td>
<td>7.797190159</td>
</tr>
<tr>
<td>LOC100857153</td>
<td>Ig kappa chain V-V regions-like</td>
<td>7.801342431</td>
</tr>
<tr>
<td>CHUNK-1</td>
<td>CHUNK-1 protein</td>
<td>7.802063937</td>
</tr>
<tr>
<td>FOXE1</td>
<td>forkhead box E1 (thyroid transcription factor 2)</td>
<td>7.80503444</td>
</tr>
<tr>
<td>DLX3</td>
<td>distal-less homeobox 3</td>
<td>7.81159947</td>
</tr>
<tr>
<td>LOC101748722</td>
<td>uncharacterized LOC101748722</td>
<td>7.812369866</td>
</tr>
<tr>
<td>LOC101747843</td>
<td>uncharacterized LOC101747843</td>
<td>7.814742668</td>
</tr>
<tr>
<td>P2RY8</td>
<td>purinergic receptor P2Y, G-protein coupled, 8</td>
<td>7.825853383</td>
</tr>
<tr>
<td>LOC101751179</td>
<td>uncharacterized LOC101751179</td>
<td>7.830963392</td>
</tr>
<tr>
<td>LOC101749579</td>
<td>reticulon-4-like</td>
<td>7.832700173</td>
</tr>
<tr>
<td>MARCO</td>
<td>macrophage receptor with collagenous structure</td>
<td>7.845331257</td>
</tr>
<tr>
<td>GPR82</td>
<td>G protein-coupled receptor 82</td>
<td>7.845526314</td>
</tr>
<tr>
<td>LOC101750420</td>
<td>dynein heavy chain 17, axonemal-like</td>
<td>7.846618675</td>
</tr>
<tr>
<td>LOC101752330</td>
<td>uncharacterized LOC101752330</td>
<td>7.853247167</td>
</tr>
<tr>
<td>EDNRB2</td>
<td>endothelin receptor B subtype 2</td>
<td>7.859070412</td>
</tr>
<tr>
<td>CD8B</td>
<td>CD8b molecule</td>
<td>7.860121669</td>
</tr>
<tr>
<td>TNFRSF13B</td>
<td>tumor necrosis factor receptor superfamily, member 13B</td>
<td>7.861626311</td>
</tr>
<tr>
<td>LOC101750653</td>
<td>uncharacterized LOC101750653</td>
<td>7.865856969</td>
</tr>
<tr>
<td>LOC101749408</td>
<td>uncharacterized LOC101749408</td>
<td>7.887586194</td>
</tr>
<tr>
<td>LOC101751937</td>
<td>uncharacterized LOC101751937</td>
<td>7.899900664</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Description</td>
<td>Log2 Fold Change</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>LOC101748692</td>
<td>uncharacterized LOC101748692</td>
<td>7.901228945</td>
</tr>
<tr>
<td>TMEM156</td>
<td>transmembrane protein 156</td>
<td>7.904647999</td>
</tr>
<tr>
<td>TCP11</td>
<td>t-complex 11 homolog (mouse)</td>
<td>7.909893084</td>
</tr>
<tr>
<td>UGT1A1</td>
<td>UDP glucuronosyltransferase 1 family, polypeptide A1</td>
<td>7.913068914</td>
</tr>
<tr>
<td>LOC101747585</td>
<td>uncharacterized LOC101747585</td>
<td>7.913787</td>
</tr>
<tr>
<td>LOC101749462</td>
<td>uncharacterized LOC101749462</td>
<td>7.923565191</td>
</tr>
<tr>
<td>LOC430902</td>
<td>T-cell receptor alpha chain V region CTL-L17-like</td>
<td>7.928415661</td>
</tr>
<tr>
<td>IL8L1</td>
<td>interleukin 8-like</td>
<td>7.944943034</td>
</tr>
<tr>
<td>DHR57C</td>
<td>dehydrogenase/reductase (SDR family) member 7C</td>
<td>7.961160258</td>
</tr>
<tr>
<td>LOC101747340</td>
<td>uncharacterized LOC101747340</td>
<td>7.976993646</td>
</tr>
<tr>
<td>P2RX1</td>
<td>purinergic receptor P2X, ligand-gated ion channel, 1</td>
<td>7.985313647</td>
</tr>
<tr>
<td>HOXB1</td>
<td>homeobox B1</td>
<td>7.988116585</td>
</tr>
<tr>
<td>LOC100858187</td>
<td>uncharacterized LOC100858187</td>
<td>7.992088609</td>
</tr>
<tr>
<td>TMPRSS3</td>
<td>transmembrane protease, serine 3</td>
<td>8.01105949</td>
</tr>
<tr>
<td>LOC101751801</td>
<td>uncharacterized LOC101751801</td>
<td>8.01368557</td>
</tr>
<tr>
<td>LOC101750195</td>
<td>uncharacterized LOC101750195</td>
<td>8.017866247</td>
</tr>
<tr>
<td>OLAH</td>
<td>oleoyl-ACP hydrolase</td>
<td>8.022478785</td>
</tr>
<tr>
<td>LOC101749895</td>
<td>uncharacterized LOC101749895</td>
<td>8.023366256</td>
</tr>
<tr>
<td>LOC101748029</td>
<td>uncharacterized LOC101748029</td>
<td>8.03540397</td>
</tr>
<tr>
<td>LOC772381</td>
<td>uncharacterized LOC772381</td>
<td>8.039467438</td>
</tr>
<tr>
<td>LOC101750540</td>
<td>scavenger receptor cysteine-rich type 1 protein M130-like</td>
<td>8.058424737</td>
</tr>
<tr>
<td>LOC101751368</td>
<td>uncharacterized LOC101751368</td>
<td>8.0621541</td>
</tr>
<tr>
<td>CST7</td>
<td>cystatin F (leukocystatin)</td>
<td>8.062595457</td>
</tr>
<tr>
<td>PGA</td>
<td>pepsinogen 5, group I (pepsinogen A)</td>
<td>8.063826477</td>
</tr>
<tr>
<td>FOXN4</td>
<td>forkhead box N4</td>
<td>8.066250677</td>
</tr>
<tr>
<td>LOC101751182</td>
<td>uncharacterized LOC101751182</td>
<td>8.075318693</td>
</tr>
<tr>
<td>LOC101747264</td>
<td>uncharacterized LOC101747264</td>
<td>8.093127015</td>
</tr>
<tr>
<td>LOC100857257</td>
<td>homeobox protein Hox-A5-like</td>
<td>8.094667699</td>
</tr>
<tr>
<td>LOC101747439</td>
<td>uncharacterized LOC101747439</td>
<td>8.109308317</td>
</tr>
<tr>
<td>GJB3</td>
<td>gap junction protein, beta 3, 31kDa</td>
<td>8.112856486</td>
</tr>
<tr>
<td>LOC101748133</td>
<td>vegetative cell wall protein gp1-like</td>
<td>8.140011714</td>
</tr>
<tr>
<td>CYSLTR2</td>
<td>cysteinyl leukotriene receptor 2</td>
<td>8.15457975</td>
</tr>
<tr>
<td>IKZF3</td>
<td>IKAROS family zinc finger 3 (Aiolos)</td>
<td>8.158744881</td>
</tr>
<tr>
<td>ERP27</td>
<td>endoplasmic reticulum protein 27</td>
<td>8.160073098</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Description</td>
<td>Log2 Fold Change</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>RORB</td>
<td>RAR-related orphan receptor B</td>
<td>8.184280294</td>
</tr>
<tr>
<td>DRD2</td>
<td>dopamine receptor D2</td>
<td>8.190812368</td>
</tr>
<tr>
<td>POU4F1</td>
<td>POU class 4 homeobox 1</td>
<td>8.191651474</td>
</tr>
<tr>
<td>LOC101749355</td>
<td>PHD finger protein 7-like</td>
<td>8.20213824</td>
</tr>
<tr>
<td>TBR1</td>
<td>T-box, brain, 1</td>
<td>8.21237488</td>
</tr>
<tr>
<td>LOC776088</td>
<td>uncharacterized LOC776088</td>
<td>8.213250062</td>
</tr>
<tr>
<td>GJA8</td>
<td>gap junction protein, alpha 8, 50kDa</td>
<td>8.21577563</td>
</tr>
<tr>
<td>LOC101750122</td>
<td>uncharacterized LOC101750122</td>
<td>8.22568946</td>
</tr>
<tr>
<td>LOC101750110</td>
<td>uncharacterized LOC101750110</td>
<td>8.23856967</td>
</tr>
<tr>
<td>NPBWR1</td>
<td>neuropeptides B/W receptor 1</td>
<td>8.250630034</td>
</tr>
<tr>
<td>LOC101751143</td>
<td>uncharacterized LOC101751143</td>
<td>8.25760696</td>
</tr>
<tr>
<td>HOXA5</td>
<td>homeobox A5</td>
<td>8.274920269</td>
</tr>
<tr>
<td>LOC428299</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>8.285864547</td>
</tr>
<tr>
<td>LOC101751523</td>
<td>uncharacterized LOC101751523</td>
<td>8.298383386</td>
</tr>
<tr>
<td>LOC101750844</td>
<td>uncharacterized LOC101750844</td>
<td>8.301679092</td>
</tr>
<tr>
<td>LOC101751601</td>
<td>uncharacterized LOC101751601</td>
<td>8.303278457</td>
</tr>
<tr>
<td>LOC101747717</td>
<td>uncharacterized LOC101747717</td>
<td>8.306836389</td>
</tr>
<tr>
<td>ATOH7</td>
<td>atonal bHLH transcription factor 7</td>
<td>8.30833903</td>
</tr>
<tr>
<td>LOC101749432</td>
<td>uncharacterized LOC101749432</td>
<td>8.312882955</td>
</tr>
<tr>
<td>LOC101748887</td>
<td>putative scavenger receptor cysteine-rich</td>
<td>8.320439548</td>
</tr>
<tr>
<td>PFN3</td>
<td>profilin 3</td>
<td>8.341585536</td>
</tr>
<tr>
<td>LOC101747748</td>
<td>uncharacterized LOC101747748</td>
<td>8.351204277</td>
</tr>
<tr>
<td>CCR6</td>
<td>chemokine (C-C motif) receptor 6</td>
<td>8.357909374</td>
</tr>
<tr>
<td>LOC100857250</td>
<td>uncharacterized LOC100857250</td>
<td>8.361154241</td>
</tr>
<tr>
<td>LOC101750038</td>
<td>uncharacterized LOC101750038</td>
<td>8.361680644</td>
</tr>
<tr>
<td>LOC101748175</td>
<td>uncharacterized LOC101748175</td>
<td>8.366278496</td>
</tr>
<tr>
<td>LOC101749736</td>
<td>uncharacterized LOC101749736</td>
<td>8.366278496</td>
</tr>
<tr>
<td>LOC101747852</td>
<td>uncharacterized LOC101747852</td>
<td>8.371123201</td>
</tr>
<tr>
<td>LOC101748575</td>
<td>uncharacterized LOC101748575</td>
<td>8.3829698</td>
</tr>
<tr>
<td>MURC</td>
<td>muscle-related coiled-coil protein</td>
<td>8.388706169</td>
</tr>
<tr>
<td>CCL19</td>
<td>chemokine (C-C motif) ligand 19</td>
<td>8.389394774</td>
</tr>
<tr>
<td>ADH6</td>
<td>alcohol dehydrogenase 6 (class V)</td>
<td>8.404971224</td>
</tr>
<tr>
<td>FOXI3</td>
<td>forhead box I3</td>
<td>8.414304695</td>
</tr>
<tr>
<td>LOC419333</td>
<td>formin-like protein 16-like</td>
<td>8.416494087</td>
</tr>
<tr>
<td>LOC418836</td>
<td>mannose receptor, C type 2-like</td>
<td>8.435235358</td>
</tr>
<tr>
<td>LOC101747272</td>
<td>uncharacterized LOC101747272</td>
<td>8.435795254</td>
</tr>
<tr>
<td>EEF1A1</td>
<td>eukaryotic translation elongation factor 1 alpha 1</td>
<td>8.439824958</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Protein Name</td>
<td>Gene Expression Value</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>-----------------------</td>
</tr>
<tr>
<td>LOC101752332</td>
<td>uncharacterized LOC101752332</td>
<td>8.440370885</td>
</tr>
<tr>
<td>VTG3</td>
<td>vitellogenin 3</td>
<td>8.456518698</td>
</tr>
<tr>
<td>LOC422924</td>
<td>T-cell surface glycoprotein CD8 alpha chain-like</td>
<td>8.476934841</td>
</tr>
<tr>
<td>LOC101747889</td>
<td>uncharacterized LOC101747889</td>
<td>8.495695163</td>
</tr>
<tr>
<td>LOC101748860</td>
<td>basic proline-rich protein-like</td>
<td>8.49988574</td>
</tr>
<tr>
<td>LOC101750336</td>
<td>uncharacterized LOC101750336</td>
<td>8.500443565</td>
</tr>
<tr>
<td>LOC101748846</td>
<td>uncharacterized LOC101748846</td>
<td>8.507041389</td>
</tr>
<tr>
<td>LRRD63</td>
<td>leucine rich repeat containing 63</td>
<td>8.510764168</td>
</tr>
<tr>
<td>INPPL1</td>
<td>inositol polyphosphate phosphatase-like 1</td>
<td>8.528159976</td>
</tr>
<tr>
<td>LOC422198</td>
<td>uncharacterized LOC422198</td>
<td>8.532316959</td>
</tr>
<tr>
<td>LOC396098</td>
<td>B6.1</td>
<td>8.536697721</td>
</tr>
<tr>
<td>LOC101749731</td>
<td>uncharacterized LOC101749731</td>
<td>8.557080719</td>
</tr>
<tr>
<td>LOC101747995</td>
<td>lymphocyte antigen 6E-like</td>
<td>8.605664705</td>
</tr>
<tr>
<td>LOC424007</td>
<td>uncharacterized LOC424007</td>
<td>8.606886339</td>
</tr>
<tr>
<td>C2ORF54</td>
<td>chromosome 9 open reading frame, human C2orf54</td>
<td>8.614415387</td>
</tr>
<tr>
<td>LOC101751103</td>
<td>uncharacterized LOC101751103</td>
<td>8.63499251</td>
</tr>
<tr>
<td>LOC101751905</td>
<td>uncharacterized LOC101751905</td>
<td>8.636624621</td>
</tr>
<tr>
<td>LOC100858332</td>
<td>G-protein coupled receptor 12-like</td>
<td>8.653203362</td>
</tr>
<tr>
<td>LOC101751121</td>
<td>uncharacterized LOC101751121</td>
<td>8.666756592</td>
</tr>
<tr>
<td>LOC101751887</td>
<td>NF-kappa-B inhibitor delta-like</td>
<td>8.672189411</td>
</tr>
<tr>
<td>LOC418813</td>
<td>feather keratin 1-like</td>
<td>8.679444911</td>
</tr>
<tr>
<td>LOC101747421</td>
<td>uncharacterized LOC101747421</td>
<td>8.694566832</td>
</tr>
<tr>
<td>LOC101747253</td>
<td>uncharacterized LOC101747253</td>
<td>8.695367508</td>
</tr>
<tr>
<td>LOC101751569</td>
<td>formin-like protein 5-like</td>
<td>8.696272084</td>
</tr>
<tr>
<td>LOC423786</td>
<td>lipase member M-like</td>
<td>8.698218478</td>
</tr>
<tr>
<td>LOC100858551</td>
<td>homeobox protein Hox-A9-like</td>
<td>8.701029161</td>
</tr>
<tr>
<td>LOC100858870</td>
<td>homeobox protein Hox-A9-like</td>
<td>8.701029161</td>
</tr>
<tr>
<td>CPA6</td>
<td>carboxypeptidase A6</td>
<td>8.714111289</td>
</tr>
<tr>
<td>LOC101751432</td>
<td>uncharacterized LOC101751432</td>
<td>8.718106661</td>
</tr>
<tr>
<td>NR5A1</td>
<td>nuclear receptor subfamily 5, group A, member 1</td>
<td>8.720098791</td>
</tr>
<tr>
<td>LOC428291</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>8.721953613</td>
</tr>
<tr>
<td>LOC101750036</td>
<td>uncharacterized LOC101750036</td>
<td>8.722875823</td>
</tr>
<tr>
<td>LOC101748814</td>
<td>uncharacterized LOC101748814</td>
<td>8.72883886</td>
</tr>
<tr>
<td>LOC100859777</td>
<td>deleted in malignant brain tumors 1 protein-like</td>
<td>8.732472726</td>
</tr>
</tbody>
</table>

126
<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNFSF11</td>
<td>tumor necrosis factor (ligand) superfamily, member 11</td>
<td>8.743177649</td>
</tr>
<tr>
<td>RGS21</td>
<td>regulator of G-protein signaling 21</td>
<td>8.745539879</td>
</tr>
<tr>
<td>LOC421856</td>
<td>uncharacterized LOC421856</td>
<td>8.746307257</td>
</tr>
<tr>
<td>PDE6H</td>
<td>phosphodiesterase 6H, cGMP-specific, cone, gamma</td>
<td>8.757690019</td>
</tr>
<tr>
<td>ZPB2</td>
<td>zona pellucida binding protein</td>
<td>8.780742181</td>
</tr>
<tr>
<td>HOXC6</td>
<td>homeobox C6</td>
<td>8.85517858</td>
</tr>
<tr>
<td>LOC101747621</td>
<td>uncharacterized LOC101747621</td>
<td>8.78756121</td>
</tr>
<tr>
<td>LOC101750846</td>
<td>actin cytoskeleton-regulatory complex protein pan1-like</td>
<td>8.793570798</td>
</tr>
<tr>
<td>ARIH1</td>
<td>ariadne RBR E3 ubiquitin protein ligase 1</td>
<td>8.801231888</td>
</tr>
<tr>
<td>LOC101751549</td>
<td>uncharacterized LOC101751549</td>
<td>8.810589949</td>
</tr>
<tr>
<td>LOC100859466</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>8.817687205</td>
</tr>
<tr>
<td>MLXIPL</td>
<td>MLX interacting protein-like</td>
<td>8.835292504</td>
</tr>
<tr>
<td>LOC428298</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>8.852810375</td>
</tr>
<tr>
<td>LOC101750667</td>
<td>uncharacterized LOC101750667</td>
<td>8.857327904</td>
</tr>
<tr>
<td>LOC101751565</td>
<td>uncharacterized LOC101751565</td>
<td>8.863969415</td>
</tr>
<tr>
<td>LOC101747702</td>
<td>uncharacterized LOC101747702</td>
<td>8.866969778</td>
</tr>
<tr>
<td>SEMA3E</td>
<td>sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3E</td>
<td>8.879553326</td>
</tr>
<tr>
<td>LOC100857328</td>
<td>uncharacterized LOC100857328</td>
<td>8.886123324</td>
</tr>
<tr>
<td>INHA</td>
<td>inhibin, alpha</td>
<td>8.890689878</td>
</tr>
<tr>
<td>LOC100858434</td>
<td>homeobox protein Hox-A6-like</td>
<td>8.921364918</td>
</tr>
<tr>
<td>LOC101751502</td>
<td>uncharacterized LOC101751502</td>
<td>8.922881682</td>
</tr>
<tr>
<td>LOC101751536</td>
<td>uncharacterized LOC101751536</td>
<td>8.925821444</td>
</tr>
<tr>
<td>LOC101749522</td>
<td>uncharacterized LOC101749522</td>
<td>8.93239194</td>
</tr>
<tr>
<td>LOC428293</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>8.933631648</td>
</tr>
<tr>
<td>ASCL4</td>
<td>achaete-scute family bHLH transcription factor 4</td>
<td>8.945707185</td>
</tr>
<tr>
<td>LOC101749032</td>
<td>uncharacterized LOC101749032</td>
<td>8.954777925</td>
</tr>
<tr>
<td>LOC769175</td>
<td>uncharacterized LOC769175</td>
<td>8.970134658</td>
</tr>
<tr>
<td>LOC101750001</td>
<td>uncharacterized LOC101750001</td>
<td>8.970767394</td>
</tr>
<tr>
<td>LOC101749509</td>
<td>uncharacterized LOC101749509</td>
<td>8.970882407</td>
</tr>
<tr>
<td>TERC</td>
<td>telomerase RNA component</td>
<td>8.973037206</td>
</tr>
<tr>
<td>LOC101749379</td>
<td>uncharacterized LOC101749379</td>
<td>8.998223716</td>
</tr>
<tr>
<td>IL2RA</td>
<td>interleukin 2 receptor, alpha</td>
<td>9.00314637</td>
</tr>
<tr>
<td>LOC101749420</td>
<td>uncharacterized LOC101749420</td>
<td>9.023809787</td>
</tr>
</tbody>
</table>
Table 17 continued

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Description</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC770639</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>9.02986695</td>
</tr>
<tr>
<td>LOC101751075</td>
<td>uncharacterized LOC101751075</td>
<td>9.035678889</td>
</tr>
<tr>
<td>TPPP2</td>
<td>tubulin polymerization-promoting protein family member 2</td>
<td>9.052296331</td>
</tr>
<tr>
<td>LOC101749904</td>
<td>inverted formin-2-like</td>
<td>9.053308344</td>
</tr>
<tr>
<td>LOC101749559</td>
<td>uncharacterized LOC101749559</td>
<td>9.059317419</td>
</tr>
<tr>
<td>CNR2</td>
<td>cannabinoid receptor 2 (macrophage)</td>
<td>9.070523501</td>
</tr>
<tr>
<td>LOC426825</td>
<td>sulfotransferase family cytosolic 2B member 1-like</td>
<td>9.081510068</td>
</tr>
<tr>
<td>NGB</td>
<td>neuroglobin</td>
<td>9.09434165</td>
</tr>
<tr>
<td>LOC100859830</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>9.09647798</td>
</tr>
<tr>
<td>GPR55</td>
<td>G protein-coupled receptor 55</td>
<td>9.09771951</td>
</tr>
<tr>
<td>LOC421285</td>
<td>uncharacterized LOC421285</td>
<td>9.103051712</td>
</tr>
<tr>
<td>LOC101752033</td>
<td>uncharacterized LOC101752033</td>
<td>9.105175192</td>
</tr>
<tr>
<td>CD79B</td>
<td>CD79b molecule, immunoglobulin-associated beta</td>
<td>9.108886457</td>
</tr>
<tr>
<td>LOC101748337</td>
<td>uncharacterized LOC101748337</td>
<td>9.123086751</td>
</tr>
<tr>
<td>WFDC2</td>
<td>WAP four-disulfide core domain 2</td>
<td>9.131008067</td>
</tr>
<tr>
<td>LOC101750389</td>
<td>uncharacterized LOC101750389</td>
<td>9.133373436</td>
</tr>
<tr>
<td>LOC101750878</td>
<td>uncharacterized LOC101750878</td>
<td>9.145983079</td>
</tr>
<tr>
<td>LOC101747395</td>
<td>uncharacterized LOC101747395</td>
<td>9.146339557</td>
</tr>
<tr>
<td>LOC101748953</td>
<td>uncharacterized LOC101748953</td>
<td>9.148629106</td>
</tr>
<tr>
<td>HOXA9</td>
<td>homeobox A9</td>
<td>9.150610446</td>
</tr>
<tr>
<td>LOC101750245</td>
<td>interferon kappa-like</td>
<td>9.151168794</td>
</tr>
<tr>
<td>LOC101747554</td>
<td>epiplakin-like</td>
<td>9.151777655</td>
</tr>
<tr>
<td>TMEM179</td>
<td>transmembrane protein 179</td>
<td>9.164177855</td>
</tr>
<tr>
<td>CHRNA10</td>
<td>cholinergic receptor, nicotinic, alpha 10 (neuronal)</td>
<td>9.170300654</td>
</tr>
<tr>
<td>LOC101747746</td>
<td>uncharacterized LOC101747746</td>
<td>9.172227468</td>
</tr>
<tr>
<td>LOC101752166</td>
<td>uncharacterized LOC101752166</td>
<td>9.17255252</td>
</tr>
<tr>
<td>TTC36</td>
<td>tetratricopeptide repeat domain 36</td>
<td>9.173951909</td>
</tr>
<tr>
<td>IGJ</td>
<td>immunoglobulin J polypeptide, linker protein for immunoglobulin alpha and mu polypeptides</td>
<td>9.178471692</td>
</tr>
<tr>
<td>LOC101748250</td>
<td>uncharacterized LOC101748250</td>
<td>9.180207548</td>
</tr>
<tr>
<td>LOC101750629</td>
<td>uncharacterized LOC101750629</td>
<td>9.213493099</td>
</tr>
<tr>
<td>LOC101749371</td>
<td>uncharacterized LOC101749371</td>
<td>9.214853353</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Description</td>
<td>Score</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>TFAP2E</td>
<td>transcription factor AP-2 epsilon (activating enhancer binding protein 2 epsilon)</td>
<td>9.223639749</td>
</tr>
<tr>
<td>LOC769841</td>
<td>sulfotransferase family cytosolic 2B member 1-like</td>
<td>9.22576175</td>
</tr>
<tr>
<td>EFCA811</td>
<td>EF-hand calcium binding domain 11</td>
<td>9.236373027</td>
</tr>
<tr>
<td>LOC101747342</td>
<td>uncharacterized LOC101747342</td>
<td>9.242650138</td>
</tr>
<tr>
<td>LOC101748790</td>
<td>pyrin-like</td>
<td>9.258825107</td>
</tr>
<tr>
<td>LOC427826</td>
<td>apoptosis-inducing factor 3-like</td>
<td>9.270528942</td>
</tr>
<tr>
<td>LOC428383</td>
<td>leucine-rich repeat-containing protein 7-like</td>
<td>9.289373408</td>
</tr>
<tr>
<td>LOC101751856</td>
<td>uncharacterized LOC101751856</td>
<td>9.30512694</td>
</tr>
<tr>
<td>ZPB2</td>
<td>zona pellucida binding protein 2</td>
<td>9.327283166</td>
</tr>
<tr>
<td>LOC101747619</td>
<td>Fas apoptotic inhibitory molecule pseudogene</td>
<td>9.32775472</td>
</tr>
<tr>
<td>CELA1</td>
<td>chymotrypsin-like elastase family, member 1</td>
<td>9.341452108</td>
</tr>
<tr>
<td>CHRNA2</td>
<td>cholinergic receptor, nicotinic, alpha 2 (neuronal)</td>
<td>9.347377762</td>
</tr>
<tr>
<td>PLA2G1B</td>
<td>phospholipase A2, group IB (pancreas)</td>
<td>9.36402519</td>
</tr>
<tr>
<td>LOC101752025</td>
<td>uncharacterized LOC101752025</td>
<td>9.377991061</td>
</tr>
<tr>
<td>LOC429206</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>9.380179642</td>
</tr>
<tr>
<td>IL2</td>
<td>interleukin 2</td>
<td>9.39236036</td>
</tr>
<tr>
<td>CD72</td>
<td>CD72 molecule</td>
<td>9.401408943</td>
</tr>
<tr>
<td>CAPN14</td>
<td>calpain 14</td>
<td>9.405949827</td>
</tr>
<tr>
<td>LDB3</td>
<td>LIM domain binding 3</td>
<td>9.411277935</td>
</tr>
<tr>
<td>LOC101751108</td>
<td>uncharacterized LOC101751108</td>
<td>9.422001673</td>
</tr>
<tr>
<td>LOC101748315</td>
<td>zinc finger protein 185-like</td>
<td>9.462134139</td>
</tr>
<tr>
<td>LOC101747565</td>
<td>uncharacterized LOC101747565</td>
<td>9.468664768</td>
</tr>
<tr>
<td>COL22A1</td>
<td>collagen, type XXII, alpha 1</td>
<td>9.482715123</td>
</tr>
<tr>
<td>LOC770295</td>
<td>uncharacterized LOC770295</td>
<td>9.489245876</td>
</tr>
<tr>
<td>LOC100857215</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>9.510863047</td>
</tr>
<tr>
<td>CRYBA4</td>
<td>crystallin, beta A4</td>
<td>9.516369787</td>
</tr>
<tr>
<td>HEP21</td>
<td>hen egg protein 21 kDa</td>
<td>9.521364878</td>
</tr>
<tr>
<td>LOC101747868</td>
<td>ly6/PLAUR domain-containing protein 2-like</td>
<td>9.530523387</td>
</tr>
<tr>
<td>LOC101749155</td>
<td>uncharacterized LOC101749155</td>
<td>9.536907693</td>
</tr>
<tr>
<td>LOC101751249</td>
<td>c-Jun-amino-terminal kinase-interacting protein 1-like</td>
<td>9.561383422</td>
</tr>
<tr>
<td>CCR7</td>
<td>chemokine (C-C motif) receptor 7</td>
<td>9.602499524</td>
</tr>
</tbody>
</table>
Table 17 continued

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAS2R7</td>
<td>taste receptor, type 2, member 7</td>
<td>9.635391641</td>
</tr>
<tr>
<td>LRRC18</td>
<td>leucine rich repeat containing 18</td>
<td>9.649238211</td>
</tr>
<tr>
<td>LOC101750295</td>
<td>uncharacterized LOC101750295</td>
<td>9.674845483</td>
</tr>
<tr>
<td>LOC101748527</td>
<td>cytokine-dependent hematopoietic cell linker-like</td>
<td>9.682661076</td>
</tr>
<tr>
<td>LOC776580</td>
<td>Ig kappa chain V-III region MOPC 63-like</td>
<td>9.704802815</td>
</tr>
<tr>
<td>LOC428479</td>
<td>N-acetyllactosaminide beta-1,6-N-acetylglucosaminyl-transferase-like</td>
<td>9.71633934</td>
</tr>
<tr>
<td>LOC101750231</td>
<td>uncharacterized LOC101750231</td>
<td>9.718275994</td>
</tr>
<tr>
<td>LOC101751969</td>
<td>uncharacterized LOC101751969</td>
<td>9.724206864</td>
</tr>
<tr>
<td>LOC4229228</td>
<td>uncharacterized LOC4229228</td>
<td>9.726081889</td>
</tr>
<tr>
<td>SH2D5</td>
<td>SH2 domain containing 5</td>
<td>9.728561764</td>
</tr>
<tr>
<td>LOC101750771</td>
<td>uncharacterized LOC101750771</td>
<td>9.774111668</td>
</tr>
<tr>
<td>LOC769486</td>
<td>scale keratin-like</td>
<td>9.776926458</td>
</tr>
<tr>
<td>LOC101751381</td>
<td>uncharacterized LOC101751381</td>
<td>9.80725831</td>
</tr>
<tr>
<td>BARX1</td>
<td>BARX homeobox 1</td>
<td>9.811888417</td>
</tr>
<tr>
<td>LOC101747495</td>
<td>uncharacterized LOC101747495</td>
<td>9.836571147</td>
</tr>
<tr>
<td>LOC100857191</td>
<td>c-C motif chemokine 26-like</td>
<td>9.840179546</td>
</tr>
<tr>
<td>POU2AF1</td>
<td>POU class 2 associating factor 1</td>
<td>9.845831619</td>
</tr>
<tr>
<td>BTLA</td>
<td>B and T lymphocyte associated</td>
<td>9.865915704</td>
</tr>
<tr>
<td>HOXA6</td>
<td>homeobox A6</td>
<td>9.866228001</td>
</tr>
<tr>
<td>FK21</td>
<td>feather keratin 21</td>
<td>9.888986721</td>
</tr>
<tr>
<td>LOC101749817</td>
<td>uncharacterized LOC101749817</td>
<td>9.939285357</td>
</tr>
<tr>
<td>LOC101747459</td>
<td>uncharacterized LOC101747459</td>
<td>9.953861776</td>
</tr>
<tr>
<td>MIR199-1</td>
<td>microRNA mir-199-1</td>
<td>9.962982738</td>
</tr>
<tr>
<td>LOC101747835</td>
<td>translation initiation factor IF-2-like</td>
<td>9.965279253</td>
</tr>
<tr>
<td>LOC101749818</td>
<td>uncharacterized LOC101749818</td>
<td>9.976349314</td>
</tr>
<tr>
<td>LOC769852</td>
<td>histone H3.2-like</td>
<td>9.976578443</td>
</tr>
<tr>
<td>THEMIS</td>
<td>thymocyte selection associated</td>
<td>10.02483579</td>
</tr>
<tr>
<td>LOC101751468</td>
<td>uncharacterized LOC101751468</td>
<td>10.04472197</td>
</tr>
<tr>
<td>LOC101748861</td>
<td>uncharacterized LOC101748861</td>
<td>10.06969143</td>
</tr>
<tr>
<td>IL6</td>
<td>interleukin 6</td>
<td>10.10152927</td>
</tr>
<tr>
<td>LOC101749761</td>
<td>uncharacterized LOC101749761</td>
<td>10.11398954</td>
</tr>
<tr>
<td>LOC101748686</td>
<td>uncharacterized LOC101748686</td>
<td>10.15754905</td>
</tr>
<tr>
<td>VSIG1</td>
<td>V-set and immunoglobulin domain containing 1</td>
<td>10.18706747</td>
</tr>
<tr>
<td>LOC101752250</td>
<td>cell surface glycoprotein CD200 receptor 1-A-like</td>
<td>10.21535098</td>
</tr>
<tr>
<td>LOC101748499</td>
<td>uncharacterized LOC101748499</td>
<td>10.23930017</td>
</tr>
</tbody>
</table>

130
<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>POU2F3</td>
<td>POU class 2 homeobox 3</td>
<td>10.31380136</td>
</tr>
<tr>
<td>LYZ</td>
<td>lysozyme (renal amyloidosis)</td>
<td>10.31940447</td>
</tr>
<tr>
<td>LOC101751752</td>
<td>antigen WC1.1-like</td>
<td>10.34847367</td>
</tr>
<tr>
<td>AADACL2</td>
<td>arylacetamide deacetylase-like 2</td>
<td>10.35294828</td>
</tr>
<tr>
<td>LOC101750282</td>
<td>uncharacterized LOC101750282</td>
<td>10.36360915</td>
</tr>
<tr>
<td>LOC776570</td>
<td>T-cell receptor gamma chain V region V108A-like</td>
<td>10.39514851</td>
</tr>
<tr>
<td>LOC101751636</td>
<td>uncharacterized LOC101751636</td>
<td>10.39742864</td>
</tr>
<tr>
<td>LOC776588</td>
<td>Ig kappa chain V-III region PC 4050-like</td>
<td>10.40185015</td>
</tr>
<tr>
<td>CD300LF</td>
<td>CD300 molecule-like family member f</td>
<td>10.40221267</td>
</tr>
<tr>
<td>LOC101748993</td>
<td>uncharacterized LOC101748993</td>
<td>10.4223907</td>
</tr>
<tr>
<td>LOC101748997</td>
<td>uncharacterized LOC101748997</td>
<td>10.44880609</td>
</tr>
<tr>
<td>LOC101751452</td>
<td>uncharacterized LOC101751452</td>
<td>10.4535901</td>
</tr>
<tr>
<td>LOC101749641</td>
<td>uncharacterized LOC101749641</td>
<td>10.46986563</td>
</tr>
<tr>
<td>LOC101749416</td>
<td>uncharacterized LOC101749416</td>
<td>10.48826193</td>
</tr>
<tr>
<td>LOC101752329</td>
<td>uncharacterized LOC101752329</td>
<td>10.50096135</td>
</tr>
<tr>
<td>LOC100859233</td>
<td>uncharacterized LOC100859233</td>
<td>10.55783701</td>
</tr>
<tr>
<td>LOC427060</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>10.5967861</td>
</tr>
<tr>
<td>DKK1</td>
<td>dickkopf WNT signaling pathway inhibitor 1</td>
<td>10.61277637</td>
</tr>
<tr>
<td>LOC101751781</td>
<td>peroxisome proliferator-activated receptor gamma coactivator-related protein 1-like</td>
<td>10.64655871</td>
</tr>
<tr>
<td>LOC770684</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>10.66151981</td>
</tr>
<tr>
<td>GPR15</td>
<td>G protein-coupled receptor 15</td>
<td>10.6648739</td>
</tr>
<tr>
<td>LOC100857546</td>
<td>uncharacterized LOC100857546</td>
<td>10.68499402</td>
</tr>
<tr>
<td>CRYBB2</td>
<td>crystallin, beta B2</td>
<td>10.708101</td>
</tr>
<tr>
<td>PTPRQ</td>
<td>protein tyrosine phosphatase, receptor type, Q</td>
<td>10.70814685</td>
</tr>
<tr>
<td>LIN28B</td>
<td>lin-28 homolog B (C. elegans)</td>
<td>10.71440867</td>
</tr>
<tr>
<td>LOC101749612</td>
<td>T-cell receptor alpha chain V region RL-5-like</td>
<td>10.72632887</td>
</tr>
<tr>
<td>NMS</td>
<td>neuromedin S</td>
<td>10.75397718</td>
</tr>
<tr>
<td>LOC101747645</td>
<td>translation initiation factor IF-2-like</td>
<td>10.75855636</td>
</tr>
<tr>
<td>LOC101749621</td>
<td>uncharacterized LOC101749621</td>
<td>10.79255443</td>
</tr>
<tr>
<td>LOC101748004</td>
<td>uncharacterized LOC101748004</td>
<td>10.79744267</td>
</tr>
<tr>
<td>TGM4</td>
<td>transglutaminase 4 (prostate)</td>
<td>10.87301168</td>
</tr>
<tr>
<td>LOC101748252</td>
<td>myelin-oligodendrocyte glycoprotein-like</td>
<td>10.89108497</td>
</tr>
<tr>
<td>ACRBP</td>
<td>acrosin binding protein</td>
<td>10.89361249</td>
</tr>
</tbody>
</table>
Table 17 continued

<table>
<thead>
<tr>
<th>Ensembl ID</th>
<th>Description</th>
<th>Log2FoldChange</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCNT2</td>
<td>glucosaminyl (N-acetyl) transferase 2, I-branching enzyme (I blood group)</td>
<td>10.95277764</td>
</tr>
<tr>
<td>LOC770434</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>10.98092499</td>
</tr>
<tr>
<td>LOC101748180</td>
<td>uncharacterized LOC101748180</td>
<td>10.99002594</td>
</tr>
<tr>
<td>LOC101747296</td>
<td>uncharacterized LOC101747296</td>
<td>11.02471029</td>
</tr>
<tr>
<td>LOC422654</td>
<td>chemokine (C-X-C motif) ligand 1-like</td>
<td>11.06355013</td>
</tr>
<tr>
<td>LOC101750797</td>
<td>immunoglobulin omega chain-like</td>
<td>11.102973</td>
</tr>
<tr>
<td>LOC101752131</td>
<td>lymphocyte antigen 6D-like</td>
<td>11.16325342</td>
</tr>
<tr>
<td>LOC100858480</td>
<td>homeobox protein Hox-A3-like</td>
<td>11.16530273</td>
</tr>
<tr>
<td>PTCRA</td>
<td>pre T-cell antigen receptor alpha</td>
<td>11.16874732</td>
</tr>
<tr>
<td>LOC101752314</td>
<td>T-cell receptor alpha chain V region RL-5-like</td>
<td>11.1791689</td>
</tr>
<tr>
<td>LOC101750569</td>
<td>uncharacterized LOC101750569</td>
<td>11.20805142</td>
</tr>
<tr>
<td>LOC768817</td>
<td>trypsin I-P1-like</td>
<td>11.21376647</td>
</tr>
<tr>
<td>TOM1L1</td>
<td>target of myb1 like 1 membrane trafficking protein</td>
<td>11.2669212</td>
</tr>
<tr>
<td>LOC101748718</td>
<td>uncharacterized LOC101748718</td>
<td>11.27720021</td>
</tr>
<tr>
<td>LOC101752021</td>
<td>uncharacterized LOC101752021</td>
<td>11.32350518</td>
</tr>
<tr>
<td>PASK</td>
<td>PAS domain containing serine/threonine kinase</td>
<td>11.33592066</td>
</tr>
<tr>
<td>SCRT2</td>
<td>scratch family zinc finger 2</td>
<td>11.34533317</td>
</tr>
<tr>
<td>PHOX2B</td>
<td>paired-like homeobox 2b</td>
<td>11.44552187</td>
</tr>
<tr>
<td>CCR9</td>
<td>chemokine (C-C motif) receptor 9</td>
<td>11.49187814</td>
</tr>
<tr>
<td>LOC101747596</td>
<td>uncharacterized LOC101747596</td>
<td>11.5221205</td>
</tr>
<tr>
<td>CDH23</td>
<td>cadherin-related 23</td>
<td>11.52933782</td>
</tr>
<tr>
<td>NEUROD6</td>
<td>neuronal differentiation 6</td>
<td>11.56554006</td>
</tr>
<tr>
<td>LOC101748908</td>
<td>T-cell receptor alpha chain V region RL-5-like</td>
<td>11.59632023</td>
</tr>
<tr>
<td>TRNAL-UAA</td>
<td>transfer RNA leucine (anticodon UAA)</td>
<td>11.60074921</td>
</tr>
<tr>
<td>LOC776593</td>
<td>T-cell receptor gamma chain V region PT-gamma-1/2-like</td>
<td>11.67088635</td>
</tr>
<tr>
<td>LOC776577</td>
<td>T-cell receptor gamma chain V region V108A-like</td>
<td>11.6849502</td>
</tr>
<tr>
<td>LOC768589</td>
<td>baculoviral IAP repeat-containing protein 5.1-like</td>
<td>11.69960282</td>
</tr>
<tr>
<td>MIRLET7B</td>
<td>microRNA let-7b</td>
<td>11.8063442</td>
</tr>
<tr>
<td>DCLRE1B</td>
<td>DNA cross-link repair 1B</td>
<td>11.84671269</td>
</tr>
<tr>
<td>TNFSF8</td>
<td>tumor necrosis factor (ligand) superfamily, member 8</td>
<td>11.84892412</td>
</tr>
<tr>
<td>LOC769926</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>11.85064005</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>Score</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>MIR155</td>
<td>microRNA mir-1555</td>
<td>11.90522904</td>
</tr>
<tr>
<td>CCNE2</td>
<td>cyclin E2</td>
<td>11.95770062</td>
</tr>
<tr>
<td>EDAR</td>
<td>ectodysplasin A receptor</td>
<td>11.98437217</td>
</tr>
<tr>
<td>C15ORF27</td>
<td>chromosome 10 open reading frame, human C15orf27</td>
<td>12.00777366</td>
</tr>
<tr>
<td>LOC101749259</td>
<td>immunoglobulin omega chain-like</td>
<td>12.00903779</td>
</tr>
<tr>
<td>HOXB6</td>
<td>homeobox B6</td>
<td>12.04313326</td>
</tr>
<tr>
<td>LOC416500</td>
<td>uncharacterized LOC416500</td>
<td>12.05619739</td>
</tr>
<tr>
<td>LOC769638</td>
<td>T-cell receptor alpha chain V region CTL-F3-like</td>
<td>12.15591869</td>
</tr>
<tr>
<td>RRNAD1</td>
<td>ribosomal RNA adenine dimethylase domain containing 1</td>
<td>12.20828619</td>
</tr>
<tr>
<td>HMGA2</td>
<td>high mobility group AT-hook 2</td>
<td>12.23090008</td>
</tr>
<tr>
<td>LOC101750483</td>
<td>uncharacterized LOC101750483</td>
<td>12.30573973</td>
</tr>
<tr>
<td>LOC101748652</td>
<td>uncharacterized LOC101748652</td>
<td>12.31456342</td>
</tr>
<tr>
<td>LOC101751426</td>
<td>uncharacterized LOC101751426</td>
<td>12.32080619</td>
</tr>
<tr>
<td>LIX1</td>
<td>limb and CNS expressed 1</td>
<td>12.37062748</td>
</tr>
<tr>
<td>LOC101749128</td>
<td>immunoglobulin omega chain-like</td>
<td>12.43871649</td>
</tr>
<tr>
<td>LOC100857337</td>
<td>T-cell surface glycoprotein CD8 alpha chain-like</td>
<td>12.46403005</td>
</tr>
<tr>
<td>MIR32</td>
<td>microRNA 32</td>
<td>12.47666521</td>
</tr>
<tr>
<td>LOC101752288</td>
<td>Ig kappa chain V-VI region NQS-61.1.2-like</td>
<td>12.48145133</td>
</tr>
<tr>
<td>LOC101750872</td>
<td>Ig heavy chain V region C3-like</td>
<td>12.50468494</td>
</tr>
<tr>
<td>LOC428086</td>
<td>stromelysin-1-like</td>
<td>12.55810019</td>
</tr>
<tr>
<td>EME1</td>
<td>essential meiotic structure-specific endonuclease 1</td>
<td>12.5657709</td>
</tr>
<tr>
<td>KNTC1</td>
<td>kinetochore associated 1</td>
<td>12.58487092</td>
</tr>
<tr>
<td>TRNAR-CCU</td>
<td>transfer RNA arginine (anticodon CCU)</td>
<td>12.60099771</td>
</tr>
<tr>
<td>NPPC</td>
<td>natriuretic peptide C</td>
<td>12.60369125</td>
</tr>
<tr>
<td>PLA2G5</td>
<td>phospholipase A2, group V</td>
<td>12.63212505</td>
</tr>
<tr>
<td>LOC101749503</td>
<td>uncharacterized LOC101749503</td>
<td>12.66464061</td>
</tr>
<tr>
<td>LOC101751517</td>
<td>uncharacterized LOC101751517</td>
<td>12.70182626</td>
</tr>
<tr>
<td>LOC101750937</td>
<td>immunoglobulin iota chain-like</td>
<td>12.71768499</td>
</tr>
<tr>
<td>DDX4</td>
<td>DEAD (Asp-Glu-Ala-Asp) box polypeptide 4</td>
<td>12.74203148</td>
</tr>
<tr>
<td>LOC101750284</td>
<td>uncharacterized LOC101750284</td>
<td>12.75658759</td>
</tr>
<tr>
<td>GALR1</td>
<td>galanin receptor 1</td>
<td>12.80568544</td>
</tr>
<tr>
<td>WT1</td>
<td>Wilms tumor protein homolog</td>
<td>12.80785801</td>
</tr>
<tr>
<td>LOC776590</td>
<td>Ig kappa chain V-VI region NQ2-6.1-like</td>
<td>12.81204491</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Description</td>
<td>Log2 Fold Change</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>PTGS1</td>
<td>Prostaglandin-endoperoxide synthase 1 (prostaglandin G/H synthase and cyclooxygenase)</td>
<td>12.81261655</td>
</tr>
<tr>
<td>MIR155</td>
<td>MicroRNA 155</td>
<td>12.82058586</td>
</tr>
<tr>
<td>LOC101750810</td>
<td>Uncharacterized LOC101750810</td>
<td>12.88634247</td>
</tr>
<tr>
<td>MDH1B</td>
<td>Malate dehydrogenase 1B, NAD (soluble)</td>
<td>12.90853711</td>
</tr>
<tr>
<td>LOC101751643</td>
<td>Immunoglobulin omega chain-like</td>
<td>12.94308986</td>
</tr>
<tr>
<td>LOC101751584</td>
<td>Uncharacterized LOC101751584</td>
<td>12.94460226</td>
</tr>
<tr>
<td>AICDA</td>
<td>Activation-induced cytidine deaminase</td>
<td>12.96419825</td>
</tr>
<tr>
<td>LOC424155</td>
<td>Uncharacterized LOC424155</td>
<td>12.97829754</td>
</tr>
<tr>
<td>MIR146A</td>
<td>MicroRNA 146a</td>
<td>13.07115059</td>
</tr>
<tr>
<td>VPREB3</td>
<td>Pre-B lymphocyte 3</td>
<td>13.22736474</td>
</tr>
<tr>
<td>LOC100858624</td>
<td>Potassium voltage-gated channel subfamily E member 1-like protein-like</td>
<td>13.26561212</td>
</tr>
<tr>
<td>FLVCR2</td>
<td>Feline leukemia virus subgroup C cellular receptor family, member 2</td>
<td>13.31032876</td>
</tr>
<tr>
<td>LOC416197</td>
<td>Proteinase-activated receptor 2-like</td>
<td>13.33603228</td>
</tr>
<tr>
<td>PHF13</td>
<td>PHD finger protein 13</td>
<td>13.35058012</td>
</tr>
<tr>
<td>LOC101751761</td>
<td>Ig lambda chain V-V region DEL-like</td>
<td>13.44293054</td>
</tr>
<tr>
<td>MIR1653</td>
<td>MicroRNA mir-1653</td>
<td>13.44859385</td>
</tr>
<tr>
<td>TMEM209</td>
<td>Transmembrane protein 209</td>
<td>13.51990649</td>
</tr>
<tr>
<td>SKA3</td>
<td>Spindle and kinetochore associated complex subunit 3</td>
<td>13.55503243</td>
</tr>
<tr>
<td>CCDC146</td>
<td>Coiled-coil domain containing 146</td>
<td>13.65266575</td>
</tr>
<tr>
<td>MIR223</td>
<td>MicroRNA 223</td>
<td>13.6594608</td>
</tr>
<tr>
<td>LNX</td>
<td>Latexin</td>
<td>13.67810493</td>
</tr>
<tr>
<td>CNTRL</td>
<td>Centriolin</td>
<td>13.73068241</td>
</tr>
<tr>
<td>MIR21</td>
<td>MicroRNA 21</td>
<td>13.79434479</td>
</tr>
<tr>
<td>RRP12</td>
<td>Ribosomal RNA processing 12 homolog</td>
<td>13.81915124</td>
</tr>
<tr>
<td>SLC31A2</td>
<td>Solute carrier family 31 (copper transporter), member 2</td>
<td>13.90081965</td>
</tr>
<tr>
<td>MIRLET7I</td>
<td>MicroRNA let-7i</td>
<td>13.91673787</td>
</tr>
<tr>
<td>MIR221</td>
<td>MicroRNA 221</td>
<td>14.03811308</td>
</tr>
<tr>
<td>SH2D2A</td>
<td>SH2 domain containing 2A</td>
<td>14.04629699</td>
</tr>
<tr>
<td>SPIC</td>
<td>Spi-C transcription factor (Spi-1/PU.1 related)</td>
<td>14.09954764</td>
</tr>
<tr>
<td>RASAL1</td>
<td>RAS protein activator like 1 (GAP1 like)</td>
<td>14.26361399</td>
</tr>
<tr>
<td>NKX2-5</td>
<td>NK2 homeobox 5</td>
<td>14.30280312</td>
</tr>
<tr>
<td>ACSL4</td>
<td>Acyl-CoA synthetase long-chain family member 4</td>
<td>14.38864295</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Description</td>
<td>Transcript Level</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>LOC101748882</td>
<td>uncharacterized LOC101748882</td>
<td>14.41395842</td>
</tr>
<tr>
<td>TATDN1</td>
<td>TatD DNase domain containing 1</td>
<td>14.58674012</td>
</tr>
<tr>
<td>NTHL1</td>
<td>nth-like DNA glycosylase 1</td>
<td>14.65115262</td>
</tr>
<tr>
<td>TNFRSF9</td>
<td>tumor necrosis factor receptor superfamily, member 9</td>
<td>14.71619249</td>
</tr>
<tr>
<td>LOC100857518</td>
<td>LIM and senescent cell antigen-like-containing domain protein 1-like</td>
<td>14.79963072</td>
</tr>
<tr>
<td>TNFRSF13C</td>
<td>tumor necrosis factor receptor superfamily, member 13C</td>
<td>15.05665465</td>
</tr>
<tr>
<td>CD5</td>
<td>CD5 molecule</td>
<td>15.08827893</td>
</tr>
<tr>
<td>B3GNTL1</td>
<td>UDP-GlcNAc:betaGal beta-1,3-N-acetylglicosaminyltransferase-like 1</td>
<td>15.24545986</td>
</tr>
<tr>
<td>LOC101749948</td>
<td>uncharacterized LOC101749948</td>
<td>15.30545973</td>
</tr>
<tr>
<td>TRAF5</td>
<td>TNF receptor-associated factor 5</td>
<td>15.62101302</td>
</tr>
<tr>
<td>MMP7</td>
<td>matrix metalloprotease 7 (matrilysin, uterine)</td>
<td>15.63510308</td>
</tr>
<tr>
<td>CXCR5</td>
<td>chemokine (C-X-C motif) receptor 5</td>
<td>15.89376605</td>
</tr>
<tr>
<td>PDCD1LG2</td>
<td>programmed cell death 1 ligand 2</td>
<td>15.97718152</td>
</tr>
<tr>
<td>PAX5</td>
<td>paired box 5</td>
<td>16.39499182</td>
</tr>
<tr>
<td>LPXN</td>
<td>leupaxin</td>
<td>17.06015761</td>
</tr>
<tr>
<td>LIMS1</td>
<td>LIM and senescent cell antigen-like domains 1</td>
<td>17.07225824</td>
</tr>
<tr>
<td>TLX1</td>
<td>T-cell leukemia homeobox 1</td>
<td>17.54823491</td>
</tr>
<tr>
<td>UROC1</td>
<td>urocanate hydratase 1</td>
<td>5.451241249</td>
</tr>
<tr>
<td>LOC101748799</td>
<td>uncharacterized LOC101748799</td>
<td>5.452529545</td>
</tr>
<tr>
<td>LOC100859599</td>
<td>rho-related GTP-binding protein RhoG-like</td>
<td>5.454892578</td>
</tr>
<tr>
<td>LOC419112</td>
<td>transmembrane protein 110-like</td>
<td>5.457708408</td>
</tr>
<tr>
<td>BRSK2</td>
<td>BR serine/threonine kinase 2</td>
<td>5.465585232</td>
</tr>
<tr>
<td>LY96</td>
<td>lymphocyte antigen 96</td>
<td>5.466914731</td>
</tr>
<tr>
<td>ITGA8</td>
<td>integrin, alpha 8</td>
<td>5.472394436</td>
</tr>
<tr>
<td>RPS28</td>
<td>ribosomal protein S28</td>
<td>5.475152061</td>
</tr>
<tr>
<td>CD247</td>
<td>CD247 molecule</td>
<td>5.479029276</td>
</tr>
<tr>
<td>LOC101749293</td>
<td>uncharacterized LOC101749293</td>
<td>5.486267559</td>
</tr>
<tr>
<td>LOC100857183</td>
<td>uncharacterized LOC100857183</td>
<td>5.487357715</td>
</tr>
<tr>
<td>LOC101748739</td>
<td>uncharacterized LOC101748739</td>
<td>5.488018641</td>
</tr>
<tr>
<td>LOC101749017</td>
<td>platelet binding protein GspB-like</td>
<td>5.489778694</td>
</tr>
<tr>
<td>CNTN3</td>
<td>contactin 3 (plasmacytoma associated)</td>
<td>5.491359531</td>
</tr>
<tr>
<td>LOC101750317</td>
<td>uncharacterized LOC101750317</td>
<td>5.496654083</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>Value</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>MATN1</td>
<td>matrilin 1, cartilage matrix protein</td>
<td>5.505179516</td>
</tr>
<tr>
<td>LOC101749087</td>
<td>uncharacterized LOC101749087</td>
<td>5.505466751</td>
</tr>
<tr>
<td>LOC101751773</td>
<td>uncharacterized LOC101751773</td>
<td>5.508179733</td>
</tr>
<tr>
<td>MSLNL</td>
<td>mesothelin-like</td>
<td>5.512404032</td>
</tr>
<tr>
<td>GHRH</td>
<td>growth hormone releasing hormone</td>
<td>5.515157349</td>
</tr>
<tr>
<td>CD14</td>
<td>CD14 molecule</td>
<td>5.515995059</td>
</tr>
<tr>
<td>FYB</td>
<td>FYN binding protein</td>
<td>5.519311541</td>
</tr>
<tr>
<td>CYP26A1</td>
<td>cytochrome P450, family 26, subfamily A, polypeptide 1</td>
<td>5.524794534</td>
</tr>
<tr>
<td>HOXB3</td>
<td>homeobox B3</td>
<td>5.525584691</td>
</tr>
<tr>
<td>LPAR3</td>
<td>lysophosphatidic acid receptor 3</td>
<td>5.528528288</td>
</tr>
<tr>
<td>CX3CR1</td>
<td>chemokine (C-X3-C motif) receptor 1</td>
<td>5.529413683</td>
</tr>
<tr>
<td>ANKRD34C</td>
<td>ankyrin repeat domain 34C</td>
<td>5.532932363</td>
</tr>
<tr>
<td>LCP2</td>
<td>lymphocyte cytosolic protein 2 (SH2 domain containing leukocyte protein of 76kDa)</td>
<td>5.539752339</td>
</tr>
<tr>
<td>FAM65B</td>
<td>family with sequence similarity 65, member B</td>
<td>5.540068644</td>
</tr>
<tr>
<td>SERPINB10</td>
<td>serpin peptidase inhibitor, clade B (ovalbumin), member 10</td>
<td>5.541521888</td>
</tr>
<tr>
<td>SLC24A4</td>
<td>solute carrier family 24 (sodium/potassium/calcium exchanger), member 4</td>
<td>5.546988367</td>
</tr>
<tr>
<td>NCF2</td>
<td>neutrophil cytosolic factor 2</td>
<td>5.54726387</td>
</tr>
<tr>
<td>MPZL2</td>
<td>myelin protein zero-like 2</td>
<td>5.551680507</td>
</tr>
<tr>
<td>LOC101751732</td>
<td>uncharacterized LOC101751732</td>
<td>5.552438555</td>
</tr>
<tr>
<td>BLNK</td>
<td>B-cell linker</td>
<td>5.556583302</td>
</tr>
<tr>
<td>LOC422002</td>
<td>GTPase SLIP-GC-like</td>
<td>5.560100731</td>
</tr>
<tr>
<td>GPR114</td>
<td>G protein-coupled receptor 114</td>
<td>5.561977804</td>
</tr>
<tr>
<td>HTR1F</td>
<td>5-hydroxytryptamine (serotonin) receptor 1F, G protein-coupled</td>
<td>5.564153276</td>
</tr>
<tr>
<td>LOC101749765</td>
<td>E3 ubiquitin-protein ligase ICP0-like</td>
<td>5.566815154</td>
</tr>
<tr>
<td>LOC101749479</td>
<td>uncharacterized LOC101749479</td>
<td>5.570766497</td>
</tr>
<tr>
<td>FOX11</td>
<td>forkhead box 11</td>
<td>5.577407382</td>
</tr>
<tr>
<td>LOC101748534</td>
<td>uncharacterized LOC101748534</td>
<td>5.580748492</td>
</tr>
<tr>
<td>IRF5</td>
<td>interferon regulatory factor 5</td>
<td>5.581125936</td>
</tr>
<tr>
<td>GABRR3</td>
<td>gamma-aminobutyric acid (GABA) A receptor, rho 3</td>
<td>5.586464526</td>
</tr>
<tr>
<td>TLR7</td>
<td>toll-like receptor 7</td>
<td>5.588459535</td>
</tr>
</tbody>
</table>
Table 17 continued

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Description</th>
<th>SNP Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC417192</td>
<td>torsin family 1, member B-like</td>
<td>5.591873081</td>
</tr>
<tr>
<td>IL5RA</td>
<td>interleukin 5 receptor, alpha</td>
<td>5.596338864</td>
</tr>
<tr>
<td>ART5</td>
<td>ADP-ribosyltransferase 5</td>
<td>5.597228602</td>
</tr>
<tr>
<td>LOC770268</td>
<td>uncharacterized LOC770268</td>
<td>5.598237278</td>
</tr>
<tr>
<td>MYH1B</td>
<td>myosin, heavy chain 1B, skeletal muscle (similar to human myosin, heavy chain 1, skeletal muscle, adult)</td>
<td>5.607011525</td>
</tr>
<tr>
<td>LOC101749039</td>
<td>uncharacterized LOC101749039</td>
<td>5.608513578</td>
</tr>
<tr>
<td>LOC101748471</td>
<td>uncharacterized LOC101748471</td>
<td>5.609561906</td>
</tr>
<tr>
<td>ART3</td>
<td>arrestin 3, retinal</td>
<td>5.609825266</td>
</tr>
<tr>
<td>LOC101747734</td>
<td>uncharacterized LOC101747734</td>
<td>5.612040643</td>
</tr>
<tr>
<td>EN1</td>
<td>engrailed homeobox 1</td>
<td>5.613136336</td>
</tr>
<tr>
<td>FUT7</td>
<td>fucosyltransferase 7 (alpha (1,3) fucosyltransferase)</td>
<td>5.614143092</td>
</tr>
<tr>
<td>ABCC8</td>
<td>ATP-binding cassette, sub-family C (CFTR/MRP), member 8</td>
<td>5.614224977</td>
</tr>
<tr>
<td>IFITM5</td>
<td>interferon induced transmembrane protein 5</td>
<td>5.623775547</td>
</tr>
<tr>
<td>LOC101748243</td>
<td>uncharacterized LOC101748243</td>
<td>5.626147064</td>
</tr>
<tr>
<td>ESM1</td>
<td>endothelial cell-specific molecule 1</td>
<td>5.638461818</td>
</tr>
<tr>
<td>SELP</td>
<td>selectin P (granule membrane protein 140kDa, antigen CD62)</td>
<td>5.639772152</td>
</tr>
<tr>
<td>LOC101748276</td>
<td>uncharacterized LOC101748276</td>
<td>5.640678764</td>
</tr>
<tr>
<td>LITAF</td>
<td>lipopolysaccharide-induced TNF factor</td>
<td>5.643700685</td>
</tr>
<tr>
<td>LOC101748487</td>
<td>uncharacterized LOC101748487</td>
<td>5.654492826</td>
</tr>
<tr>
<td>CEL</td>
<td>carboxyl ester lipase</td>
<td>5.656496371</td>
</tr>
<tr>
<td>RAG2</td>
<td>recombination activating gene 2</td>
<td>5.657140542</td>
</tr>
<tr>
<td>LOC101750130</td>
<td>uncharacterized LOC101750130</td>
<td>5.66006252</td>
</tr>
<tr>
<td>FAIM2</td>
<td>Fas apoptotic inhibitory molecule 2</td>
<td>5.662530427</td>
</tr>
<tr>
<td>FAM132A</td>
<td>family with sequence similarity 132, member A</td>
<td>5.662762136</td>
</tr>
<tr>
<td>LOC101751857</td>
<td>uncharacterized LOC101751857</td>
<td>5.66448284</td>
</tr>
<tr>
<td>CD48</td>
<td>CD48 molecule</td>
<td>5.670582216</td>
</tr>
<tr>
<td>EOMES</td>
<td>eomesodermin</td>
<td>5.671417938</td>
</tr>
<tr>
<td>BATF</td>
<td>basic leucine zipper transcription factor, ATF-like</td>
<td>5.678357084</td>
</tr>
<tr>
<td>LOC419425</td>
<td>rho guanine nucleotide exchange factor 7-like</td>
<td>5.678541846</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Description</td>
<td>Log2 Fold Change</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>CACNG3</td>
<td>calcium channel, voltage-dependent, gamma subunit 3</td>
<td>5.681901371</td>
</tr>
<tr>
<td>LOC101750518</td>
<td>uncharacterized LOC101750518</td>
<td>5.687340687</td>
</tr>
<tr>
<td>LOC100858919</td>
<td>receptor-type tyrosine-protein phosphatase S-like</td>
<td>5.688162586</td>
</tr>
<tr>
<td>SBK2</td>
<td>SH3 domain binding kinase family, member 2</td>
<td>5.689858236</td>
</tr>
<tr>
<td>KCNMB1</td>
<td>potassium channel subfamily M regulatory beta subunit 1</td>
<td>5.69269532</td>
</tr>
<tr>
<td>LOC101749565</td>
<td>uncharacterized LOC101749565</td>
<td>5.695906788</td>
</tr>
<tr>
<td>GALNT6</td>
<td>UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 6 (GalNAc-T6)</td>
<td>5.696680326</td>
</tr>
<tr>
<td>ZNF488</td>
<td>zinc finger protein 488</td>
<td>5.697948999</td>
</tr>
<tr>
<td>LOC101748229</td>
<td>nuclear factor interleukin-3-regulated protein-like</td>
<td>5.699133065</td>
</tr>
<tr>
<td>ICOS</td>
<td>inducible T-cell co-stimulator</td>
<td>5.699583873</td>
</tr>
<tr>
<td>NEL2</td>
<td>NEL-like 2</td>
<td>5.704857473</td>
</tr>
<tr>
<td>RGS19</td>
<td>regulator of G-protein signaling 19</td>
<td>5.705584784</td>
</tr>
<tr>
<td>TRIM27.2</td>
<td>tripartite motif containing 27.2</td>
<td>5.705693072</td>
</tr>
<tr>
<td>LOC101749790</td>
<td>uncharacterized LOC101749790</td>
<td>5.705701497</td>
</tr>
<tr>
<td>LOC101747238</td>
<td>uncharacterized LOC101747238</td>
<td>5.70950303</td>
</tr>
<tr>
<td>ANKRD33B</td>
<td>ankyrin repeat domain 33B</td>
<td>5.709856327</td>
</tr>
<tr>
<td>LOC101748219</td>
<td>uncharacterized LOC101748219</td>
<td>5.711494907</td>
</tr>
<tr>
<td>LOC101751701</td>
<td>uncharacterized LOC101751701</td>
<td>5.727103604</td>
</tr>
<tr>
<td>PAPOLG</td>
<td>poly(A) polymerase gamma</td>
<td>5.727920455</td>
</tr>
<tr>
<td>LOC101747792</td>
<td>uncharacterized LOC101747792</td>
<td>5.728911072</td>
</tr>
<tr>
<td>LOC101751985</td>
<td>uncharacterized LOC101751985</td>
<td>5.732540561</td>
</tr>
<tr>
<td>LOC426456</td>
<td>uncharacterized LOC426456</td>
<td>5.732632881</td>
</tr>
<tr>
<td>CA7</td>
<td>carbonic anhydride VII</td>
<td>5.73301141</td>
</tr>
<tr>
<td>KK34</td>
<td>interleukin-like</td>
<td>5.73549992</td>
</tr>
<tr>
<td>ACPP</td>
<td>acid phosphatase, prostate</td>
<td>5.737294639</td>
</tr>
<tr>
<td>SLC5A11</td>
<td>solute carrier family 5 (sodium/inositol cotransporter), member 11</td>
<td>5.742275748</td>
</tr>
<tr>
<td>IL1RAPL1</td>
<td>interleukin 1 receptor accessory protein-like 1</td>
<td>5.746933801</td>
</tr>
<tr>
<td>TXLNB</td>
<td>taxilin beta</td>
<td>5.75326376</td>
</tr>
<tr>
<td>LOC101748016</td>
<td>uncharacterized LOC101748016</td>
<td>5.757556689</td>
</tr>
<tr>
<td>KRT12</td>
<td>keratin 12 (Meesmann corneal dystrophy)</td>
<td>5.766330131</td>
</tr>
</tbody>
</table>
Table 17 continued

<table>
<thead>
<tr>
<th>Gene Accession</th>
<th>Gene Name</th>
<th>Description</th>
<th>Log2 Fold Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC429936</td>
<td>arylacetamide deacetylase-like 4-like</td>
<td>5.766330131</td>
<td></td>
</tr>
<tr>
<td>GFRA1</td>
<td>GDNF family receptor alpha 1</td>
<td>5.770908367</td>
<td></td>
</tr>
<tr>
<td>BFSP2</td>
<td>beaded filament structural protein 2, phakinin</td>
<td>5.780835002</td>
<td></td>
</tr>
<tr>
<td>LOC101750079</td>
<td>uncharacterized LOC101750079</td>
<td>5.781097382</td>
<td></td>
</tr>
<tr>
<td>TLR15</td>
<td>toll-like receptor 15</td>
<td>5.786569189</td>
<td></td>
</tr>
<tr>
<td>LOC101748119</td>
<td>uncharacterized LOC101748119</td>
<td>5.788946667</td>
<td></td>
</tr>
<tr>
<td>BTK</td>
<td>Bruton agammaglobulinemia tyrosine kinase</td>
<td>5.802453736</td>
<td></td>
</tr>
<tr>
<td>LOC101750556</td>
<td>uncharacterized LOC101750556</td>
<td>5.807870078</td>
<td></td>
</tr>
<tr>
<td>BCL11B</td>
<td>B-cell CLL/lymphoma 11B (zinc finger protein)</td>
<td>5.808203338</td>
<td></td>
</tr>
<tr>
<td>IFI30</td>
<td>interferon, gamma-inducible protein 30</td>
<td>5.811467529</td>
<td></td>
</tr>
<tr>
<td>IL1B</td>
<td>interleukin 1, beta</td>
<td>5.814817872</td>
<td></td>
</tr>
<tr>
<td>RLTPR</td>
<td>RGD motif, leucine rich repeats, tropomodulin domain and proline-rich containing</td>
<td>5.819496012</td>
<td></td>
</tr>
<tr>
<td>PTPN7</td>
<td>protein tyrosine phosphatase, non-receptor type 7</td>
<td>5.82022805</td>
<td></td>
</tr>
<tr>
<td>ARHGAP15</td>
<td>Rho GTPase activating protein 15</td>
<td>5.821411286</td>
<td></td>
</tr>
<tr>
<td>LOC101747817</td>
<td>uncharacterized LOC101747817</td>
<td>5.834660658</td>
<td></td>
</tr>
<tr>
<td>SAMSN1</td>
<td>SAM domain, SH3 domain and nuclear localization signals 1</td>
<td>5.838557105</td>
<td></td>
</tr>
<tr>
<td>LOC101750328</td>
<td>NAD(P)(+)--arginine ADP-ribosyltransferase 1-like</td>
<td>5.844979437</td>
<td></td>
</tr>
<tr>
<td>LOC101752117</td>
<td>uncharacterized LOC101752117</td>
<td>5.849749117</td>
<td></td>
</tr>
<tr>
<td>LOC101750314</td>
<td>uncharacterized LOC101750314</td>
<td>5.850249358</td>
<td></td>
</tr>
<tr>
<td>LOC101748544</td>
<td>uncharacterized LOC101748544</td>
<td>5.852108681</td>
<td></td>
</tr>
<tr>
<td>SLC15A1</td>
<td>solute carrier family 15 (oligopeptide transporter), member 1</td>
<td>5.857538509</td>
<td></td>
</tr>
<tr>
<td>LOC101751424</td>
<td>uncharacterized LOC101751424</td>
<td>5.862947248</td>
<td></td>
</tr>
<tr>
<td>LOC426820</td>
<td>deleted in malignant brain tumors 1 protein-like</td>
<td>5.864687345</td>
<td></td>
</tr>
<tr>
<td>CCR8L</td>
<td>C-C chemokine receptor 8 like</td>
<td>5.865538758</td>
<td></td>
</tr>
<tr>
<td>COL21A1</td>
<td>collagen, type XXI, alpha 1</td>
<td>5.867369068</td>
<td></td>
</tr>
<tr>
<td>MYO1G</td>
<td>myosin IG</td>
<td>5.871080335</td>
<td></td>
</tr>
<tr>
<td>LPAR5</td>
<td>lysophosphatidic acid receptor 5</td>
<td>5.874482552</td>
<td></td>
</tr>
<tr>
<td>LOC101751033</td>
<td>uncharacterized LOC101751033</td>
<td>5.885818372</td>
<td></td>
</tr>
<tr>
<td>LOC428525</td>
<td>histamine H3 receptor-like</td>
<td>5.897021148</td>
<td></td>
</tr>
<tr>
<td>LOC101748572</td>
<td>uncharacterized LOC101748572</td>
<td>5.902268051</td>
<td></td>
</tr>
</tbody>
</table>
Table 17 continued

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC101748936</td>
<td>uncharacterized LOC101748936</td>
<td>5.912170803</td>
</tr>
<tr>
<td>PMCH</td>
<td>pro-melanin-concentrating hormone</td>
<td>5.914908903</td>
</tr>
<tr>
<td>LOC101748205</td>
<td>uncharacterized LOC101748205</td>
<td>5.918386234</td>
</tr>
<tr>
<td>DOCK8</td>
<td>dedicator of cytokinesis 8</td>
<td>5.929850572</td>
</tr>
<tr>
<td>MADPRT</td>
<td>ADP-ribosyltransferase 1</td>
<td>5.935596126</td>
</tr>
<tr>
<td>LOC101748202</td>
<td>uncharacterized LOC101748202</td>
<td>5.941575862</td>
</tr>
<tr>
<td>LOC101750748</td>
<td>uncharacterized LOC101750748</td>
<td>5.964119092</td>
</tr>
<tr>
<td>CD40LG</td>
<td>CD40 ligand</td>
<td>5.968048976</td>
</tr>
<tr>
<td>HOXB8</td>
<td>homeobox B8</td>
<td>5.969448255</td>
</tr>
<tr>
<td>HOXB5</td>
<td>homeobox B5</td>
<td>5.969968201</td>
</tr>
<tr>
<td>TPD52L1</td>
<td>tumor protein D52-like</td>
<td>5.979687917</td>
</tr>
<tr>
<td>CCL10</td>
<td>chemokine</td>
<td>5.980771447</td>
</tr>
<tr>
<td>FOXE3</td>
<td>forhead box E3</td>
<td>5.982993575</td>
</tr>
<tr>
<td>LOC101751568</td>
<td>uncharacterized LOC101751568</td>
<td>5.995481051</td>
</tr>
<tr>
<td>LOC101752164</td>
<td>uncharacterized LOC101752164</td>
<td>6.011003564</td>
</tr>
<tr>
<td>IKZF1</td>
<td>IKAROS family zinc finger 1 (Ikaros)</td>
<td>6.013574236</td>
</tr>
<tr>
<td>OVSTL</td>
<td>ovostatin-like</td>
<td>6.015977127</td>
</tr>
<tr>
<td>LOC100858514</td>
<td>homeobox protein Hox-A7-like</td>
<td>6.017358656</td>
</tr>
<tr>
<td>DOCK2</td>
<td>dedicator of cytokinesis 2</td>
<td>6.017853343</td>
</tr>
<tr>
<td>LOC100858856</td>
<td>homeobox protein Hox-A7-like</td>
<td>6.019100165</td>
</tr>
<tr>
<td>LOC430303</td>
<td>low-density lipoprotein receptor-related protein 2-like</td>
<td>6.027405616</td>
</tr>
<tr>
<td>SLAMF8</td>
<td>SLAM family member 8</td>
<td>6.028903643</td>
</tr>
<tr>
<td>LOC419545</td>
<td>uncharacterized LOC419545</td>
<td>6.041512545</td>
</tr>
<tr>
<td>SLA</td>
<td>Src-like-adaptor</td>
<td>6.043311471</td>
</tr>
<tr>
<td>EDN3</td>
<td>endothelin 3</td>
<td>6.049725616</td>
</tr>
<tr>
<td>GFI1</td>
<td>growth factor independent 1 transcription repressor</td>
<td>6.051383231</td>
</tr>
<tr>
<td>AMICA1</td>
<td>adhesion molecule, interacts with CXADR antigen 1</td>
<td>6.054367042</td>
</tr>
<tr>
<td>STK31</td>
<td>serine/threonine kinase 31</td>
<td>6.060367775</td>
</tr>
<tr>
<td>LOC425299</td>
<td>lck-interacting transmembrane adapter 1-like</td>
<td>6.061291319</td>
</tr>
<tr>
<td>SOX30</td>
<td>SRY (sex determining region Y)-box 30</td>
<td>6.063287212</td>
</tr>
<tr>
<td>SLC6A5</td>
<td>solute carrier family 6 (neurotransmitter transporter), member 5</td>
<td>6.068885737</td>
</tr>
<tr>
<td>LOC101751639</td>
<td>uncharacterized LOC101751639</td>
<td>6.069959891</td>
</tr>
<tr>
<td>LOC417328</td>
<td>uncharacterized LOC417328</td>
<td>6.070250814</td>
</tr>
<tr>
<td>LOC101751635</td>
<td>uncharacterized LOC101751635</td>
<td>6.070727169</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>Log2 Fold Change</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>RAC2</td>
<td>ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2)</td>
<td>6.079947261</td>
</tr>
<tr>
<td>LOC101751758</td>
<td>uncharacterized LOC101751758</td>
<td>6.085339669</td>
</tr>
<tr>
<td>LOC101752111</td>
<td>uncharacterized LOC101752111</td>
<td>6.088523257</td>
</tr>
<tr>
<td>LOC427933</td>
<td>sulfotransferase 6B1-like</td>
<td>6.092968509</td>
</tr>
<tr>
<td>LOC101752331</td>
<td>uncharacterized LOC101752331</td>
<td>6.094388227</td>
</tr>
<tr>
<td>LOC101748453</td>
<td>uncharacterized LOC101748453</td>
<td>6.098453246</td>
</tr>
<tr>
<td>LOC101749298</td>
<td>uncharacterized LOC101749298</td>
<td>6.111363311</td>
</tr>
<tr>
<td>GRXCR2</td>
<td>glutaredoxin, cysteine rich 2</td>
<td>6.120193451</td>
</tr>
<tr>
<td>CRTAC1</td>
<td>cartilage acidic protein 1</td>
<td>6.120253605</td>
</tr>
<tr>
<td>LOC101749563</td>
<td>uncharacterized LOC101749563</td>
<td>6.124239172</td>
</tr>
<tr>
<td>LOC418423</td>
<td>uncharacterized LOC418423</td>
<td>6.124758238</td>
</tr>
<tr>
<td>P2RX5</td>
<td>purinergic receptor P2X, ligand-gated ion channel, 5</td>
<td>6.133655507</td>
</tr>
<tr>
<td>HS3ST6</td>
<td>heparan sulfate (glucosamine) 3-O-sulfotransferase 6</td>
<td>6.137754948</td>
</tr>
<tr>
<td>CD3E</td>
<td>CD3e molecule, epsilon (CD3-TCR complex)</td>
<td>6.138365344</td>
</tr>
<tr>
<td>SERPINB12</td>
<td>serpin peptidase inhibitor, clade B (ovalbumin), member 12</td>
<td>6.143386063</td>
</tr>
<tr>
<td>RTN4R</td>
<td>reticulon 4 receptor</td>
<td>6.1434159</td>
</tr>
<tr>
<td>MCOLN2</td>
<td>mucolipin 2</td>
<td>6.146663981</td>
</tr>
<tr>
<td>MMP1</td>
<td>matrix metalloprotease 1 (interstitial collagenase)</td>
<td>6.149867655</td>
</tr>
<tr>
<td>TMEM154</td>
<td>transmembrane protein 154</td>
<td>6.151236391</td>
</tr>
<tr>
<td>F10</td>
<td>coagulation factor X</td>
<td>6.15258696</td>
</tr>
<tr>
<td>LOC101749657</td>
<td>uncharacterized LOC101749657</td>
<td>6.152994606</td>
</tr>
<tr>
<td>LOC101751587</td>
<td>uncharacterized LOC101751587</td>
<td>6.158256229</td>
</tr>
<tr>
<td>LOC101752313</td>
<td>uncharacterized LOC101752313</td>
<td>6.160274831</td>
</tr>
<tr>
<td>LOC416755</td>
<td>uncharacterized LOC416755</td>
<td>6.162110876</td>
</tr>
<tr>
<td>CD3D</td>
<td>CD3d molecule, delta (CD3-TCR complex)</td>
<td>6.165880257</td>
</tr>
<tr>
<td>LOC769044</td>
<td>uncharacterized LOC769044</td>
<td>6.172147473</td>
</tr>
<tr>
<td>LOC101751530</td>
<td>uncharacterized LOC101751530</td>
<td>6.175923742</td>
</tr>
<tr>
<td>LOC101751113</td>
<td>titin-like</td>
<td>6.178714641</td>
</tr>
<tr>
<td>LOC101750425</td>
<td>uncharacterized LOC101750425</td>
<td>6.17951105</td>
</tr>
<tr>
<td>LOC101751232</td>
<td>epiplakin-like</td>
<td>6.181897643</td>
</tr>
<tr>
<td>LOC101749943</td>
<td>uncharacterized LOC101749943</td>
<td>6.183089461</td>
</tr>
<tr>
<td>LOC101750141</td>
<td>uncharacterized LOC101750141</td>
<td>6.188044796</td>
</tr>
<tr>
<td>FBXO47</td>
<td>F-box protein 47</td>
<td>6.189824559</td>
</tr>
<tr>
<td>BFSP1</td>
<td>beaded filament structural protein 1, filensin</td>
<td>6.19011392</td>
</tr>
<tr>
<td>GBX1</td>
<td>gastrulation brain homeobox 1</td>
<td>6.209063395</td>
</tr>
<tr>
<td>LOC101749624</td>
<td>uncharacterized LOC101749624</td>
<td>6.220329955</td>
</tr>
<tr>
<td>LOC428778</td>
<td>general transcription factor IIE subunit 1-like</td>
<td>6.224966365</td>
</tr>
<tr>
<td>LOC101749876</td>
<td>ADP-ribosylation factor-like protein 14-like</td>
<td>6.225816559</td>
</tr>
<tr>
<td>FSHR</td>
<td>follicle stimulating hormone receptor</td>
<td>6.226781716</td>
</tr>
<tr>
<td>TBX5</td>
<td>T-box 5</td>
<td>6.230741003</td>
</tr>
<tr>
<td>RUNX3</td>
<td>runt-related transcription factor 3</td>
<td>6.233080582</td>
</tr>
<tr>
<td>ENPP7</td>
<td>ectonucleotide pyrophosphatase/phosphodiesterase 7</td>
<td>6.23610989</td>
</tr>
<tr>
<td>LOC101747912</td>
<td>uncharacterized LOC101747912</td>
<td>6.241792555</td>
</tr>
<tr>
<td>LOC101750155</td>
<td>diacylglycerol kinase kappa-like</td>
<td>6.253532366</td>
</tr>
<tr>
<td>LOC101750991</td>
<td>uncharacterized LOC101750991</td>
<td>6.25830473</td>
</tr>
<tr>
<td>LOC101750568</td>
<td>uncharacterized LOC101750568</td>
<td>6.266599166</td>
</tr>
<tr>
<td>MFRP</td>
<td>membrane frizzled-related protein</td>
<td>6.270541923</td>
</tr>
<tr>
<td>LOC101748835</td>
<td>uncharacterized LOC101748835</td>
<td>6.271649773</td>
</tr>
<tr>
<td>LOC100859805</td>
<td>EF-hand calcium-binding domain-containing protein 4B-like</td>
<td>6.273279497</td>
</tr>
<tr>
<td>LOC101749359</td>
<td>uncharacterized LOC101749359</td>
<td>6.27351589</td>
</tr>
<tr>
<td>GPR174</td>
<td>G protein-coupled receptor 174</td>
<td>6.276526882</td>
</tr>
<tr>
<td>LCN8</td>
<td>lipocalin 8</td>
<td>6.283367896</td>
</tr>
<tr>
<td>LOC100859222</td>
<td>B-cell lymphoma/leukemia 11B-like</td>
<td>6.289520755</td>
</tr>
<tr>
<td>LOC101750247</td>
<td>uncharacterized LOC101750247</td>
<td>6.291566873</td>
</tr>
<tr>
<td>LOC101750143</td>
<td>PHD finger protein 7-like</td>
<td>6.296640945</td>
</tr>
<tr>
<td>LOC418668</td>
<td>cytokine receptor-like factor 2-like</td>
<td>6.30157451</td>
</tr>
<tr>
<td>LOC101749262</td>
<td>protein lifeguard 2-like</td>
<td>6.303950279</td>
</tr>
<tr>
<td>KAZALD1</td>
<td>Kazal-type serine peptidase inhibitor domain 1</td>
<td>6.304906368</td>
</tr>
<tr>
<td>TNFSF13B</td>
<td>tumor necrosis factor (ligand) superfamily, member 13b</td>
<td>6.315386933</td>
</tr>
<tr>
<td>PTPRC</td>
<td>protein tyrosine phosphatase, receptor type, C</td>
<td>6.317115951</td>
</tr>
<tr>
<td>LOC770271</td>
<td>uncharacterized LOC770271</td>
<td>6.321206567</td>
</tr>
</tbody>
</table>
Table 17 continued

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Description</th>
<th>Log2 Fold Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC101750271</td>
<td>peroxisome proliferator-activated receptor gamma coactivator-related protein 1-like</td>
<td>6.322771886</td>
</tr>
<tr>
<td>LOC101751615</td>
<td>uncharacterized LOC101751615</td>
<td>6.339783123</td>
</tr>
<tr>
<td>LOC101749177</td>
<td>uncharacterized LOC101749177</td>
<td>6.340562269</td>
</tr>
<tr>
<td>LOC100858347</td>
<td>disintegrin and metalloproteinase domain-containing protein 9-like</td>
<td>6.340740281</td>
</tr>
<tr>
<td>LOC101748034</td>
<td>uncharacterized LOC101748034</td>
<td>6.341452108</td>
</tr>
<tr>
<td>LOC101750335</td>
<td>uncharacterized LOC101750335</td>
<td>6.354381632</td>
</tr>
<tr>
<td>TSPAN8</td>
<td>tetraspanin 8</td>
<td>6.356926356</td>
</tr>
<tr>
<td>BANK1</td>
<td>B-cell scaffold protein with ankyrin repeats 1</td>
<td>6.35857454</td>
</tr>
<tr>
<td>IL16</td>
<td>interleukin 16</td>
<td>6.360028448</td>
</tr>
<tr>
<td>MAFA</td>
<td>v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog A</td>
<td>6.36852604</td>
</tr>
<tr>
<td>LOC101748985</td>
<td>uncharacterized LOC101748985</td>
<td>6.368545953</td>
</tr>
<tr>
<td>LOC100859314</td>
<td>uncharacterized LOC100859314</td>
<td>6.369494204</td>
</tr>
<tr>
<td>SLC7A13</td>
<td>solute carrier family 7 (anionic amino acid transporter), member 13</td>
<td>6.371733091</td>
</tr>
<tr>
<td>GPR65</td>
<td>G protein-coupled receptor 65</td>
<td>6.375655655</td>
</tr>
<tr>
<td>SLA2</td>
<td>Src-like-adaptor 2</td>
<td>6.376275522</td>
</tr>
<tr>
<td>GINS1</td>
<td>GINS complex subunit 1 (Psf1 homolog)</td>
<td>6.37723002</td>
</tr>
<tr>
<td>DTX1</td>
<td>deltex 1, E3 ubiquitin ligase</td>
<td>6.377698189</td>
</tr>
<tr>
<td>LOC101748295</td>
<td>uncharacterized LOC101748295</td>
<td>6.383013016</td>
</tr>
<tr>
<td>FUT4</td>
<td>fucosyltransferase 4 (alpha,1,3) fucosyltransferase, myeloid-specific</td>
<td>6.392585047</td>
</tr>
<tr>
<td>LOC428196</td>
<td>atrial natriuretic peptide receptor 2-like</td>
<td>6.394033895</td>
</tr>
<tr>
<td>LOC101752085</td>
<td>uncharacterized LOC101752085</td>
<td>6.3950628</td>
</tr>
<tr>
<td>LOC101749148</td>
<td>uncharacterized LOC101749148</td>
<td>6.39721467</td>
</tr>
<tr>
<td>LOC101749556</td>
<td>uncharacterized LOC101749556</td>
<td>6.401050159</td>
</tr>
<tr>
<td>LOC415913</td>
<td>high mobility group protein HMGI-C-like</td>
<td>6.40465923</td>
</tr>
<tr>
<td>LOC768635</td>
<td>uncharacterized LOC768635</td>
<td>6.408416105</td>
</tr>
<tr>
<td>LOC101747264</td>
<td>uncharacterized LOC101747264</td>
<td>6.415995221</td>
</tr>
<tr>
<td>LOC101748442</td>
<td>uncharacterized LOC101748442</td>
<td>6.421223299</td>
</tr>
<tr>
<td>LOC101750683</td>
<td>uncharacterized LOC101750683</td>
<td>6.425425735</td>
</tr>
<tr>
<td>LOC101751684</td>
<td>uncharacterized LOC101751684</td>
<td>6.426767933</td>
</tr>
<tr>
<td>LOC101748451</td>
<td>lysophosphatidic acid receptor 6-like</td>
<td>6.427392042</td>
</tr>
<tr>
<td>LOC415325</td>
<td>uncharacterized LOC415325</td>
<td>6.43009546</td>
</tr>
<tr>
<td>STOML3</td>
<td>stomatin (EPB72)-like 3</td>
<td>6.430452552</td>
</tr>
</tbody>
</table>

143
Table 17 continued

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Log2 Fold Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL18RAP</td>
<td>interleukin 18 receptor accessory protein</td>
<td>6.430571903</td>
</tr>
<tr>
<td>TCF21</td>
<td>transcription factor 21</td>
<td>6.431989519</td>
</tr>
<tr>
<td>CCR10</td>
<td>chemokine (C-C motif) receptor 10</td>
<td>6.44183754</td>
</tr>
<tr>
<td>PDC</td>
<td>phosducin</td>
<td>6.442777659</td>
</tr>
<tr>
<td>LOC428958</td>
<td>lysosomal acid lipase/cholesterol ester hydrolase-like</td>
<td>6.443517778</td>
</tr>
<tr>
<td>KCNA1</td>
<td>potassium voltage-gated channel, shaker-related subfamily, member 1 (episodic ataxia with myokymia)</td>
<td>6.44695305</td>
</tr>
<tr>
<td>CRTAM</td>
<td>cytotoxic and regulatory T cell molecule</td>
<td>6.449651052</td>
</tr>
<tr>
<td>KIAA0408</td>
<td>KIAA0408</td>
<td>6.451913862</td>
</tr>
<tr>
<td>CLRN3</td>
<td>clarin 3</td>
<td>6.455251484</td>
</tr>
<tr>
<td>LOC101751711</td>
<td>uncharacterized LOC101751711</td>
<td>6.455656002</td>
</tr>
<tr>
<td>LOC101747695</td>
<td>uncharacterized LOC101747695</td>
<td>6.455820365</td>
</tr>
<tr>
<td>ZAP70</td>
<td>zeta-chain (TCR) associated protein kinase 70kDa</td>
<td>6.457330071</td>
</tr>
<tr>
<td>LOC101749884</td>
<td>uncharacterized LOC101749884</td>
<td>6.464178138</td>
</tr>
<tr>
<td>LOC101749769</td>
<td>uncharacterized LOC101749769</td>
<td>6.465648026</td>
</tr>
<tr>
<td>ANO4</td>
<td>anoctamin 4</td>
<td>6.467574271</td>
</tr>
<tr>
<td>CTLA4</td>
<td>cytotoxic T-lymphocyte-associated protein 4</td>
<td>6.468772872</td>
</tr>
<tr>
<td>LCK</td>
<td>lymphocyte-specific protein tyrosine kinase</td>
<td>6.473187365</td>
</tr>
<tr>
<td>PIK3AP1</td>
<td>phosphoinositide-3-kinase adaptor protein 1</td>
<td>6.473479742</td>
</tr>
<tr>
<td>LOC101750386</td>
<td>uncharacterized LOC101750386</td>
<td>6.478971805</td>
</tr>
<tr>
<td>LOC769964</td>
<td>T-cell receptor alpha chain V region 2B4-like</td>
<td>6.484735019</td>
</tr>
<tr>
<td>LOC101749182</td>
<td>taste receptor type 2 member 40-like</td>
<td>6.485748821</td>
</tr>
<tr>
<td>LOC101751633</td>
<td>uncharacterized LOC101751633</td>
<td>6.494575617</td>
</tr>
<tr>
<td>SLBP</td>
<td>stem-loop binding protein</td>
<td>6.496435626</td>
</tr>
<tr>
<td>LOC101748116</td>
<td>uncharacterized LOC101748116</td>
<td>6.506049668</td>
</tr>
<tr>
<td>PTPRO</td>
<td>protein tyrosine phosphatase, receptor type, O</td>
<td>6.507229688</td>
</tr>
<tr>
<td>LOC101748672</td>
<td>uncharacterized LOC101748672</td>
<td>6.513964407</td>
</tr>
<tr>
<td>C20H20ORF195</td>
<td>chromosome 20 open reading frame, human C20orf195</td>
<td>6.517748114</td>
</tr>
<tr>
<td>LOC101747470</td>
<td>Ig kappa chain V-III region MOPC 63-like</td>
<td>6.520465751</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>Log2 Fold Change</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>NDST4</td>
<td>N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 4</td>
<td>6.524350775</td>
</tr>
<tr>
<td>LIN28A</td>
<td>lin-28 homolog A (C. elegans)</td>
<td>6.526225346</td>
</tr>
<tr>
<td>ASMT</td>
<td>acetylserotonin O-methyltransferase</td>
<td>6.532472817</td>
</tr>
<tr>
<td>ZC3H12D</td>
<td>zinc finger CCCH-type containing 12D</td>
<td>6.53286927</td>
</tr>
<tr>
<td>LOC769422</td>
<td>T-cell receptor alpha chain V region 2B4-like</td>
<td>6.533016613</td>
</tr>
<tr>
<td>CSTA</td>
<td>cystatin A (stefin A)</td>
<td>6.533739749</td>
</tr>
<tr>
<td>LECT1</td>
<td>leukocyte cell derived chemotaxin 1</td>
<td>6.544009874</td>
</tr>
<tr>
<td>LOC100859295</td>
<td>vascular non-inflammatory molecule 2-like</td>
<td>6.54689446</td>
</tr>
<tr>
<td>LOC101747938</td>
<td>uncharacterized LOC101747938</td>
<td>6.547048751</td>
</tr>
<tr>
<td>LOC101749332</td>
<td>uncharacterized LOC101749332</td>
<td>6.549207089</td>
</tr>
<tr>
<td>LOC101751851</td>
<td>uncharacterized LOC101751851</td>
<td>6.552745937</td>
</tr>
<tr>
<td>LOC101749663</td>
<td>uncharacterized LOC101749663</td>
<td>6.553053253</td>
</tr>
<tr>
<td>LOC101750869</td>
<td>uncharacterized LOC101750869</td>
<td>6.553360503</td>
</tr>
<tr>
<td>ITK</td>
<td>IL2-inducible T-cell kinase</td>
<td>6.55562219</td>
</tr>
<tr>
<td>LOC101749048</td>
<td>uncharacterized LOC101749048</td>
<td>6.555816155</td>
</tr>
<tr>
<td>LOC101752039</td>
<td>uncharacterized LOC101752039</td>
<td>6.558114539</td>
</tr>
<tr>
<td>NLRC3</td>
<td>NLR family, CARD domain containing 3</td>
<td>6.563218116</td>
</tr>
<tr>
<td>LOC101747687</td>
<td>uncharacterized LOC101747687</td>
<td>6.563463237</td>
</tr>
<tr>
<td>PINLYP</td>
<td>phospholipase A2 inhibitor and LY6/PLAUR domain containing</td>
<td>6.563559827</td>
</tr>
<tr>
<td>LOC101751864</td>
<td>uncharacterized LOC101751864</td>
<td>6.564987801</td>
</tr>
<tr>
<td>RUNX1</td>
<td>runt-related transcription factor 1</td>
<td>6.565169842</td>
</tr>
<tr>
<td>LOC101747708</td>
<td>uncharacterized LOC101747708</td>
<td>6.572889668</td>
</tr>
<tr>
<td>GPR141</td>
<td>G protein-coupled receptor 141</td>
<td>6.577487489</td>
</tr>
<tr>
<td>MLKL</td>
<td>mixed lineage kinase domain-like</td>
<td>6.582782971</td>
</tr>
<tr>
<td>LOC101750147</td>
<td>uncharacterized LOC101750147</td>
<td>6.588114949</td>
</tr>
<tr>
<td>K123</td>
<td>K123 protein</td>
<td>6.589558209</td>
</tr>
<tr>
<td>LOC101748127</td>
<td>uncharacterized LOC101748127</td>
<td>6.590362489</td>
</tr>
<tr>
<td>MADCAM1</td>
<td>mucosal vascular addressin cell adhesion molecule 1</td>
<td>6.600745038</td>
</tr>
<tr>
<td>LOC101749174</td>
<td>uncharacterized LOC101749174</td>
<td>6.600953587</td>
</tr>
<tr>
<td>IL7</td>
<td>interleukin 7</td>
<td>6.603827881</td>
</tr>
<tr>
<td>GRAP2</td>
<td>GRB2-related adaptor protein 2</td>
<td>6.605768305</td>
</tr>
<tr>
<td>P2RY10</td>
<td>purinergic receptor P2Y, G-protein coupled, 10</td>
<td>6.622124211</td>
</tr>
<tr>
<td>LOC769174</td>
<td>C-type lectin-like receptor variant</td>
<td>6.622131839</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Description</td>
<td>Z Score</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>KCNV2</td>
<td>potassium channel, subfamily V, member 2</td>
<td>6.624247146</td>
</tr>
<tr>
<td>LOC101750356</td>
<td>uncharacterized LOC101750356</td>
<td>6.630813152</td>
</tr>
<tr>
<td>CD7</td>
<td>CD7 molecule</td>
<td>6.637339547</td>
</tr>
<tr>
<td>LOC423822</td>
<td>heparan sulfate glucosamine 3-O-sulfotransferase 1-like</td>
<td>6.642701572</td>
</tr>
<tr>
<td>LOC101751980</td>
<td>uncharacterized LOC101751980</td>
<td>6.642990313</td>
</tr>
<tr>
<td>LOC101749880</td>
<td>uncharacterized LOC101749880</td>
<td>6.645239034</td>
</tr>
<tr>
<td>LOC101750447</td>
<td>uncharacterized LOC101750447</td>
<td>6.64587455</td>
</tr>
<tr>
<td>LOC101748839</td>
<td>uncharacterized LOC101748839</td>
<td>6.651611683</td>
</tr>
<tr>
<td>TRPC4</td>
<td>transient receptor potential cation channel, subfamily C, member 4</td>
<td>6.652038922</td>
</tr>
<tr>
<td>LOC101749841</td>
<td>uncharacterized LOC101749841</td>
<td>6.654492826</td>
</tr>
<tr>
<td>HAAO</td>
<td>3-hydroxyanthranilate 3,4-dioxygenase</td>
<td>6.655925544</td>
</tr>
<tr>
<td>LOC101752282</td>
<td>uncharacterized LOC101752282</td>
<td>6.65692534</td>
</tr>
<tr>
<td>LOC101750027</td>
<td>uncharacterized LOC101750027</td>
<td>6.659924558</td>
</tr>
<tr>
<td>MYH1C</td>
<td>myosin, heavy chain 1C, skeletal muscle (similar to human myosin, heavy chain 1, skeletal muscle, adult)</td>
<td>6.664953658</td>
</tr>
<tr>
<td>LOC419851</td>
<td>complement component 4 binding protein, alpha chain</td>
<td>6.666887568</td>
</tr>
<tr>
<td>LOC101749988</td>
<td>PHD finger protein 7-like</td>
<td>6.669593751</td>
</tr>
<tr>
<td>LOC101751062</td>
<td>uncharacterized LOC101751062</td>
<td>6.67030217</td>
</tr>
<tr>
<td>BCL2L14</td>
<td>BCL2-like 14 (apoptosis facilitator)</td>
<td>6.673850345</td>
</tr>
<tr>
<td>LOC101751236</td>
<td>uncharacterized LOC101751236</td>
<td>6.683415747</td>
</tr>
<tr>
<td>LOC101751909</td>
<td>uncharacterized LOC101751909</td>
<td>6.687200695</td>
</tr>
<tr>
<td>LOC770881</td>
<td>uncharacterized LOC770881</td>
<td>6.689807729</td>
</tr>
<tr>
<td>LOC425497</td>
<td>T-cell receptor alpha chain V region 2B4-like</td>
<td>6.690305171</td>
</tr>
<tr>
<td>LOC100857983</td>
<td>G-protein coupled receptor 35-like</td>
<td>6.694378443</td>
</tr>
<tr>
<td>LOC101748204</td>
<td>uncharacterized LOC101748204</td>
<td>6.703429446</td>
</tr>
<tr>
<td>LOC429682</td>
<td>GTPase IMAP family member 7-like</td>
<td>6.703902885</td>
</tr>
<tr>
<td>CD4</td>
<td>CD4 molecule</td>
<td>6.70800867</td>
</tr>
<tr>
<td>LOC770609</td>
<td>T-cell receptor alpha chain V region 2B4-like</td>
<td>6.712442968</td>
</tr>
<tr>
<td>LOC7700026</td>
<td>OX-2 membrane glycoprotein-like</td>
<td>6.717065172</td>
</tr>
<tr>
<td>LOC101752315</td>
<td>uncharacterized LOC101752315</td>
<td>6.718361626</td>
</tr>
<tr>
<td>LOC101748577</td>
<td>uncharacterized LOC101748577</td>
<td>6.730368236</td>
</tr>
<tr>
<td>DTHD1</td>
<td>death domain containing 1</td>
<td>6.73403214</td>
</tr>
<tr>
<td>LOC101748087</td>
<td>uncharacterized LOC101748087</td>
<td>6.73430317</td>
</tr>
<tr>
<td>LOC101749809</td>
<td>interleukin 9 receptor</td>
<td>6.740985816</td>
</tr>
<tr>
<td>LOC101750168</td>
<td>uncharacterized LOC101750168</td>
<td>6.75086249</td>
</tr>
<tr>
<td>LOC101751073</td>
<td>uncharacterized LOC101751073</td>
<td>6.762880293</td>
</tr>
<tr>
<td>LOC101750358</td>
<td>uncharacterized LOC101750358</td>
<td>6.763013132</td>
</tr>
<tr>
<td>TNR</td>
<td>tenascin R</td>
<td>6.77537251</td>
</tr>
<tr>
<td>SOX14</td>
<td>SRY (sex determining region Y)-box 14</td>
<td>6.775445674</td>
</tr>
<tr>
<td>LOC101748412</td>
<td>uncharacterized LOC101748412</td>
<td>6.776103988</td>
</tr>
<tr>
<td>LOC101749947</td>
<td>uncharacterized LOC101749947</td>
<td>6.777551222</td>
</tr>
<tr>
<td>PFN3</td>
<td>profilin 3</td>
<td>6.789468437</td>
</tr>
<tr>
<td>EFCAB3</td>
<td>EF-hand calcium binding domain 3</td>
<td>6.791683858</td>
</tr>
<tr>
<td>LOC101747588</td>
<td>ankyrin-3-like</td>
<td>6.791814071</td>
</tr>
<tr>
<td>LOC101749395</td>
<td>uncharacterized LOC101749395</td>
<td>6.79363582</td>
</tr>
<tr>
<td>LOC101750906</td>
<td>uncharacterized LOC101750906</td>
<td>6.795065583</td>
</tr>
<tr>
<td>VCAM1</td>
<td>vascular cell adhesion molecule 1</td>
<td>6.796064828</td>
</tr>
<tr>
<td>LOC101749173</td>
<td>uncharacterized LOC101749173</td>
<td>6.798120334</td>
</tr>
<tr>
<td>LOC101750703</td>
<td>uncharacterized LOC101750703</td>
<td>6.799734923</td>
</tr>
<tr>
<td>LOC101751831</td>
<td>uncharacterized LOC101751831</td>
<td>6.800382248</td>
</tr>
<tr>
<td>HOXA7</td>
<td>homeobox A7</td>
<td>6.800480294</td>
</tr>
<tr>
<td>LOC101748507</td>
<td>uncharacterized LOC101748507</td>
<td>6.814550424</td>
</tr>
<tr>
<td>TBX10</td>
<td>T-box 10</td>
<td>6.818262608</td>
</tr>
<tr>
<td>IL21R</td>
<td>interleukin 21 receptor</td>
<td>6.827037099</td>
</tr>
<tr>
<td>LOC101752219</td>
<td>sodium/potassium ATPase inhibitor SPAI-2-like</td>
<td>6.827803318</td>
</tr>
<tr>
<td>LOC101747430</td>
<td>uncharacterized LOC101747430</td>
<td>6.832636888</td>
</tr>
<tr>
<td>FANCI</td>
<td>Fanconi anemia, complementation group I</td>
<td>6.840654012</td>
</tr>
<tr>
<td>LOC101747685</td>
<td>uncharacterized LOC101747685</td>
<td>6.841218374</td>
</tr>
<tr>
<td>LOC101749158</td>
<td>uncharacterized LOC101749158</td>
<td>6.87502903</td>
</tr>
<tr>
<td>LOC101748814</td>
<td>uncharacterized LOC101748814</td>
<td>6.87621361</td>
</tr>
<tr>
<td>LOC101752136</td>
<td>uncharacterized LOC101752136</td>
<td>6.877498873</td>
</tr>
<tr>
<td>LOC101750729</td>
<td>uncharacterized LOC101750729</td>
<td>6.87825342</td>
</tr>
<tr>
<td>LOC101747585</td>
<td>uncharacterized LOC101747585</td>
<td>6.881542269</td>
</tr>
<tr>
<td>IRF4</td>
<td>interferon regulatory factor 4</td>
<td>6.882079974</td>
</tr>
<tr>
<td>LOC101749562</td>
<td>uncharacterized LOC101749562</td>
<td>6.889230152</td>
</tr>
<tr>
<td>LOC101750870</td>
<td>uncharacterized LOC101750870</td>
<td>6.90050458</td>
</tr>
<tr>
<td>LOC431235</td>
<td>chymotrypsinogen 2-like</td>
<td>6.909053017</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Description</td>
<td>Log2 Fold Change</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>LOC101751741</td>
<td>uncharacterized LOC101751741</td>
<td>6.909533115</td>
</tr>
<tr>
<td>LOC101748712</td>
<td>uncharacterized LOC101748712</td>
<td>6.912290583</td>
</tr>
<tr>
<td>LOC424523</td>
<td>epithelial chloride channel protein-like</td>
<td>6.913607512</td>
</tr>
<tr>
<td>TRBV6-5</td>
<td>T cell receptor beta variable 6-5</td>
<td>6.915300382</td>
</tr>
<tr>
<td>LOC100858686</td>
<td>uncharacterized LOC100858686</td>
<td>6.915759896</td>
</tr>
<tr>
<td>LOC101748032</td>
<td>Fc receptor-like protein 3-like</td>
<td>6.919731418</td>
</tr>
<tr>
<td>LOC101747899</td>
<td>uncharacterized LOC101747899</td>
<td>6.920448384</td>
</tr>
<tr>
<td>GFRA4</td>
<td>GDNF family receptor alpha 4</td>
<td>6.928204633</td>
</tr>
<tr>
<td>LOC101749595</td>
<td>uncharacterized LOC101749595</td>
<td>6.934398552</td>
</tr>
<tr>
<td>LOC101748740</td>
<td>uncharacterized LOC101748740</td>
<td>6.93598409</td>
</tr>
<tr>
<td>LOC101748503</td>
<td>uncharacterized LOC101748503</td>
<td>6.942916359</td>
</tr>
<tr>
<td>LOC101750099</td>
<td>uncharacterized LOC101750099</td>
<td>6.950818314</td>
</tr>
<tr>
<td>LOC101751934</td>
<td>uncharacterized LOC101751934</td>
<td>6.956056652</td>
</tr>
<tr>
<td>CD1C</td>
<td>CD1c molecule</td>
<td>6.971435127</td>
</tr>
<tr>
<td>GPR18</td>
<td>G protein-coupled receptor 18</td>
<td>6.972450163</td>
</tr>
<tr>
<td>PRLHR</td>
<td>prolactin releasing hormone receptor</td>
<td>6.975217457</td>
</tr>
<tr>
<td>NEIL2</td>
<td>nei-like DNA glycosylase 2</td>
<td>6.989139007</td>
</tr>
<tr>
<td>ST18</td>
<td>suppression of tumorigenicity 18 (breast carcinoma) (zinc finger protein)</td>
<td>6.989320269</td>
</tr>
<tr>
<td>LAT2</td>
<td>linker for activation of T cells family, member 2</td>
<td>6.990129605</td>
</tr>
<tr>
<td>TRAT1</td>
<td>T cell receptor associated transmembrane adaptor 1</td>
<td>6.990398599</td>
</tr>
<tr>
<td>LOC101748021</td>
<td>uncharacterized LOC101748021</td>
<td>6.992994967</td>
</tr>
<tr>
<td>LOC101749736</td>
<td>uncharacterized LOC101749736</td>
<td>6.993334704</td>
</tr>
<tr>
<td>LOC421070</td>
<td>uncharacterized LOC421070</td>
<td>7.003714662</td>
</tr>
<tr>
<td>OTP</td>
<td>orthopedia homeobox</td>
<td>7.004726094</td>
</tr>
<tr>
<td>CYBB</td>
<td>cytochrome b-245, beta polypeptide</td>
<td>7.006338226</td>
</tr>
<tr>
<td>LOC100858835</td>
<td>uncharacterized LOC100858835</td>
<td>7.017411217</td>
</tr>
<tr>
<td>LOC101749436</td>
<td>uncharacterized LOC101749436</td>
<td>7.020146573</td>
</tr>
<tr>
<td>CDC20B</td>
<td>cell division cycle 20B</td>
<td>7.026025399</td>
</tr>
<tr>
<td>LOC101749379</td>
<td>uncharacterized LOC101749379</td>
<td>7.029452886</td>
</tr>
<tr>
<td>LOC431250</td>
<td>G-protein coupled receptor 183-like</td>
<td>7.029974313</td>
</tr>
<tr>
<td>LOC416186</td>
<td>uncharacterized LOC416186</td>
<td>7.031108429</td>
</tr>
<tr>
<td>ANXA10</td>
<td>annexin A10</td>
<td>7.037821465</td>
</tr>
<tr>
<td>GPR82</td>
<td>G protein-coupled receptor 82</td>
<td>7.047616654</td>
</tr>
<tr>
<td>CDHR1</td>
<td>cadherin-related family member 1</td>
<td>7.052024561</td>
</tr>
<tr>
<td>RAG1</td>
<td>recombination activating gene 1</td>
<td>7.053763009</td>
</tr>
<tr>
<td>LOC101752262</td>
<td>uncharacterized LOC101752262</td>
<td>7.061128135</td>
</tr>
</tbody>
</table>
Table 17 continued

<table>
<thead>
<tr>
<th>Gene symbol</th>
<th>Description</th>
<th>Log2 Fold Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPR35</td>
<td>G protein-coupled receptor 35</td>
<td>7.070422261</td>
</tr>
<tr>
<td>LOC101750639</td>
<td>uncharacterized LOC101750639</td>
<td>7.074569658</td>
</tr>
<tr>
<td>LOC101751544</td>
<td>uncharacterized LOC101751544</td>
<td>7.078204191</td>
</tr>
<tr>
<td>LOC101748365</td>
<td>uncharacterized LOC101748365</td>
<td>7.086613947</td>
</tr>
<tr>
<td>LOC101750228</td>
<td>uncharacterized LOC101750228</td>
<td>7.097610797</td>
</tr>
<tr>
<td>DMRT2</td>
<td>doublesex and mab-3 related transcription factor 2</td>
<td>7.099189987</td>
</tr>
<tr>
<td>UBASH3A</td>
<td>ubiquitin associated and SH3 domain containing A</td>
<td>7.104803616</td>
</tr>
<tr>
<td>APOBEC4</td>
<td>apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 4 (putative)</td>
<td>7.118422024</td>
</tr>
<tr>
<td>LOC101747775</td>
<td>uncharacterized LOC101747775</td>
<td>7.122258568</td>
</tr>
<tr>
<td>LPI</td>
<td>lipase, member I</td>
<td>7.122799016</td>
</tr>
<tr>
<td>GRAP</td>
<td>GRB2-related adaptor protein</td>
<td>7.123274964</td>
</tr>
<tr>
<td>SPACA1</td>
<td>sperm acrosome associated 1</td>
<td>7.12742693</td>
</tr>
<tr>
<td>IL8L2</td>
<td>interleukin 8-like 2</td>
<td>7.130442014</td>
</tr>
<tr>
<td>LOC101749811</td>
<td>uncharacterized LOC101749811</td>
<td>7.130622041</td>
</tr>
<tr>
<td>CPLX4</td>
<td>complexin 4</td>
<td>7.148934105</td>
</tr>
<tr>
<td>LOC101750697</td>
<td>uncharacterized LOC101750697</td>
<td>7.149685047</td>
</tr>
<tr>
<td>TXK</td>
<td>TXK tyrosine kinase</td>
<td>7.151039511</td>
</tr>
<tr>
<td>LOC417142</td>
<td>uncharacterized LOC417142</td>
<td>7.15808966</td>
</tr>
<tr>
<td>LOC101750509</td>
<td>uncharacterized LOC101750509</td>
<td>7.170539334</td>
</tr>
<tr>
<td>LOC101749391</td>
<td>uncharacterized LOC101749391</td>
<td>7.173827019</td>
</tr>
<tr>
<td>ZNF750</td>
<td>zinc finger protein 750</td>
<td>7.174326515</td>
</tr>
<tr>
<td>LOC770890</td>
<td>lipase member M-like</td>
<td>7.179710084</td>
</tr>
<tr>
<td>LOC101751647</td>
<td>GTPase IMAP family member 7-like</td>
<td>7.181153935</td>
</tr>
<tr>
<td>GRM4</td>
<td>glutamate receptor, metabotropic 4</td>
<td>7.195122772</td>
</tr>
<tr>
<td>CSF3</td>
<td>colony stimulating factor 3 (granulocyte)</td>
<td>7.202515674</td>
</tr>
<tr>
<td>LOC101749834</td>
<td>orexin receptor type 2-like</td>
<td>7.204277685</td>
</tr>
<tr>
<td>NTRK1</td>
<td>neurotrophic tyrosine kinase, receptor, type 1</td>
<td>7.209843231</td>
</tr>
<tr>
<td>LOC416633</td>
<td>class II, major histocompatibility complex, transactivator-like</td>
<td>7.210160151</td>
</tr>
<tr>
<td>GRP</td>
<td>gastrin-releasing peptide</td>
<td>7.211573069</td>
</tr>
<tr>
<td>JAK3</td>
<td>Janus kinase 3</td>
<td>7.212387779</td>
</tr>
<tr>
<td>LOC101750198</td>
<td>uncharacterized LOC101750198</td>
<td>7.218393711</td>
</tr>
<tr>
<td>GALR3</td>
<td>galanin receptor 3</td>
<td>7.219458967</td>
</tr>
<tr>
<td>LOC101747776</td>
<td>uncharacterized LOC101747776</td>
<td>7.222166983</td>
</tr>
<tr>
<td>LOC428297</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>7.223519087</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>E-value</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>LOC101748449</td>
<td>uncharacterized LOC101748449</td>
<td>7.226990118</td>
</tr>
<tr>
<td>LOC101750845</td>
<td>uncharacterized LOC101750845</td>
<td>7.226990118</td>
</tr>
<tr>
<td>LOC101749084</td>
<td>uncharacterized LOC101749084</td>
<td>7.234086974</td>
</tr>
<tr>
<td>LOC101749939</td>
<td>uncharacterized LOC101749939</td>
<td>7.234451906</td>
</tr>
<tr>
<td>LOC101752102</td>
<td>uncharacterized LOC101752102</td>
<td>7.248117329</td>
</tr>
<tr>
<td>CECR6</td>
<td>cat eye syndrome chromosome region, candidate 6</td>
<td>7.250108889</td>
</tr>
<tr>
<td>LOC416927</td>
<td>carbonic anhydrase 15-like</td>
<td>7.253327501</td>
</tr>
<tr>
<td>LOC101749567</td>
<td>uncharacterized LOC101749567</td>
<td>7.259743264</td>
</tr>
<tr>
<td>LOC101749194</td>
<td>uncharacterized LOC101749194</td>
<td>7.260590275</td>
</tr>
<tr>
<td>SLC9A4</td>
<td>solute carrier family 9, subfamily A (NHE4, cation proton antiporter 4), member 4</td>
<td>7.260966565</td>
</tr>
<tr>
<td>LOC101750775</td>
<td>WAS/WASL-interacting protein family member 1-like</td>
<td>7.281049077</td>
</tr>
<tr>
<td>LOC101750706</td>
<td>uncharacterized LOC101750706</td>
<td>7.282254452</td>
</tr>
<tr>
<td>LOC771021</td>
<td>feather keratin 2-like</td>
<td>7.283458821</td>
</tr>
<tr>
<td>DOK3</td>
<td>docking protein 3</td>
<td>7.29126998</td>
</tr>
<tr>
<td>AGXT</td>
<td>alanine-glyoxylate aminotransferase</td>
<td>7.298933193</td>
</tr>
<tr>
<td>LAMP3</td>
<td>lysosomal-associated membrane protein 3</td>
<td>7.307874185</td>
</tr>
<tr>
<td>LOC101752170</td>
<td>uncharacterized LOC101752170</td>
<td>7.309801555</td>
</tr>
<tr>
<td>TOX</td>
<td>thymocyte selection-associated high mobility group box</td>
<td>7.313282863</td>
</tr>
<tr>
<td>PROKR2</td>
<td>prokineticin receptor 2</td>
<td>7.316376276</td>
</tr>
<tr>
<td>LOC101749836</td>
<td>uncharacterized LOC101749836</td>
<td>7.320123598</td>
</tr>
<tr>
<td>LOC101750590</td>
<td>uncharacterized LOC101750590</td>
<td>7.32867927</td>
</tr>
<tr>
<td>LOC101751134</td>
<td>uncharacterized LOC101751134</td>
<td>7.329303025</td>
</tr>
<tr>
<td>PGA</td>
<td>pepsinogen 5, group I (pepsinogen A)</td>
<td>7.333244817</td>
</tr>
<tr>
<td>LOC101751535</td>
<td>uncharacterized LOC101751535</td>
<td>7.341185214</td>
</tr>
<tr>
<td>CTRL</td>
<td>chymotrypsin-like</td>
<td>7.34323014</td>
</tr>
<tr>
<td>TBR1</td>
<td>T-box, brain, 1</td>
<td>7.373735202</td>
</tr>
<tr>
<td>MEOX1</td>
<td>mesenchyme homeobox 1</td>
<td>7.380513842</td>
</tr>
<tr>
<td>LOC101747759</td>
<td>uncharacterized LOC101747759</td>
<td>7.384308888</td>
</tr>
<tr>
<td>LOC768665</td>
<td>dual specificity protein phosphatase 22-A-like</td>
<td>7.391476057</td>
</tr>
<tr>
<td>S1PR4</td>
<td>sphingosine-1-phosphate receptor 4</td>
<td>7.392463885</td>
</tr>
<tr>
<td>LOC101751039</td>
<td>uncharacterized LOC101751039</td>
<td>7.394805642</td>
</tr>
<tr>
<td>TRAF3IP3</td>
<td>TRAF3 interacting protein 3</td>
<td>7.404951314</td>
</tr>
<tr>
<td>LOC101752047</td>
<td>uncharacterized LOC101752047</td>
<td>7.415065677</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Description & Function</td>
<td>Log2 Fold Change</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>LOC101748903</td>
<td>uncharacterized LOC101748903</td>
<td>7.421054947</td>
</tr>
<tr>
<td>LOC101750844</td>
<td>uncharacterized LOC101750844</td>
<td>7.429030064</td>
</tr>
<tr>
<td>LOC772381</td>
<td>uncharacterized LOC772381</td>
<td>7.429030064</td>
</tr>
<tr>
<td>LOC101748310</td>
<td>E3 ubiquitin-protein ligase ICP0-like</td>
<td>7.433126376</td>
</tr>
<tr>
<td>LOC101751137</td>
<td>uncharacterized LOC101751137</td>
<td>7.45318831</td>
</tr>
<tr>
<td>IFNG</td>
<td>interferon, gamma</td>
<td>7.453568001</td>
</tr>
<tr>
<td>LOC101749366</td>
<td>uncharacterized LOC101749366</td>
<td>7.467768557</td>
</tr>
<tr>
<td>LOC101748036</td>
<td>uncharacterized LOC101748036</td>
<td>7.471593934</td>
</tr>
<tr>
<td>LYPD2</td>
<td>LY6/PLAUR domain containing 2</td>
<td>7.473462236</td>
</tr>
<tr>
<td>WNT3A</td>
<td>wingless-type MMTV integration site family, member 3A</td>
<td>7.47481602</td>
</tr>
<tr>
<td>PLD4</td>
<td>phospholipase D family, member 4</td>
<td>7.482735678</td>
</tr>
<tr>
<td>LOC101750953</td>
<td>uncharacterized LOC101750953</td>
<td>7.483009577</td>
</tr>
<tr>
<td>LOC101752036</td>
<td>uncharacterized LOC101752036</td>
<td>7.487840034</td>
</tr>
<tr>
<td>LOC101747267</td>
<td>uncharacterized LOC101747267</td>
<td>7.48842874</td>
</tr>
<tr>
<td>GPR20</td>
<td>G protein-coupled receptor 20</td>
<td>7.490994681</td>
</tr>
<tr>
<td>LOC101750963</td>
<td>uncharacterized LOC101750963</td>
<td>7.507081043</td>
</tr>
<tr>
<td>LOC415472</td>
<td>uncharacterized LOC415472</td>
<td>7.511577007</td>
</tr>
<tr>
<td>GPR132</td>
<td>G protein-coupled receptor 132</td>
<td>7.535350954</td>
</tr>
<tr>
<td>LOC101749557</td>
<td>uncharacterized LOC101749557</td>
<td>7.538848521</td>
</tr>
<tr>
<td>LOC101748722</td>
<td>uncharacterized LOC101748722</td>
<td>7.54225805</td>
</tr>
<tr>
<td>LOC101748692</td>
<td>uncharacterized LOC101748692</td>
<td>7.546817308</td>
</tr>
<tr>
<td>SLAMF1</td>
<td>signaling lymphocytic activation molecule family member 1</td>
<td>7.559124063</td>
</tr>
<tr>
<td>LOC427180</td>
<td>E3 ubiquitin-protein ligase Topors-like</td>
<td>7.56285296</td>
</tr>
<tr>
<td>LOC769232</td>
<td>Ig heavy chain Mem5-like</td>
<td>7.563499187</td>
</tr>
<tr>
<td>LOC101751811</td>
<td>uncharacterized LOC101751811</td>
<td>7.577655412</td>
</tr>
<tr>
<td>LOC101749110</td>
<td>uncharacterized LOC101749110</td>
<td>7.579315938</td>
</tr>
<tr>
<td>AHR</td>
<td>aryl-hydrocarbon receptor repressor</td>
<td>7.584511588</td>
</tr>
<tr>
<td>HEPACAM2</td>
<td>HEPACAM family member 2</td>
<td>7.587665021</td>
</tr>
<tr>
<td>LOC101752189</td>
<td>PHD finger protein 7-like</td>
<td>7.587890003</td>
</tr>
<tr>
<td>LOC101749799</td>
<td>uncharacterized LOC101749799</td>
<td>7.622491152</td>
</tr>
<tr>
<td>CHRNG</td>
<td>cholinergic receptor, nicotinic, gamma (muscle)</td>
<td>7.625051263</td>
</tr>
<tr>
<td>SNTG2</td>
<td>syntrophin, gamma 2</td>
<td>7.62592797</td>
</tr>
<tr>
<td>XCR1</td>
<td>chemokine (C motif) receptor 1</td>
<td>7.627106523</td>
</tr>
<tr>
<td>LOC101749526</td>
<td>uncharacterized LOC101749526</td>
<td>7.631031505</td>
</tr>
<tr>
<td>IL7R</td>
<td>interleukin 7 receptor</td>
<td>7.635829046</td>
</tr>
<tr>
<td>LOC101750526</td>
<td>uncharacterized LOC101750526</td>
<td>7.645696879</td>
</tr>
<tr>
<td>Gene Name</td>
<td>Description</td>
<td>Log2 Fold Change</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>WDFY4</td>
<td>WDFY family member 4</td>
<td>7.652034413</td>
</tr>
<tr>
<td>LOC100857428</td>
<td>uncharacterized LOC100857428</td>
<td>7.655065551</td>
</tr>
<tr>
<td>LOC776309</td>
<td>Ig kappa chain V-III region PC 4050-like</td>
<td>7.656676477</td>
</tr>
<tr>
<td>SRCRB4D</td>
<td>scavenger receptor cysteine rich domain containing, group B (4 domains)</td>
<td>7.656710871</td>
</tr>
<tr>
<td>LOC101748500</td>
<td>uncharacterized LOC101748500</td>
<td>7.657068301</td>
</tr>
<tr>
<td>LOC101749241</td>
<td>heat shock transcription factor, X-linked-like</td>
<td>7.660851626</td>
</tr>
<tr>
<td>LOC101747621</td>
<td>uncharacterized LOC101747621</td>
<td>7.663415785</td>
</tr>
<tr>
<td>LOC101749881</td>
<td>uncharacterized LOC101749881</td>
<td>7.66370041</td>
</tr>
<tr>
<td>NMU</td>
<td>neuromedin U</td>
<td>7.665687555</td>
</tr>
<tr>
<td>VGT3</td>
<td>vitellogenin 3</td>
<td>7.679831933</td>
</tr>
<tr>
<td>LOC101748333</td>
<td>uncharacterized LOC101748333</td>
<td>7.687480667</td>
</tr>
<tr>
<td>LOC425854</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>7.697523004</td>
</tr>
<tr>
<td>ANKRD33</td>
<td>ankyrin repeat domain 3</td>
<td>7.706116084</td>
</tr>
<tr>
<td>LOC100858973</td>
<td>TRAF family member-associated NF-kappa-B activator-like</td>
<td>7.70867807</td>
</tr>
<tr>
<td>GMNC</td>
<td>geminin coiled-coil domain containing</td>
<td>7.724513853</td>
</tr>
<tr>
<td>LHX3</td>
<td>LIM homeobox 3</td>
<td>7.727920455</td>
</tr>
<tr>
<td>LOC101752088</td>
<td>uncharacterized LOC101752088</td>
<td>7.729416815</td>
</tr>
<tr>
<td>ANGPTL3</td>
<td>angiopoietin-like 3</td>
<td>7.732744049</td>
</tr>
<tr>
<td>LOC101749807</td>
<td>maestro heat-like repeat-containing protein family member 2A-like</td>
<td>7.740050563</td>
</tr>
<tr>
<td>LOC101750208</td>
<td>translation initiation factor IF-2-like</td>
<td>7.746715848</td>
</tr>
<tr>
<td>LOC101750758</td>
<td>uncharacterized LOC101750758</td>
<td>7.748239852</td>
</tr>
<tr>
<td>LOC101749251</td>
<td>uncharacterized LOC101749251</td>
<td>7.749266084</td>
</tr>
<tr>
<td>LOC101750181</td>
<td>uncharacterized LOC101750181</td>
<td>7.752213368</td>
</tr>
<tr>
<td>P2RY8</td>
<td>purinergic receptor P2Y, G-protein coupled, 8</td>
<td>7.756448709</td>
</tr>
<tr>
<td>LOC430902</td>
<td>T-cell receptor alpha chain V region CTL-L17-like</td>
<td>7.762421077</td>
</tr>
<tr>
<td>GRID2IP</td>
<td>glutamate receptor, ionotropic, delta 2 (Grid2) interacting protein</td>
<td>7.767721</td>
</tr>
<tr>
<td>IL8L1</td>
<td>interleukin 8-like</td>
<td>7.773597986</td>
</tr>
<tr>
<td>AVPR1B</td>
<td>arginine vasopressin receptor 1B</td>
<td>7.778537141</td>
</tr>
<tr>
<td>LOC101748575</td>
<td>uncharacterized LOC101748575</td>
<td>7.779785005</td>
</tr>
<tr>
<td>LOC101751521</td>
<td>uncharacterized LOC101751521</td>
<td>7.780900601</td>
</tr>
<tr>
<td>GDF9</td>
<td>growth differentiation factor 9</td>
<td>7.796429911</td>
</tr>
<tr>
<td>LOC100858088</td>
<td>growth/differentiation factor 9-like</td>
<td>7.797893824</td>
</tr>
<tr>
<td>CD72</td>
<td>CD72 molecule</td>
<td>7.802348635</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>LOC101747883</td>
<td>uncharacterized LOC101747883</td>
<td>7.8036791</td>
</tr>
<tr>
<td>LOC101751992</td>
<td>uncharacterized LOC101751992</td>
<td>7.807097275</td>
</tr>
<tr>
<td>LOC101751304</td>
<td>uncharacterized LOC101751304</td>
<td>7.807226104</td>
</tr>
<tr>
<td>LOC101750336</td>
<td>uncharacterized LOC101750336</td>
<td>7.817111573</td>
</tr>
<tr>
<td>TMEM156</td>
<td>transmembrane protein 156</td>
<td>7.825551954</td>
</tr>
<tr>
<td>NGFR</td>
<td>nerve growth factor receptor</td>
<td>7.828920235</td>
</tr>
<tr>
<td>LOC101750110</td>
<td>uncharacterized LOC101750110</td>
<td>7.838132394</td>
</tr>
<tr>
<td>LOC101751219</td>
<td>uncharacterized LOC101751219</td>
<td>7.847996907</td>
</tr>
<tr>
<td>OVALX</td>
<td>ovalbumin-related protein X (SERPINB14C)</td>
<td>7.849186139</td>
</tr>
<tr>
<td>CD6</td>
<td>CD6 molecule</td>
<td>7.850665411</td>
</tr>
<tr>
<td>LOC101751368</td>
<td>uncharacterized LOC101751368</td>
<td>7.853496704</td>
</tr>
<tr>
<td>LOC100857863</td>
<td>uncharacterized LOC100857863</td>
<td>7.862079387</td>
</tr>
<tr>
<td>TMEM81</td>
<td>transmembrane protein 81</td>
<td>7.863195113</td>
</tr>
<tr>
<td>LOC101749109</td>
<td>uncharacterized LOC101749109</td>
<td>7.871350841</td>
</tr>
<tr>
<td>LOC771474</td>
<td>envelope glycoprotein gp95-like</td>
<td>7.872951851</td>
</tr>
<tr>
<td>TNFRSF13B</td>
<td>tumor necrosis factor receptor superfamily, member 13B</td>
<td>7.887590728</td>
</tr>
<tr>
<td>HOXB1</td>
<td>homeobox B1</td>
<td>7.907551679</td>
</tr>
<tr>
<td>SLC34A2</td>
<td>solute carrier family 34 (type II sodium/phosphate contransporter), member 2</td>
<td>7.920412408</td>
</tr>
<tr>
<td>LOC101747421</td>
<td>uncharacterized LOC101747421</td>
<td>7.921483937</td>
</tr>
<tr>
<td>LOC101748113</td>
<td>zinc finger matrin-type protein 1-like</td>
<td>7.921602947</td>
</tr>
<tr>
<td>LOC101751898</td>
<td>uncharacterized LOC101751898</td>
<td>7.934988202</td>
</tr>
<tr>
<td>PCDH15</td>
<td>protocadherin-related 15</td>
<td>7.937168974</td>
</tr>
<tr>
<td>DNTT</td>
<td>DNA nucleotidylexotransferase</td>
<td>7.945859803</td>
</tr>
<tr>
<td>LOC101751591</td>
<td>uncharacterized LOC101751591</td>
<td>7.949418205</td>
</tr>
<tr>
<td>CCR6</td>
<td>chemokine (C-C motif) receptor 6</td>
<td>7.960611407</td>
</tr>
<tr>
<td>LOC101749408</td>
<td>uncharacterized LOC101749408</td>
<td>7.963011648</td>
</tr>
<tr>
<td>CRYGS</td>
<td>crystallin, gamma S</td>
<td>7.975274788</td>
</tr>
<tr>
<td>LOC428451</td>
<td>prostatic acid phosphatase-like</td>
<td>7.990217446</td>
</tr>
<tr>
<td>LOC771621</td>
<td>uncharacterized LOC771621</td>
<td>7.991011569</td>
</tr>
<tr>
<td>LOC101751801</td>
<td>uncharacterized LOC101751801</td>
<td>7.997348868</td>
</tr>
<tr>
<td>OMD</td>
<td>osteomodulin</td>
<td>7.998042199</td>
</tr>
<tr>
<td>LOC101751601</td>
<td>uncharacterized LOC101751601</td>
<td>7.998477605</td>
</tr>
<tr>
<td>LOC100857153</td>
<td>Ig kappa chain V-V regions-like</td>
<td>8.000549503</td>
</tr>
<tr>
<td>LOC101747663</td>
<td>uncharacterized LOC101747663</td>
<td>8.021812824</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Description</td>
<td>E-value</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>LOC101747754</td>
<td>uncharacterized LOC101747754</td>
<td>8.034028586</td>
</tr>
<tr>
<td>LOC101751041</td>
<td>uncharacterized LOC101751041</td>
<td>8.05039286</td>
</tr>
<tr>
<td>LOC101751168</td>
<td>tumor necrosis factor ligand superfamily member 13B-like</td>
<td>8.050705275</td>
</tr>
<tr>
<td>LOC101749355</td>
<td>PHD finger protein 7-like</td>
<td>8.052894047</td>
</tr>
<tr>
<td>FLT3</td>
<td>fms-related tyrosine kinase 3</td>
<td>8.05809462</td>
</tr>
<tr>
<td>LOC101747868</td>
<td>ly6/PLAUR domain-containing protein 2-like</td>
<td>8.060966074</td>
</tr>
<tr>
<td>WNT11B</td>
<td>wingless-type MMTV integration site family, member 11b</td>
<td>8.065981523</td>
</tr>
<tr>
<td>IKZF3</td>
<td>IKAROS family zinc finger 3 (Aiolos)</td>
<td>8.066174286</td>
</tr>
<tr>
<td>LOC100857250</td>
<td>uncharacterized LOC100857250</td>
<td>8.06705784</td>
</tr>
<tr>
<td>LOC101751523</td>
<td>uncharacterized LOC101751523</td>
<td>8.069261782</td>
</tr>
<tr>
<td>LOC101748775</td>
<td>probable G-protein coupled receptor 141-like</td>
<td>8.08041993</td>
</tr>
<tr>
<td>LOC101751549</td>
<td>uncharacterized LOC101751549</td>
<td>8.083433011</td>
</tr>
<tr>
<td>LOC101749904</td>
<td>inverted formin-2-like</td>
<td>8.092121967</td>
</tr>
<tr>
<td>LOC101751553</td>
<td>uncharacterized LOC101751553</td>
<td>8.098874287</td>
</tr>
<tr>
<td>ATOH7</td>
<td>atonal bHLH transcription factor 7</td>
<td>8.101030193</td>
</tr>
<tr>
<td>LOC417130</td>
<td>uncharacterized LOC417130</td>
<td>8.10774017</td>
</tr>
<tr>
<td>LOC419333</td>
<td>formin-like protein 16-like</td>
<td>8.123534373</td>
</tr>
<tr>
<td>LOC101749579</td>
<td>reticulon-4-like</td>
<td>8.135760581</td>
</tr>
<tr>
<td>OVST</td>
<td>ovostatin</td>
<td>8.163196797</td>
</tr>
<tr>
<td>LOC101749731</td>
<td>uncharacterized LOC101749731</td>
<td>8.175774077</td>
</tr>
<tr>
<td>MARCO</td>
<td>macrophage receptor with collagenous structure</td>
<td>8.18185633</td>
</tr>
<tr>
<td>VGLL2</td>
<td>vestigial-like family member 2</td>
<td>8.182295025</td>
</tr>
<tr>
<td>LOC100858551</td>
<td>homeobox protein Hox-A9-like</td>
<td>8.184131494</td>
</tr>
<tr>
<td>LOC100858870</td>
<td>homeobox protein Hox-A9-like</td>
<td>8.184131494</td>
</tr>
<tr>
<td>LOC424007</td>
<td>uncharacterized LOC424007</td>
<td>8.185271906</td>
</tr>
<tr>
<td>TMPRSS3</td>
<td>transmembrane protease, serine 3</td>
<td>8.194215127</td>
</tr>
<tr>
<td>LOC101750653</td>
<td>uncharacterized LOC101750653</td>
<td>8.199476046</td>
</tr>
<tr>
<td>CHUNK-1</td>
<td>CHUNK-1 protein</td>
<td>8.199525124</td>
</tr>
<tr>
<td>CD8B</td>
<td>CD8b molecule</td>
<td>8.207694517</td>
</tr>
<tr>
<td>LOC101749644</td>
<td>uncharacterized LOC101749644</td>
<td>8.209258394</td>
</tr>
<tr>
<td>FOXE1</td>
<td>forkhead box E1 (thyroid transcription factor 2)</td>
<td>8.211790976</td>
</tr>
<tr>
<td>LOC100858638</td>
<td>forkhead box protein N4-like</td>
<td>8.221732109</td>
</tr>
</tbody>
</table>
Table 17 continued

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Description</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC101748580</td>
<td>maestro heat-like repeat-containing protein family member 2A-like</td>
<td>8.222794903</td>
</tr>
<tr>
<td>LOC101748887</td>
<td>putative scavenger receptor cysteine-rich domain-containing protein LOC619207-like</td>
<td>8.228914867</td>
</tr>
<tr>
<td>LOC101749559</td>
<td>uncharacterized LOC101749559</td>
<td>8.229299509</td>
</tr>
<tr>
<td>PRSS2</td>
<td>protease, serine, 2 (trypsin 2)</td>
<td>8.234721647</td>
</tr>
<tr>
<td>LOC100859466</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>8.236205582</td>
</tr>
<tr>
<td>LOC428293</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>8.236205582</td>
</tr>
<tr>
<td>LOC101750667</td>
<td>uncharacterized LOC101750667</td>
<td>8.23644783</td>
</tr>
<tr>
<td>CST7</td>
<td>cystatin F (leukocystatin)</td>
<td>8.238928978</td>
</tr>
<tr>
<td>RORB</td>
<td>RAR-related orphan receptor B</td>
<td>8.243888012</td>
</tr>
<tr>
<td>LOC101747521</td>
<td>Ig-like V-type domain-containing protein FAM187A-like</td>
<td>8.253658422</td>
</tr>
<tr>
<td>LOC100857257</td>
<td>homeobox protein Hox-A5-like</td>
<td>8.260268631</td>
</tr>
<tr>
<td>EEF1A1</td>
<td>eukaryotic translation elongation factor 1 alpha 1</td>
<td>8.27335414</td>
</tr>
<tr>
<td>ADH6</td>
<td>alcohol dehydrogenase 6 (class V)</td>
<td>8.279424864</td>
</tr>
<tr>
<td>CHRNA9</td>
<td>cholinergic receptor, nicotinic, alpha 9 (neuronal)</td>
<td>8.28035321</td>
</tr>
<tr>
<td>TMEM179</td>
<td>transmembrane protein 179</td>
<td>8.300855871</td>
</tr>
<tr>
<td>CELA1</td>
<td>chymotrypsin-like elastase family, member 1</td>
<td>8.304693558</td>
</tr>
<tr>
<td>LOC101751179</td>
<td>uncharacterized LOC101751179</td>
<td>8.308435052</td>
</tr>
<tr>
<td>LOC101752303</td>
<td>uncharacterized LOC101752303</td>
<td>8.310067408</td>
</tr>
<tr>
<td>LOC101748846</td>
<td>uncharacterized LOC101748846</td>
<td>8.332797428</td>
</tr>
<tr>
<td>DLX3</td>
<td>distal-less homeobox 3</td>
<td>8.33860269</td>
</tr>
<tr>
<td>LOC101748299</td>
<td>uncharacterized LOC101748299</td>
<td>8.340562269</td>
</tr>
<tr>
<td>LOC101749509</td>
<td>uncharacterized LOC101749509</td>
<td>8.342119126</td>
</tr>
<tr>
<td>LOC101748029</td>
<td>uncharacterized LOC101748029</td>
<td>8.346247774</td>
</tr>
<tr>
<td>LOC101750479</td>
<td>uncharacterized LOC101750479</td>
<td>8.347532789</td>
</tr>
<tr>
<td>DHR57C</td>
<td>dehydrogenase/reductase (SDR family) member 7C</td>
<td>8.356980091</td>
</tr>
<tr>
<td>GJB3</td>
<td>gap junction protein, beta 3, 31kDa</td>
<td>8.357200085</td>
</tr>
<tr>
<td>FOXI3</td>
<td>forkhead box I3</td>
<td>8.360627646</td>
</tr>
<tr>
<td>LOC101747702</td>
<td>uncharacterized LOC101747702</td>
<td>8.362645218</td>
</tr>
<tr>
<td>LOC101751565</td>
<td>uncharacterized LOC101751565</td>
<td>8.370382273</td>
</tr>
<tr>
<td>LOC101751292</td>
<td>uncharacterized LOC101751292</td>
<td>8.376429311</td>
</tr>
<tr>
<td>LOC100857102</td>
<td>synapsin-3-like</td>
<td>8.380937195</td>
</tr>
<tr>
<td>LOC100858187</td>
<td>uncharacterized LOC100858187</td>
<td>8.39544845</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>SEMA3E</td>
<td>sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3E</td>
<td>8.408910385</td>
</tr>
<tr>
<td>P2RX1</td>
<td>purinergic receptor P2X, ligand-gated ion channel, 1</td>
<td>8.422655193</td>
</tr>
<tr>
<td>DRD2</td>
<td>dopamine receptor D2</td>
<td>8.435378568</td>
</tr>
<tr>
<td>HOXA5</td>
<td>homeobox A5</td>
<td>8.440521201</td>
</tr>
<tr>
<td>LOC421285</td>
<td>uncharacterized LOC421285</td>
<td>8.457421922</td>
</tr>
<tr>
<td>LOC776088</td>
<td>uncharacterized LOC776088</td>
<td>8.461765912</td>
</tr>
<tr>
<td>INPPL1</td>
<td>inositol polyphosphate phosphatase-like 1</td>
<td>8.466417784</td>
</tr>
<tr>
<td>C2ORF54</td>
<td>chromosome 9 open reading frame, human C2orf54</td>
<td>8.472162804</td>
</tr>
<tr>
<td>CYSLTR2</td>
<td>cysteinyl leukotriene receptor 2</td>
<td>8.496665122</td>
</tr>
<tr>
<td>LOC101747843</td>
<td>uncharacterized LOC101747843</td>
<td>8.506486109</td>
</tr>
<tr>
<td>OLFM4</td>
<td>olfactomedin 4</td>
<td>8.527789752</td>
</tr>
<tr>
<td>LOC776580</td>
<td>Ig kappa chain V-III region MOPC 63-like</td>
<td>8.542567608</td>
</tr>
<tr>
<td>TNFSF11</td>
<td>tumor necrosis factor (ligand) superfamily, member 11</td>
<td>8.545137287</td>
</tr>
<tr>
<td>LOC101751937</td>
<td>uncharacterized LOC101751937</td>
<td>8.573798644</td>
</tr>
<tr>
<td>LOC422928</td>
<td>uncharacterized LOC422928</td>
<td>8.575161033</td>
</tr>
<tr>
<td>LOC101748885</td>
<td>uncharacterized LOC101748885</td>
<td>8.588189924</td>
</tr>
<tr>
<td>STAT4</td>
<td>signal transducer and activator of transcription 4</td>
<td>8.598005233</td>
</tr>
<tr>
<td>LOC101751536</td>
<td>uncharacterized LOC101751536</td>
<td>8.599094587</td>
</tr>
<tr>
<td>TCP11</td>
<td>t-complex 11 homolog (mouse)</td>
<td>8.6013251</td>
</tr>
<tr>
<td>LOC101751103</td>
<td>uncharacterized LOC101751103</td>
<td>8.609880519</td>
</tr>
<tr>
<td>LOC396098</td>
<td>B6.1</td>
<td>8.612089019</td>
</tr>
<tr>
<td>LOC101750122</td>
<td>uncharacterized LOC101750122</td>
<td>8.650585073</td>
</tr>
<tr>
<td>LOC428299</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>8.650620972</td>
</tr>
<tr>
<td>LOC423786</td>
<td>lipase member M-like</td>
<td>8.653167527</td>
</tr>
<tr>
<td>LOC100859830</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>8.670372993</td>
</tr>
<tr>
<td>LOC101749032</td>
<td>uncharacterized LOC101749032</td>
<td>8.672460702</td>
</tr>
<tr>
<td>ZPBFP</td>
<td>zona pellucida binding protein</td>
<td>8.698242865</td>
</tr>
<tr>
<td>LRRC63</td>
<td>leucine rich repeat containing 63</td>
<td>8.704768239</td>
</tr>
<tr>
<td>LOC428298</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>8.709462966</td>
</tr>
<tr>
<td>GJA8</td>
<td>gap junction protein, alpha 8, 50kDa</td>
<td>8.715309971</td>
</tr>
<tr>
<td>LOC101748880</td>
<td>uncharacterized LOC101748880</td>
<td>8.720449488</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Description</td>
<td>Log2 Fold Change</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>LOC101750231</td>
<td>uncharacterized LOC101750231</td>
<td>8.724411531</td>
</tr>
<tr>
<td>LOC101751887</td>
<td>NF-kappa-B inhibitor delta-like</td>
<td>8.725640024</td>
</tr>
<tr>
<td>ENDRB2</td>
<td>endothelin receptor B subtype 2</td>
<td>8.735168132</td>
</tr>
<tr>
<td>NPBWR1</td>
<td>neuropeptides B/W receptor 1</td>
<td>8.74092756</td>
</tr>
<tr>
<td>LOC769175</td>
<td>uncharacterized LOC769175</td>
<td>8.760487102</td>
</tr>
<tr>
<td>CAPN14</td>
<td>calpain 14</td>
<td>8.763444773</td>
</tr>
<tr>
<td>LOC101750369</td>
<td>uncharacterized LOC101750369</td>
<td>8.768217414</td>
</tr>
<tr>
<td>LOC101749008</td>
<td>uncharacterized LOC101749008</td>
<td>8.789566248</td>
</tr>
<tr>
<td>NNX3-1</td>
<td>NK3 homeobox 1</td>
<td>8.814037648</td>
</tr>
<tr>
<td>CRYBA4</td>
<td>crystallin, beta A4</td>
<td>8.831782257</td>
</tr>
<tr>
<td>TAT</td>
<td>tyrosine aminotransferase</td>
<td>8.836618482</td>
</tr>
<tr>
<td>FOXN4</td>
<td>forkhead box N4</td>
<td>8.847871667</td>
</tr>
<tr>
<td>LOC422198</td>
<td>uncharacterized LOC422198</td>
<td>8.857794428</td>
</tr>
<tr>
<td>HOXA9</td>
<td>homeobox A9</td>
<td>8.865393045</td>
</tr>
<tr>
<td>ART7C</td>
<td>erythroblast NAD--arginine ADP-ribosyltransferase-like</td>
<td>8.883198089</td>
</tr>
<tr>
<td>LOC101750629</td>
<td>uncharacterized LOC101750629</td>
<td>8.915670277</td>
</tr>
<tr>
<td>LOC428383</td>
<td>leucine-rich repeat-containing protein 7-like</td>
<td>8.919429473</td>
</tr>
<tr>
<td>LOC101750023</td>
<td>uncharacterized LOC101750023</td>
<td>8.938579853</td>
</tr>
<tr>
<td>LOC101749432</td>
<td>uncharacterized LOC101749432</td>
<td>8.942983598</td>
</tr>
<tr>
<td>ASCL4</td>
<td>achaete-scute family bHLH transcription factor 4</td>
<td>8.944067792</td>
</tr>
<tr>
<td>LOC101752010</td>
<td>uncharacterized LOC101752010</td>
<td>8.946613905</td>
</tr>
<tr>
<td>LOC101747619</td>
<td>Fas apoptotic inhibitory molecule pseudogene</td>
<td>8.955475553</td>
</tr>
<tr>
<td>LOC101751182</td>
<td>uncharacterized LOC101751182</td>
<td>8.967024469</td>
</tr>
<tr>
<td>LOC101751569</td>
<td>formin-like protein 5-like</td>
<td>8.970652372</td>
</tr>
<tr>
<td>LOC101748860</td>
<td>basic proline-rich protein-like</td>
<td>8.971399852</td>
</tr>
<tr>
<td>HEP21</td>
<td>hen egg protein 21 kDa</td>
<td>8.97366867</td>
</tr>
<tr>
<td>LOC101748997</td>
<td>uncharacterized LOC101748997</td>
<td>8.974177598</td>
</tr>
<tr>
<td>CCR7</td>
<td>chemokine (C-C motif) receptor 7</td>
<td>8.991550217</td>
</tr>
<tr>
<td>LOC100857766</td>
<td>uncharacterized LOC100857766</td>
<td>8.998336561</td>
</tr>
<tr>
<td>LOC101747717</td>
<td>uncharacterized LOC101747717</td>
<td>9.003956586</td>
</tr>
<tr>
<td>LOC101747554</td>
<td>epiplakin-like</td>
<td>9.006017448</td>
</tr>
<tr>
<td>LOC101747982</td>
<td>uncharacterized LOC101747982</td>
<td>9.010248351</td>
</tr>
<tr>
<td>TPPP2</td>
<td>tubulin polymerization-promoting protein family member 2</td>
<td>9.01234519</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Description</td>
<td>Log2 Fold Change</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>LOC100859777</td>
<td>deleted in malignant brain tumors 1 protein-like</td>
<td>9.014829492</td>
</tr>
<tr>
<td>LOC101747995</td>
<td>lymphocyte antigen 6E-like</td>
<td>9.038672119</td>
</tr>
<tr>
<td>IL17F</td>
<td>interleukin 17F</td>
<td>9.081430177</td>
</tr>
<tr>
<td>LOC101747889</td>
<td>uncharacterized LOC101747889</td>
<td>9.11109582</td>
</tr>
<tr>
<td>TAS2R7</td>
<td>taste receptor, type 2, member 7</td>
<td>9.135042286</td>
</tr>
<tr>
<td>LOC418836</td>
<td>mannose receptor, C type 2-like</td>
<td>9.137477908</td>
</tr>
<tr>
<td>LOC101752332</td>
<td>uncharacterized LOC101752332</td>
<td>9.139551352</td>
</tr>
<tr>
<td>LOC101751703</td>
<td>uncharacterized LOC101751703</td>
<td>9.16302064</td>
</tr>
<tr>
<td>LOC428291</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>9.166790751</td>
</tr>
<tr>
<td>LOC101750610</td>
<td>uncharacterized LOC101750610</td>
<td>9.16711703</td>
</tr>
<tr>
<td>TFAP2E</td>
<td>transcription factor AP-2 epsilon (activating enhancer binding protein 2 epsilon)</td>
<td>9.172527519</td>
</tr>
<tr>
<td>LOC101748133</td>
<td>vegetative cell wall protein gp1-like</td>
<td>9.181922483</td>
</tr>
<tr>
<td>CHRNA2</td>
<td>cholinergic receptor, nicotinic, alpha 2 (neuronal)</td>
<td>9.193525361</td>
</tr>
<tr>
<td>LOC429206</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>9.199009731</td>
</tr>
<tr>
<td>PLA2G1B</td>
<td>phospholipase A2, group IB (pancreas)</td>
<td>9.200825059</td>
</tr>
<tr>
<td>ERP27</td>
<td>endoplasmic reticulum protein 27</td>
<td>9.200849575</td>
</tr>
<tr>
<td>GUCA1C</td>
<td>guanylate cyclase activator 1C</td>
<td>9.214537694</td>
</tr>
<tr>
<td>LOC101750038</td>
<td>uncharacterized LOC101750038</td>
<td>9.232996451</td>
</tr>
<tr>
<td>IGJ</td>
<td>immunoglobulin J polypeptide, linker protein for immunoglobulin alpha and mu polypeptides</td>
<td>9.24865803</td>
</tr>
<tr>
<td>LOC101750389</td>
<td>uncharacterized LOC101750389</td>
<td>9.249350524</td>
</tr>
<tr>
<td>LOC422924</td>
<td>T-cell surface glycoprotein CD8 alpha chain-like</td>
<td>9.25473889</td>
</tr>
<tr>
<td>LOC101752033</td>
<td>uncharacterized LOC101752033</td>
<td>9.256373828</td>
</tr>
<tr>
<td>IL2</td>
<td>interleukin 2</td>
<td>9.26080195</td>
</tr>
<tr>
<td>CCL19</td>
<td>chemokine (C-C motif) ligand 19</td>
<td>9.265558212</td>
</tr>
<tr>
<td>EFCAB11</td>
<td>EF-hand calcium binding domain 11</td>
<td>9.272396509</td>
</tr>
<tr>
<td>LOC770639</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>9.275356315</td>
</tr>
<tr>
<td>LOC100858434</td>
<td>homeobox protein Hox-A6-like</td>
<td>9.277682605</td>
</tr>
<tr>
<td>LOC101751502</td>
<td>uncharacterized LOC101751502</td>
<td>9.277705849</td>
</tr>
<tr>
<td>LOC101751268</td>
<td>uncharacterized LOC101751268</td>
<td>9.285725864</td>
</tr>
<tr>
<td>LOC101751905</td>
<td>uncharacterized LOC101751905</td>
<td>9.293954382</td>
</tr>
<tr>
<td>LOC770090</td>
<td>butyrophilin subfamily 1 member A1-like</td>
<td>9.31104439</td>
</tr>
<tr>
<td>LOC101751856</td>
<td>uncharacterized LOC101751856</td>
<td>9.320958458</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Description</td>
<td>Log2 Ratio</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>LOC101749420</td>
<td>uncharacterized LOC101749420</td>
<td>9.332461795</td>
</tr>
<tr>
<td>LOC101748004</td>
<td>uncharacterized LOC101748004</td>
<td>9.332909288</td>
</tr>
<tr>
<td>CD79B</td>
<td>CD79b molecule, immunoglobulin-associated beta</td>
<td>9.340838756</td>
</tr>
<tr>
<td>LOC101751432</td>
<td>uncharacterized LOC101751432</td>
<td>9.360371744</td>
</tr>
<tr>
<td>BTLA</td>
<td>B and T lymphocyte associated</td>
<td>9.373948118</td>
</tr>
<tr>
<td>THEMIS</td>
<td>thymocyte selection associated</td>
<td>9.383593694</td>
</tr>
<tr>
<td>LOC101748953</td>
<td>uncharacterized LOC101748953</td>
<td>9.383617901</td>
</tr>
<tr>
<td>LOC101751907</td>
<td>PDZ domain-containing RING finger protein 4-like</td>
<td>9.385085854</td>
</tr>
<tr>
<td>LOC101749416</td>
<td>uncharacterized LOC101749416</td>
<td>9.401668861</td>
</tr>
<tr>
<td>S100A9</td>
<td>S100 calcium binding protein A9</td>
<td>9.420062439</td>
</tr>
<tr>
<td>LOC101752292</td>
<td>uncharacterized LOC101752292</td>
<td>9.432844715</td>
</tr>
<tr>
<td>LOC101748527</td>
<td>cytokine-dependent hematopoietic cell linker-like</td>
<td>9.454299294</td>
</tr>
<tr>
<td>IL2RA</td>
<td>interleukin 2 receptor, alpha</td>
<td>9.460293906</td>
</tr>
<tr>
<td>COL22A1</td>
<td>collagen, type XXII, alpha 1</td>
<td>9.466782606</td>
</tr>
<tr>
<td>HOXC6</td>
<td>homeobox C6</td>
<td>9.488101222</td>
</tr>
<tr>
<td>ASIP</td>
<td>agouti signaling protein</td>
<td>9.501319712</td>
</tr>
<tr>
<td>WFDC2</td>
<td>WAP four-disulfide core domain 2</td>
<td>9.507774823</td>
</tr>
<tr>
<td>LRRC18</td>
<td>leucine rich repeat containing 18</td>
<td>9.544095078</td>
</tr>
<tr>
<td>GPR55</td>
<td>G protein-coupled receptor 55</td>
<td>9.545651558</td>
</tr>
<tr>
<td>RGS21</td>
<td>regulator of G-protein signaling 21</td>
<td>9.548089781</td>
</tr>
<tr>
<td>LOC101749155</td>
<td>uncharacterized LOC101749155</td>
<td>9.56810813</td>
</tr>
<tr>
<td>MLXIPL</td>
<td>MLX interacting protein-like</td>
<td>9.575766127</td>
</tr>
<tr>
<td>LOC101751143</td>
<td>uncharacterized LOC101751143</td>
<td>9.577447711</td>
</tr>
<tr>
<td>LOC101748861</td>
<td>uncharacterized LOC101748861</td>
<td>9.586652169</td>
</tr>
<tr>
<td>SLC5A10</td>
<td>solute carrier family 5 (sodium/sugar cotransporter), member 10</td>
<td>9.5987225</td>
</tr>
<tr>
<td>DMBT1L</td>
<td>deleted in malignant brain tumors 1 protein-like</td>
<td>9.60523874</td>
</tr>
<tr>
<td>NMS</td>
<td>neuromedin S</td>
<td>9.642900088</td>
</tr>
<tr>
<td>LOC101747365</td>
<td>uncharacterized LOC101747365</td>
<td>9.653185445</td>
</tr>
<tr>
<td>LOC101751969</td>
<td>uncharacterized LOC101751969</td>
<td>9.661778098</td>
</tr>
<tr>
<td>CNR2</td>
<td>cannabinoid receptor 2 (macrophage)</td>
<td>9.676344992</td>
</tr>
<tr>
<td>LOC421856</td>
<td>uncharacterized LOC421856</td>
<td>9.676418558</td>
</tr>
<tr>
<td>POU2AF1</td>
<td>POU class 2 associating factor 1</td>
<td>9.691388183</td>
</tr>
<tr>
<td>LOC101747459</td>
<td>uncharacterized LOC101747459</td>
<td>9.701687664</td>
</tr>
<tr>
<td>LOC101752025</td>
<td>uncharacterized LOC101752025</td>
<td>9.727612246</td>
</tr>
<tr>
<td>Gene Name</td>
<td>Description</td>
<td>Log2 Fold Change</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>INHA</td>
<td>inhibin, alpha</td>
<td>9.758906084</td>
</tr>
<tr>
<td>LOC100858427</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>9.767191303</td>
</tr>
<tr>
<td>ZPB2</td>
<td>zona pellucida binding protein 2</td>
<td>9.76788649</td>
</tr>
<tr>
<td>LOC101748499</td>
<td>uncharacterized LOC101748499</td>
<td>9.780490556</td>
</tr>
<tr>
<td>LOC101750878</td>
<td>uncharacterized LOC101750878</td>
<td>9.8008999</td>
</tr>
<tr>
<td>PLLP</td>
<td>plasmolipin</td>
<td>9.808175865</td>
</tr>
<tr>
<td>LOC101751461</td>
<td>uncharacterized LOC101751461</td>
<td>9.812273589</td>
</tr>
<tr>
<td>LOC101749817</td>
<td>uncharacterized LOC101749817</td>
<td>9.839581737</td>
</tr>
<tr>
<td>CD300LF</td>
<td>CD300 molecule-like family member f</td>
<td>9.839739187</td>
</tr>
<tr>
<td>FK21</td>
<td>feather keratin 21</td>
<td>9.862420395</td>
</tr>
<tr>
<td>LOC100857191</td>
<td>c-C motif chemokine 26-like</td>
<td>9.898321873</td>
</tr>
<tr>
<td>LOC101748993</td>
<td>uncharacterized LOC101748993</td>
<td>9.932465762</td>
</tr>
<tr>
<td>LOC101749213</td>
<td>uncharacterized LOC101749213</td>
<td>9.934118385</td>
</tr>
<tr>
<td>LOC100859340</td>
<td>butyrophilin subfamily 1 member A1-like</td>
<td>9.949855885</td>
</tr>
<tr>
<td>CRYBB2</td>
<td>crystallin, beta B2</td>
<td>9.95205686</td>
</tr>
<tr>
<td>AADACL2</td>
<td>arylacetamide deacetylase-like 2</td>
<td>9.958262697</td>
</tr>
<tr>
<td>LOC769486</td>
<td>scale keratin-like</td>
<td>9.959118083</td>
</tr>
<tr>
<td>LYZ</td>
<td>lysozyme (renal amyloidosis)</td>
<td>9.980465548</td>
</tr>
<tr>
<td>NR5A1</td>
<td>nuclear receptor subfamily 5, group A, member 1</td>
<td>9.985851261</td>
</tr>
<tr>
<td>HCRT</td>
<td>hypocretin (orexin) neuropeptide precursor</td>
<td>10.00795231</td>
</tr>
<tr>
<td>CHRNA10</td>
<td>cholinergic receptor, nicotinic, alpha 10 (neuronal)</td>
<td>10.01820018</td>
</tr>
<tr>
<td>LOC426825</td>
<td>sulfotransferase family cytosolic 2B member 1-like</td>
<td>10.01936833</td>
</tr>
<tr>
<td>LOC101750036</td>
<td>uncharacterized LOC101750036</td>
<td>10.02879014</td>
</tr>
<tr>
<td>LOC101752250</td>
<td>cell surface glycoprotein CD200 receptor 1-A-like</td>
<td>10.03753323</td>
</tr>
<tr>
<td>GCNT2</td>
<td>glucosaminyl (N-acetyl) transferase 2, I-branched enzyme (I blood group)</td>
<td>10.11264801</td>
</tr>
<tr>
<td>LOC101752166</td>
<td>uncharacterized LOC101752166</td>
<td>10.16835873</td>
</tr>
<tr>
<td>LOC101748250</td>
<td>uncharacterized LOC101748250</td>
<td>10.17602351</td>
</tr>
<tr>
<td>LOC769852</td>
<td>histone H3.2-like</td>
<td>10.19329126</td>
</tr>
<tr>
<td>LOC101751559</td>
<td>uncharacterized LOC101751559</td>
<td>10.21493833</td>
</tr>
<tr>
<td>LOC101749522</td>
<td>uncharacterized LOC101749522</td>
<td>10.25258265</td>
</tr>
<tr>
<td>VSIG1</td>
<td>V-set and immunoglobulin domain containing 1</td>
<td>10.26053147</td>
</tr>
<tr>
<td>LOC101750295</td>
<td>uncharacterized LOC101750295</td>
<td>10.26080195</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Description</td>
<td>ORF1 Location</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>LOC101751075</td>
<td>uncharacterized LOC101751075</td>
<td>10.27213986</td>
</tr>
<tr>
<td>LOC770684</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>10.3062554</td>
</tr>
<tr>
<td>LOC776577</td>
<td>T-cell receptor gamma chain V region V108A-like</td>
<td>10.32937031</td>
</tr>
<tr>
<td>LOC101750197</td>
<td>uncharacterized LOC101750197</td>
<td>10.34808632</td>
</tr>
<tr>
<td>LOC428479</td>
<td>N-acetyllactosaminide beta-1,6-N-acetylglucosaminyl-transferase-like</td>
<td>10.36078126</td>
</tr>
<tr>
<td>LOC768817</td>
<td>trypsin I-P1-like</td>
<td>10.37858748</td>
</tr>
<tr>
<td>EDAR</td>
<td>ectodysplasin A receptor</td>
<td>10.41225227</td>
</tr>
<tr>
<td>LOC776570</td>
<td>T-cell receptor gamma chain V region V108A-like</td>
<td>10.42802511</td>
</tr>
<tr>
<td>LOC101749818</td>
<td>uncharacterized LOC101749818</td>
<td>10.43226002</td>
</tr>
<tr>
<td>LOC101748686</td>
<td>uncharacterized LOC101748686</td>
<td>10.46408622</td>
</tr>
<tr>
<td>LOC769841</td>
<td>sulfotransferase family cytosolic 2B member 1-like</td>
<td>10.48273738</td>
</tr>
<tr>
<td>HOXA6</td>
<td>homeobox A6</td>
<td>10.4953354</td>
</tr>
<tr>
<td>SH2D5</td>
<td>SH2 domain containing 5</td>
<td>10.54287034</td>
</tr>
<tr>
<td>LOC101747596</td>
<td>uncharacterized LOC101747596</td>
<td>10.54601662</td>
</tr>
<tr>
<td>LOC101748252</td>
<td>myelin-oligodendrocyte glycoprotein-like</td>
<td>10.58210434</td>
</tr>
<tr>
<td>POU2F3</td>
<td>POU class 2 homeobox 3</td>
<td>10.59351251</td>
</tr>
<tr>
<td>LOC101747746</td>
<td>uncharacterized LOC101747746</td>
<td>10.61904613</td>
</tr>
<tr>
<td>LOC101751752</td>
<td>antigen WC1.1-like</td>
<td>10.62182295</td>
</tr>
<tr>
<td>LOC101749612</td>
<td>T-cell receptor alpha chain V region RL-5-like</td>
<td>10.6333858</td>
</tr>
<tr>
<td>LOC101747565</td>
<td>uncharacterized LOC101747565</td>
<td>10.66510493</td>
</tr>
<tr>
<td>LDB3</td>
<td>LIM domain binding 3</td>
<td>10.67116066</td>
</tr>
<tr>
<td>LOC100858127</td>
<td>lipoma HMGIC fusion partner-like 3 protein-like</td>
<td>10.69901713</td>
</tr>
<tr>
<td>LOC101752329</td>
<td>uncharacterized LOC101752329</td>
<td>10.70598654</td>
</tr>
<tr>
<td>BARX1</td>
<td>BARX homeobox 1</td>
<td>10.71263877</td>
</tr>
<tr>
<td>PTPRQ</td>
<td>protein tyrosine phosphatase, receptor type, Q</td>
<td>10.75916087</td>
</tr>
<tr>
<td>GPR15</td>
<td>G protein-coupled receptor 15</td>
<td>10.7600213</td>
</tr>
<tr>
<td>LOC422654</td>
<td>chemokine (C-X-C motif) ligand 1-like</td>
<td>10.78406223</td>
</tr>
<tr>
<td>LOC101751452</td>
<td>uncharacterized LOC101751452</td>
<td>10.8326132</td>
</tr>
<tr>
<td>LOC770434</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>10.84295527</td>
</tr>
<tr>
<td>LOC101749386</td>
<td>uncharacterized LOC101749386</td>
<td>10.88024931</td>
</tr>
<tr>
<td>LOC101747645</td>
<td>translation initiation factor IF-2-like</td>
<td>10.89989311</td>
</tr>
<tr>
<td>LOC101750797</td>
<td>immunoglobulin omega chain-like</td>
<td>10.93790342</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Description</td>
<td>Expression</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>LOC101749761</td>
<td>uncharacterized LOC101749761</td>
<td>11.01316213</td>
</tr>
<tr>
<td>LIN28B</td>
<td>lin-28 homolog B (C. elegans)</td>
<td>11.02858297</td>
</tr>
<tr>
<td>LOC101749259</td>
<td>immunoglobulin omega chain-like</td>
<td>11.04050892</td>
</tr>
<tr>
<td>LOC427060</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>11.05230992</td>
</tr>
<tr>
<td>ACRBP</td>
<td>acrosin binding protein</td>
<td>11.07958478</td>
</tr>
<tr>
<td>LOC101748180</td>
<td>uncharacterized LOC101748180</td>
<td>11.08421046</td>
</tr>
<tr>
<td>PHOX2B</td>
<td>paired-like homeobox 2b</td>
<td>11.11649342</td>
</tr>
<tr>
<td>TGM4</td>
<td>transglutaminase 4 (prostate)</td>
<td>11.12241769</td>
</tr>
<tr>
<td>LOC101751426</td>
<td>uncharacterized LOC101751426</td>
<td>11.12419241</td>
</tr>
<tr>
<td>LOC101751813</td>
<td>uncharacterized LOC101751813</td>
<td>11.16169247</td>
</tr>
<tr>
<td>LOC100858480</td>
<td>homeobox protein Hox-A3-like</td>
<td>11.19173166</td>
</tr>
<tr>
<td>NEUROD6</td>
<td>neuronal differentiation 6</td>
<td>11.21771541</td>
</tr>
<tr>
<td>LOC776588</td>
<td>Ig kappa chain V-III region PC 4050-like</td>
<td>11.22160525</td>
</tr>
<tr>
<td>CCR9</td>
<td>chemokine (C-C motif) receptor 9</td>
<td>11.24970606</td>
</tr>
<tr>
<td>DKK1</td>
<td>dickkopf WNT signaling pathway inhibitor 1</td>
<td>11.31301905</td>
</tr>
<tr>
<td>LOC101750070</td>
<td>uncharacterized LOC101750070</td>
<td>11.37649986</td>
</tr>
<tr>
<td>LOC101748908</td>
<td>T-cell receptor alpha chain V region RL-5-like</td>
<td>11.38957757</td>
</tr>
<tr>
<td>LOC770295</td>
<td>uncharacterized LOC770295</td>
<td>11.43373148</td>
</tr>
<tr>
<td>LOC101750872</td>
<td>Ig heavy chain V region C3-like</td>
<td>11.47209679</td>
</tr>
<tr>
<td>LOC100857546</td>
<td>uncharacterized LOC100857546</td>
<td>11.47368039</td>
</tr>
<tr>
<td>TNFSF8</td>
<td>tumor necrosis factor (ligand) superfamily, member 8</td>
<td>11.53626179</td>
</tr>
<tr>
<td>LOC101749641</td>
<td>uncharacterized LOC101749641</td>
<td>11.53651436</td>
</tr>
<tr>
<td>PTCRA</td>
<td>pre T-cell antigen receptor alpha</td>
<td>11.5432397</td>
</tr>
<tr>
<td>LOC101752131</td>
<td>lymphocyte antigen 6D-like</td>
<td>11.5959381</td>
</tr>
<tr>
<td>LOC101751781</td>
<td>peroxisome proliferator-activated receptor gamma coactivator-related protein 1-like</td>
<td>11.61373883</td>
</tr>
<tr>
<td>SCRT2</td>
<td>scratch family zinc finger 2</td>
<td>11.63287255</td>
</tr>
<tr>
<td>MIR1555</td>
<td>microRNA mir-1555</td>
<td>11.69370038</td>
</tr>
<tr>
<td>PASK</td>
<td>PAS domain containing serine/threonine kinase</td>
<td>11.70317685</td>
</tr>
<tr>
<td>LOC101749621</td>
<td>uncharacterized LOC101749621</td>
<td>11.70675501</td>
</tr>
<tr>
<td>LOC769638</td>
<td>T-cell receptor alpha chain V region CTL-F3-like</td>
<td>11.75948044</td>
</tr>
<tr>
<td>HOXB6</td>
<td>homeobox B6</td>
<td>11.76144319</td>
</tr>
<tr>
<td>LOC101747296</td>
<td>uncharacterized LOC101747296</td>
<td>11.79176931</td>
</tr>
<tr>
<td>LOC768589</td>
<td>baculoviral IAP repeat-containing protein 5.1-like</td>
<td>11.80846148</td>
</tr>
<tr>
<td>LOC101751636</td>
<td>uncharacterized LOC101751636</td>
<td>11.8159076</td>
</tr>
<tr>
<td>LOC776593</td>
<td>T-cell receptor gamma chain V region PT-gamma-1/2-like</td>
<td>11.82748959</td>
</tr>
<tr>
<td>TOM111</td>
<td>target of myb1 like 1 membrane trafficking protein</td>
<td>11.8454234</td>
</tr>
<tr>
<td>LOC101750569</td>
<td>uncharacterized LOC101750569</td>
<td>11.89428726</td>
</tr>
<tr>
<td>LOC101749518</td>
<td>uncharacterized LOC101749518</td>
<td>11.90041401</td>
</tr>
<tr>
<td>DCLRE1B</td>
<td>DNA cross-link repair 1B</td>
<td>11.96327181</td>
</tr>
<tr>
<td>LOC769926</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>11.9840161</td>
</tr>
<tr>
<td>LOC101748234</td>
<td>uncharacterized LOC101748234</td>
<td>12.01447037</td>
</tr>
<tr>
<td>MIRLET7B</td>
<td>microRNA let-7b</td>
<td>12.03164607</td>
</tr>
<tr>
<td>LIX1</td>
<td>limb and CNS expressed 1</td>
<td>12.03236212</td>
</tr>
<tr>
<td>LOC101750937</td>
<td>immunoglobulin iota chain-like</td>
<td>12.03236212</td>
</tr>
<tr>
<td>LOC100857337</td>
<td>T-cell surface glycoprotein CD8 alpha chain-like</td>
<td>12.12141355</td>
</tr>
<tr>
<td>LOC101751584</td>
<td>uncharacterized LOC101751584</td>
<td>12.16438329</td>
</tr>
<tr>
<td>CDH23</td>
<td>cadherin-related 23</td>
<td>12.17769049</td>
</tr>
<tr>
<td>CCNE2</td>
<td>cyclin E2</td>
<td>12.22312687</td>
</tr>
<tr>
<td>LOC100859843</td>
<td>Ig heavy chain V region C3-like</td>
<td>12.22846699</td>
</tr>
<tr>
<td>HMGA2</td>
<td>high mobility group AT-hook 2</td>
<td>12.24270075</td>
</tr>
<tr>
<td>RRNAD1</td>
<td>ribosomal RNA adenine dimethylase domain containing 1</td>
<td>12.27368498</td>
</tr>
<tr>
<td>MIR32</td>
<td>microRNA 32</td>
<td>12.39292647</td>
</tr>
<tr>
<td>NPPC</td>
<td>natriuretic peptide C</td>
<td>12.40070336</td>
</tr>
<tr>
<td>LOC101747359</td>
<td>Ig kappa chain V-VI region NQ2-6.1-like</td>
<td>12.43480803</td>
</tr>
<tr>
<td>ANKDD1A</td>
<td>ankyrin repeat and death domain containing 1A</td>
<td>12.46897271</td>
</tr>
<tr>
<td>LOC101751643</td>
<td>immunoglobulin omega chain-like</td>
<td>12.52462525</td>
</tr>
<tr>
<td>PLA2G5</td>
<td>phospholipase A2, group V</td>
<td>12.5512877</td>
</tr>
<tr>
<td>LOC101749128</td>
<td>immunoglobulin omega chain-like</td>
<td>12.57763653</td>
</tr>
<tr>
<td>DDX4</td>
<td>DEAD (Asp-Glu-Ala-Asp) box polypeptide 4</td>
<td>12.58443172</td>
</tr>
<tr>
<td>LOC776590</td>
<td>Ig kappa chain V-VI region NQ2-6.1-like</td>
<td>12.6139989</td>
</tr>
<tr>
<td>LOC101748718</td>
<td>uncharacterized LOC101748718</td>
<td>12.69457554</td>
</tr>
<tr>
<td>LOC101751242</td>
<td>uncharacterized LOC101751242</td>
<td>12.7453609</td>
</tr>
<tr>
<td>LOC101751517</td>
<td>uncharacterized LOC101751517</td>
<td>12.76839525</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>Log2 Fold Change</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>MDH1B</td>
<td>Malate dehydrogenase 1B, NAD (soluble)</td>
<td>12.7746903</td>
</tr>
<tr>
<td>TRNAL-UAA</td>
<td>transfer RNA leucine (anticodon UAA)</td>
<td>12.79492957</td>
</tr>
<tr>
<td>LOC101751761</td>
<td>Ig lambda chain V-V region DEL-like</td>
<td>12.79809103</td>
</tr>
<tr>
<td>TMEM234</td>
<td>transmembrane protein 234</td>
<td>12.8152592</td>
</tr>
<tr>
<td>LOC101749503</td>
<td>uncharacterized LOC101749503</td>
<td>12.84163707</td>
</tr>
<tr>
<td>EME1</td>
<td>essential meiotic structure-specific endonuclease 1</td>
<td>12.9046271</td>
</tr>
<tr>
<td>KNTC1</td>
<td>Kinetochore associated 1</td>
<td>12.96320858</td>
</tr>
<tr>
<td>LOC100858624</td>
<td>potassium voltage-gated channel subfamily E member 1-like protein-like</td>
<td>12.98485277</td>
</tr>
<tr>
<td>PTGS1</td>
<td>Prostaglandin-endoperoxide synthase 1 (prostaglandin G/H synthase and cyclooxygenase)</td>
<td>13.03838234</td>
</tr>
<tr>
<td>UPB1</td>
<td>Ureidopropionase, beta</td>
<td>13.0758351</td>
</tr>
<tr>
<td>FLVCR2</td>
<td>Feline leukemia virus subgroup C cellular receptor family, member 2</td>
<td>13.12403405</td>
</tr>
<tr>
<td>WT1</td>
<td>Wilms tumor protein homolog</td>
<td>13.2021774</td>
</tr>
<tr>
<td>LOC424155</td>
<td>uncharacterized LOC424155</td>
<td>13.20281102</td>
</tr>
<tr>
<td>AICDA</td>
<td>Activation-induced cytidine deaminase</td>
<td>13.21882203</td>
</tr>
<tr>
<td>PHF13</td>
<td>PHD finger protein 13</td>
<td>13.30805456</td>
</tr>
<tr>
<td>LOC101748805</td>
<td>uncharacterized LOC101748805</td>
<td>13.32229436</td>
</tr>
<tr>
<td>MIR1653</td>
<td>microRNA mir-1653</td>
<td>13.34681842</td>
</tr>
<tr>
<td>LOC428086</td>
<td>stromelysin-1-like</td>
<td>13.38269157</td>
</tr>
<tr>
<td>LOC101750483</td>
<td>uncharacterized LOC101750483</td>
<td>13.42189388</td>
</tr>
<tr>
<td>LOC416197</td>
<td>proteinase-activated receptor 2-like</td>
<td>13.42414004</td>
</tr>
<tr>
<td>TMEM209</td>
<td>Transmembrane protein 209</td>
<td>13.46791117</td>
</tr>
<tr>
<td>LOC101750810</td>
<td>uncharacterized LOC101750810</td>
<td>13.49459312</td>
</tr>
<tr>
<td>GALR1</td>
<td>Galanin receptor 1</td>
<td>13.49609229</td>
</tr>
<tr>
<td>MIR146A</td>
<td>microRNA 146a</td>
<td>13.52045908</td>
</tr>
<tr>
<td>MIR223</td>
<td>microRNA 223</td>
<td>13.65739661</td>
</tr>
<tr>
<td>LYN</td>
<td>Latexin</td>
<td>13.69590249</td>
</tr>
<tr>
<td>ATP6V1C2</td>
<td>ATPase, H+ transporting, lysosomal 42kDa, V1 subunit C2</td>
<td>13.83068355</td>
</tr>
<tr>
<td>CCDC146</td>
<td>Coiled-coil domain containing 146</td>
<td>13.86645792</td>
</tr>
<tr>
<td>RRP12</td>
<td>Ribosomal RNA processing 12 homolog</td>
<td>13.92600869</td>
</tr>
<tr>
<td>SPIC</td>
<td>Spi-C transcription factor (Spi-1/PU.1 related)</td>
<td>14.01930095</td>
</tr>
<tr>
<td>GZMM</td>
<td>Granzyme M (lymphocyte met-ase 1)</td>
<td>14.09599033</td>
</tr>
<tr>
<td>MIR221</td>
<td>microRNA 221</td>
<td>14.09711036</td>
</tr>
</tbody>
</table>
Table 17 continued

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Log2 Fold Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIRLET7I</td>
<td>microRNA let-7i</td>
<td>14.1054666</td>
</tr>
<tr>
<td>CNTRL</td>
<td>centriolin</td>
<td>14.10567939</td>
</tr>
<tr>
<td>LOC101748882</td>
<td>uncharacterized LOC101748882</td>
<td>14.15786796</td>
</tr>
<tr>
<td>NTHL1</td>
<td>nth-like DNA glycosylase 1</td>
<td>14.17773097</td>
</tr>
<tr>
<td>SKA3</td>
<td>spindle and kinetochore associated complex subunit 3</td>
<td>14.19098208</td>
</tr>
<tr>
<td>RASAL1</td>
<td>RAS protein activator like 1 (GAP1 like)</td>
<td>14.23538602</td>
</tr>
<tr>
<td>TATDN1</td>
<td>TatD DNase domain containing 1</td>
<td>14.41669199</td>
</tr>
<tr>
<td>NNX2-5</td>
<td>NK2 homeobox 5</td>
<td>14.41912407</td>
</tr>
<tr>
<td>CD5</td>
<td>CD5 molecule</td>
<td>14.51741104</td>
</tr>
<tr>
<td>TNFRSF9</td>
<td>tumor necrosis factor receptor superfamily, member 9</td>
<td>14.58926491</td>
</tr>
<tr>
<td>DCAF6</td>
<td>DDB1 and CUL4 associated factor 6</td>
<td>14.59293583</td>
</tr>
<tr>
<td>REXO1</td>
<td>REX1, RNA exonuclease 1 homolog (S. cerevisiae)</td>
<td>14.68605728</td>
</tr>
<tr>
<td>ACSL4</td>
<td>acyl-CoA synthetase long-chain family member 4</td>
<td>14.68971412</td>
</tr>
<tr>
<td>SH2D2A</td>
<td>SH2 domain containing 2A</td>
<td>14.71462654</td>
</tr>
<tr>
<td>TRAF5</td>
<td>TNF receptor-associated factor 5</td>
<td>14.92439036</td>
</tr>
<tr>
<td>B3GNTL1</td>
<td>UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase-like 1</td>
<td>14.92725019</td>
</tr>
<tr>
<td>LOC101749948</td>
<td>uncharacterized LOC101749948</td>
<td>15.34433752</td>
</tr>
<tr>
<td>TNFRSF13C</td>
<td>tumor necrosis factor receptor superfamily, member 13C</td>
<td>15.4133734</td>
</tr>
<tr>
<td>LOC101749651</td>
<td>uncharacterized LOC101749651</td>
<td>15.54428529</td>
</tr>
<tr>
<td>PDCD1LG2</td>
<td>programmed cell death 1 ligand 2</td>
<td>15.70163948</td>
</tr>
<tr>
<td>CXCR5</td>
<td>chemokine (C-X-C motif) receptor 5</td>
<td>15.81329019</td>
</tr>
<tr>
<td>MMP7</td>
<td>matrix metalloproteidase 7 (matrilysin,uterine)</td>
<td>16.04311489</td>
</tr>
<tr>
<td>LOC101747522</td>
<td>collagen alpha-1(XVIII) chain-like</td>
<td>16.15258392</td>
</tr>
<tr>
<td>PAX5</td>
<td>paired box 5</td>
<td>16.2541207</td>
</tr>
<tr>
<td>LPXN</td>
<td>leupaxin</td>
<td>16.82102654</td>
</tr>
<tr>
<td>TLX1</td>
<td>T-cell leukemia homeobox 1</td>
<td>18.52350453</td>
</tr>
</tbody>
</table>
Table 18: Raw data table for the enriched genes found in the relative tissue expression data for Illinois Control and Heat-stressed groups. The genes enriched in the control group are unbolded and the enriched genes in the heat-stressed group are illustrated in bold.

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Description</th>
<th>Log2MaxSpleen/MedAllTiss</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC101748739</td>
<td>uncharacterized LOC101748739</td>
<td>5.466276569</td>
</tr>
<tr>
<td>BIN2</td>
<td>bridging integrator 2</td>
<td>5.47187454</td>
</tr>
<tr>
<td>LOC101750677</td>
<td>uncharacterized LOC101750677</td>
<td>5.47783257</td>
</tr>
<tr>
<td>SAMSN1</td>
<td>SAM domain, SH3 domain and nuclear localization signals 1</td>
<td>5.478723789</td>
</tr>
<tr>
<td>LOC101751568</td>
<td>uncharacterized LOC101751568</td>
<td>5.485718205</td>
</tr>
<tr>
<td>MYH1C</td>
<td>myosin, heavy chain 1C, skeletal muscle (similar to human myosin, heavy chain 1, skeletal muscle, adult)</td>
<td>5.486570923</td>
</tr>
<tr>
<td>LOC101750283</td>
<td>uncharacterized LOC101750283</td>
<td>5.488420907</td>
</tr>
<tr>
<td>ARHGAP27</td>
<td>Rho GTPase activating protein 27</td>
<td>5.49593539</td>
</tr>
<tr>
<td>LOC101747434</td>
<td>uncharacterized LOC101747434</td>
<td>5.501195106</td>
</tr>
<tr>
<td>LOC100857183</td>
<td>uncharacterized LOC100857183</td>
<td>5.501439145</td>
</tr>
<tr>
<td>RUFY4</td>
<td>RUN and FYVE domain containing 4</td>
<td>5.503733723</td>
</tr>
<tr>
<td>BCL2L14</td>
<td>BCL2-like 14 (apoptosis facilitator)</td>
<td>5.508260531</td>
</tr>
<tr>
<td>CD48</td>
<td>CD48 molecule</td>
<td>5.510802412</td>
</tr>
<tr>
<td>ZNF488</td>
<td>zinc finger protein 488</td>
<td>5.510851717</td>
</tr>
<tr>
<td>LOC101749148</td>
<td>uncharacterized LOC101749148</td>
<td>5.5146586</td>
</tr>
<tr>
<td>LOC416755</td>
<td>uncharacterized LOC416755</td>
<td>5.515373486</td>
</tr>
<tr>
<td>LOC101749884</td>
<td>uncharacterized LOC101749884</td>
<td>5.521678952</td>
</tr>
<tr>
<td>PDE4D</td>
<td>phosphodiesterase 4D, cAMP-specific</td>
<td>5.522096548</td>
</tr>
<tr>
<td>DRAM1</td>
<td>DNA-damage regulated autophagy modulator 1</td>
<td>5.523107369</td>
</tr>
<tr>
<td>FOXI1</td>
<td>forkhead box 1I</td>
<td>5.531282829</td>
</tr>
<tr>
<td>MEOX1</td>
<td>mesenchyme homeobox 1</td>
<td>5.534711299</td>
</tr>
<tr>
<td>LECT1</td>
<td>leukocyte cell derived chemotaxin 1</td>
<td>5.536248694</td>
</tr>
<tr>
<td>LCP2</td>
<td>lymphocyte cytosolic protein 2 (SH2 domain containing leukocyte protein of 76kDa)</td>
<td>5.538732999</td>
</tr>
<tr>
<td>LOC101751587</td>
<td>uncharacterized LOC101751587</td>
<td>5.543805176</td>
</tr>
<tr>
<td>LOC426456</td>
<td>uncharacterized LOC426456</td>
<td>5.545128771</td>
</tr>
<tr>
<td>LOC101749880</td>
<td>uncharacterized LOC101749880</td>
<td>5.552935062</td>
</tr>
<tr>
<td>LOC101749072</td>
<td>uncharacterized LOC101749072</td>
<td>5.556960276</td>
</tr>
</tbody>
</table>
Table 18 continued

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Description</th>
<th>Fold Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC101749765</td>
<td>E3 ubiquitin-protein ligase ICP0-like</td>
<td>5.561020578</td>
</tr>
<tr>
<td>LOC101748090</td>
<td>uncharacterized LOC101748090</td>
<td>5.563463237</td>
</tr>
<tr>
<td>ARHGEGF3</td>
<td>Rho guanine nucleotide exchange factor (GEF) 3</td>
<td>5.567272503</td>
</tr>
<tr>
<td>LOC428958</td>
<td>lysosomal acid lipase/cholesterol ester hydrolase-like</td>
<td>5.577517173</td>
</tr>
<tr>
<td>MYH1G</td>
<td>myosin, heavy chain 1G, skeletal muscle (similar to human myosin, heavy chain 1, skeletal muscle, adult)</td>
<td>5.594286366</td>
</tr>
<tr>
<td>LIPI</td>
<td>lipase, member I</td>
<td>5.598714705</td>
</tr>
<tr>
<td>DTHD1</td>
<td>death domain containing 1</td>
<td>5.606442228</td>
</tr>
<tr>
<td>PMCH</td>
<td>pro-melanin-concentrating hormone</td>
<td>5.607325577</td>
</tr>
<tr>
<td>BTK</td>
<td>Bruton agammaglobulinemia tyrosine kinase</td>
<td>5.610531764</td>
</tr>
<tr>
<td>IL7</td>
<td>interleukin 7</td>
<td>5.612017755</td>
</tr>
<tr>
<td>CCL17</td>
<td>chemokine (C-C motif) ligand 17</td>
<td>5.612665347</td>
</tr>
<tr>
<td>SAMD9L</td>
<td>sterile alpha motif domain containing 9-like</td>
<td>5.618389845</td>
</tr>
<tr>
<td>LOC101749208</td>
<td>GTPase IMAP family member 7-like</td>
<td>5.62408681</td>
</tr>
<tr>
<td>GPLD1</td>
<td>glycosylphosphatidylinositol specific phospholipase D1</td>
<td>5.632973694</td>
</tr>
<tr>
<td>TSPAN1</td>
<td>tetraspanin 1</td>
<td>5.632991624</td>
</tr>
<tr>
<td>GALNT6</td>
<td>UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 6 (GalNAC-T6)</td>
<td>5.636092577</td>
</tr>
<tr>
<td>IL5RA</td>
<td>interleukin 5 receptor, alpha</td>
<td>5.638653117</td>
</tr>
<tr>
<td>DNASE1L3</td>
<td>deoxyribonuclease I-like 3</td>
<td>5.642244817</td>
</tr>
<tr>
<td>TCP10</td>
<td>t-complex 10</td>
<td>5.660048268</td>
</tr>
<tr>
<td>LOC100858579</td>
<td>granzyme G-like</td>
<td>5.6774175</td>
</tr>
<tr>
<td>MYO1G</td>
<td>myosin IG</td>
<td>5.67951507</td>
</tr>
<tr>
<td>PTPN7</td>
<td>protein tyrosine phosphatase, non-receptor type 7</td>
<td>5.682276038</td>
</tr>
<tr>
<td>LITAF</td>
<td>lipopolysaccharide-induced TNF factor</td>
<td>5.682601129</td>
</tr>
<tr>
<td>LOC101751635</td>
<td>uncharacterized LOC101751635</td>
<td>5.687544566</td>
</tr>
<tr>
<td>LOC101749939</td>
<td>uncharacterized LOC101749939</td>
<td>5.689887655</td>
</tr>
<tr>
<td>LOC419545</td>
<td>uncharacterized LOC419545</td>
<td>5.70272209</td>
</tr>
<tr>
<td>LOC769646</td>
<td>uncharacterized LOC769646</td>
<td>5.704931406</td>
</tr>
<tr>
<td>ACPP</td>
<td>acid phosphatase, prostate</td>
<td>5.705405362</td>
</tr>
</tbody>
</table>
Table 18 continued

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTPRO</td>
<td>protein tyrosine phosphatase, receptor type, O</td>
<td>5.706652561</td>
</tr>
<tr>
<td>SLC6A20</td>
<td>solute carrier family 6 (proline IMINO transporter), member 2</td>
<td>5.715344295</td>
</tr>
<tr>
<td>SBK2</td>
<td>SH3 domain binding kinase family, member 2</td>
<td>5.718635616</td>
</tr>
<tr>
<td>GHRH</td>
<td>growth hormone releasing hormone</td>
<td>5.720230901</td>
</tr>
<tr>
<td>ZPLD1</td>
<td>zona pellucida-like domain containing 1</td>
<td>5.728690533</td>
</tr>
<tr>
<td>CD40LG</td>
<td>CD40 ligand</td>
<td>5.732114324</td>
</tr>
<tr>
<td>SLA2</td>
<td>Src-like-adaptor 2</td>
<td>5.739568674</td>
</tr>
<tr>
<td>S100A9</td>
<td>S100 calcium binding protein A</td>
<td>5.744823044</td>
</tr>
<tr>
<td>LOC428525</td>
<td>histamine H3 receptor-like</td>
<td>5.746003485</td>
</tr>
<tr>
<td>IL1B</td>
<td>interleukin 1, beta</td>
<td>5.747151416</td>
</tr>
<tr>
<td>LOC100858002</td>
<td>T-box transcription factor TBX21-like</td>
<td>5.77266466</td>
</tr>
<tr>
<td>LOC101750328</td>
<td>NAD(P)(+)-arginine ADP-ribosyltransferase 1-like</td>
<td>5.783374434</td>
</tr>
<tr>
<td>TLR7</td>
<td>toll-like receptor 7</td>
<td>5.78384809</td>
</tr>
<tr>
<td>LOC101749298</td>
<td>uncharacterized LOC101749298</td>
<td>5.784800326</td>
</tr>
<tr>
<td>LOC101747470</td>
<td>Ig kappa chain V-III region MOPC 63-like</td>
<td>5.790267878</td>
</tr>
<tr>
<td>GFI1</td>
<td>growth factor independent 1 transcription repressor</td>
<td>5.792798522</td>
</tr>
<tr>
<td>LOC101748205</td>
<td>uncharacterized LOC101748205</td>
<td>5.795974694</td>
</tr>
<tr>
<td>LOC101748021</td>
<td>uncharacterized LOC101748021</td>
<td>5.799864411</td>
</tr>
<tr>
<td>BCL11B</td>
<td>B-cell CLL/lymphoma 11B (zinc finger protein)</td>
<td>5.810940738</td>
</tr>
<tr>
<td>MAFA</td>
<td>v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog A</td>
<td>5.812098418</td>
</tr>
<tr>
<td>GFRA4</td>
<td>GDNF family receptor alpha 4</td>
<td>5.831785693</td>
</tr>
<tr>
<td>CSTA</td>
<td>cystatin A (stefin A)</td>
<td>5.831989315</td>
</tr>
<tr>
<td>EDN3</td>
<td>endothelin 3</td>
<td>5.834291397</td>
</tr>
<tr>
<td>LOC101748453</td>
<td>uncharacterized LOC101748453</td>
<td>5.840966705</td>
</tr>
<tr>
<td>IFITM5</td>
<td>interferon induced transmembrane protein 5</td>
<td>5.864588681</td>
</tr>
<tr>
<td>LOC101747356</td>
<td>coiled-coil domain-containing protein 81-like</td>
<td>5.866116819</td>
</tr>
<tr>
<td>ARHGAP15</td>
<td>Rho GTPase activating protein 15</td>
<td>5.87357548</td>
</tr>
<tr>
<td>DOCK8</td>
<td>dedicator of cytokinesis 8</td>
<td>5.882190334</td>
</tr>
<tr>
<td>SLAMF8</td>
<td>SLAM family member 8</td>
<td>5.88901068</td>
</tr>
<tr>
<td>LOC101747899</td>
<td>uncharacterized LOC101747899</td>
<td>5.893880334</td>
</tr>
</tbody>
</table>
Table 18 continued

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Description</th>
<th>Log2 Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC101752164</td>
<td>uncharacterized LOC101752164</td>
<td>5.897240426</td>
</tr>
<tr>
<td>IKZF1</td>
<td>IKAROS family zinc finger 1 (Ikaros)</td>
<td>5.897670019</td>
</tr>
<tr>
<td>MYH1E</td>
<td>myosin, heavy chain 1E, skeletal muscle (similar to human myosin, heavy chain 1, skeletal muscle, adult)</td>
<td>5.907656764</td>
</tr>
<tr>
<td>LOC100858856</td>
<td>homeobox protein Hox-A7-like</td>
<td>5.915351042</td>
</tr>
<tr>
<td>LOC100858514</td>
<td>homeobox protein Hox-A7-like</td>
<td>5.917665276</td>
</tr>
<tr>
<td>AMICA1</td>
<td>adhesion molecule, interacts with CXADR antigen 1</td>
<td>5.918687101</td>
</tr>
<tr>
<td>LOC101748451</td>
<td>lysophosphatidic acid receptor 6-like</td>
<td>5.947453275</td>
</tr>
<tr>
<td>TCF21</td>
<td>transcription factor 21</td>
<td>5.951069186</td>
</tr>
<tr>
<td>ITGA4</td>
<td>integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor)</td>
<td>5.956531603</td>
</tr>
<tr>
<td>LOC415913</td>
<td>high mobility group protein HMGI-C-like</td>
<td>5.957995338</td>
</tr>
<tr>
<td>LOC101751549</td>
<td>uncharacterized LOC101751549</td>
<td>5.965762356</td>
</tr>
<tr>
<td>SERPINB12</td>
<td>serpin peptidase inhibitor, clade B (ovalbumin), member 12</td>
<td>5.966218013</td>
</tr>
<tr>
<td>MMP10</td>
<td>matrix metalloproteinase 10 (stromelysin 2)</td>
<td>5.96672942</td>
</tr>
<tr>
<td>TG</td>
<td>thyroglobulin</td>
<td>5.971869166</td>
</tr>
<tr>
<td>TIMD4</td>
<td>T-cell immunoglobulin and mucin domain containing 4</td>
<td>5.980008012</td>
</tr>
<tr>
<td>LOC101751684</td>
<td>uncharacterized LOC101751684</td>
<td>5.98436149</td>
</tr>
<tr>
<td>ZNF831</td>
<td>zinc finger protein 831</td>
<td>5.988489583</td>
</tr>
<tr>
<td>BFSP1</td>
<td>beaded filament structural protein 1, filensin</td>
<td>5.99548176</td>
</tr>
<tr>
<td>LOC101747399</td>
<td>uncharacterized LOC101747399</td>
<td>5.999066519</td>
</tr>
<tr>
<td>ZNF367</td>
<td>zinc finger protein 367</td>
<td>6.002469841</td>
</tr>
<tr>
<td>LOC100858919</td>
<td>receptor-type tyrosine-protein phosphatase S-like</td>
<td>6.010125488</td>
</tr>
<tr>
<td>ICOS</td>
<td>inducible T-cell co-stimulator</td>
<td>6.014108892</td>
</tr>
<tr>
<td>HOXA7</td>
<td>homeobox A7</td>
<td>6.023269233</td>
</tr>
<tr>
<td>MADCAM1</td>
<td>mucosal vascular addressin cell adhesion molecule 1</td>
<td>6.026873522</td>
</tr>
<tr>
<td>LOC101752277</td>
<td>uncharacterized LOC101752277</td>
<td>6.032762074</td>
</tr>
<tr>
<td>LOC101750758</td>
<td>uncharacterized LOC101750758</td>
<td>6.032776333</td>
</tr>
<tr>
<td>LOC768553</td>
<td>E3 SUMO-protein ligase RanBP2-like</td>
<td>6.041992962</td>
</tr>
<tr>
<td>LOC101748281</td>
<td>uncharacterized LOC101748281</td>
<td>6.043300754</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>Score</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>PTPRC</td>
<td>protein tyrosine phosphatase, receptor type, C</td>
<td>6.054054475</td>
</tr>
<tr>
<td>HOXB8</td>
<td>homeobox B8</td>
<td>6.054140014</td>
</tr>
<tr>
<td>TRIM27.2</td>
<td>tripartite motif containing 27.2</td>
<td>6.054688176</td>
</tr>
<tr>
<td>FAM13C</td>
<td>family with sequence similarity 13, member C</td>
<td>6.060586901</td>
</tr>
<tr>
<td>LOC101751179</td>
<td>uncharacterized LOC101751179</td>
<td>6.066555399</td>
</tr>
<tr>
<td>LOC101748229</td>
<td>nuclear factor interleukin-3-regulated protein-like</td>
<td>6.073557768</td>
</tr>
<tr>
<td>ZC3H12D</td>
<td>zinc finger CCCH-type containing 12D</td>
<td>6.081247486</td>
</tr>
<tr>
<td>TMEM154</td>
<td>transmembrane protein 154</td>
<td>6.08224087</td>
</tr>
<tr>
<td>RUNX3</td>
<td>runt-related transcription factor 3</td>
<td>6.085382589</td>
</tr>
<tr>
<td>HOXB5</td>
<td>homeobox B5</td>
<td>6.092709812</td>
</tr>
<tr>
<td>HPSE</td>
<td>heparanase</td>
<td>6.095476064</td>
</tr>
<tr>
<td>LOC101748503</td>
<td>uncharacterized LOC101748503</td>
<td>6.097721924</td>
</tr>
<tr>
<td>DTX1</td>
<td>deltex 1, E3 ubiquitin ligase</td>
<td>6.104334305</td>
</tr>
<tr>
<td>FAM65B</td>
<td>family with sequence similarity 65, member B</td>
<td>6.123705835</td>
</tr>
<tr>
<td>LRRC2</td>
<td>leucine rich repeat containing 2</td>
<td>6.125960477</td>
</tr>
<tr>
<td>LOC101748119</td>
<td>uncharacterized LOC101748119</td>
<td>6.126188211</td>
</tr>
<tr>
<td>TNFSF13B</td>
<td>tumor necrosis factor (ligand) superfamily, member 13b</td>
<td>6.13028622</td>
</tr>
<tr>
<td>LPAR5</td>
<td>lysophosphatidic acid receptor 5</td>
<td>6.137734437</td>
</tr>
<tr>
<td>ART5</td>
<td>ADP-ribosyltransferase 5</td>
<td>6.140745257</td>
</tr>
<tr>
<td>CCR10</td>
<td>chemokine (C-C motif) receptor 10</td>
<td>6.147706281</td>
</tr>
<tr>
<td>DOCK2</td>
<td>dedicator of cytokinesis 2</td>
<td>6.154525203</td>
</tr>
<tr>
<td>LOC419425</td>
<td>rho guanine nucleotide exchange factor 7-like</td>
<td>6.155189815</td>
</tr>
<tr>
<td>LOC101751544</td>
<td>uncharacterized LOC101751544</td>
<td>6.158458216</td>
</tr>
<tr>
<td>LOC101750697</td>
<td>uncharacterized LOC101750697</td>
<td>6.176358023</td>
</tr>
<tr>
<td>MYOM3</td>
<td>myomesin 3</td>
<td>6.184107291</td>
</tr>
<tr>
<td>LOC418424</td>
<td>uncharacterized LOC418424</td>
<td>6.194600085</td>
</tr>
<tr>
<td>NOL4</td>
<td>nucleolar protein 4</td>
<td>6.203644995</td>
</tr>
<tr>
<td>LOC101748654</td>
<td>uncharacterized LOC101748654</td>
<td>6.215678597</td>
</tr>
<tr>
<td>LOC101748783</td>
<td>uncharacterized LOC101748783</td>
<td>6.220136447</td>
</tr>
<tr>
<td>TCF7</td>
<td>transcription factor 7 (T-cell specific, HMG-box)</td>
<td>6.228963224</td>
</tr>
<tr>
<td>LOC101747759</td>
<td>uncharacterized LOC101747759</td>
<td>6.229780167</td>
</tr>
<tr>
<td>LOC101751530</td>
<td>uncharacterized LOC101751530</td>
<td>6.240886714</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Description</td>
<td>Log2 Fold Change</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>LOC101749434</td>
<td>uncharacterized LOC101749434</td>
<td>6.248400234</td>
</tr>
<tr>
<td>LOC101749827</td>
<td>uncharacterized LOC101749827</td>
<td>6.250393173</td>
</tr>
<tr>
<td>LOC769174</td>
<td>C-type lectin-like receptor variant</td>
<td>6.25070717</td>
</tr>
<tr>
<td>CD3E</td>
<td>CD3e molecule, epsilon (CD3-TCR complex)</td>
<td>6.252961716</td>
</tr>
<tr>
<td>LOC101748412</td>
<td>uncharacterized LOC101748412</td>
<td>6.256821969</td>
</tr>
<tr>
<td>SLC6A5</td>
<td>solute carrier family 6 (neurotransmitter transporter), member 5</td>
<td>6.256821969</td>
</tr>
<tr>
<td>LOC100859805</td>
<td>EF-hand calcium-binding domain-containing protein 4B-like</td>
<td>6.256975611</td>
</tr>
<tr>
<td>RAC2</td>
<td>ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2)</td>
<td>6.257132841</td>
</tr>
<tr>
<td>LOC101747518</td>
<td>uncharacterized LOC101747518</td>
<td>6.260778432</td>
</tr>
<tr>
<td>LOC768665</td>
<td>dual specificity protein phosphatase 22-A-like</td>
<td>6.262652836</td>
</tr>
<tr>
<td>LOC101747430</td>
<td>uncharacterized LOC101747430</td>
<td>6.263973355</td>
</tr>
<tr>
<td>FUT4</td>
<td>fucosyltransferase 4 (alpha (1,3) fucosyltransferase, myeloid-specific)</td>
<td>6.272686202</td>
</tr>
<tr>
<td>GINS1</td>
<td>GINS complex subunit 1 (Psf1 homolog)</td>
<td>6.277781391</td>
</tr>
<tr>
<td>LOC426820</td>
<td>deleted in malignant brain tumors 1 protein-like</td>
<td>6.284191728</td>
</tr>
<tr>
<td>LOC770268</td>
<td>uncharacterized LOC770268</td>
<td>6.297928962</td>
</tr>
<tr>
<td>LOC101749177</td>
<td>uncharacterized LOC101749177</td>
<td>6.307974897</td>
</tr>
<tr>
<td>LOC101748839</td>
<td>uncharacterized LOC101748839</td>
<td>6.31924139</td>
</tr>
<tr>
<td>SCNN1D</td>
<td>sodium channel, non-voltage-gated 1, delta subunit</td>
<td>6.327507735</td>
</tr>
<tr>
<td>IL18RAP</td>
<td>interleukin 18 receptor accessory protein</td>
<td>6.3661796</td>
</tr>
<tr>
<td>GPR141</td>
<td>G protein-coupled receptor 141</td>
<td>6.368778156</td>
</tr>
<tr>
<td>LOC101751615</td>
<td>uncharacterized LOC101751615</td>
<td>6.368787381</td>
</tr>
<tr>
<td>GRAP2</td>
<td>GRB2-related adaptor protein 2</td>
<td>6.373224973</td>
</tr>
<tr>
<td>LOC100859222</td>
<td>B-cell lymphoma/leukemia 11B-like</td>
<td>6.378838438</td>
</tr>
<tr>
<td>ARL13A</td>
<td>ADP-ribosylation factor-like 13A</td>
<td>6.384913231</td>
</tr>
<tr>
<td>TNFRSF25</td>
<td>tumor necrosis factor receptor superfamily, member 25</td>
<td>6.386297328</td>
</tr>
<tr>
<td>RUNX1</td>
<td>runt-related transcription factor 1</td>
<td>6.398023065</td>
</tr>
<tr>
<td>LOC101748484</td>
<td>uncharacterized LOC101748484</td>
<td>6.402074074</td>
</tr>
<tr>
<td>LOC101750447</td>
<td>uncharacterized LOC101750447</td>
<td>6.403097262</td>
</tr>
</tbody>
</table>
Table 18 continued

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCNA1</td>
<td>potassium voltage-gated channel, shaker-related subfamily, member 1 (episodic ataxia with myokymia)</td>
<td>6.403892335</td>
</tr>
<tr>
<td>LOC101747658</td>
<td>uncharacterized LOC101747658</td>
<td>6.411282198</td>
</tr>
<tr>
<td>EFCAB3</td>
<td>EF-hand calcium binding domain 3</td>
<td>6.412781525</td>
</tr>
<tr>
<td>PIK3AP1</td>
<td>phosphoinositide-3-kinase adaptor protein 1</td>
<td>6.413777912</td>
</tr>
<tr>
<td>LOC418668</td>
<td>cytokine receptor-like factor 2-like</td>
<td>6.419533628</td>
</tr>
<tr>
<td>LOC422448</td>
<td>mannosyl (alpha-1,3,4,5-acetylglucosaminyltransferase, isozyme B-like</td>
<td>6.42225748</td>
</tr>
<tr>
<td>EOMES</td>
<td>eomesodermin</td>
<td>6.423463452</td>
</tr>
<tr>
<td>LOC768635</td>
<td>uncharacterized LOC768635</td>
<td>6.428610354</td>
</tr>
<tr>
<td>CYBB</td>
<td>cytochrome b-245, beta polypeptide</td>
<td>6.437029002</td>
</tr>
<tr>
<td>LOC100858835</td>
<td>uncharacterized LOC100858835</td>
<td>6.444729021</td>
</tr>
<tr>
<td>LOC101750729</td>
<td>uncharacterized LOC101750729</td>
<td>6.451705665</td>
</tr>
<tr>
<td>LOC101750386</td>
<td>uncharacterized LOC101750386</td>
<td>6.453846774</td>
</tr>
<tr>
<td>CPA6</td>
<td>carboxypeptidase A6</td>
<td>6.454972499</td>
</tr>
<tr>
<td>IL20RA</td>
<td>interleukin 20 receptor, alpha</td>
<td>6.455489097</td>
</tr>
<tr>
<td>TRPC4</td>
<td>transient receptor potential cation channel, subfamily C, member 4</td>
<td>6.466706732</td>
</tr>
<tr>
<td>P2RX5</td>
<td>purinergic receptor P2X, ligand-gated ion channel, 5</td>
<td>6.474748803</td>
</tr>
<tr>
<td>COL21A1</td>
<td>collagen, type XXI, alpha 1</td>
<td>6.483242386</td>
</tr>
<tr>
<td>LOC100859314</td>
<td>uncharacterized LOC100859314</td>
<td>6.487233278</td>
</tr>
<tr>
<td>LOC101751292</td>
<td>uncharacterized LOC101751292</td>
<td>6.495695163</td>
</tr>
<tr>
<td>K123</td>
<td>K123 protein</td>
<td>6.496844831</td>
</tr>
<tr>
<td>CD1C</td>
<td>CD1c molecule</td>
<td>6.501815885</td>
</tr>
<tr>
<td>LOC419851</td>
<td>complement component 4 binding protein, alpha chain</td>
<td>6.505828991</td>
</tr>
<tr>
<td>OVSTL</td>
<td>ovostatin-like</td>
<td>6.515163669</td>
</tr>
<tr>
<td>LOC101750147</td>
<td>uncharacterized LOC101750147</td>
<td>6.518692492</td>
</tr>
<tr>
<td>LOC429682</td>
<td>GTPase IMAP family member 7-like</td>
<td>6.52638792</td>
</tr>
<tr>
<td>GPR174</td>
<td>G protein-coupled receptor 174</td>
<td>6.528449388</td>
</tr>
<tr>
<td>NTRK1</td>
<td>neurotrophic tyrosine kinase, receptor, type 1</td>
<td>6.529352463</td>
</tr>
<tr>
<td>LOC100857559</td>
<td>C3a anaphylatoxin chemotactic receptor-like</td>
<td>6.529664802</td>
</tr>
<tr>
<td>Gene Name</td>
<td>Description</td>
<td>Log2 Fold Change</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>LOC101751168</td>
<td>tumor necrosis factor ligand superfamily member 13B-like</td>
<td>6.531142827</td>
</tr>
<tr>
<td>LOC101752049</td>
<td>uncharacterized LOC101752049</td>
<td>6.537898958</td>
</tr>
<tr>
<td>ZNF750</td>
<td>zinc finger protein 750</td>
<td>6.544423562</td>
</tr>
<tr>
<td>LOC416633</td>
<td>class II, major histocompatibility complex, transactivator-like</td>
<td>6.545078611</td>
</tr>
<tr>
<td>LOC101751978</td>
<td>uncharacterized LOC101751978</td>
<td>6.55059289</td>
</tr>
<tr>
<td>LOC418423</td>
<td>uncharacterized LOC418423</td>
<td>6.554471425</td>
</tr>
<tr>
<td>LOC100859709</td>
<td>uncharacterized LOC100859709</td>
<td>6.557808299</td>
</tr>
<tr>
<td>LOC101750247</td>
<td>uncharacterized LOC101750247</td>
<td>6.564784619</td>
</tr>
<tr>
<td>PCDH15</td>
<td>protocadherin-related 15</td>
<td>6.567132355</td>
</tr>
<tr>
<td>LOC101751204</td>
<td>uncharacterized LOC101751204</td>
<td>6.573495716</td>
</tr>
<tr>
<td>LOC101749506</td>
<td>uncharacterized LOC101749506</td>
<td>6.592160691</td>
</tr>
<tr>
<td>VCAM1</td>
<td>vascular cell adhesion molecule 1</td>
<td>6.593847652</td>
</tr>
<tr>
<td>LOC770881</td>
<td>uncharacterized LOC770881</td>
<td>6.595104362</td>
</tr>
<tr>
<td>LOC101748348</td>
<td>E3 ubiquitin-protein ligase ICP0-like</td>
<td>6.600804955</td>
</tr>
<tr>
<td>LOC101748365</td>
<td>uncharacterized LOC101748365</td>
<td>6.601102203</td>
</tr>
<tr>
<td>HSD17B2</td>
<td>hydroxysteroid (17-beta) dehydrogenase 2</td>
<td>6.601577545</td>
</tr>
<tr>
<td>GRM4</td>
<td>glutamate receptor, metabotropic 4</td>
<td>6.602317673</td>
</tr>
<tr>
<td>BCL11A</td>
<td>B-cell CLL/lymphoma 11A (zinc finger protein)</td>
<td>6.603187799</td>
</tr>
<tr>
<td>OVALX</td>
<td>ovalbumin-related protein X (SERPINB14C)</td>
<td>6.608365723</td>
</tr>
<tr>
<td>LOC101751934</td>
<td>uncharacterized LOC101751934</td>
<td>6.608809243</td>
</tr>
<tr>
<td>SLC9A4</td>
<td>solute carrier family 9, subfamily A (NHE4, cation proton antiporter 4), member 4</td>
<td>6.612352499</td>
</tr>
<tr>
<td>LOC101752262</td>
<td>uncharacterized LOC101752262</td>
<td>6.618825953</td>
</tr>
<tr>
<td>LOC101751826</td>
<td>uncharacterized LOC101751826</td>
<td>6.619413011</td>
</tr>
<tr>
<td>LOC101750198</td>
<td>uncharacterized LOC101750198</td>
<td>6.633285887</td>
</tr>
<tr>
<td>KCNV2</td>
<td>potassium channel, subfamily V, member 2</td>
<td>6.634448062</td>
</tr>
<tr>
<td>LCK</td>
<td>lymphocyte-specific protein tyrosine kinase</td>
<td>6.636216598</td>
</tr>
<tr>
<td>LOC101750358</td>
<td>uncharacterized LOC101750358</td>
<td>6.642268352</td>
</tr>
<tr>
<td>FYB</td>
<td>FYN binding protein</td>
<td>6.64388358</td>
</tr>
<tr>
<td>LOC769422</td>
<td>T-cell receptor alpha chain V region 2B4-like</td>
<td>6.646737083</td>
</tr>
<tr>
<td>JAK3</td>
<td>Janus kinase 3</td>
<td>6.649400797</td>
</tr>
<tr>
<td>FKBP6</td>
<td>FK506 binding protein 6, 36kDa</td>
<td>6.653182961</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>Score</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>CCR8L</td>
<td>C-C chemokine receptor 8 like</td>
<td>6.661759012</td>
</tr>
<tr>
<td>HAAO</td>
<td>3-hydroxyanthranilate 3,4-dioxygenase</td>
<td>6.670826504</td>
</tr>
<tr>
<td>LOC101749595</td>
<td>uncharacterized LOC101749595</td>
<td>6.67151814</td>
</tr>
<tr>
<td>LOC101747775</td>
<td>uncharacterized LOC101747775</td>
<td>6.681730355</td>
</tr>
<tr>
<td>LOC101748903</td>
<td>uncharacterized LOC101748903</td>
<td>6.683696454</td>
</tr>
<tr>
<td>GPR20</td>
<td>G protein-coupled receptor 20</td>
<td>6.687075459</td>
</tr>
<tr>
<td>ZAP70</td>
<td>zeta-chain (TCR) associated protein kinase 70kDa</td>
<td>6.688106116</td>
</tr>
<tr>
<td>ITK</td>
<td>IL2-inducible T-cell kinase</td>
<td>6.688348213</td>
</tr>
<tr>
<td>CD3D</td>
<td>CD3d molecule, delta (CD3-TCR complex)</td>
<td>6.690078207</td>
</tr>
<tr>
<td>FAM46C</td>
<td>family with sequence similarity 46, member C</td>
<td>6.690400419</td>
</tr>
<tr>
<td>LOC101748537</td>
<td>uncharacterized LOC101748537</td>
<td>6.692929286</td>
</tr>
<tr>
<td>IL16</td>
<td>interleukin 16</td>
<td>6.697313596</td>
</tr>
<tr>
<td>LOC101750683</td>
<td>uncharacterized LOC101750683</td>
<td>6.703765179</td>
</tr>
<tr>
<td>MLKL</td>
<td>mixed lineage kinase domain-like</td>
<td>6.71124015</td>
</tr>
<tr>
<td>LOC101751062</td>
<td>uncharacterized LOC101751062</td>
<td>6.722466025</td>
</tr>
<tr>
<td>BANK1</td>
<td>B-cell scaffold protein with ankyrin repeats 1</td>
<td>6.724095576</td>
</tr>
<tr>
<td>ST18</td>
<td>suppression of tumorigenicity 18 (breast carcinoma) (zinc finger protein)</td>
<td>6.729386624</td>
</tr>
<tr>
<td>LOC100858944</td>
<td>probable G-protein coupled receptor 34-like</td>
<td>6.738941644</td>
</tr>
<tr>
<td>PINLYP</td>
<td>phospholipase A2 inhibitor and LY6/PLAUR domain containing</td>
<td>6.739718696</td>
</tr>
<tr>
<td>GRP</td>
<td>gastrin-releasing peptide</td>
<td>6.758788145</td>
</tr>
<tr>
<td>LOC101751041</td>
<td>uncharacterized LOC101751041</td>
<td>6.759688488</td>
</tr>
<tr>
<td>LOC101747585</td>
<td>uncharacterized LOC101747585</td>
<td>6.776103988</td>
</tr>
<tr>
<td>LOC101748887</td>
<td>putative scavenger receptor cysteine-rich domain-containing protein LOC619207-like</td>
<td>6.790250739</td>
</tr>
<tr>
<td>VTG3</td>
<td>vitellogenin 3</td>
<td>6.790641731</td>
</tr>
<tr>
<td>LOC101748740</td>
<td>uncharacterized LOC101748740</td>
<td>6.795788273</td>
</tr>
<tr>
<td>LOC101750568</td>
<td>uncharacterized LOC101750568</td>
<td>6.810057442</td>
</tr>
<tr>
<td>LOC769866</td>
<td>hypoxanthine-guanine phosphoribosyltransferase-like</td>
<td>6.819540461</td>
</tr>
<tr>
<td>LOC101751831</td>
<td>uncharacterized LOC101751831</td>
<td>6.821582673</td>
</tr>
<tr>
<td>TDRD5</td>
<td>tudor domain containing 5</td>
<td>6.822985019</td>
</tr>
<tr>
<td>LOC101750192</td>
<td>uncharacterized LOC101750192</td>
<td>6.82858081</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>Log2 Fold Change</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>MCOLN2</td>
<td>mucolipin 2</td>
<td>6.829639082</td>
</tr>
<tr>
<td>LOC101749769</td>
<td>uncharacterized LOC101749769</td>
<td>6.851374267</td>
</tr>
<tr>
<td>CLRN3</td>
<td>clarin 3</td>
<td>6.856015269</td>
</tr>
<tr>
<td>IL8L2</td>
<td>interleukin 8-like 2</td>
<td>6.870443185</td>
</tr>
<tr>
<td>LOC101748032</td>
<td>Fc receptor-like protein 3-like</td>
<td>6.87441968</td>
</tr>
<tr>
<td>LOC101747792</td>
<td>uncharacterized LOC101747792</td>
<td>6.87477236</td>
</tr>
<tr>
<td>CRTAM</td>
<td>cytotoxic and regulatory T cell molecule</td>
<td>6.876219971</td>
</tr>
<tr>
<td>P2RY10</td>
<td>purinergic receptor P2Y, G-protein coupled, 10</td>
<td>6.876317149</td>
</tr>
<tr>
<td>MSC</td>
<td>musculin</td>
<td>6.879359973</td>
</tr>
<tr>
<td>LOC101751851</td>
<td>uncharacterized LOC101751851</td>
<td>6.895666158</td>
</tr>
<tr>
<td>LOC101747938</td>
<td>uncharacterized LOC101747938</td>
<td>6.90308327</td>
</tr>
<tr>
<td>LOC101750079</td>
<td>uncharacterized LOC101750079</td>
<td>6.903761365</td>
</tr>
<tr>
<td>LOC101749543</td>
<td>uncharacterized LOC101749543</td>
<td>6.905206469</td>
</tr>
<tr>
<td>PAPOLG</td>
<td>poly(A) polymerase gamma</td>
<td>6.905206469</td>
</tr>
<tr>
<td>LOC100858088</td>
<td>growth/differentiation factor 9-like</td>
<td>6.91010098</td>
</tr>
<tr>
<td>LOC101752047</td>
<td>uncharacterized LOC101752047</td>
<td>6.915401388</td>
</tr>
<tr>
<td>OLAH</td>
<td>oleoyl-ACP hydrolase</td>
<td>6.91981677</td>
</tr>
<tr>
<td>LOC101752085</td>
<td>uncharacterized LOC101752085</td>
<td>6.934044647</td>
</tr>
<tr>
<td>OMD</td>
<td>osteomodulin</td>
<td>6.937618481</td>
</tr>
<tr>
<td>GDF9</td>
<td>growth differentiation factor 9</td>
<td>6.937767214</td>
</tr>
<tr>
<td>LOC428196</td>
<td>atrial natriuretic peptide receptor 2-like</td>
<td>6.938285792</td>
</tr>
<tr>
<td>LOC101750245</td>
<td>interferon kappa-like</td>
<td>6.939461678</td>
</tr>
<tr>
<td>SHOX2</td>
<td>short stature homeobox 2</td>
<td>6.940754048</td>
</tr>
<tr>
<td>LOC101752312</td>
<td>uncharacterized LOC101752312</td>
<td>6.970393538</td>
</tr>
<tr>
<td>LOC101749809</td>
<td>connector enhancer of kinase suppressor of ras 2-like</td>
<td>6.971583741</td>
</tr>
<tr>
<td>MARCO</td>
<td>macrophage receptor with collagenous structure</td>
<td>6.973207074</td>
</tr>
<tr>
<td>GPR65</td>
<td>G protein-coupled receptor 65</td>
<td>6.984212561</td>
</tr>
<tr>
<td>CD7</td>
<td>CD7 molecule</td>
<td>6.995012454</td>
</tr>
<tr>
<td>NLRC3</td>
<td>NLR family, CARD domain containing 3</td>
<td>6.995705224</td>
</tr>
<tr>
<td>LOC769964</td>
<td>T-cell receptor alpha chain V region 2B4-like</td>
<td>6.998787317</td>
</tr>
<tr>
<td>SLC34A2</td>
<td>solute carrier family 34 (type II sodium/phosphate contransporter), member 2</td>
<td>6.999436337</td>
</tr>
<tr>
<td>LOC421285</td>
<td>uncharacterized LOC421285</td>
<td>7.002027365</td>
</tr>
<tr>
<td>GPR18</td>
<td>G protein-coupled receptor 18</td>
<td>7.015262146</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>Value</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>CTLA4</td>
<td>cytotoxic T-lymphocyte-associated protein 4</td>
<td>7.016425739</td>
</tr>
<tr>
<td>LOC101748169</td>
<td>uncharacterized LOC101748169</td>
<td>7.017810585</td>
</tr>
<tr>
<td>LOC101750336</td>
<td>uncharacterized LOC101750336</td>
<td>7.020591095</td>
</tr>
<tr>
<td>SERPINA10</td>
<td>serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 10</td>
<td>7.022700704</td>
</tr>
<tr>
<td>NEIL2</td>
<td>nei-like DNA glycosylase 2</td>
<td>7.026357447</td>
</tr>
<tr>
<td>LOC101747687</td>
<td>uncharacterized LOC101747687</td>
<td>7.031329024</td>
</tr>
<tr>
<td>LOC769232</td>
<td>Ig heavy chain Mem5-like</td>
<td>7.054617062</td>
</tr>
<tr>
<td>LOC776309</td>
<td>Ig kappa chain V-III region PC 4050-like</td>
<td>7.054988074</td>
</tr>
<tr>
<td>LOC101751591</td>
<td>uncharacterized LOC101751591</td>
<td>7.073606041</td>
</tr>
<tr>
<td>GRAP</td>
<td>GRB2-related adaptor protein</td>
<td>7.076094529</td>
</tr>
<tr>
<td>NGFR</td>
<td>nerve growth factor receptor</td>
<td>7.088269407</td>
</tr>
<tr>
<td>LOC101747249</td>
<td>uncharacterized LOC101747249</td>
<td>7.090430042</td>
</tr>
<tr>
<td>LOC101750141</td>
<td>uncharacterized LOC101750141</td>
<td>7.092228584</td>
</tr>
<tr>
<td>TSPAN8</td>
<td>tetraspanin 8</td>
<td>7.092261044</td>
</tr>
<tr>
<td>PLD4</td>
<td>phospholipase D family, member 4</td>
<td>7.09494493</td>
</tr>
<tr>
<td>LOC101748004</td>
<td>uncharacterized LOC101748004</td>
<td>7.096978636</td>
</tr>
<tr>
<td>LOC769837</td>
<td>probable G-protein coupled receptor 34-like</td>
<td>7.104516854</td>
</tr>
<tr>
<td>LOC101751033</td>
<td>uncharacterized LOC101751033</td>
<td>7.106432078</td>
</tr>
<tr>
<td>LOC770026</td>
<td>OX-2 membrane glycoprotein-like</td>
<td>7.107505244</td>
</tr>
<tr>
<td>FAM83G</td>
<td>family with sequence similarity 83, member G</td>
<td>7.121844298</td>
</tr>
<tr>
<td>GRID2IP</td>
<td>glutamate receptor, ionotropic, delta 2 (Grid2) interacting protein</td>
<td>7.124534929</td>
</tr>
<tr>
<td>LOC101751556</td>
<td>uncharacterized LOC101751556</td>
<td>7.134118239</td>
</tr>
<tr>
<td>LOC101752039</td>
<td>uncharacterized LOC101752039</td>
<td>7.137093609</td>
</tr>
<tr>
<td>TRBV6-5</td>
<td>T cell receptor beta variable 6-5</td>
<td>7.138683909</td>
</tr>
<tr>
<td>CD6</td>
<td>CD6 molecule</td>
<td>7.156494627</td>
</tr>
<tr>
<td>XCR1</td>
<td>chemokine (C motif) receptor 1</td>
<td>7.170965275</td>
</tr>
<tr>
<td>LOC100857983</td>
<td>G-protein coupled receptor 35-like</td>
<td>7.172887709</td>
</tr>
<tr>
<td>IL7R</td>
<td>interleukin 7 receptor</td>
<td>7.173416762</td>
</tr>
<tr>
<td>NDST4</td>
<td>N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 4</td>
<td>7.174096699</td>
</tr>
<tr>
<td>CD4</td>
<td>CD4 molecule</td>
<td>7.174121341</td>
</tr>
<tr>
<td>LOC101751565</td>
<td>uncharacterized LOC101751565</td>
<td>7.183387261</td>
</tr>
<tr>
<td>TRAF3IP3</td>
<td>TRAF3 interacting protein 3</td>
<td>7.184977871</td>
</tr>
<tr>
<td>LOC425497</td>
<td>T-cell receptor alpha chain V region 2B4-like</td>
<td>7.199514337</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Description</td>
<td>Log2 Fold Change</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>LOC101747353</td>
<td>uncharacterized LOC101747353</td>
<td>7.201241771</td>
</tr>
<tr>
<td>LOC415472</td>
<td>uncharacterized LOC415472</td>
<td>7.204784978</td>
</tr>
<tr>
<td>TNR</td>
<td>tenascin R</td>
<td>7.21385128</td>
</tr>
<tr>
<td>IL21R</td>
<td>interleukin 21 receptor</td>
<td>7.230797872</td>
</tr>
<tr>
<td>LOC101750963</td>
<td>uncharacterized LOC101750963</td>
<td>7.235248379</td>
</tr>
<tr>
<td>IL22</td>
<td>interleukin 22</td>
<td>7.250014115</td>
</tr>
<tr>
<td>LOC431250</td>
<td>G-protein coupled receptor 183-like</td>
<td>7.266796697</td>
</tr>
<tr>
<td>LOC101749173</td>
<td>uncharacterized LOC101749173</td>
<td>7.273433479</td>
</tr>
<tr>
<td>SLAMF1</td>
<td>signaling lymphocytic activation molecule family member 1</td>
<td>7.280364052</td>
</tr>
<tr>
<td>LOC101747459</td>
<td>uncharacterized LOC101747459</td>
<td>7.287343002</td>
</tr>
<tr>
<td>TXK</td>
<td>TXK tyrosine kinase</td>
<td>7.296070808</td>
</tr>
<tr>
<td>PDE6H</td>
<td>phosphodiesterase 6H, cGMP-specific, cone, gamma</td>
<td>7.297925053</td>
</tr>
<tr>
<td>LOC101748113</td>
<td>zinc finger matrin-type protein 1-like</td>
<td>7.302319051</td>
</tr>
<tr>
<td>AHRR</td>
<td>aryl-hydrocarbon receptor repressor</td>
<td>7.305788167</td>
</tr>
<tr>
<td>LOC101751907</td>
<td>PDZ domain-containing RING finger protein 4-like</td>
<td>7.305879347</td>
</tr>
<tr>
<td>LOC101750356</td>
<td>uncharacterized LOC101750356</td>
<td>7.322649262</td>
</tr>
<tr>
<td>LOC416186</td>
<td>uncharacterized LOC416186</td>
<td>7.323189901</td>
</tr>
<tr>
<td>LOC770609</td>
<td>T-cell receptor alpha chain V region 2B4-like</td>
<td>7.327598587</td>
</tr>
<tr>
<td>TXLNB</td>
<td>taxilin beta</td>
<td>7.327935253</td>
</tr>
<tr>
<td>LOC101748184</td>
<td>uncharacterized LOC101748184</td>
<td>7.333334278</td>
</tr>
<tr>
<td>HOXD10</td>
<td>homeobox D10</td>
<td>7.352705567</td>
</tr>
<tr>
<td>LOC428291</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>7.367458436</td>
</tr>
<tr>
<td>LOC101747521</td>
<td>Ig-like V-type domain-containing protein FAM187A-like</td>
<td>7.378511623</td>
</tr>
<tr>
<td>LOC101749048</td>
<td>uncharacterized LOC101749048</td>
<td>7.378771701</td>
</tr>
<tr>
<td>LOC101752189</td>
<td>PHD finger protein 7-like</td>
<td>7.385862401</td>
</tr>
<tr>
<td>LOC101749324</td>
<td>uncharacterized LOC101749324</td>
<td>7.390770849</td>
</tr>
<tr>
<td>LOC101751864</td>
<td>uncharacterized LOC101751864</td>
<td>7.392489162</td>
</tr>
<tr>
<td>LOC100859850</td>
<td>lisH domain-containing protein C1711.05-like</td>
<td>7.393519168</td>
</tr>
<tr>
<td>PSCA</td>
<td>prostate stem cell antigen</td>
<td>7.394891366</td>
</tr>
<tr>
<td>LOC101752088</td>
<td>uncharacterized LOC101752088</td>
<td>7.40045254</td>
</tr>
<tr>
<td>LOC101747495</td>
<td>uncharacterized LOC101747495</td>
<td>7.40752271</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>UBASH3A</td>
<td>ubiquitin associated and SH3 domain</td>
<td>containing A</td>
</tr>
<tr>
<td>LOC416927</td>
<td>carbonic anhydrase 15-like</td>
<td></td>
</tr>
<tr>
<td>LOC417142</td>
<td>uncharacterized LOC417142</td>
<td></td>
</tr>
<tr>
<td>RHCG</td>
<td>Rh family, C glycoprotein</td>
<td></td>
</tr>
<tr>
<td>LOC101750590</td>
<td>uncharacterized LOC101750590</td>
<td></td>
</tr>
<tr>
<td>DHR57C</td>
<td>dehydrogenase/reductase (SDR family)</td>
<td>member 7C</td>
</tr>
<tr>
<td>LOC101751741</td>
<td>uncharacterized LOC101751741</td>
<td></td>
</tr>
<tr>
<td>LOC101750526</td>
<td>uncharacterized LOC101750526</td>
<td></td>
</tr>
<tr>
<td>LOC101747554</td>
<td>epiplakin-like</td>
<td></td>
</tr>
<tr>
<td>LOC101751647</td>
<td>GTPase IMAP family member 7-like</td>
<td></td>
</tr>
<tr>
<td>LOC430902</td>
<td>T-cell receptor alpha chain V region CTL-L17-like</td>
<td></td>
</tr>
<tr>
<td>SRCRB4D</td>
<td>scavenger receptor cysteine rich domain</td>
<td>containing, group B (4 domains)</td>
</tr>
<tr>
<td>LAMP3</td>
<td>lysosomal-associated membrane protein 3</td>
<td></td>
</tr>
<tr>
<td>TRAT1</td>
<td>T cell receptor associated transmembrane</td>
<td>adaptor 1</td>
</tr>
<tr>
<td>S1PR4</td>
<td>sphingosine-1-phosphate receptor 4</td>
<td></td>
</tr>
<tr>
<td>PRLHR2</td>
<td>prolactin releasing peptide receptor-like</td>
<td></td>
</tr>
<tr>
<td>LRP1B</td>
<td>low density lipoprotein receptor-related</td>
<td>protein 1B</td>
</tr>
<tr>
<td>LOC427180</td>
<td>E3 ubiquitin-protein ligase Topors-like</td>
<td></td>
</tr>
<tr>
<td>LOC101752303</td>
<td>uncharacterized LOC101752303</td>
<td></td>
</tr>
<tr>
<td>DOK3</td>
<td>docking protein 3</td>
<td></td>
</tr>
<tr>
<td>GPR82</td>
<td>G protein-coupled receptor 82</td>
<td></td>
</tr>
<tr>
<td>LOC101749904</td>
<td>inverted formin-2-like</td>
<td></td>
</tr>
<tr>
<td>CCL19</td>
<td>chemokine (C-C motif) ligand 19</td>
<td></td>
</tr>
<tr>
<td>TNFRSF13B</td>
<td>tumor necrosis factor receptor superfamily, member 13B</td>
<td></td>
</tr>
<tr>
<td>LOC101751143</td>
<td>uncharacterized LOC101751143</td>
<td></td>
</tr>
<tr>
<td>LOC101750146</td>
<td>envelope glycoprotein gp95-like</td>
<td></td>
</tr>
<tr>
<td>P2RY8</td>
<td>purinergic receptor P2Y, G-protein</td>
<td>coupled, 8</td>
</tr>
<tr>
<td>ZPB</td>
<td>zona pellucida binding protein</td>
<td></td>
</tr>
<tr>
<td>LOC101750001</td>
<td>uncharacterized LOC101750001</td>
<td></td>
</tr>
<tr>
<td>TCP11</td>
<td>t-complex 11 homolog (mouse)</td>
<td></td>
</tr>
<tr>
<td>LOC101749084</td>
<td>uncharacterized LOC101749084</td>
<td></td>
</tr>
<tr>
<td>Gene ID</td>
<td>Description</td>
<td>Log2 Fold Change</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>LOC101748775</td>
<td>probable G-protein coupled receptor 141-like</td>
<td>7.641306886</td>
</tr>
<tr>
<td>LOC101749436</td>
<td>uncharacterized LOC101749436</td>
<td>7.655852677</td>
</tr>
<tr>
<td>LOC101749994</td>
<td>uncharacterized LOC101749994</td>
<td>7.658854125</td>
</tr>
<tr>
<td>LOC100858973</td>
<td>TRAF family member-associated NF-kappa-B activator-like</td>
<td>7.663404064</td>
</tr>
<tr>
<td>LOC101748016</td>
<td>uncharacterized LOC101748016</td>
<td>7.673273737</td>
</tr>
<tr>
<td>LOC101748390</td>
<td>uncharacterized LOC101748390</td>
<td>7.67659182</td>
</tr>
<tr>
<td>TMEM156</td>
<td>transmembrane protein 156</td>
<td>7.67848102</td>
</tr>
<tr>
<td>LOC101750509</td>
<td>uncharacterized LOC101750509</td>
<td>7.687067571</td>
</tr>
<tr>
<td>WDFY4</td>
<td>WDFY family member 4</td>
<td>7.709901054</td>
</tr>
<tr>
<td>LOC100857257</td>
<td>homeobox protein Hox-A5-like</td>
<td>7.717165631</td>
</tr>
<tr>
<td>LOC101747621</td>
<td>uncharacterized LOC101747621</td>
<td>7.721304297</td>
</tr>
<tr>
<td>LOC101748279</td>
<td>uncharacterized LOC101748279</td>
<td>7.729212857</td>
</tr>
<tr>
<td>LOC101749213</td>
<td>uncharacterized LOC101749213</td>
<td>7.731047439</td>
</tr>
<tr>
<td>LOC101750706</td>
<td>uncharacterized LOC101750706</td>
<td>7.733286543</td>
</tr>
<tr>
<td>LOC101748333</td>
<td>uncharacterized LOC101748333</td>
<td>7.749735373</td>
</tr>
<tr>
<td>LOC101751521</td>
<td>uncharacterized LOC101751521</td>
<td>7.763411575</td>
</tr>
<tr>
<td>DNTT</td>
<td>DNA nucleotidylexotransferase</td>
<td>7.775142803</td>
</tr>
<tr>
<td>LOC100857766</td>
<td>uncharacterized LOC100857766</td>
<td>7.775840699</td>
</tr>
<tr>
<td>LOC101749644</td>
<td>uncharacterized LOC101749644</td>
<td>7.781884235</td>
</tr>
<tr>
<td>LOC100857153</td>
<td>Ig kappa chain V-V regions-like</td>
<td>7.7851081</td>
</tr>
<tr>
<td>LOC101749282</td>
<td>uncharacterized LOC101749282</td>
<td>7.795325387</td>
</tr>
<tr>
<td>LOC101749194</td>
<td>uncharacterized LOC101749194</td>
<td>7.798957748</td>
</tr>
<tr>
<td>LOC100858638</td>
<td>forkhead box protein N4-like</td>
<td>7.799411151</td>
</tr>
<tr>
<td>LOC423786</td>
<td>lipase member M-like</td>
<td>7.809157165</td>
</tr>
<tr>
<td>LOC101750479</td>
<td>uncharacterized LOC101750479</td>
<td>7.818198686</td>
</tr>
<tr>
<td>LOC101750324</td>
<td>uncharacterized LOC101750324</td>
<td>7.820947619</td>
</tr>
<tr>
<td>LOC101751340</td>
<td>uncharacterized LOC101751340</td>
<td>7.830166573</td>
</tr>
<tr>
<td>LOC101751553</td>
<td>uncharacterized LOC101751553</td>
<td>7.832320417</td>
</tr>
<tr>
<td>GPR132</td>
<td>G protein-coupled receptor 132</td>
<td>7.832620223</td>
</tr>
<tr>
<td>TBX5</td>
<td>T-box 5</td>
<td>7.833775608</td>
</tr>
<tr>
<td>LOC101749311</td>
<td>uncharacterized LOC101749311</td>
<td>7.842224613</td>
</tr>
<tr>
<td>CYSLTR2</td>
<td>cysteinyl leukotriene receptor 2</td>
<td>7.845382653</td>
</tr>
<tr>
<td>IL17F</td>
<td>interleukin 17F</td>
<td>7.846869361</td>
</tr>
<tr>
<td>LOC101748127</td>
<td>uncharacterized LOC101748127</td>
<td>7.847433244</td>
</tr>
<tr>
<td>LOC100857665</td>
<td>uncharacterized LOC100857665</td>
<td>7.849686575</td>
</tr>
<tr>
<td>CD300LF</td>
<td>CD300 molecule-like family member f</td>
<td>7.854120356</td>
</tr>
<tr>
<td>NKKX3-1</td>
<td>NK3 homeobox 1</td>
<td>7.856363275</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Description</td>
<td>Log2 Fold Change</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>LOC101748885</td>
<td>uncharacterized LOC101748885</td>
<td>7.859845344</td>
</tr>
<tr>
<td>LOC101751601</td>
<td>uncharacterized LOC101751601</td>
<td>7.861831331</td>
</tr>
<tr>
<td>LAG3</td>
<td>lymphocyte-activation gene 3</td>
<td>7.863450534</td>
</tr>
<tr>
<td>ANKRD33</td>
<td>ankyrin repeat-activation domain 33</td>
<td>7.867155163</td>
</tr>
<tr>
<td>LOC425854</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>7.873424448</td>
</tr>
<tr>
<td>LOC101748175</td>
<td>uncharacterized LOC101748175</td>
<td>7.875472917</td>
</tr>
<tr>
<td>LOC101749736</td>
<td>uncharacterized LOC101749736</td>
<td>7.875472917</td>
</tr>
<tr>
<td>LOC101749366</td>
<td>uncharacterized LOC101749366</td>
<td>7.88276216</td>
</tr>
<tr>
<td>LOC427775</td>
<td>3-ketosteroid-9-alpha-hydroxylase oxygenase subunit-like</td>
<td>7.895242023</td>
</tr>
<tr>
<td>HOXA5</td>
<td>homeobox A5</td>
<td>7.897418201</td>
</tr>
<tr>
<td>GMNC</td>
<td>geminin coiled-coil domain containing</td>
<td>7.898692073</td>
</tr>
<tr>
<td>CCR6</td>
<td>chemokine (C-C motif) receptor 6</td>
<td>7.898692079</td>
</tr>
<tr>
<td>LOC101752117</td>
<td>uncharacterized LOC101752117</td>
<td>7.90483003</td>
</tr>
<tr>
<td>TBR1</td>
<td>T-box, brain, 1</td>
<td>7.909293086</td>
</tr>
<tr>
<td>LOC101751711</td>
<td>uncharacterized LOC101751711</td>
<td>7.910013053</td>
</tr>
<tr>
<td>FOXN4</td>
<td>forkhead box N4</td>
<td>7.91587937</td>
</tr>
<tr>
<td>P2RX1</td>
<td>purinergic receptor P2X, ligand-gated ion channel, 1</td>
<td>7.928728059</td>
</tr>
<tr>
<td>LOC101751536</td>
<td>uncharacterized LOC101751536</td>
<td>7.941634545</td>
</tr>
<tr>
<td>EDNRB2</td>
<td>endothelin receptor B subtype 2</td>
<td>7.945822624</td>
</tr>
<tr>
<td>FLT3</td>
<td>fms-related tyrosine kinase 3</td>
<td>7.947565699</td>
</tr>
<tr>
<td>LOC101750282</td>
<td>uncharacterized LOC101750282</td>
<td>7.954428984</td>
</tr>
<tr>
<td>LOC101749567</td>
<td>uncharacterized LOC101749567</td>
<td>7.965033888</td>
</tr>
<tr>
<td>IRF4</td>
<td>interferon regulatory factor 4</td>
<td>7.965575906</td>
</tr>
<tr>
<td>LOC101747982</td>
<td>uncharacterized LOC101747982</td>
<td>7.96924626</td>
</tr>
<tr>
<td>LOC101750027</td>
<td>uncharacterized LOC101750027</td>
<td>7.97286494</td>
</tr>
<tr>
<td>MMP13</td>
<td>matrix metallopeptidase 13 (collagenase 3)</td>
<td>7.976548285</td>
</tr>
<tr>
<td>IFNG</td>
<td>interferon, gamma</td>
<td>7.983528753</td>
</tr>
<tr>
<td>CECR6</td>
<td>cat eye syndrome chromosome region, candidate 6</td>
<td>7.987320866</td>
</tr>
<tr>
<td>LOC101749679</td>
<td>UDP-glucuronosyltransferase 1-9-like</td>
<td>7.989479654</td>
</tr>
<tr>
<td>LOC101752292</td>
<td>uncharacterized LOC101752292</td>
<td>7.995086949</td>
</tr>
<tr>
<td>IKZF3</td>
<td>IKAROS family zinc finger 3 (Aiolos)</td>
<td>8.003951281</td>
</tr>
<tr>
<td>GPR35</td>
<td>G protein-coupled receptor 35</td>
<td>8.011506016</td>
</tr>
<tr>
<td>LOC101748644</td>
<td>uncharacterized LOC101748644</td>
<td>8.021479727</td>
</tr>
<tr>
<td>HOXB1</td>
<td>homeobox B1</td>
<td>8.02713193</td>
</tr>
<tr>
<td>LOC101747267</td>
<td>uncharacterized LOC101747267</td>
<td>8.038095925</td>
</tr>
<tr>
<td>LOC100859777</td>
<td>LOC101748672</td>
<td>LOC100859830</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>LOC101749608</td>
<td>LOC100858551</td>
<td>LOC100858870</td>
</tr>
<tr>
<td>LOC10174997</td>
<td>LOC101748249</td>
<td>LOC101749241</td>
</tr>
<tr>
<td>LOC424007</td>
<td>LOC101749579</td>
<td>LOC428295</td>
</tr>
<tr>
<td>LOC101749201</td>
<td>LOC101749597</td>
<td>LOC776580</td>
</tr>
<tr>
<td>LOC101749251</td>
<td>LOC101749201</td>
<td>LOC101749251</td>
</tr>
</tbody>
</table>

<p>| LOC100859777 | deleted in malignant brain tumors 1 protein-like | 8.047723774 |
| LOC101748672 | uncharacterized LOC101748672 | 8.053980168 |
| LOC100859830 | feather keratin Cos1-1/Cos1-3/Cos2-1-like | 8.054522922 |
| LOC101748349 | uncharacterized LOC101748349 | 8.062855655 |
| TOX | thymocyte selection-associated high mobility group box | 8.070885877 |
| GJB3 | gap junction protein, beta 3, 31kDa | 8.081083929 |
| HOXA9 | homeobox A9 | 8.082521645 |
| LOC100858551 | homeobox protein Hox-A9-like | 8.082521645 |
| LOC100858870 | homeobox protein Hox-A9-like | 8.082521645 |
| LOC769044 | uncharacterized LOC769044 | 8.085466673 |
| LOC101748997 | uncharacterized LOC101748997 | 8.08609463 |
| LOC101748249 | uncharacterized LOC101748249 | 8.09037711 |
| PRLHR | prolactin releasing hormone receptor | 8.101345421 |
| LOC101749608 | uncharacterized LOC101749608 | 8.116551902 |
| CHUNK-1 | CHUNK-1 protein | 8.121533517 |
| LOC428295 | feather keratin Cos1-1/Cos1-3/Cos2-1-like | 8.141340821 |
| LOC101749241 | heat shock transcription factor, X-linked-like | 8.142617655 |
| LOC424007 | uncharacterized LOC424007 | 8.154311811 |
| SEMA3E | sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3E | 8.158656768 |
| CRYAA | crystallin, alpha A | 8.175624397 |
| CST7 | cystatin F (leukocystatin) | 8.176872851 |
| LOC396098 | B6.1 | 8.181588798 |
| LOC101752332 | uncharacterized LOC101752332 | 8.185321468 |
| CHRNA9 | cholinergic receptor, nicotinic, alpha 9 (neuronal) | 8.221683781 |
| LOC101749597 | reticulin-4-like | 8.223856915 |
| LOC776580 | Ig kappa chain V-III region MOPC 63-like | 8.244411409 |
| LOC101749201 | peptide methionine sulfoxide reductase MsrA-like | 8.245362553 |
| LOC101749251 | uncharacterized LOC101749251 | 8.246740599 |
| FOXN1 | forkhead box N1 | 8.266130621 |
| TNFSF11 | tumor necrosis factor (ligand) superfamily, member 11 | 8.285339586 |
| LOC418836 | mannose receptor, C type 2-like | 8.308566567 |</p>
<table>
<thead>
<tr>
<th>LOC101751703</th>
<th>uncharacterized LOC101751703</th>
<th>8.309931032</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC101751801</td>
<td>uncharacterized LOC101751801</td>
<td>8.341274184</td>
</tr>
<tr>
<td>LOC101750369</td>
<td>uncharacterized LOC101750369</td>
<td>8.356848079</td>
</tr>
<tr>
<td>LOC101749538</td>
<td>UDP-glucuronosyltransferase 1-9-like</td>
<td>8.369466484</td>
</tr>
<tr>
<td>LOC101747776</td>
<td>uncharacterized LOC101747776</td>
<td>8.374430938</td>
</tr>
<tr>
<td>CD8B</td>
<td>CD8b molecule</td>
<td>8.384548817</td>
</tr>
<tr>
<td>LOC422928</td>
<td>uncharacterized LOC422928</td>
<td>8.400836752</td>
</tr>
<tr>
<td>LOC101751137</td>
<td>uncharacterized LOC101751137</td>
<td>8.442197081</td>
</tr>
<tr>
<td>LOC423629</td>
<td>uncharacterized LOC423629</td>
<td>8.459841417</td>
</tr>
<tr>
<td>LOC101748551</td>
<td>uncharacterized LOC101748551</td>
<td>8.461970494</td>
</tr>
<tr>
<td>LOC101748334</td>
<td>uncharacterized LOC101748334</td>
<td>8.476138626</td>
</tr>
<tr>
<td>LOC101750653</td>
<td>uncharacterized LOC101750653</td>
<td>8.484339566</td>
</tr>
<tr>
<td>LOC101748835</td>
<td>uncharacterized LOC101748835</td>
<td>8.48747831</td>
</tr>
<tr>
<td>TMEM81</td>
<td>transmembrane protein 81</td>
<td>8.488322191</td>
</tr>
<tr>
<td>LOC101751926</td>
<td>uncharacterized LOC101751926</td>
<td>8.491291939</td>
</tr>
<tr>
<td>LOC101748036</td>
<td>uncharacterized LOC101748036</td>
<td>8.499726322</td>
</tr>
<tr>
<td>LOC101747619</td>
<td>Fas apoptotic inhibitory molecule pseudogene</td>
<td>8.517433184</td>
</tr>
<tr>
<td>LOC101748722</td>
<td>uncharacterized LOC101748722</td>
<td>8.524032323</td>
</tr>
<tr>
<td>STAT4</td>
<td>signal transducer and activator of transcription 4</td>
<td>8.539364143</td>
</tr>
<tr>
<td>LOC101747883</td>
<td>uncharacterized LOC101747883</td>
<td>8.54063178</td>
</tr>
<tr>
<td>PROKR2</td>
<td>prokineticin receptor 2</td>
<td>8.541099905</td>
</tr>
<tr>
<td>FANCI</td>
<td>Fanconi anemia, complementation group I</td>
<td>8.562198554</td>
</tr>
<tr>
<td>LOC101747754</td>
<td>uncharacterized LOC101747754</td>
<td>8.566548809</td>
</tr>
<tr>
<td>ASMT</td>
<td>acetylserotonin O-methyltransferase</td>
<td>8.585676158</td>
</tr>
<tr>
<td>LOC101747746</td>
<td>uncharacterized LOC101747746</td>
<td>8.597791861</td>
</tr>
<tr>
<td>MLXIPL</td>
<td>MLX interacting protein-like</td>
<td>8.604849706</td>
</tr>
<tr>
<td>IL8L1</td>
<td>interleukin 8-like 1</td>
<td>8.604877683</td>
</tr>
<tr>
<td>LOC101751432</td>
<td>uncharacterized LOC101751432</td>
<td>8.606512208</td>
</tr>
<tr>
<td>LOC428299</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>8.612573664</td>
</tr>
<tr>
<td>LOC426825</td>
<td>sulfotransferase family cytosolic 2B member 1-like</td>
<td>8.618091794</td>
</tr>
<tr>
<td>LOC101747717</td>
<td>uncharacterized LOC101747717</td>
<td>8.62844554</td>
</tr>
<tr>
<td>LOC101749090</td>
<td>T-cell surface glycoprotein CD8 alpha chain-like</td>
<td>8.635811161</td>
</tr>
<tr>
<td>LOC101749379</td>
<td>uncharacterized LOC101749379</td>
<td>8.636697116</td>
</tr>
<tr>
<td>CHRNA10</td>
<td>cholinergic receptor, nicotinic, alpha 10 (neuronal)</td>
<td>8.645514336</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Description</td>
<td>Alteration</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>LOC101751856</td>
<td>uncharacterized LOC101751856</td>
<td>8.649220244</td>
</tr>
<tr>
<td>CD79B</td>
<td>CD79b molecule, immunoglobulin-associated beta</td>
<td>8.657465183</td>
</tr>
<tr>
<td>TMPRSS3</td>
<td>transmembrane protease, serine 3</td>
<td>8.658782734</td>
</tr>
<tr>
<td>LOC101752025</td>
<td>uncharacterized LOC101752025</td>
<td>8.681775364</td>
</tr>
<tr>
<td>LOC772381</td>
<td>uncharacterized LOC772381</td>
<td>8.700717133</td>
</tr>
<tr>
<td>LOC101751236</td>
<td>uncharacterized LOC101751236</td>
<td>8.707738739</td>
</tr>
<tr>
<td>IL6</td>
<td>interleukin 6</td>
<td>8.70887696</td>
</tr>
<tr>
<td>LOC101750228</td>
<td>uncharacterized LOC101750228</td>
<td>8.715515904</td>
</tr>
<tr>
<td>LOC101751887</td>
<td>NF-kappa-B inhibitor delta-like</td>
<td>8.717993544</td>
</tr>
<tr>
<td>IL2RA</td>
<td>interleukin 2 receptor, alpha</td>
<td>8.747977623</td>
</tr>
<tr>
<td>LOC422924</td>
<td>T-cell surface glycoprotein CD8 alpha chain-like</td>
<td>8.755442262</td>
</tr>
<tr>
<td>IL2</td>
<td>interleukin 2</td>
<td>8.763909473</td>
</tr>
<tr>
<td>LOC101751937</td>
<td>uncharacterized LOC101751937</td>
<td>8.767919586</td>
</tr>
<tr>
<td>COL22A1</td>
<td>collagen, type XXII, alpha 1</td>
<td>8.780136564</td>
</tr>
<tr>
<td>LOC101748337</td>
<td>uncharacterized LOC101748337</td>
<td>8.782736175</td>
</tr>
<tr>
<td>LOC419333</td>
<td>formin-like protein 16-like</td>
<td>8.784532422</td>
</tr>
<tr>
<td>LOC101750650</td>
<td>uncharacterized LOC101750650</td>
<td>8.800770504</td>
</tr>
<tr>
<td>LOC101749432</td>
<td>uncharacterized LOC101749432</td>
<td>8.808642468</td>
</tr>
<tr>
<td>SLC5A10</td>
<td>solute carrier family 5 (sodium/sugar cotransporter), member 10</td>
<td>8.809189327</td>
</tr>
<tr>
<td>C2ORF54</td>
<td>chromosome 9 open reading frame, human C2orf54</td>
<td>8.810828662</td>
</tr>
<tr>
<td>CD72</td>
<td>CD72 molecule</td>
<td>8.811696086</td>
</tr>
<tr>
<td>LOC101751980</td>
<td>uncharacterized LOC101751980</td>
<td>8.821008593</td>
</tr>
<tr>
<td>LAT2</td>
<td>linker for activation of T cells family, member 2</td>
<td>8.827241077</td>
</tr>
<tr>
<td>CCR7</td>
<td>chemokine (C-C motif) receptor 7</td>
<td>8.83996071</td>
</tr>
<tr>
<td>CELA1</td>
<td>chymotrypsin-like elastase family, member 1</td>
<td>8.849842926</td>
</tr>
<tr>
<td>LOC100858187</td>
<td>uncharacterized LOC100858187</td>
<td>8.852435876</td>
</tr>
<tr>
<td>LOC100858332</td>
<td>G-protein coupled receptor 12-like</td>
<td>8.86860652</td>
</tr>
<tr>
<td>LOC421856</td>
<td>uncharacterized LOC421856</td>
<td>8.876766903</td>
</tr>
<tr>
<td>LOC101750953</td>
<td>uncharacterized LOC101750953</td>
<td>8.877774919</td>
</tr>
<tr>
<td>VGLL2</td>
<td>vestigial-like family member 2</td>
<td>8.881848126</td>
</tr>
<tr>
<td>LOC100859340</td>
<td>butyrophilin subfamily 1 member A1-like</td>
<td>8.908812908</td>
</tr>
<tr>
<td>LOC100857191</td>
<td>c-C motif chemokine 26-like</td>
<td>8.9496864</td>
</tr>
<tr>
<td>LOC100857102</td>
<td>synapsin-3-like</td>
<td>8.958987633</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Description</td>
<td>log2FoldChange</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>LOC101751368</td>
<td>uncharacterized LOC101751368</td>
<td>8.961478635</td>
</tr>
<tr>
<td>FOXI3</td>
<td>forkhead box I3</td>
<td>8.963763096</td>
</tr>
<tr>
<td>LOC101749210</td>
<td>uncharacterized LOC101749210</td>
<td>8.964658543</td>
</tr>
<tr>
<td>LOC772126</td>
<td>uncharacterized LOC772126</td>
<td>8.967514481</td>
</tr>
<tr>
<td>ERP27</td>
<td>endoplasmic reticulum protein 27</td>
<td>8.988343852</td>
</tr>
<tr>
<td>LOC101747843</td>
<td>uncharacterized LOC101747843</td>
<td>8.988684687</td>
</tr>
<tr>
<td>DKK1</td>
<td>dickkopf WNT signaling pathway inhibitor 1</td>
<td>9.018228003</td>
</tr>
<tr>
<td>LOC770639</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>9.024751838</td>
</tr>
<tr>
<td>HEP21</td>
<td>hen egg protein 21 kDa</td>
<td>9.032376393</td>
</tr>
<tr>
<td>LOC101750610</td>
<td>uncharacterized LOC101750610</td>
<td>9.058560027</td>
</tr>
<tr>
<td>LOC776088</td>
<td>uncharacterized LOC776088</td>
<td>9.076842313</td>
</tr>
<tr>
<td>PTPROQ</td>
<td>protein tyrosine phosphatase, receptor type, Q</td>
<td>9.109529517</td>
</tr>
<tr>
<td>INPP1</td>
<td>inositol polyphosphate phosphatase-like 1</td>
<td>9.111689933</td>
</tr>
<tr>
<td>PTCRA</td>
<td>pre T-cell antigen receptor alpha</td>
<td>9.113273344</td>
</tr>
<tr>
<td>LOC101749462</td>
<td>uncharacterized LOC101749462</td>
<td>9.118396067</td>
</tr>
<tr>
<td>SH2D5</td>
<td>SH2 domain containing 5</td>
<td>9.125351965</td>
</tr>
<tr>
<td>TFAP2E</td>
<td>transcription factor AP-2 epsilon (activating enhancer binding protein 2</td>
<td>9.143510768</td>
</tr>
<tr>
<td>LOC428293</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>9.158887346</td>
</tr>
<tr>
<td>LOC100859466</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>9.158887346</td>
</tr>
<tr>
<td>LOC770295</td>
<td>uncharacterized LOC770295</td>
<td>9.164479584</td>
</tr>
<tr>
<td>LRRC18</td>
<td>leucine rich repeat containing 18</td>
<td>9.167091934</td>
</tr>
<tr>
<td>LOC101749559</td>
<td>uncharacterized LOC101749559</td>
<td>9.18030702</td>
</tr>
<tr>
<td>LRRC63</td>
<td>leucine rich repeat containing 63</td>
<td>9.192021513</td>
</tr>
<tr>
<td>PGA</td>
<td>pepsinogen 5, group I (pepsinogen A)</td>
<td>9.207868455</td>
</tr>
<tr>
<td>LOC100858434</td>
<td>homeobox protein Hox-A6-like</td>
<td>9.213930464</td>
</tr>
<tr>
<td>TAT</td>
<td>tyrosine aminotransferase</td>
<td>9.219144314</td>
</tr>
<tr>
<td>LOC101749624</td>
<td>uncharacterized LOC101749624</td>
<td>9.234745594</td>
</tr>
<tr>
<td>CNR2</td>
<td>cannabinoid receptor 2 (macrophage)</td>
<td>9.245124826</td>
</tr>
<tr>
<td>LOC101750122</td>
<td>uncharacterized LOC101750122</td>
<td>9.261836359</td>
</tr>
<tr>
<td>LOC101751098</td>
<td>zinc-binding protein A33-like</td>
<td>9.263292678</td>
</tr>
<tr>
<td>TPP2</td>
<td>tubulin polymerization-promoting protein family member 2</td>
<td>9.263433534</td>
</tr>
<tr>
<td>LOC771012</td>
<td>coagulation factor X-like</td>
<td>9.267161218</td>
</tr>
<tr>
<td>DMBT1l</td>
<td>deleted in malignant brain tumors 1 protein-like</td>
<td>9.267161218</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Description</td>
<td>ENSP Score</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>NR5A1</td>
<td>nuclear receptor subfamily 5, group A, member 1</td>
<td>9.276041224</td>
</tr>
<tr>
<td>LOC428383</td>
<td>leucine-rich repeat-containing protein 7-like</td>
<td>9.278658529</td>
</tr>
<tr>
<td>BTN3A3</td>
<td>butyrophilin, subfamily 3, member A3</td>
<td>9.318045633</td>
</tr>
<tr>
<td>LOC770090</td>
<td>butyrophilin subfamily 1 member A1-like</td>
<td>9.34901578</td>
</tr>
<tr>
<td>LOC101749416</td>
<td>uncharacterized LOC101749416</td>
<td>9.357727932</td>
</tr>
<tr>
<td>LOC427826</td>
<td>apoptosis-inducing factor 3-like</td>
<td>9.370818159</td>
</tr>
<tr>
<td>BIRC7</td>
<td>baculoviral IAP repeat containing 7</td>
<td>9.377817853</td>
</tr>
<tr>
<td>LOC101748993</td>
<td>uncharacterized LOC101748993</td>
<td>9.381369904</td>
</tr>
<tr>
<td>LOC101748575</td>
<td>uncharacterized LOC101748575</td>
<td>9.396861618</td>
</tr>
<tr>
<td>LOC101747565</td>
<td>uncharacterized LOC101747565</td>
<td>9.432604534</td>
</tr>
<tr>
<td>LDB3</td>
<td>LIM domain binding 3</td>
<td>9.461192926</td>
</tr>
<tr>
<td>LOC101747868</td>
<td>ly6/PLAUR domain-containing protein 2-like</td>
<td>9.466076461</td>
</tr>
<tr>
<td>AADACL2</td>
<td>arylacetamide deacetylase-like 2</td>
<td>9.474517164</td>
</tr>
<tr>
<td>POU2F3</td>
<td>POU class 2 homeobox 3</td>
<td>9.526597046</td>
</tr>
<tr>
<td>BTLA</td>
<td>B and T lymphocyte associated</td>
<td>9.534853592</td>
</tr>
<tr>
<td>LOC101750389</td>
<td>uncharacterized LOC101750389</td>
<td>9.53673289</td>
</tr>
<tr>
<td>LOC101747342</td>
<td>uncharacterized LOC101747342</td>
<td>9.547241591</td>
</tr>
<tr>
<td>LOC769175</td>
<td>uncharacterized LOC769175</td>
<td>9.571885343</td>
</tr>
<tr>
<td>LOC101750231</td>
<td>uncharacterized LOC101750231</td>
<td>9.575652692</td>
</tr>
<tr>
<td>INHA</td>
<td>inhibin, alpha</td>
<td>9.601845057</td>
</tr>
<tr>
<td>LOC101748527</td>
<td>cytokine-dependent hematopoietic cell linker-like</td>
<td>9.615666417</td>
</tr>
<tr>
<td>LOC101752176</td>
<td>T-cell receptor gamma chain V region DFL12-like</td>
<td>9.619981495</td>
</tr>
<tr>
<td>LOC101751752</td>
<td>antigen WC1.1-like</td>
<td>9.624429939</td>
</tr>
<tr>
<td>BARX1</td>
<td>BARX homeobox 1</td>
<td>9.633685491</td>
</tr>
<tr>
<td>TAS2R7</td>
<td>taste receptor, type 2, member 7</td>
<td>9.644757593</td>
</tr>
<tr>
<td>LOC768817</td>
<td>trypsin I-P1-like</td>
<td>9.648087894</td>
</tr>
<tr>
<td>LOC101748259</td>
<td>uncharacterized LOC101748259</td>
<td>9.690144441</td>
</tr>
<tr>
<td>THEMIS</td>
<td>thymocyte selection associated</td>
<td>9.691926738</td>
</tr>
<tr>
<td>LOC101747889</td>
<td>uncharacterized LOC101747889</td>
<td>9.706772271</td>
</tr>
<tr>
<td>LOC101752166</td>
<td>uncharacterized LOC101752166</td>
<td>9.710875296</td>
</tr>
<tr>
<td>WFDC2</td>
<td>WAP four-disulfide core domain 2</td>
<td>9.729739689</td>
</tr>
<tr>
<td>LOC101748908</td>
<td>T-cell receptor alpha chain V region RL-5-like</td>
<td>9.730419188</td>
</tr>
<tr>
<td>LOC101747995</td>
<td>lymphocyte antigen 6E-like</td>
<td>9.734608018</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>Score</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>HOXA6</td>
<td>homeobox A6</td>
<td>9.7823758</td>
</tr>
<tr>
<td>NPBWR1</td>
<td>neuropeptides B/W receptor 1</td>
<td>9.786759701</td>
</tr>
<tr>
<td>CHRNA2</td>
<td>cholinergic receptor, nicotinic, alpha 2 (neuronal)</td>
<td>9.792660169</td>
</tr>
<tr>
<td>DRD2</td>
<td>dopamine receptor D2</td>
<td>9.797272432</td>
</tr>
<tr>
<td>LOC101748499</td>
<td>uncharacterized LOC101748499</td>
<td>9.815431332</td>
</tr>
<tr>
<td>LOC101752131</td>
<td>lymphocyte antigen 6D-like</td>
<td>9.84363845</td>
</tr>
<tr>
<td>LYZ</td>
<td>lysozyme (renal amyloidosis)</td>
<td>9.851572782</td>
</tr>
<tr>
<td>LOC101751969</td>
<td>uncharacterized LOC101751969</td>
<td>9.900368721</td>
</tr>
<tr>
<td>ASCL4</td>
<td>achaete-scute family bHLH transcription factor 4</td>
<td>9.902164047</td>
</tr>
<tr>
<td>POU2AF1</td>
<td>POU class 2 associating factor 1</td>
<td>9.947687454</td>
</tr>
<tr>
<td>LOC101749818</td>
<td>uncharacterized LOC101749818</td>
<td>9.9529596</td>
</tr>
<tr>
<td>LOC101747596</td>
<td>uncharacterized LOC101747596</td>
<td>9.964109787</td>
</tr>
<tr>
<td>LOC101752329</td>
<td>uncharacterized LOC101752329</td>
<td>9.981581552</td>
</tr>
<tr>
<td>TMEFF1</td>
<td>transmembrane protein with EGF-like and two follistatin-like domains 1</td>
<td>9.984489666</td>
</tr>
<tr>
<td>LOC769852</td>
<td>histone H3.2-like</td>
<td>9.989337728</td>
</tr>
<tr>
<td>VSIG1</td>
<td>V-set and immunoglobulin domain containing 1</td>
<td>9.998378875</td>
</tr>
<tr>
<td>LOC101750023</td>
<td>uncharacterized LOC101750023</td>
<td>10.01182825</td>
</tr>
<tr>
<td>LOC770434</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>10.01413209</td>
</tr>
<tr>
<td>CAPN14</td>
<td>calpain 14</td>
<td>10.06982567</td>
</tr>
<tr>
<td>LOC101750506</td>
<td>uncharacterized LOC101750506</td>
<td>10.08737002</td>
</tr>
<tr>
<td>PLA2G1B</td>
<td>phospholipase A2, group IB (pancreas)</td>
<td>10.09144861</td>
</tr>
<tr>
<td>LOC100857752</td>
<td>uncharacterized LOC100857752</td>
<td>10.09675468</td>
</tr>
<tr>
<td>GPR55</td>
<td>G protein-coupled receptor 55</td>
<td>10.09811582</td>
</tr>
<tr>
<td>LOC101752290</td>
<td>uncharacterized LOC101752290</td>
<td>10.1103267</td>
</tr>
<tr>
<td>AGR3</td>
<td>anterior gradient 3</td>
<td>10.12053598</td>
</tr>
<tr>
<td>LOC101749408</td>
<td>uncharacterized LOC101749408</td>
<td>10.12245272</td>
</tr>
<tr>
<td>LIN28B</td>
<td>lin-28 homolog B (C. elegans)</td>
<td>10.12470293</td>
</tr>
<tr>
<td>LOC428479</td>
<td>N-acetyllactosaminde beta-1,6-N-acetylglucosaminyl-transferase-like</td>
<td>10.15921542</td>
</tr>
<tr>
<td>LOC101751452</td>
<td>uncharacterized LOC101751452</td>
<td>10.16717061</td>
</tr>
<tr>
<td>LOC429206</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>10.17518774</td>
</tr>
<tr>
<td>LOC101752033</td>
<td>uncharacterized LOC101752033</td>
<td>10.19235447</td>
</tr>
<tr>
<td>LOC101750110</td>
<td>uncharacterized LOC101750110</td>
<td>10.19290922</td>
</tr>
<tr>
<td>LOC769926</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>10.20633065</td>
</tr>
<tr>
<td>LOC101750038</td>
<td>uncharacterized LOC101750038</td>
<td>10.24622993</td>
</tr>
<tr>
<td>LOC101751502</td>
<td>uncharacterized LOC101751502</td>
<td>10.27322447</td>
</tr>
<tr>
<td>SLC7A1</td>
<td>solute carrier family 7 (cationic amino acid transporter, y+ system), member 1</td>
<td>10.28800089</td>
</tr>
<tr>
<td>LOC101750629</td>
<td>uncharacterized LOC101750629</td>
<td>10.29834902</td>
</tr>
<tr>
<td>LOC101751781</td>
<td>peroxisome proliferator-activated receptor gamma coactivator-related protein 1-like</td>
<td>10.31087403</td>
</tr>
<tr>
<td>LOC101748686</td>
<td>uncharacterized LOC101748686</td>
<td>10.36483504</td>
</tr>
<tr>
<td>FK21</td>
<td>feather keratin 21</td>
<td>10.38179167</td>
</tr>
<tr>
<td>LOC101751182</td>
<td>uncharacterized LOC101751182</td>
<td>10.4119318</td>
</tr>
<tr>
<td>PRSS2</td>
<td>protease, serine, 2 (trypsin 2)</td>
<td>10.41545658</td>
</tr>
<tr>
<td>LOC101751103</td>
<td>uncharacterized LOC101751103</td>
<td>10.44877709</td>
</tr>
<tr>
<td>VPREB3</td>
<td>pre-B lymphocyte 3</td>
<td>10.46220573</td>
</tr>
<tr>
<td>LOC100858480</td>
<td>homeobox protein Hox-A3-like</td>
<td>10.47718148</td>
</tr>
<tr>
<td>LOC770684</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>10.49887912</td>
</tr>
<tr>
<td>LOC101749344</td>
<td>uncharacterized LOC101749344</td>
<td>10.59665567</td>
</tr>
<tr>
<td>LOC101748180</td>
<td>uncharacterized LOC101748180</td>
<td>10.61379867</td>
</tr>
<tr>
<td>LOC101751381</td>
<td>uncharacterized LOC101751381</td>
<td>10.6528629</td>
</tr>
<tr>
<td>LOC427060</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>10.65462708</td>
</tr>
<tr>
<td>LOC101750197</td>
<td>uncharacterized LOC101750197</td>
<td>10.67299099</td>
</tr>
<tr>
<td>LOC101750070</td>
<td>uncharacterized LOC101750070</td>
<td>10.69849632</td>
</tr>
<tr>
<td>LOC101749761</td>
<td>uncharacterized LOC101749761</td>
<td>10.70644422</td>
</tr>
<tr>
<td>CRYBB2</td>
<td>crystallin, beta B2</td>
<td>10.72023571</td>
</tr>
<tr>
<td>EDAR</td>
<td>ectodysplasin A receptor</td>
<td>10.73615667</td>
</tr>
<tr>
<td>LOC101749612</td>
<td>T-cell receptor alpha chain V region RL-5-like</td>
<td>10.77770737</td>
</tr>
<tr>
<td>TGM4</td>
<td>transglutaminase 4 (prostate)</td>
<td>10.78414552</td>
</tr>
<tr>
<td>LOC101747589</td>
<td>spidroin-2-like</td>
<td>10.78662862</td>
</tr>
<tr>
<td>LOC420734</td>
<td>uncharacterized LOC420734</td>
<td>10.80496187</td>
</tr>
</tbody>
</table>
Table 18 continued

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCA5L</td>
<td>Leber congenital amaurosis 5-like</td>
<td>10.81399758</td>
</tr>
<tr>
<td>LOC101751643</td>
<td>immunoglobulin omega chain-like</td>
<td>10.85389431</td>
</tr>
<tr>
<td>NEUROD6</td>
<td>neuronal differentiation 6</td>
<td>10.86768801</td>
</tr>
<tr>
<td>GCNT2</td>
<td>glucosaminyl (N-acetyl) transferase 2, l-branching enzyme (L blood group)</td>
<td>10.87401308</td>
</tr>
<tr>
<td>LOC776577</td>
<td>T-cell receptor gamma chain V region V108A-like</td>
<td>10.96330071</td>
</tr>
<tr>
<td>LOC101749641</td>
<td>uncharacterized LOC101749641</td>
<td>10.99721477</td>
</tr>
<tr>
<td>LOC101748210</td>
<td>uncharacterized LOC101748210</td>
<td>11.02090357</td>
</tr>
<tr>
<td>LOC101750617</td>
<td>uncharacterized LOC101750617</td>
<td>11.02890752</td>
</tr>
<tr>
<td>LOC101747884</td>
<td>uncharacterized LOC101747884</td>
<td>11.03747145</td>
</tr>
<tr>
<td>LOC101751385</td>
<td>uncharacterized LOC101751385</td>
<td>11.078179</td>
</tr>
<tr>
<td>LOC101751636</td>
<td>uncharacterized LOC101751636</td>
<td>11.08301387</td>
</tr>
<tr>
<td>LOC101747296</td>
<td>uncharacterized LOC101747296</td>
<td>11.10560082</td>
</tr>
<tr>
<td>LOC101750797</td>
<td>immunoglobulin omega chain-like</td>
<td>11.1250647</td>
</tr>
<tr>
<td>TOM11</td>
<td>target of myb1 like 1 membrane trafficking protein</td>
<td>11.12774289</td>
</tr>
<tr>
<td>ZPBP2</td>
<td>zona pellucida binding protein 2</td>
<td>11.13434931</td>
</tr>
<tr>
<td>LOC101751075</td>
<td>uncharacterized LOC101751075</td>
<td>11.18139455</td>
</tr>
<tr>
<td>ASIP</td>
<td>agouti signaling protein</td>
<td>11.1896578</td>
</tr>
<tr>
<td>LOC422654</td>
<td>chemokine (C-X-C motif) ligand 1-like</td>
<td>11.19737644</td>
</tr>
<tr>
<td>LOC101748861</td>
<td>uncharacterized LOC101748861</td>
<td>11.21880538</td>
</tr>
<tr>
<td>LOC416500</td>
<td>uncharacterized LOC416500</td>
<td>11.22136961</td>
</tr>
<tr>
<td>GPR15</td>
<td>G protein-coupled receptor 15</td>
<td>11.31702815</td>
</tr>
<tr>
<td>LOC101748718</td>
<td>uncharacterized LOC101748718</td>
<td>11.3579643</td>
</tr>
<tr>
<td>LOC768589</td>
<td>baculoviral IAP repeat-containing protein 5.1-like</td>
<td>11.40579032</td>
</tr>
<tr>
<td>MIR32</td>
<td>microRNA 32</td>
<td>11.41981801</td>
</tr>
<tr>
<td>LOC101749371</td>
<td>uncharacterized LOC101749371</td>
<td>11.4404228</td>
</tr>
<tr>
<td>LOC776570</td>
<td>T-cell receptor gamma chain V region V108A-like</td>
<td>11.45201983</td>
</tr>
<tr>
<td>LOC101751813</td>
<td>uncharacterized LOC101751813</td>
<td>11.46779403</td>
</tr>
<tr>
<td>SCRT2</td>
<td>scratch family zinc finger 2</td>
<td>11.53510038</td>
</tr>
<tr>
<td>LOC769638</td>
<td>T-cell receptor alpha chain V region CTL-F3-like</td>
<td>11.54038478</td>
</tr>
<tr>
<td>LOC101750872</td>
<td>Ig heavy chain V region C3-like</td>
<td>11.61274873</td>
</tr>
<tr>
<td>HMGA2</td>
<td>high mobility group AT-hook 2</td>
<td>11.62743357</td>
</tr>
<tr>
<td>LOC101749817</td>
<td>uncharacterized LOC101749817</td>
<td>11.62849111</td>
</tr>
<tr>
<td>LOC101750806</td>
<td>uncharacterized LOC101750806</td>
<td>11.67614662</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>Score</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>ACRBP</td>
<td>acrosin binding protein</td>
<td>11.68037711</td>
</tr>
<tr>
<td>CCR9</td>
<td>chemokine (C-C motif) receptor 9</td>
<td>11.72714616</td>
</tr>
<tr>
<td>LOC101751584</td>
<td>uncharacterized LOC101751584</td>
<td>11.75838147</td>
</tr>
<tr>
<td>LOC101749259</td>
<td>immunoglobulin omega chain-like</td>
<td>11.82193737</td>
</tr>
<tr>
<td>RRNAD1</td>
<td>ribosomal RNA adenine dimethylase domain containing 1</td>
<td>11.83544648</td>
</tr>
<tr>
<td>DCLRE1B</td>
<td>DNA cross-link repair 1B</td>
<td>11.83807723</td>
</tr>
<tr>
<td>LOC101749503</td>
<td>uncharacterized LOC101749503</td>
<td>11.87123146</td>
</tr>
<tr>
<td>MIRLET7B</td>
<td>microRNA let-7b</td>
<td>11.93822697</td>
</tr>
<tr>
<td>NPPC</td>
<td>natriuretic peptide C</td>
<td>11.94854245</td>
</tr>
<tr>
<td>LOC101748652</td>
<td>uncharacterized LOC101748652</td>
<td>11.96269</td>
</tr>
<tr>
<td>LOC101750937</td>
<td>immunoglobulin iota chain-like</td>
<td>11.97772712</td>
</tr>
<tr>
<td>LOC770794</td>
<td>acylamino-acid-releasing enzyme-like</td>
<td>12.02280818</td>
</tr>
<tr>
<td>LOC101752288</td>
<td>Ig kappa chain V-VI region NQ5-61.1.2-like</td>
<td>12.04832339</td>
</tr>
<tr>
<td>HOXB6</td>
<td>homeobox B6</td>
<td>12.08296066</td>
</tr>
<tr>
<td>TMPRSS55</td>
<td>transmembrane protease, serine 5</td>
<td>12.08957627</td>
</tr>
<tr>
<td>LOC101747359</td>
<td>Ig kappa chain V-VI region NQ2-6.1-like</td>
<td>12.09602329</td>
</tr>
<tr>
<td>TNFSF8</td>
<td>tumor necrosis factor (ligand) superfamily, member 8</td>
<td>12.1407499</td>
</tr>
<tr>
<td>LOC100857546</td>
<td>uncharacterized LOC100857546</td>
<td>12.18287848</td>
</tr>
<tr>
<td>LOC101752250</td>
<td>cell surface glycoprotein CD200 receptor 1-A-like</td>
<td>12.19715832</td>
</tr>
<tr>
<td>LOC101750483</td>
<td>uncharacterized LOC101750483</td>
<td>12.24163762</td>
</tr>
<tr>
<td>LOC101752314</td>
<td>T-cell receptor alpha chain V region RL-5-like</td>
<td>12.25227219</td>
</tr>
<tr>
<td>LOC101749733</td>
<td>myelin transcription factor 1-like</td>
<td>12.25825391</td>
</tr>
<tr>
<td>LOC101750569</td>
<td>uncharacterized LOC101750569</td>
<td>12.27482074</td>
</tr>
<tr>
<td>CCNE2</td>
<td>cyclin E2</td>
<td>12.33329234</td>
</tr>
<tr>
<td>LOC428086</td>
<td>stromelysin-1-like</td>
<td>12.34369651</td>
</tr>
<tr>
<td>LOC100857337</td>
<td>T-cell surface glycoprotein CD8 alpha chain-like</td>
<td>12.35744754</td>
</tr>
<tr>
<td>LOC101751761</td>
<td>Ig lambda chain V-V region DEL-like</td>
<td>12.37269369</td>
</tr>
<tr>
<td>MDH1B</td>
<td>malate dehydrogenase 1B, NAD (soluble)</td>
<td>12.39680811</td>
</tr>
<tr>
<td>GALR1</td>
<td>galanin receptor 1</td>
<td>12.40937768</td>
</tr>
<tr>
<td>PIT54</td>
<td>PIT54 protein</td>
<td>12.50342825</td>
</tr>
<tr>
<td>DDX4</td>
<td>DEAD (Asp-Glu-Ala-Asp) box polypeptide 4</td>
<td>12.64447371</td>
</tr>
<tr>
<td>EME1</td>
<td>essential meiotic structure-specific endonuclease 1</td>
<td>12.67643315</td>
</tr>
<tr>
<td>LOC776593</td>
<td>T-cell receptor gamma chain V region PT-gamma-1/2-like</td>
<td>12.72210736</td>
</tr>
<tr>
<td>LOC101751517</td>
<td>uncharacterized LOC101751517</td>
<td>12.77518432</td>
</tr>
<tr>
<td>LOC101749128</td>
<td>immunoglobulin omega chain-like</td>
<td>12.8027506</td>
</tr>
<tr>
<td>LIX1</td>
<td>limb and CNS expressed 1</td>
<td>12.80941846</td>
</tr>
<tr>
<td>LOC101751426</td>
<td>uncharacterized LOC101751426</td>
<td>12.81732346</td>
</tr>
<tr>
<td>GPR162</td>
<td>G protein-coupled receptor 162</td>
<td>12.99205674</td>
</tr>
<tr>
<td>LOC101748117</td>
<td>Ig heavy chain V region C3-like</td>
<td>13.01293176</td>
</tr>
<tr>
<td>LOC424155</td>
<td>uncharacterized LOC424155</td>
<td>13.01924148</td>
</tr>
<tr>
<td>FLVCR2</td>
<td>feline leukemia virus subgroup C cellular receptor family, member 2</td>
<td>13.05287707</td>
</tr>
<tr>
<td>AICDA</td>
<td>activation-induced cytidine deaminase</td>
<td>13.06511484</td>
</tr>
<tr>
<td>LXN</td>
<td>latexin</td>
<td>13.06932221</td>
</tr>
<tr>
<td>LOC101751242</td>
<td>uncharacterized LOC101751242</td>
<td>13.22659433</td>
</tr>
<tr>
<td>DOHH</td>
<td>deoxyhypusine hydroxylase/monoxygenase</td>
<td>13.2485799</td>
</tr>
<tr>
<td>LOC101747854</td>
<td>Ig heavy chain V region C3-like</td>
<td>13.25701651</td>
</tr>
<tr>
<td>MIR21</td>
<td>microRNA 21</td>
<td>13.31492306</td>
</tr>
<tr>
<td>LOC416197</td>
<td>proteinase-activated receptor 2-like</td>
<td>13.3216322</td>
</tr>
<tr>
<td>UPB1</td>
<td>ureidopropionase, beta</td>
<td>13.32930583</td>
</tr>
<tr>
<td>PHF13</td>
<td>PHD finger protein 13</td>
<td>13.36662274</td>
</tr>
<tr>
<td>PLA2G5</td>
<td>phospholipase A2, group V</td>
<td>13.38001455</td>
</tr>
<tr>
<td>TMEM209</td>
<td>transmembrane protein 209</td>
<td>13.42030238</td>
</tr>
<tr>
<td>NKX2-5</td>
<td>NK2 homeobox 5</td>
<td>13.42847795</td>
</tr>
<tr>
<td>KNTC1</td>
<td>kinetochore associated 1</td>
<td>13.45293616</td>
</tr>
<tr>
<td>RASAL1</td>
<td>RAS protein activator like 1 (GAP1 like)</td>
<td>13.46579595</td>
</tr>
<tr>
<td>MIR223</td>
<td>microRNA 223</td>
<td>13.47816289</td>
</tr>
<tr>
<td>MIR1653</td>
<td>microRNA mir-1653</td>
<td>13.49162766</td>
</tr>
<tr>
<td>YDJC</td>
<td>YdjC homolog (bacterial)</td>
<td>13.51882525</td>
</tr>
<tr>
<td>CCDC146</td>
<td>coiled-coil domain containing 146</td>
<td>13.68393764</td>
</tr>
<tr>
<td>LOC776590</td>
<td>Ig kappa chain V-VI region NQ2-6.1-like</td>
<td>13.68911348</td>
</tr>
<tr>
<td>MIR146A</td>
<td>microRNA 146a</td>
<td>13.69678283</td>
</tr>
<tr>
<td>MIR221</td>
<td>microRNA 221</td>
<td>13.70125231</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>log2 Fold</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>SKA3</td>
<td>spindle and kinetochore associated complex subunit 3</td>
<td>13.89539541</td>
</tr>
<tr>
<td>LOC101748805</td>
<td>uncharacterized LOC101748805</td>
<td>13.89831796</td>
</tr>
<tr>
<td>RRP12</td>
<td>ribosomal RNA processing 12 homolog</td>
<td>13.93541371</td>
</tr>
<tr>
<td>AACS</td>
<td>acetoacetyl-CoA synthetase</td>
<td>14.00824477</td>
</tr>
<tr>
<td>TNFRSF9</td>
<td>tumor necrosis factor receptor superfamily, member 9</td>
<td>14.03535757</td>
</tr>
<tr>
<td>SPIC</td>
<td>Spi-C transcription factor (Spi-1/PU.1 related)</td>
<td>14.05280249</td>
</tr>
<tr>
<td>SH2D2A</td>
<td>SH2 domain containing 2A</td>
<td>14.06513841</td>
</tr>
<tr>
<td>LOC100857518</td>
<td>LIM and senescent cell antigen-like-containing domain protein 1-like</td>
<td>14.07233362</td>
</tr>
<tr>
<td>REXO1</td>
<td>REX1, RNA exonuclease 1 homolog (S. cerevisiae)</td>
<td>14.16861728</td>
</tr>
<tr>
<td>LOC101747366</td>
<td>uncharacterized LOC101747366</td>
<td>14.19749316</td>
</tr>
<tr>
<td>LOC101749651</td>
<td>uncharacterized LOC101749651</td>
<td>14.23227101</td>
</tr>
<tr>
<td>APEH</td>
<td>acylaminoacyl-peptide hydrolase</td>
<td>14.25292409</td>
</tr>
<tr>
<td>CNTRL</td>
<td>centriolin</td>
<td>14.3378379</td>
</tr>
<tr>
<td>LOC101749948</td>
<td>uncharacterized LOC101749948</td>
<td>14.48811629</td>
</tr>
<tr>
<td>TIE1</td>
<td>tyrosine kinase with immunoglobulin-like and EGF-like domains 1</td>
<td>14.56527467</td>
</tr>
<tr>
<td>TATDN1</td>
<td>TatD DNase domain containing 1</td>
<td>14.6710932</td>
</tr>
<tr>
<td>TRAF5</td>
<td>TNF receptor-associated factor 5</td>
<td>14.76050685</td>
</tr>
<tr>
<td>TNFRSF13C</td>
<td>tumor necrosis factor receptor superfamily, member 13C</td>
<td>14.78057565</td>
</tr>
<tr>
<td>NTHL1</td>
<td>nth-like DNA glycosylase 1</td>
<td>14.84703287</td>
</tr>
<tr>
<td>CD5</td>
<td>CD5 molecule</td>
<td>14.9660142</td>
</tr>
<tr>
<td>PDCD1LG2</td>
<td>programmed cell death 1 ligand 2</td>
<td>15.05855834</td>
</tr>
<tr>
<td>MMP7</td>
<td>matrix metallopeptidase 7 (matrilysin, uterine)</td>
<td>15.2326008</td>
</tr>
<tr>
<td>B3GNTL1</td>
<td>UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase-like 1</td>
<td>15.32484505</td>
</tr>
<tr>
<td>LOC100859645</td>
<td>glutathione S-transferase-like</td>
<td>15.45265309</td>
</tr>
<tr>
<td>CXCR5</td>
<td>chemokine (C-X-C motif) receptor 5</td>
<td>15.61703693</td>
</tr>
<tr>
<td>LPXN</td>
<td>leupaxin</td>
<td>16.32794905</td>
</tr>
<tr>
<td>CEBPZ</td>
<td>CCAAT/enhancer binding protein (C/EBP), zeta</td>
<td>16.41142989</td>
</tr>
<tr>
<td>LIMS1</td>
<td>LIM and senescent cell antigen-like domains 1</td>
<td>16.79126466</td>
</tr>
</tbody>
</table>
Table 18 continued

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLX1</td>
<td>T-cell leukemia homeobox 1</td>
<td>16.89882573</td>
</tr>
<tr>
<td>LOC101750447</td>
<td>uncharacterized LOC101750447</td>
<td>5.386121157</td>
</tr>
<tr>
<td>LOC101747912</td>
<td>uncharacterized LOC101747912</td>
<td>5.387551513</td>
</tr>
<tr>
<td>FAM26F</td>
<td>family with sequence similarity 26, member F</td>
<td>5.391484792</td>
</tr>
<tr>
<td>RSAD2</td>
<td>radical S-adenosyl methionine domain containing 2</td>
<td>5.39375261</td>
</tr>
<tr>
<td>LOC101747426</td>
<td>uncharacterized LOC101747426</td>
<td>5.394077341</td>
</tr>
<tr>
<td>LOC768553</td>
<td>E3 SUMO-protein ligase RanBP2-like</td>
<td>5.396604781</td>
</tr>
<tr>
<td>MYH1B</td>
<td>myosin, heavy chain 1B, skeletal muscle (similar to human myosin, heavy chain 1, skeletal muscle, adult)</td>
<td>5.401943706</td>
</tr>
<tr>
<td>HCN4</td>
<td>hyperpolarization activated cyclic nucleotide-gated potassium channel 4</td>
<td>5.409689867</td>
</tr>
<tr>
<td>SLA</td>
<td>Src-like-adaptor</td>
<td>5.410863385</td>
</tr>
<tr>
<td>BATF</td>
<td>basic leucine zipper transcription factor, ATF-like</td>
<td>5.413632914</td>
</tr>
<tr>
<td>LOC425663</td>
<td>selenium-binding protein 1-like</td>
<td>5.425690051</td>
</tr>
<tr>
<td>CYTH4</td>
<td>cytohesin 4</td>
<td>5.430772528</td>
</tr>
<tr>
<td>ANKDD1B</td>
<td>ankyrin repeat and death domain containing 1B</td>
<td>5.435204793</td>
</tr>
<tr>
<td>IL41</td>
<td>interleukin 4 induced 1</td>
<td>5.436217101</td>
</tr>
<tr>
<td>SOX30</td>
<td>SRY (sex determining region Y)-box 30</td>
<td>5.440620048</td>
</tr>
<tr>
<td>RILPL2</td>
<td>Rab interacting lysosomal protein-like 2</td>
<td>5.442267707</td>
</tr>
<tr>
<td>LOC100858002</td>
<td>T-box transcription factor TBX21-like</td>
<td>5.449798409</td>
</tr>
<tr>
<td>EN1</td>
<td>engrailed homeobox 1</td>
<td>5.45668775</td>
</tr>
<tr>
<td>MMP1</td>
<td>matrix metalloproteinase 1 (interstitial collagenase)</td>
<td>5.464858366</td>
</tr>
<tr>
<td>TCP10</td>
<td>t-complex 10</td>
<td>5.467662548</td>
</tr>
<tr>
<td>LOC101747602</td>
<td>Ig heavy chain V region C3-like</td>
<td>5.473601676</td>
</tr>
<tr>
<td>KIF21B</td>
<td>kinesin family member 21B</td>
<td>5.475683719</td>
</tr>
<tr>
<td>APBB1IP</td>
<td>amyloid beta (A4) precursor protein-binding, family B, member 1 interacting protein</td>
<td>5.481136613</td>
</tr>
<tr>
<td>ANKRD34C</td>
<td>ankyrin repeat domain 34C</td>
<td>5.490353136</td>
</tr>
<tr>
<td>SLC37A2</td>
<td>solute carrier family 37 (glucose-6-phosphate transporter), member 2</td>
<td>5.490363868</td>
</tr>
<tr>
<td>RNF223</td>
<td>ring finger protein 223</td>
<td>5.491823557</td>
</tr>
<tr>
<td>MMP10</td>
<td>matrix metalloproteinase 10 (stromelysin 2)</td>
<td>5.50306998</td>
</tr>
</tbody>
</table>

192
<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZNF488</td>
<td>zinc finger protein 488</td>
<td>5.508191633</td>
</tr>
<tr>
<td>IL2RG</td>
<td>interleukin 2 receptor, gamma (severe combined immunodeficiency)</td>
<td>5.510176957</td>
</tr>
<tr>
<td>ZNF831</td>
<td>zinc finger protein 831</td>
<td>5.518637269</td>
</tr>
<tr>
<td>LOC101750788</td>
<td>uncharacterized LOC101750788</td>
<td>5.529606665</td>
</tr>
<tr>
<td>P2RX7</td>
<td>purinergic receptor P2X, ligand gated ion channel, 7</td>
<td>5.530196666</td>
</tr>
<tr>
<td>BCL11B</td>
<td>B-cell CLL/lymphoma 11B (zinc finger protein)</td>
<td>5.540121644</td>
</tr>
<tr>
<td>DRAM1</td>
<td>DNA-damage regulated autophagy modulator 1</td>
<td>5.54630299</td>
</tr>
<tr>
<td>LY96</td>
<td>lymphocyte antigen 96</td>
<td>5.549352214</td>
</tr>
<tr>
<td>LOC100858579</td>
<td>granzyme G-like</td>
<td>5.551670221</td>
</tr>
<tr>
<td>KK34</td>
<td>interleukin-like</td>
<td>5.552975459</td>
</tr>
<tr>
<td>FAM65B</td>
<td>family with sequence similarity 65, member B</td>
<td>5.557263525</td>
</tr>
<tr>
<td>LOC422448</td>
<td>mannosyl (alpha-1,3-)-glycoprotein beta-1,4-N-acetylglucosaminyltransferase, isozyme B-like</td>
<td>5.57560068</td>
</tr>
<tr>
<td>LOC430303</td>
<td>low-density lipoprotein receptor-related protein 2-like</td>
<td>5.575946483</td>
</tr>
<tr>
<td>CD247</td>
<td>CD247 molecule</td>
<td>5.579454844</td>
</tr>
<tr>
<td>HMHA1</td>
<td>histocompatibility (minor) HA-1</td>
<td>5.582511795</td>
</tr>
<tr>
<td>SASH3</td>
<td>SAM and SH3 domain containing 3</td>
<td>5.591893167</td>
</tr>
<tr>
<td>TCF7</td>
<td>transcription factor 7 (T-cell specific, HMG-box)</td>
<td>5.59781075</td>
</tr>
<tr>
<td>LECT1</td>
<td>leukocyte cell derived chemotaxin 1</td>
<td>5.598149899</td>
</tr>
<tr>
<td>ZPLD1</td>
<td>zona pellucida-like domain containing 1</td>
<td>5.601370375</td>
</tr>
<tr>
<td>HPSE</td>
<td>heparanase</td>
<td>5.602879119</td>
</tr>
<tr>
<td>LITAF</td>
<td>lipopolysaccharide-induced TNF factor</td>
<td>5.604817713</td>
</tr>
<tr>
<td>LOC100858813</td>
<td>myelin-oligodendrocyte glycoprotein-like</td>
<td>5.605529272</td>
</tr>
<tr>
<td>PTPN22</td>
<td>protein tyrosine phosphatase, non-receptor type 22 (lymphoid)</td>
<td>5.606425456</td>
</tr>
<tr>
<td>BTK</td>
<td>Bruton agammaglobulinemia tyrosine kinase</td>
<td>5.615166113</td>
</tr>
<tr>
<td>LOC100857190</td>
<td>selenium-binding protein 1-like</td>
<td>5.618488598</td>
</tr>
<tr>
<td>ARHGAP27</td>
<td>Rho GTPase activating protein 27</td>
<td>5.627982418</td>
</tr>
<tr>
<td>KCNK12</td>
<td>potassium channel, subfamily K, member 12</td>
<td>5.629459013</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Description</td>
<td>Score</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>IL18RAP</td>
<td>interleukin 18 receptor accessory protein</td>
<td>5.632287488</td>
</tr>
<tr>
<td>MYH1G</td>
<td>myosin, heavy chain 1G, skeletal muscle (similar to human myosin, heavy chain 1, skeletal muscle, adult)</td>
<td>5.636971151</td>
</tr>
<tr>
<td>LOC101748591</td>
<td>uncharacterized LOC101748591</td>
<td>5.641835002</td>
</tr>
<tr>
<td>MADPRT</td>
<td>ADP-ribosyltransferase 1</td>
<td>5.647640844</td>
</tr>
<tr>
<td>LCP2</td>
<td>lymphocyte cytosolic protein 2 (SH2 domain containing leukocyte protein of 76kDa)</td>
<td>5.649033231</td>
</tr>
<tr>
<td>IL1RAPL1</td>
<td>interleukin 1 receptor accessory protein-like 1</td>
<td>5.650197919</td>
</tr>
<tr>
<td>LOC416755</td>
<td>uncharacterized LOC416755</td>
<td>5.650596651</td>
</tr>
<tr>
<td>LOC101748925</td>
<td>uncharacterized LOC101748925</td>
<td>5.650764559</td>
</tr>
<tr>
<td>PRKCB</td>
<td>protein kinase C, beta</td>
<td>5.659216191</td>
</tr>
<tr>
<td>KRT12</td>
<td>keratin 12 (Meesmann corneal dystrophy)</td>
<td>5.659924558</td>
</tr>
<tr>
<td>FOXI1</td>
<td>forkhead box I1</td>
<td>5.661183712</td>
</tr>
<tr>
<td>SELP</td>
<td>selectin P (granule membrane protein 140kDa, antigen CD62)</td>
<td>5.66207251</td>
</tr>
<tr>
<td>CSTA</td>
<td>cystatin A (stefin A)</td>
<td>5.666412395</td>
</tr>
<tr>
<td>LOC101749125</td>
<td>uncharacterized LOC101749125</td>
<td>5.668201097</td>
</tr>
<tr>
<td>CD40LG</td>
<td>CD40 ligand</td>
<td>5.670913584</td>
</tr>
<tr>
<td>LOC101748809</td>
<td>uncharacterized LOC101748809</td>
<td>5.676278727</td>
</tr>
<tr>
<td>KIF12</td>
<td>kinesin family member 12</td>
<td>5.684677055</td>
</tr>
<tr>
<td>PI15</td>
<td>peptidase inhibitor 15</td>
<td>5.690901047</td>
</tr>
<tr>
<td>LOC101750214</td>
<td>uncharacterized LOC101750214</td>
<td>5.690923852</td>
</tr>
<tr>
<td>PCDH10</td>
<td>protocadherin 10</td>
<td>5.697243106</td>
</tr>
<tr>
<td>GATA3</td>
<td>GATA binding protein 3</td>
<td>5.70087332</td>
</tr>
<tr>
<td>HOXB5</td>
<td>homeobox B5</td>
<td>5.706581763</td>
</tr>
<tr>
<td>TLR7</td>
<td>toll-like receptor 7</td>
<td>5.716436281</td>
</tr>
<tr>
<td>LOC428525</td>
<td>histamine H3 receptor-like</td>
<td>5.716633694</td>
</tr>
<tr>
<td>RAG2</td>
<td>recombination activating gene 2</td>
<td>5.725512727</td>
</tr>
<tr>
<td>BIN2</td>
<td>bridging integrator 2</td>
<td>5.73896564</td>
</tr>
<tr>
<td>HTR1F</td>
<td>5-hydroxytryptamine (serotonin) receptor 1F, G protein-coupled</td>
<td>5.739793104</td>
</tr>
<tr>
<td>HS3ST6</td>
<td>heparan sulfate (glucosamine) 3-O-sulfotransferase 6</td>
<td>5.741251902</td>
</tr>
<tr>
<td>LOC101748572</td>
<td>uncharacterized LOC101748572</td>
<td>5.759249906</td>
</tr>
<tr>
<td>LOC101750812</td>
<td>cytokine receptor common subunit beta-like</td>
<td>5.761474766</td>
</tr>
<tr>
<td>LOC101747500</td>
<td>granulocyte-macrophage colony-stimulating factor receptor subunit alpha-like</td>
<td>5.768475905</td>
</tr>
<tr>
<td>GPR114</td>
<td>G protein-coupled receptor 114</td>
<td>5.770462141</td>
</tr>
<tr>
<td>LOC101749017</td>
<td>platelet binding protein GspB-like</td>
<td>5.780643618</td>
</tr>
<tr>
<td>LOC101749685</td>
<td>uncharacterized LOC101749685</td>
<td>5.784870908</td>
</tr>
<tr>
<td>LOC101749657</td>
<td>uncharacterized LOC101749657</td>
<td>5.788946667</td>
</tr>
<tr>
<td>PTPRO</td>
<td>protein tyrosine phosphatase, receptor type, O</td>
<td>5.789739172</td>
</tr>
<tr>
<td>PTPN7</td>
<td>protein tyrosine phosphatase, non-receptor type 7</td>
<td>5.801289303</td>
</tr>
<tr>
<td>ADAM33</td>
<td>ADAM metalloproteinase domain 33</td>
<td>5.814628464</td>
</tr>
<tr>
<td>LOC415325</td>
<td>uncharacterized LOC415325</td>
<td>5.818083946</td>
</tr>
<tr>
<td>LOC100858514</td>
<td>homeobox protein Hox-A7-like</td>
<td>5.821832477</td>
</tr>
<tr>
<td>GRXCR2</td>
<td>glutaredoxin, cysteine rich 2</td>
<td>5.822524429</td>
</tr>
<tr>
<td>LOC100858856</td>
<td>homeobox protein Hox-A7-like</td>
<td>5.823573986</td>
</tr>
<tr>
<td>SLBP</td>
<td>stem-loop binding protein</td>
<td>5.826798214</td>
</tr>
<tr>
<td>MICAL1</td>
<td>microtubule associated monooxygenase, calponin and LIM domain containing 1</td>
<td>5.829471697</td>
</tr>
<tr>
<td>LOC101750247</td>
<td>uncharacterized LOC101750247</td>
<td>5.82948737</td>
</tr>
<tr>
<td>FAM13C</td>
<td>family with sequence similarity 13, member C</td>
<td>5.829709939</td>
</tr>
<tr>
<td>FUT7</td>
<td>fucosyltransferase 7 (alpha (1,3) fucosyltransferase)</td>
<td>5.833007588</td>
</tr>
<tr>
<td>LOC422002</td>
<td>GTPase SLIP-GC-like</td>
<td>5.834682256</td>
</tr>
<tr>
<td>ARHGAP15</td>
<td>Rho GTPase activating protein 15</td>
<td>5.837593785</td>
</tr>
<tr>
<td>DOCK8</td>
<td>dedicator of cytokinesis 8</td>
<td>5.842323235</td>
</tr>
<tr>
<td>CD1B</td>
<td>CD1b molecule</td>
<td>5.842644213</td>
</tr>
<tr>
<td>BFSP1</td>
<td>beaded filament structural protein 1, filensin</td>
<td>5.843214971</td>
</tr>
<tr>
<td>DTX1</td>
<td>deltex 1, E3 ubiquitin ligase</td>
<td>5.851924136</td>
</tr>
<tr>
<td>LOC101748453</td>
<td>uncharacterized LOC101748453</td>
<td>5.853247167</td>
</tr>
<tr>
<td>LOC769354</td>
<td>C-type lectin domain family 2 member B-like</td>
<td>5.853308305</td>
</tr>
<tr>
<td>MMP13</td>
<td>matrix metalloproteinase 13 (collagenase 3)</td>
<td>5.854126775</td>
</tr>
<tr>
<td>LOC101751179</td>
<td>uncharacterized LOC101751179</td>
<td>5.861980707</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>Score</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>DTHD1</td>
<td>death domain containing 1</td>
<td>5.863195113</td>
</tr>
<tr>
<td>LOC415913</td>
<td>high mobility group protein HMGI-C-like</td>
<td>5.871231743</td>
</tr>
<tr>
<td>CCL17</td>
<td>chemokine (C-C motif) ligand 15</td>
<td>5.872572206</td>
</tr>
<tr>
<td>LOC100858919</td>
<td>receptor tyrosine-protein phosphatase 5-like</td>
<td>5.879365913</td>
</tr>
<tr>
<td>IRF5</td>
<td>interferon regulatory factor 5</td>
<td>5.879906422</td>
</tr>
<tr>
<td>LOC101748451</td>
<td>lysophosphatidic acid receptor 6-like</td>
<td>5.894168425</td>
</tr>
<tr>
<td>RLTPR</td>
<td>RGD motif, leucine rich repeats, tropomodulin domain and proline-rich</td>
<td>5.895934646</td>
</tr>
<tr>
<td>DOCK2</td>
<td>dedicator of cytokinesis 2</td>
<td>5.912391645</td>
</tr>
<tr>
<td>LOC426456</td>
<td>uncharacterized LOC426456</td>
<td>5.920955432</td>
</tr>
<tr>
<td>MYH1C</td>
<td>myosin, heavy chain 1C, skeletal muscle (similar to human myosin, heavy chain 1, skeletal muscle, adult)</td>
<td>5.924067292</td>
</tr>
<tr>
<td>LOC101751981</td>
<td>uncharacterized LOC101751981</td>
<td>5.925511862</td>
</tr>
<tr>
<td>LOC417192</td>
<td>torsin family 1, member B-like</td>
<td>5.929919187</td>
</tr>
<tr>
<td>LOC101747771</td>
<td>translation initiation factor IF-2-like</td>
<td>5.93023938</td>
</tr>
<tr>
<td>LOC101748229</td>
<td>nuclear factor interleukin-3-regulated protein-like</td>
<td>5.946716016</td>
</tr>
<tr>
<td>IFITM5</td>
<td>interferon induced transmembrane protein 5</td>
<td>5.953325856</td>
</tr>
<tr>
<td>FSHR</td>
<td>follicle stimulating hormone receptor</td>
<td>5.954181402</td>
</tr>
<tr>
<td>IKZF1</td>
<td>IKAROS family zinc finger 1 (Ikaros)</td>
<td>5.956671658</td>
</tr>
<tr>
<td>SHISA8</td>
<td>shisa family member 8</td>
<td>5.962354438</td>
</tr>
<tr>
<td>RUNX3</td>
<td>runt-related transcription factor 3</td>
<td>5.963347194</td>
</tr>
<tr>
<td>LOC101750697</td>
<td>uncharacterized LOC101750697</td>
<td>5.967498183</td>
</tr>
<tr>
<td>LOC101750524</td>
<td>uncharacterized LOC101750524</td>
<td>5.971423193</td>
</tr>
<tr>
<td>GFRA4</td>
<td>GDNF family receptor alpha 4</td>
<td>5.985189613</td>
</tr>
<tr>
<td>NDST4</td>
<td>N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 4</td>
<td>5.986902092</td>
</tr>
<tr>
<td>LOC426820</td>
<td>deleted in malignant brain tumors 1 protein-like</td>
<td>5.988242447</td>
</tr>
<tr>
<td>LOC101749269</td>
<td>putative defense protein 3-like</td>
<td>5.988457473</td>
</tr>
<tr>
<td>LOC101750328</td>
<td>NAD(P)(+)--arginine ADP-ribosyltransferase 1-like</td>
<td>5.998698907</td>
</tr>
<tr>
<td>SLA2</td>
<td>Src-like-adaptor 2</td>
<td>6.003273282</td>
</tr>
<tr>
<td>SYT8</td>
<td>synaptotagmin VIII</td>
<td>6.00456488</td>
</tr>
<tr>
<td>MSC</td>
<td>musculin</td>
<td>6.008014212</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>Log2 Ratio</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>IL20RA</td>
<td>interleukin 20 receptor, alpha</td>
<td>6.013929522</td>
</tr>
<tr>
<td>TCF21</td>
<td>transcription factor 21</td>
<td>6.023917859</td>
</tr>
<tr>
<td>SAMD9L</td>
<td>sterile alpha motif domain containing 9-like</td>
<td>6.044435489</td>
</tr>
<tr>
<td>LOC419545</td>
<td>uncharacterized LOC419545</td>
<td>6.046647613</td>
</tr>
<tr>
<td>CPA6</td>
<td>carboxypeptidase A6</td>
<td>6.048715314</td>
</tr>
<tr>
<td>DDEFL1</td>
<td>development and differentiation enhancing factor-like 1</td>
<td>6.052127053</td>
</tr>
<tr>
<td>TNFSF13B</td>
<td>tumor necrosis factor (ligand) superfamily, member 13b</td>
<td>6.055746449</td>
</tr>
<tr>
<td>LOC100859222</td>
<td>B-cell lymphoma/leukemia 11B-like</td>
<td>6.061137446</td>
</tr>
<tr>
<td>IL1B</td>
<td>interleukin 1, beta</td>
<td>6.074197257</td>
</tr>
<tr>
<td>LOC101748839</td>
<td>uncharacterized LOC101748839</td>
<td>6.086358691</td>
</tr>
<tr>
<td>LOC101751153</td>
<td>zinc-binding protein A33-like</td>
<td>6.094472222</td>
</tr>
<tr>
<td>ITGA4</td>
<td>integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor)</td>
<td>6.098379894</td>
</tr>
<tr>
<td>LOC101749506</td>
<td>uncharacterized LOC101749506</td>
<td>6.100023221</td>
</tr>
<tr>
<td>CCL5</td>
<td>chemokine (C-C motif) ligand 5</td>
<td>6.103942611</td>
</tr>
<tr>
<td>LOC101748835</td>
<td>uncharacterized LOC101748835</td>
<td>6.110613806</td>
</tr>
<tr>
<td>TMEM154</td>
<td>transmembrane protein 154</td>
<td>6.111715031</td>
</tr>
<tr>
<td>LOC101751615</td>
<td>uncharacterized LOC101751615</td>
<td>6.117943352</td>
</tr>
<tr>
<td>GOLPH3L</td>
<td>golgi phosphoprotein 3-like</td>
<td>6.121890352</td>
</tr>
<tr>
<td>LOC101748935</td>
<td>uncharacterized LOC101748935</td>
<td>6.125652722</td>
</tr>
<tr>
<td>LOC101750386</td>
<td>uncharacterized LOC101750386</td>
<td>6.128045891</td>
</tr>
<tr>
<td>LOC101749404</td>
<td>uncharacterized LOC101749404</td>
<td>6.13212053</td>
</tr>
<tr>
<td>TIMD4</td>
<td>T-cell immunoglobulin and mucin domain containing 4</td>
<td>6.137031166</td>
</tr>
<tr>
<td>BRSK2</td>
<td>BR serine/threonine kinase 2</td>
<td>6.144126288</td>
</tr>
<tr>
<td>BANK1</td>
<td>B-cell scaffold protein with ankyrin repeats 1</td>
<td>6.164045842</td>
</tr>
<tr>
<td>GALNT6</td>
<td>UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminytransferase 6 (GalNAc-T6)</td>
<td>6.165197754</td>
</tr>
<tr>
<td>LOC101750078</td>
<td>uncharacterized LOC101750078</td>
<td>6.170092082</td>
</tr>
<tr>
<td>LOC101751706</td>
<td>serine/arginine repetitive matrix protein 3-like</td>
<td>6.174753109</td>
</tr>
<tr>
<td>LOC425299</td>
<td>Ick-interacting transmembrane adapter 1-like</td>
<td>6.182201121</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Description</td>
<td>Log2 Ratio</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>PIK3R5</td>
<td>phosphoinositide-3-kinase, regulatory subunit 5</td>
<td>6.185481786</td>
</tr>
<tr>
<td>LOC101748739</td>
<td>uncharacterized LOC101748739</td>
<td>6.186999998</td>
</tr>
<tr>
<td>LOC101749563</td>
<td>uncharacterized LOC101749563</td>
<td>6.187225203</td>
</tr>
<tr>
<td>LCK</td>
<td>lymphocyte-specific protein tyrosine kinase</td>
<td>6.193988284</td>
</tr>
<tr>
<td>LOC101750079</td>
<td>uncharacterized LOC101750079</td>
<td>6.202077681</td>
</tr>
<tr>
<td>ACPP</td>
<td>acid phosphatase, prostate</td>
<td>6.202135743</td>
</tr>
<tr>
<td>POLN</td>
<td>polymerase (DNA directed) nu</td>
<td>6.206237317</td>
</tr>
<tr>
<td>IL16</td>
<td>interleukin 16</td>
<td>6.217543227</td>
</tr>
<tr>
<td>S100A9</td>
<td>S100 calcium binding protein A9</td>
<td>6.219097599</td>
</tr>
<tr>
<td>LOC101750079</td>
<td>uncharacterized LOC101750079</td>
<td>6.223036338</td>
</tr>
<tr>
<td>PMCH</td>
<td>pro-melanin-concentrating hormone</td>
<td>6.224658666</td>
</tr>
<tr>
<td>PTPRC</td>
<td>protein tyrosine phosphatase, receptor type, C</td>
<td>6.225895145</td>
</tr>
<tr>
<td>COL21A1</td>
<td>collagen, type XXI, alpha 1</td>
<td>6.23384181</td>
</tr>
<tr>
<td>MADCAM1</td>
<td>mucosal vascular addressin cell adhesion molecule 1</td>
<td>6.239751299</td>
</tr>
<tr>
<td>GRAP2</td>
<td>GRB2-related adaptor protein 2</td>
<td>6.250455577</td>
</tr>
<tr>
<td>FUT4</td>
<td>fucosyltransferase 4 (alpha (1,3) fucosyltransferase, myeloid-specific)</td>
<td>6.262463796</td>
</tr>
<tr>
<td>HSD17B2</td>
<td>hydroxysteroid (17-beta) dehydrogenase 2</td>
<td>6.276963207</td>
</tr>
<tr>
<td>OVSTL</td>
<td>ovostatin-like</td>
<td>6.283530172</td>
</tr>
<tr>
<td>ZC3H12D</td>
<td>zinc finger CCCH-type containing 12D</td>
<td>6.28374268</td>
</tr>
<tr>
<td>TNR</td>
<td>tenascin R</td>
<td>6.284682747</td>
</tr>
<tr>
<td>LOC101752315</td>
<td>uncharacterized LOC101752315</td>
<td>6.285956995</td>
</tr>
<tr>
<td>LOC100859805</td>
<td>EF-hand calcium-binding domain-containing protein 4B-like</td>
<td>6.286505083</td>
</tr>
<tr>
<td>LPAR5</td>
<td>lysophosphatidic acid receptor 5</td>
<td>6.312621408</td>
</tr>
<tr>
<td>MYOM3</td>
<td>myomesin 3</td>
<td>6.319113012</td>
</tr>
<tr>
<td>DNASE1L3</td>
<td>deoxyribonuclease I-like 3</td>
<td>6.323621067</td>
</tr>
<tr>
<td>LOC100858835</td>
<td>uncharacterized LOC100858835</td>
<td>6.325296045</td>
</tr>
<tr>
<td>IL12RB2</td>
<td>interleukin 12 receptor, beta 2</td>
<td>6.330726415</td>
</tr>
<tr>
<td>P2RX5</td>
<td>purinergic receptor P2X, ligand-gated ion channel, 5</td>
<td>6.336704857</td>
</tr>
<tr>
<td>RAC2</td>
<td>ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2)</td>
<td>6.34418452</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>Enrichment Score</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>GPR174</td>
<td>G protein-coupled receptor 174</td>
<td>6.344267187</td>
</tr>
<tr>
<td>CD3E</td>
<td>CD3e molecule, epsilon (CD3-TCR complex)</td>
<td>6.34548106</td>
</tr>
<tr>
<td>HOXA7</td>
<td>homeobox A7</td>
<td>6.354004906</td>
</tr>
<tr>
<td>SLC9A4</td>
<td>solute carrier family 9, subfamily A (NHE4, cation proton antiporter 4), member 4</td>
<td>6.364747506</td>
</tr>
<tr>
<td>LOC101748016</td>
<td>uncharacterized LOC101748016</td>
<td>6.367371066</td>
</tr>
<tr>
<td>LOC770881</td>
<td>uncharacterized LOC770881</td>
<td>6.370237624</td>
</tr>
<tr>
<td>FYB</td>
<td>FYN binding protein</td>
<td>6.37286639</td>
</tr>
<tr>
<td>LOC418423</td>
<td>uncharacterized LOC418423</td>
<td>6.377057056</td>
</tr>
<tr>
<td>FANCI</td>
<td>Fanconi anemia, complementation group I</td>
<td>6.378800965</td>
</tr>
<tr>
<td>BCL11A</td>
<td>B-cell CLL/lymphoma 11A (zinc finger protein)</td>
<td>6.379410891</td>
</tr>
<tr>
<td>LOC101749765</td>
<td>E3 ubiquitin-protein ligase ICP0-like</td>
<td>6.392489162</td>
</tr>
<tr>
<td>LOC101752170</td>
<td>uncharacterized LOC101752170</td>
<td>6.400503209</td>
</tr>
<tr>
<td>CCL10</td>
<td>chemokine</td>
<td>6.406316822</td>
</tr>
<tr>
<td>CA7</td>
<td>carbonic anhydrase VII</td>
<td>6.408329251</td>
</tr>
<tr>
<td>CYBB</td>
<td>cytochrome b-245, beta polypeptide</td>
<td>6.415700645</td>
</tr>
<tr>
<td>LOC769841</td>
<td>sulotransferase family cytosolic 2B member 1-like</td>
<td>6.415995221</td>
</tr>
<tr>
<td>LOC101748281</td>
<td>uncharacterized LOC101748281</td>
<td>6.417515003</td>
</tr>
<tr>
<td>LOC101750147</td>
<td>uncharacterized LOC101750147</td>
<td>6.421559945</td>
</tr>
<tr>
<td>EDN3</td>
<td>endothelin 3</td>
<td>6.430446394</td>
</tr>
<tr>
<td>MAFA</td>
<td>v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog A</td>
<td>6.434610274</td>
</tr>
<tr>
<td>LOC101748412</td>
<td>uncharacterized LOC101748412</td>
<td>6.436961338</td>
</tr>
<tr>
<td>CD4</td>
<td>CD4 molecule</td>
<td>6.460675369</td>
</tr>
<tr>
<td>GPR65</td>
<td>G protein-coupled receptor 65</td>
<td>6.470420399</td>
</tr>
<tr>
<td>MYO1G</td>
<td>myosin IG</td>
<td>6.474174975</td>
</tr>
<tr>
<td>LOC100857983</td>
<td>G-protein coupled receptor 35-like</td>
<td>6.483242153</td>
</tr>
<tr>
<td>ITK</td>
<td>IL2-inducible T-cell kinase</td>
<td>6.492253406</td>
</tr>
<tr>
<td>LOC418424</td>
<td>uncharacterized LOC418424</td>
<td>6.503269674</td>
</tr>
<tr>
<td>LOC429682</td>
<td>GTPase IMAP family member 7-like</td>
<td>6.510395774</td>
</tr>
<tr>
<td>TXLNB</td>
<td>taxilin beta</td>
<td>6.516196356</td>
</tr>
<tr>
<td>GRM4</td>
<td>glutamate receptor, metabotropic 4</td>
<td>6.516910277</td>
</tr>
<tr>
<td>TRIM27.2</td>
<td>tripartite motif containing 27.2</td>
<td>6.518504412</td>
</tr>
<tr>
<td>LOC415472</td>
<td>uncharacterized LOC415472</td>
<td>6.518680977</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>Score</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>ARR3</td>
<td>arrestin 3, retinal</td>
<td>6.520502117</td>
</tr>
<tr>
<td>IL7</td>
<td>interleukin 7</td>
<td>6.520825017</td>
</tr>
<tr>
<td>RUNX1</td>
<td>runt-related transcription factor 1</td>
<td>6.534335674</td>
</tr>
<tr>
<td>LRR3C</td>
<td>leucine rich repeat containing 2</td>
<td>6.536921667</td>
</tr>
<tr>
<td>AMICA1</td>
<td>adhesion molecule, interacts with CXADR antigen 1</td>
<td>6.589271315</td>
</tr>
<tr>
<td>RUFY4</td>
<td>RUN and FYVE domain containing 4</td>
<td>6.589908394</td>
</tr>
<tr>
<td>LOC421285</td>
<td>uncharacterized LOC421285</td>
<td>6.594399256</td>
</tr>
<tr>
<td>LOC419425</td>
<td>rho guanine nucleotide exchange factor 7-like</td>
<td>6.612353478</td>
</tr>
<tr>
<td>LRP1B</td>
<td>low density lipoprotein receptor-related protein 1B</td>
<td>6.614242662</td>
</tr>
<tr>
<td>GINS1</td>
<td>GINS complex subunit 1 (Psf1 homolog)</td>
<td>6.618369354</td>
</tr>
<tr>
<td>LOC101748654</td>
<td>uncharacterized LOC101748654</td>
<td>6.62076721</td>
</tr>
<tr>
<td>HA3AO</td>
<td>3-hydroxyanthranilate 3,4-dioxygenase</td>
<td>6.626126765</td>
</tr>
<tr>
<td>OMD</td>
<td>osteomodulin</td>
<td>6.633657439</td>
</tr>
<tr>
<td>LOC101752312</td>
<td>uncharacterized LOC101752312</td>
<td>6.63721813</td>
</tr>
<tr>
<td>CD3D</td>
<td>CD3d molecule, delta (CD3-TCR complex)</td>
<td>6.639074472</td>
</tr>
<tr>
<td>LOC101749827</td>
<td>uncharacterized LOC101749827</td>
<td>6.64038956</td>
</tr>
<tr>
<td>ART7C</td>
<td>erythroblast NAD--arginine ADP-ribosyltransferase-like</td>
<td>6.649059229</td>
</tr>
<tr>
<td>LOC101747536</td>
<td>uncharacterized LOC101747536</td>
<td>6.651195236</td>
</tr>
<tr>
<td>MLKL</td>
<td>mixed lineage kinase domain-like</td>
<td>6.653094613</td>
</tr>
<tr>
<td>LOC101750776</td>
<td>uncharacterized LOC101750776</td>
<td>6.656000766</td>
</tr>
<tr>
<td>VCAM1</td>
<td>vascular cell adhesion molecule 1</td>
<td>6.657091964</td>
</tr>
<tr>
<td>LOC101751168</td>
<td>tumor necrosis factor ligand superfamily member 13B-like</td>
<td>6.658292574</td>
</tr>
<tr>
<td>LOC768665</td>
<td>dual specificity protein phosphatase 22-A-like</td>
<td>6.664613533</td>
</tr>
<tr>
<td>PIK3AP1</td>
<td>phosphoinositide-3-kinase adaptor protein 1</td>
<td>6.674217092</td>
</tr>
<tr>
<td>LOC769422</td>
<td>T-cell receptor alpha chain V region 2B4-like</td>
<td>6.676368545</td>
</tr>
<tr>
<td>ART5</td>
<td>ADP-ribosyltransferase 5</td>
<td>6.699767361</td>
</tr>
<tr>
<td>LOC101748333</td>
<td>uncharacterized LOC101748333</td>
<td>6.703349915</td>
</tr>
<tr>
<td>LOC101751587</td>
<td>uncharacterized LOC101751587</td>
<td>6.706530553</td>
</tr>
<tr>
<td>LOC101747849</td>
<td>uncharacterized LOC101747849</td>
<td>6.70763522</td>
</tr>
<tr>
<td>LOC101748503</td>
<td>uncharacterized LOC101748503</td>
<td>6.708924496</td>
</tr>
</tbody>
</table>
Table 18 continued

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Description</th>
<th>Log2 Fold Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRPC4</td>
<td>transient receptor potential cation channel, subfamily C, member 4</td>
<td>6.720094652</td>
</tr>
<tr>
<td>MCOLN2</td>
<td>mucolipin 2</td>
<td>6.727049152</td>
</tr>
<tr>
<td>K123</td>
<td>K123 protein</td>
<td>6.739493768</td>
</tr>
<tr>
<td>LOC417142</td>
<td>uncharacterized LOC417142</td>
<td>6.741755118</td>
</tr>
<tr>
<td>GFI1</td>
<td>growth factor independent 1 transcription repressor</td>
<td>6.757627023</td>
</tr>
<tr>
<td>LOC431250</td>
<td>G-protein coupled receptor 183-like</td>
<td>6.763798705</td>
</tr>
<tr>
<td>GPR141</td>
<td>G protein-coupled receptor 141</td>
<td>6.764889328</td>
</tr>
<tr>
<td>TRBV6-5</td>
<td>T cell receptor beta variable 6-5</td>
<td>6.771430639</td>
</tr>
<tr>
<td>LOC100857125</td>
<td>NAD-arginine ADP-ribosyltransferase 1-like</td>
<td>6.771546975</td>
</tr>
<tr>
<td>LOC101749809</td>
<td>connector enhancer of kinase suppressor of ras 2-like</td>
<td>6.77450273</td>
</tr>
<tr>
<td>CCR8L</td>
<td>C-C chemokine receptor 8 like</td>
<td>6.776378552</td>
</tr>
<tr>
<td>LOC425497</td>
<td>T-cell receptor alpha chain V region 2B4-like</td>
<td>6.785084381</td>
</tr>
<tr>
<td>CTLA4</td>
<td>cytotoxic T-lymphocyte-associated protein 4</td>
<td>6.787868189</td>
</tr>
<tr>
<td>LOC101751568</td>
<td>uncharacterized LOC101751568</td>
<td>6.793099593</td>
</tr>
<tr>
<td>PCDH15</td>
<td>protocadherin-related 15</td>
<td>6.803817078</td>
</tr>
<tr>
<td>LOC101750155</td>
<td>diacylglycerol kinase kappa-like</td>
<td>6.810767979</td>
</tr>
<tr>
<td>PINLYP</td>
<td>phospholipase A2 inhibitor and LY6/PLAUR domain containing</td>
<td>6.814412345</td>
</tr>
<tr>
<td>LOC418668</td>
<td>cytokine receptor-like factor 2-like</td>
<td>6.816047725</td>
</tr>
<tr>
<td>LOC101751033</td>
<td>uncharacterized LOC101751033</td>
<td>6.825404046</td>
</tr>
<tr>
<td>TXK</td>
<td>TXK tyrosine kinase</td>
<td>6.825868107</td>
</tr>
<tr>
<td>P2RY10</td>
<td>purinergic receptor P2Y, G-protein coupled, 10</td>
<td>6.830004631</td>
</tr>
<tr>
<td>LOC101750509</td>
<td>uncharacterized LOC101750509</td>
<td>6.830550088</td>
</tr>
<tr>
<td>LOC419851</td>
<td>complement component 4 binding protein, alpha chain</td>
<td>6.839927889</td>
</tr>
<tr>
<td>LOC770609</td>
<td>T-cell receptor alpha chain V region 2B4-like</td>
<td>6.840077061</td>
</tr>
<tr>
<td>LOC769044</td>
<td>uncharacterized LOC769044</td>
<td>6.844881334</td>
</tr>
<tr>
<td>LOC101748740</td>
<td>uncharacterized LOC101748740</td>
<td>6.847085553</td>
</tr>
<tr>
<td>TRAT1</td>
<td>T cell receptor associated transmembrane adaptor 1</td>
<td>6.847212026</td>
</tr>
<tr>
<td>IL7R</td>
<td>interleukin 7 receptor</td>
<td>6.852052569</td>
</tr>
</tbody>
</table>
Table 18 continued

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLAMF8</td>
<td>SLAM family member 8</td>
<td>6.856038184</td>
</tr>
<tr>
<td>CRTAM</td>
<td>cytotoxic and regulatory T cell molecule</td>
<td>6.865662088</td>
</tr>
<tr>
<td>LOC101747470</td>
<td>Ig kappa chain V-III region MOPC 63-like</td>
<td>6.893128296</td>
</tr>
<tr>
<td>LOC101751811</td>
<td>uncharacterized LOC101751811</td>
<td>6.896877286</td>
</tr>
<tr>
<td>LOC101748175</td>
<td>uncharacterized LOC101748175</td>
<td>6.897603474</td>
</tr>
<tr>
<td>LOC101749736</td>
<td>uncharacterized LOC101749736</td>
<td>6.897603474</td>
</tr>
<tr>
<td>SPO11</td>
<td>SPO11 meiotic protein covalently bound to DSB homolog (S. cerevisiae)</td>
<td>6.89977985</td>
</tr>
<tr>
<td>LOC101748127</td>
<td>uncharacterized LOC101748127</td>
<td>6.906529877</td>
</tr>
<tr>
<td>ZAP70</td>
<td>zeta-chain (TCR) associated protein kinase 70kDa</td>
<td>6.911171062</td>
</tr>
<tr>
<td>CLRN3</td>
<td>clarin 3</td>
<td>6.914858797</td>
</tr>
<tr>
<td>TG</td>
<td>thyroglobulin</td>
<td>6.926639543</td>
</tr>
<tr>
<td>LOC770268</td>
<td>uncharacterized LOC770268</td>
<td>6.92889263</td>
</tr>
<tr>
<td>LOC101751864</td>
<td>uncharacterized LOC101751864</td>
<td>6.931683057</td>
</tr>
<tr>
<td>LAT2</td>
<td>linker for activation of T cells family, member 2</td>
<td>6.958218318</td>
</tr>
<tr>
<td>IRF4</td>
<td>interferon regulatory factor 4</td>
<td>6.95885132</td>
</tr>
<tr>
<td>UBASH3A</td>
<td>ubiquitin associated and SH3 domain containing A</td>
<td>6.959230931</td>
</tr>
<tr>
<td>MARCO</td>
<td>macrophage receptor with collagenous structure</td>
<td>6.961837195</td>
</tr>
<tr>
<td>LOC100859314</td>
<td>uncharacterized LOC100859314</td>
<td>6.963338906</td>
</tr>
<tr>
<td>LOC101747899</td>
<td>uncharacterized LOC101747899</td>
<td>6.975680769</td>
</tr>
<tr>
<td>GRP</td>
<td>gastrin-releasing peptide</td>
<td>6.979251404</td>
</tr>
<tr>
<td>ART1</td>
<td>ADP-ribosyltransferase 1</td>
<td>6.991591945</td>
</tr>
<tr>
<td>EOMES</td>
<td>eomesodermin</td>
<td>7.010993779</td>
</tr>
<tr>
<td>LOC101749298</td>
<td>uncharacterized LOC101749298</td>
<td>7.0126075</td>
</tr>
<tr>
<td>LOC101751549</td>
<td>uncharacterized LOC101751549</td>
<td>7.018116474</td>
</tr>
<tr>
<td>LOC101750869</td>
<td>uncharacterized LOC101750869</td>
<td>7.044721967</td>
</tr>
<tr>
<td>LOC416186</td>
<td>uncharacterized LOC416186</td>
<td>7.053654418</td>
</tr>
<tr>
<td>GPR20</td>
<td>G protein-coupled receptor 20</td>
<td>7.059353344</td>
</tr>
<tr>
<td>CD7</td>
<td>CD7 molecule</td>
<td>7.069564815</td>
</tr>
<tr>
<td>LOC769174</td>
<td>C-type lectin-like receptor variant</td>
<td>7.073705716</td>
</tr>
<tr>
<td>CD8A</td>
<td>CD8a molecule</td>
<td>7.074696804</td>
</tr>
<tr>
<td>GPR18</td>
<td>G protein-coupled receptor 18</td>
<td>7.090441176</td>
</tr>
<tr>
<td>JAK3</td>
<td>Janus kinase 3</td>
<td>7.103042673</td>
</tr>
<tr>
<td>NLRC3</td>
<td>NLR family, CARD domain containing 3</td>
<td>7.105190508</td>
</tr>
<tr>
<td>LOC101747754</td>
<td>uncharacterized LOC101747754</td>
<td>7.110196178</td>
</tr>
<tr>
<td>Gene Accession</td>
<td>Gene Name or Description</td>
<td>Log2 Fold Change</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>LOC101751113</td>
<td>titin-like</td>
<td>7.116655862</td>
</tr>
<tr>
<td>LOC101752292</td>
<td>uncharacterized LOC101752292</td>
<td>7.119389667</td>
</tr>
<tr>
<td>LOC101747685</td>
<td>uncharacterized LOC101747685</td>
<td>7.132474024</td>
</tr>
<tr>
<td>LOC101751647</td>
<td>GTPase IMAP family member 7-like</td>
<td>7.133502337</td>
</tr>
<tr>
<td>LOC101747792</td>
<td>uncharacterized LOC101747792</td>
<td>7.139353569</td>
</tr>
<tr>
<td>GRAP</td>
<td>GRB2-related adaptor protein</td>
<td>7.146321144</td>
</tr>
<tr>
<td>IL8L2</td>
<td>interleukin 8-like 2</td>
<td>7.15617368</td>
</tr>
<tr>
<td>LOC101751741</td>
<td>uncharacterized LOC101751741</td>
<td>7.159568642</td>
</tr>
<tr>
<td>GRID2IP</td>
<td>glutamate receptor, ionotropic, delta 2 (Grid2) interacting protein</td>
<td>7.168822522</td>
</tr>
<tr>
<td>VTG3</td>
<td>vitellogenin 3</td>
<td>7.172627522</td>
</tr>
<tr>
<td>PLD4</td>
<td>phospholipase D family, member 4</td>
<td>7.176814415</td>
</tr>
<tr>
<td>LOC101752039</td>
<td>uncharacterized LOC101752039</td>
<td>7.18299018</td>
</tr>
<tr>
<td>C3H2orf71</td>
<td>chromosome 3 open reading frame, human C2orf71</td>
<td>7.189033824</td>
</tr>
<tr>
<td>KCNV2</td>
<td>potassium channel, subfamily V, member 2</td>
<td>7.192292815</td>
</tr>
<tr>
<td>LOC101751073</td>
<td>uncharacterized LOC101751073</td>
<td>7.216163813</td>
</tr>
<tr>
<td>TRAF3IP3</td>
<td>TRAF3 interacting protein 3</td>
<td>7.219291703</td>
</tr>
<tr>
<td>LOC101751381</td>
<td>uncharacterized LOC101751381</td>
<td>7.24431626</td>
</tr>
<tr>
<td>LOC770026</td>
<td>OX-2 membrane glycoprotein-like</td>
<td>7.252604431</td>
</tr>
<tr>
<td>SLAMF1</td>
<td>signaling lymphocytic activation molecule family member 1</td>
<td>7.259762337</td>
</tr>
<tr>
<td>LOC101748903</td>
<td>uncharacterized LOC101748903</td>
<td>7.27817065</td>
</tr>
<tr>
<td>TFAP2E</td>
<td>transcription factor AP-2 epsilon (activating enhancer binding protein 2 epsilon)</td>
<td>7.279749853</td>
</tr>
<tr>
<td>IL21R</td>
<td>interleukin 21 receptor</td>
<td>7.310136603</td>
</tr>
<tr>
<td>LOC101750146</td>
<td>envelope glycoprotein gp95-like</td>
<td>7.319518973</td>
</tr>
<tr>
<td>LOC427933</td>
<td>sulfotransferase 6B1-like</td>
<td>7.320123598</td>
</tr>
<tr>
<td>LOC769964</td>
<td>T-cell receptor alpha chain V region 2B4-like</td>
<td>7.328190449</td>
</tr>
<tr>
<td>ZPB</td>
<td>zona pellucida binding protein</td>
<td>7.338504073</td>
</tr>
<tr>
<td>TSPAN8</td>
<td>tetraspanin 8</td>
<td>7.35653169</td>
</tr>
<tr>
<td>GPR82</td>
<td>G protein-coupled receptor 82</td>
<td>7.364479595</td>
</tr>
<tr>
<td>LAMP3</td>
<td>lysosomal-associated membrane protein 3</td>
<td>7.374274178</td>
</tr>
<tr>
<td>NGFR</td>
<td>nerve growth factor receptor</td>
<td>7.377018233</td>
</tr>
<tr>
<td>LOC101748672</td>
<td>uncharacterized LOC101748672</td>
<td>7.384826912</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Description</td>
<td>Log2 Fold Change</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>PVST</td>
<td>phosvitin</td>
<td>7.385344749</td>
</tr>
<tr>
<td>LOC1017521</td>
<td>PHD finger protein 6-like</td>
<td>7.392918421</td>
</tr>
<tr>
<td>GDF9</td>
<td>growth differentiation factor 9</td>
<td>7.405329519</td>
</tr>
<tr>
<td>LOC101748116</td>
<td>uncharacterized LOC101748116</td>
<td>7.408117408</td>
</tr>
<tr>
<td>LOC424523</td>
<td>epithelial chloride channel protein-like</td>
<td>7.417936881</td>
</tr>
<tr>
<td>LOC416633</td>
<td>class II, major histocompatibility complex, transactivator-like</td>
<td>7.421869387</td>
</tr>
<tr>
<td>ST18</td>
<td>suppression of tumorigenicity 18 (breast carcinoma) (zinc finger protein)</td>
<td>7.429187136</td>
</tr>
<tr>
<td>LOC100858088</td>
<td>growth/differentiation factor 9-like</td>
<td>7.432609682</td>
</tr>
<tr>
<td>S1PR4</td>
<td>sphingosine-1-phosphate receptor 4</td>
<td>7.448402983</td>
</tr>
<tr>
<td>XCR1</td>
<td>chemokine (C motif) receptor 1</td>
<td>7.449407733</td>
</tr>
<tr>
<td>LIPI</td>
<td>lipase, member I</td>
<td>7.455177498</td>
</tr>
<tr>
<td>LOC101751934</td>
<td>uncharacterized LOC101751934</td>
<td>7.468553493</td>
</tr>
<tr>
<td>LOC101750526</td>
<td>uncharacterized LOC101750526</td>
<td>7.498490626</td>
</tr>
<tr>
<td>LOC101751236</td>
<td>uncharacterized LOC101751236</td>
<td>7.503825738</td>
</tr>
<tr>
<td>LOC101750906</td>
<td>uncharacterized LOC101750906</td>
<td>7.508983185</td>
</tr>
<tr>
<td>TDRD5</td>
<td>tudor domain containing 5</td>
<td>7.519793486</td>
</tr>
<tr>
<td>LOC769232</td>
<td>Ig heavy chain Mem5-like</td>
<td>7.535199044</td>
</tr>
<tr>
<td>TMEM81</td>
<td>transmembrane protein 81</td>
<td>7.549361133</td>
</tr>
<tr>
<td>LOC430902</td>
<td>T-cell receptor alpha chain V region CTL-L17-like</td>
<td>7.55077169</td>
</tr>
<tr>
<td>LOC428196</td>
<td>atrial natriuretic peptide receptor 2-like</td>
<td>7.568792178</td>
</tr>
<tr>
<td>TMEM156</td>
<td>transmembrane protein 156</td>
<td>7.573768422</td>
</tr>
<tr>
<td>LOC100857153</td>
<td>Ig kappa chain V-V regions-like</td>
<td>7.574855968</td>
</tr>
<tr>
<td>P2RY8</td>
<td>purinergic receptor P2Y, G-protein coupled, 8</td>
<td>7.582651595</td>
</tr>
<tr>
<td>LOC100858973</td>
<td>TRAF family member-associated NF-kappa-B activator-like</td>
<td>7.583809606</td>
</tr>
<tr>
<td>LOC101747776</td>
<td>uncharacterized LOC101747776</td>
<td>7.587064898</td>
</tr>
<tr>
<td>LOC101747521</td>
<td>Ig-like V-type domain-containing protein FAM187A-like</td>
<td>7.598796925</td>
</tr>
<tr>
<td>LOC101750141</td>
<td>uncharacterized LOC101750141</td>
<td>7.601473678</td>
</tr>
<tr>
<td>SCNN1D</td>
<td>sodium channel, non-voltage-gated 1, delta subunit</td>
<td>7.602067838</td>
</tr>
<tr>
<td>DOK3</td>
<td>docking protein 3</td>
<td>7.607828686</td>
</tr>
<tr>
<td>TOX</td>
<td>thymocyte selection-associated high mobility group box</td>
<td>7.665154674</td>
</tr>
<tr>
<td>LOC101750228</td>
<td>uncharacterized LOC101750228</td>
<td>7.673980351</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Description</td>
<td>Score</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>LOC100858944</td>
<td>probable G-protein coupled receptor 34-like</td>
<td>7.695930223</td>
</tr>
<tr>
<td>GPR132</td>
<td>G protein-coupled receptor 132</td>
<td>7.70023097</td>
</tr>
<tr>
<td>OVALX</td>
<td>ovalbumin-related protein X (SERPINB14C)</td>
<td>7.72376332</td>
</tr>
<tr>
<td>CD6</td>
<td>CD6 molecule</td>
<td>7.724588668</td>
</tr>
<tr>
<td>LOC769837</td>
<td>probable G-protein coupled receptor 34-like</td>
<td>7.743077742</td>
</tr>
<tr>
<td>LOC101748032</td>
<td>Fc receptor-like protein 3-like</td>
<td>7.755255162</td>
</tr>
<tr>
<td>IL8L1</td>
<td>interleukin 8-like 1</td>
<td>7.776209588</td>
</tr>
<tr>
<td>LOC101749436</td>
<td>uncharacterized LOC101749436</td>
<td>7.780900601</td>
</tr>
<tr>
<td>LOC101752262</td>
<td>uncharacterized LOC101752262</td>
<td>7.789338012</td>
</tr>
<tr>
<td>LOC427180</td>
<td>E3 ubiquitin-protein ligase Topors-like</td>
<td>7.813781191</td>
</tr>
<tr>
<td>SEMA3E</td>
<td>sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaforin) 3E</td>
<td>7.821278383</td>
</tr>
<tr>
<td>LOC100857257</td>
<td>homeobox protein Hox-A5-like</td>
<td>7.823344303</td>
</tr>
<tr>
<td>GPR35</td>
<td>G protein-coupled receptor 35</td>
<td>7.829123724</td>
</tr>
<tr>
<td>LOC101750590</td>
<td>uncharacterized LOC101750590</td>
<td>7.83396134</td>
</tr>
<tr>
<td>CAPN14</td>
<td>calpain 14</td>
<td>7.853621456</td>
</tr>
<tr>
<td>LOC101749173</td>
<td>uncharacterized LOC101749173</td>
<td>7.853914272</td>
</tr>
<tr>
<td>TNFRSF13B</td>
<td>tumor necrosis factor receptor superfamily, member 13B</td>
<td>7.8806641</td>
</tr>
<tr>
<td>LOC101749213</td>
<td>uncharacterized LOC101749213</td>
<td>7.941986594</td>
</tr>
<tr>
<td>HOXA9</td>
<td>homeobox A9</td>
<td>7.956347114</td>
</tr>
<tr>
<td>LOC100858551</td>
<td>homeobox protein Hox-A9-like</td>
<td>7.956347114</td>
</tr>
<tr>
<td>LOC100858870</td>
<td>homeobox protein Hox-A9-like</td>
<td>7.956347114</td>
</tr>
<tr>
<td>FLT3</td>
<td>fms-related tyrosine kinase 3</td>
<td>7.967160984</td>
</tr>
<tr>
<td>LOC101752303</td>
<td>uncharacterized LOC101752303</td>
<td>7.979453777</td>
</tr>
<tr>
<td>LDB3</td>
<td>LIM domain binding 3</td>
<td>7.982537314</td>
</tr>
<tr>
<td>LOC770890</td>
<td>lipase member M-like</td>
<td>7.991465158</td>
</tr>
<tr>
<td>HOXA5</td>
<td>homeobox A5</td>
<td>8.003596873</td>
</tr>
<tr>
<td>CECR6</td>
<td>cat eye syndrome chromosome region, candidate 6</td>
<td>8.010612022</td>
</tr>
<tr>
<td>LOC101748997</td>
<td>uncharacterized LOC101748997</td>
<td>8.027394094</td>
</tr>
<tr>
<td>LOC101747430</td>
<td>uncharacterized LOC101747430</td>
<td>8.02740843</td>
</tr>
<tr>
<td>LOC100859340</td>
<td>butyrophilin subfamily 1 member A1-like</td>
<td>8.031108429</td>
</tr>
<tr>
<td>LOC100858434</td>
<td>homeobox protein Hox-A6-like</td>
<td>8.033423002</td>
</tr>
</tbody>
</table>
Table 18 continued

<table>
<thead>
<tr>
<th>Genbank Accession</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC101751041</td>
<td>uncharacterized LOC101751041</td>
<td>8.036887913</td>
</tr>
<tr>
<td>CYSLTR2</td>
<td>cysteinyl leukotriene receptor 2</td>
<td>8.048316428</td>
</tr>
<tr>
<td>LOC101747687</td>
<td>uncharacterized LOC101747687</td>
<td>8.062369999</td>
</tr>
<tr>
<td>LOC425854</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>8.070320705</td>
</tr>
<tr>
<td>LOC426825</td>
<td>sulftotransferase family cytosolic 2B member 1-like</td>
<td>8.111605187</td>
</tr>
<tr>
<td>IKZF3</td>
<td>IKAROS family zinc finger 3 (Aiolos)</td>
<td>8.119203426</td>
</tr>
<tr>
<td>CD300LF</td>
<td>CD300 molecule-like family member f</td>
<td>8.122983254</td>
</tr>
<tr>
<td>CD1C</td>
<td>CD1c molecule</td>
<td>8.127073148</td>
</tr>
<tr>
<td>EDNRB2</td>
<td>endothelin receptor B subtype 2</td>
<td>8.18018335</td>
</tr>
<tr>
<td>LOC101749432</td>
<td>uncharacterized LOC101749432</td>
<td>8.182046674</td>
</tr>
<tr>
<td>LOC101750369</td>
<td>uncharacterized LOC101750369</td>
<td>8.193229646</td>
</tr>
<tr>
<td>LOC101748775</td>
<td>probable G-protein coupled receptor 141-like</td>
<td>8.203729009</td>
</tr>
<tr>
<td>EEF1A1</td>
<td>eukaryotic translation elongation factor 1 alpha 1</td>
<td>8.225704538</td>
</tr>
<tr>
<td>DNTT</td>
<td>DNA nucleotidylexotransferase</td>
<td>8.251930921</td>
</tr>
<tr>
<td>LOC101747883</td>
<td>uncharacterized LOC101747883</td>
<td>8.264395683</td>
</tr>
<tr>
<td>LOC419333</td>
<td>formin-like protein 16-like</td>
<td>8.266709715</td>
</tr>
<tr>
<td>LOC101751565</td>
<td>uncharacterized LOC101751565</td>
<td>8.274541226</td>
</tr>
<tr>
<td>ANKRD33</td>
<td>ankyrin repeat domain 33</td>
<td>8.293701542</td>
</tr>
<tr>
<td>CST7</td>
<td>cystatin F (leukocystatin)</td>
<td>8.298915827</td>
</tr>
<tr>
<td>LRR63</td>
<td>leucine rich repeat containing 63</td>
<td>8.312111497</td>
</tr>
<tr>
<td>PROKR2</td>
<td>prokineticin receptor 2</td>
<td>8.331109992</td>
</tr>
<tr>
<td>LOC101747495</td>
<td>uncharacterized LOC101747495</td>
<td>8.337800277</td>
</tr>
<tr>
<td>LOC771621</td>
<td>uncharacterized LOC771621</td>
<td>8.348019909</td>
</tr>
<tr>
<td>LOC422924</td>
<td>T-cell surface glycoprotein CD8 alpha chain-like</td>
<td>8.366424038</td>
</tr>
<tr>
<td>LOC101750953</td>
<td>uncharacterized LOC101750953</td>
<td>8.366977836</td>
</tr>
<tr>
<td>WDF4</td>
<td>WDFY family member 4</td>
<td>8.367829342</td>
</tr>
<tr>
<td>LOC101751801</td>
<td>uncharacterized LOC101751801</td>
<td>8.368288186</td>
</tr>
<tr>
<td>LOC101749818</td>
<td>uncharacterized LOC101749818</td>
<td>8.392145663</td>
</tr>
<tr>
<td>LOC776309</td>
<td>Ig kappa chain V-III region PC 4050-like</td>
<td>8.401947932</td>
</tr>
<tr>
<td>IGJ</td>
<td>immunoglobulin J polypeptide, linker protein for immunoglobulin alpha and mu polypeptides</td>
<td>8.402568104</td>
</tr>
<tr>
<td>CCR6</td>
<td>chemokine (C-C motif) receptor 6</td>
<td>8.408872648</td>
</tr>
<tr>
<td>HEP21</td>
<td>hen egg protein 21 kDa</td>
<td>8.436794812</td>
</tr>
<tr>
<td>MURC</td>
<td>muscle-related coiled-coil protein</td>
<td>8.440536998</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>CHRNA9</td>
<td>cholinergic receptor, nicotinic, alpha 9 (neuronal)</td>
<td>8.441242767</td>
</tr>
<tr>
<td>P2RX1</td>
<td>purinergic receptor P2X, ligand-gated ion channel, 1</td>
<td>8.441514344</td>
</tr>
<tr>
<td>LOC101751103</td>
<td>uncharacterized LOC101751103</td>
<td>8.441740749</td>
</tr>
<tr>
<td>LOC776088</td>
<td>uncharacterized LOC776088</td>
<td>8.453229472</td>
</tr>
<tr>
<td>LOC101750845</td>
<td>uncharacterized LOC101750845</td>
<td>8.45705249</td>
</tr>
<tr>
<td>CD8B</td>
<td>CD8b molecule</td>
<td>8.457243405</td>
</tr>
<tr>
<td>INHA</td>
<td>inhibin, alpha</td>
<td>8.468053776</td>
</tr>
<tr>
<td>LOC101748113</td>
<td>zinc finger matrin-type protein 1-like</td>
<td>8.472000292</td>
</tr>
<tr>
<td>LOC101747554</td>
<td>epilakin-like</td>
<td>8.474963248</td>
</tr>
<tr>
<td>LOC101751969</td>
<td>uncharacterized LOC101751969</td>
<td>8.47549026</td>
</tr>
<tr>
<td>LOC101751907</td>
<td>PDZ domain-containing RING finger protein 4-like</td>
<td>8.482444969</td>
</tr>
<tr>
<td>LOC101747843</td>
<td>uncharacterized LOC101747843</td>
<td>8.497372855</td>
</tr>
<tr>
<td>LOC101748887</td>
<td>putative scavenger receptor cysteine-rich domain-containing protein LOC619207-like</td>
<td>8.505216096</td>
</tr>
<tr>
<td>LOC101751703</td>
<td>uncharacterized LOC101751703</td>
<td>8.521992956</td>
</tr>
<tr>
<td>LOC101748669</td>
<td>uncharacterized LOC101748669</td>
<td>8.527007406</td>
</tr>
<tr>
<td>LOC428299</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>8.537684337</td>
</tr>
<tr>
<td>STAT4</td>
<td>signal transducer and activator of transcription 4</td>
<td>8.556809972</td>
</tr>
<tr>
<td>DHR75C</td>
<td>dehydrogenase/reductase (SDR family) member 7C</td>
<td>8.564035137</td>
</tr>
<tr>
<td>LOC396098</td>
<td>B6.1</td>
<td>8.565691875</td>
</tr>
<tr>
<td>LOC421856</td>
<td>uncharacterized LOC421856</td>
<td>8.601511623</td>
</tr>
<tr>
<td>LOC101749408</td>
<td>uncharacterized LOC101749408</td>
<td>8.612352499</td>
</tr>
<tr>
<td>LOC101752025</td>
<td>uncharacterized LOC101752025</td>
<td>8.615276559</td>
</tr>
<tr>
<td>LOC101748939</td>
<td>uncharacterized LOC101748939</td>
<td>8.661599976</td>
</tr>
<tr>
<td>LOC101747459</td>
<td>uncharacterized LOC101747459</td>
<td>8.675639535</td>
</tr>
<tr>
<td>LOC101748860</td>
<td>basic proline-rich protein-like</td>
<td>8.69247602</td>
</tr>
<tr>
<td>LOC101749379</td>
<td>uncharacterized LOC101749379</td>
<td>8.72795448</td>
</tr>
<tr>
<td>LOC101749090</td>
<td>T-cell surface glycoprotein CD8 alpha chain-like</td>
<td>8.735725245</td>
</tr>
<tr>
<td>CCL19</td>
<td>chemokine (C-C motif) ligand 19</td>
<td>8.742302718</td>
</tr>
<tr>
<td>LOC101749282</td>
<td>uncharacterized LOC101749282</td>
<td>8.75281548</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Description</td>
<td>Score</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>TNFSF11</td>
<td>tumor necrosis factor (ligand) superfamily, member 11</td>
<td>8.760063118</td>
</tr>
<tr>
<td>ASCL4</td>
<td>achaete-scute family bHLH transcription factor 4</td>
<td>8.76927586</td>
</tr>
<tr>
<td>C8A</td>
<td>complement component 8, alpha polypeptide</td>
<td>8.78571401</td>
</tr>
<tr>
<td>LOC428293</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>8.791293149</td>
</tr>
<tr>
<td>LOC100859466</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>8.791293149</td>
</tr>
<tr>
<td>NR5A1</td>
<td>nuclear receptor subfamily 5, group A, member 1</td>
<td>8.797683738</td>
</tr>
<tr>
<td>IL2RA</td>
<td>interleukin 2 receptor, alpha</td>
<td>8.820866618</td>
</tr>
<tr>
<td>LOC101749904</td>
<td>inverted formin-2-like</td>
<td>8.840468173</td>
</tr>
<tr>
<td>LOC101747982</td>
<td>uncharacterized LOC101747982</td>
<td>8.843575642</td>
</tr>
<tr>
<td>LOC101751544</td>
<td>uncharacterized LOC101751544</td>
<td>8.872551765</td>
</tr>
<tr>
<td>INPPL1</td>
<td>inositol polyphosphate phosphatase-like 1</td>
<td>8.877821826</td>
</tr>
<tr>
<td>LOC101750540</td>
<td>scavenger receptor cysteine-rich type 1 protein M130-like</td>
<td>8.880563092</td>
</tr>
<tr>
<td>TAS2R7</td>
<td>taste receptor, type 2, member 7</td>
<td>8.885086225</td>
</tr>
<tr>
<td>LOC422928</td>
<td>uncharacterized LOC422928</td>
<td>8.9380505</td>
</tr>
<tr>
<td>LOC101751432</td>
<td>uncharacterized LOC101751432</td>
<td>8.944332364</td>
</tr>
<tr>
<td>HOXB1</td>
<td>homeobox B1</td>
<td>8.979167931</td>
</tr>
<tr>
<td>CHRNA2</td>
<td>cholinergic receptor, nicotinic, alpha 2 (neuronal)</td>
<td>8.982137968</td>
</tr>
<tr>
<td>CD79B</td>
<td>CD79b molecule, immunoglobulin-associated beta</td>
<td>8.984507167</td>
</tr>
<tr>
<td>LOC101747621</td>
<td>uncharacterized LOC101747621</td>
<td>8.987008142</td>
</tr>
<tr>
<td>LOC101751909</td>
<td>uncharacterized LOC101751909</td>
<td>8.988088174</td>
</tr>
<tr>
<td>CHNK-1</td>
<td>CHNK-1 protein</td>
<td>8.997292408</td>
</tr>
<tr>
<td>GJB3</td>
<td>gap junction protein, beta 3, 31kDa</td>
<td>9.023865219</td>
</tr>
<tr>
<td>SH2D5</td>
<td>SH2 domain containing 5</td>
<td>9.03618616</td>
</tr>
<tr>
<td>C2ORF54</td>
<td>chromosome 9 open reading frame, human C2orf54</td>
<td>9.061182151</td>
</tr>
<tr>
<td>TMEFF1</td>
<td>transmembrane protein with EGF-like and two follistatin-like domains 1</td>
<td>9.072213012</td>
</tr>
<tr>
<td>TCP11</td>
<td>t-complex 11 homolog (mouse)</td>
<td>9.120445258</td>
</tr>
<tr>
<td>DRD2</td>
<td>dopamine receptor D2</td>
<td>9.168596911</td>
</tr>
<tr>
<td>GenBank Accession</td>
<td>Description</td>
<td>Log2 Fold Change</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>LOC101748953</td>
<td>uncharacterized LOC101748953</td>
<td>9.171226847</td>
</tr>
<tr>
<td>SRCRB4D</td>
<td>scavenger receptor cysteine rich domain containing, group B (4 domains)</td>
<td>9.173577206</td>
</tr>
<tr>
<td>FOXI3</td>
<td>forkhead box I3</td>
<td>9.176397579</td>
</tr>
<tr>
<td>LOC101749371</td>
<td>uncharacterized LOC101749371</td>
<td>9.184254595</td>
</tr>
<tr>
<td>LOC100857191</td>
<td>c-C motif chemokine 26-like</td>
<td>9.20355088</td>
</tr>
<tr>
<td>HOXA6</td>
<td>homeobox A6</td>
<td>9.205206768</td>
</tr>
<tr>
<td>PTPRQ</td>
<td>protein tyrosine phosphatase, receptor type, Q</td>
<td>9.217304947</td>
</tr>
<tr>
<td>LOC428383</td>
<td>leucine-rich repeat-containing protein 7-like</td>
<td>9.230116532</td>
</tr>
<tr>
<td>LOC429206</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>9.258989947</td>
</tr>
<tr>
<td>BARX1</td>
<td>BARX homeobox 1</td>
<td>9.272233193</td>
</tr>
<tr>
<td>LOC101748993</td>
<td>uncharacterized LOC101748993</td>
<td>9.281582348</td>
</tr>
<tr>
<td>LOC101749556</td>
<td>uncharacterized LOC101749556</td>
<td>9.285263492</td>
</tr>
<tr>
<td>LOC100859777</td>
<td>deleted in malignant brain tumors 1 protein-like</td>
<td>9.3011532</td>
</tr>
<tr>
<td>CD72</td>
<td>CD72 molecule</td>
<td>9.306642546</td>
</tr>
<tr>
<td>LOC101751502</td>
<td>uncharacterized LOC101751502</td>
<td>9.319039816</td>
</tr>
<tr>
<td>LOC101751887</td>
<td>NF-kappa-B inhibitor delta-like</td>
<td>9.324921556</td>
</tr>
<tr>
<td>BTLA</td>
<td>B and T lymphocyte associated</td>
<td>9.39331866</td>
</tr>
<tr>
<td>LOC422198</td>
<td>uncharacterized LOC422198</td>
<td>9.429490434</td>
</tr>
<tr>
<td>LOC101747717</td>
<td>uncharacterized LOC101747717</td>
<td>9.460763038</td>
</tr>
<tr>
<td>ASMT</td>
<td>acetylserotonin O-methyltransferase</td>
<td>9.462379572</td>
</tr>
<tr>
<td>CNR2</td>
<td>cannabinoid receptor 2 (macrophage)</td>
<td>9.495855027</td>
</tr>
<tr>
<td>LOC101752166</td>
<td>uncharacterized LOC101752166</td>
<td>9.512108343</td>
</tr>
<tr>
<td>LOC101751752</td>
<td>antigen WC1.1-like</td>
<td>9.513036674</td>
</tr>
<tr>
<td>LOC101748250</td>
<td>uncharacterized LOC101748250</td>
<td>9.514950704</td>
</tr>
<tr>
<td>NPBWR1</td>
<td>neuropeptides B/W receptor 1</td>
<td>9.516290986</td>
</tr>
<tr>
<td>LOC101749731</td>
<td>uncharacterized LOC101749731</td>
<td>9.518692492</td>
</tr>
<tr>
<td>ZPB2</td>
<td>zona pellucida binding protein 2</td>
<td>9.522424601</td>
</tr>
<tr>
<td>LOC101750245</td>
<td>interferon kappa-like</td>
<td>9.534011006</td>
</tr>
<tr>
<td>LOC101750231</td>
<td>uncharacterized LOC101750231</td>
<td>9.541406423</td>
</tr>
<tr>
<td>LOC101747619</td>
<td>Fas apoptotic inhibitory molecule pseudogene</td>
<td>9.552630676</td>
</tr>
<tr>
<td>LOC101750878</td>
<td>uncharacterized LOC101750878</td>
<td>9.553552502</td>
</tr>
<tr>
<td>LOC101747746</td>
<td>uncharacterized LOC101747746</td>
<td>9.566225324</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>Score</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>CCR7</td>
<td>chemokine (C-C motif) receptor 7</td>
<td>9.58267768</td>
</tr>
<tr>
<td>LOC428291</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>9.598666678</td>
</tr>
<tr>
<td>COL22A1</td>
<td>collagen, type XXII, alpha 1</td>
<td>9.608957168</td>
</tr>
<tr>
<td>TCRA</td>
<td>T-cell receptor V alpha</td>
<td>9.615679177</td>
</tr>
<tr>
<td>LOC101747342</td>
<td>uncharacterized LOC101747342</td>
<td>9.620549756</td>
</tr>
<tr>
<td>POU2AF1</td>
<td>POU class 2 associating factor 1</td>
<td>9.62989254</td>
</tr>
<tr>
<td>LOC101751926</td>
<td>uncharacterized LOC101751926</td>
<td>9.651607847</td>
</tr>
<tr>
<td>LOC101749579</td>
<td>reticulon-4-like</td>
<td>9.673450423</td>
</tr>
<tr>
<td>CHRNA10</td>
<td>cholinergic receptor, nicotinic, alpha 10 (neuronal)</td>
<td>9.709135521</td>
</tr>
<tr>
<td>LOC101748580</td>
<td>maestro heat-like repeat-containing protein family member 2A-like</td>
<td>9.716699446</td>
</tr>
<tr>
<td>LOC101747659</td>
<td>uncharacterized LOC101747659</td>
<td>9.721714425</td>
</tr>
<tr>
<td>LIN28B</td>
<td>lin-28 homolog B (C. elegans)</td>
<td>9.749232557</td>
</tr>
<tr>
<td>LOC101750122</td>
<td>uncharacterized LOC101750122</td>
<td>9.763975847</td>
</tr>
<tr>
<td>LOC101749416</td>
<td>uncharacterized LOC101749416</td>
<td>9.780835002</td>
</tr>
<tr>
<td>LOC428479</td>
<td>N-acetyllactosaminide beta-1,6-N-acetylglucosaminyl-transferase-like</td>
<td>9.798714795</td>
</tr>
<tr>
<td>LOC100858187</td>
<td>uncharacterized LOC100858187</td>
<td>9.830198271</td>
</tr>
<tr>
<td>GPR55</td>
<td>G protein-coupled receptor 55</td>
<td>9.871425451</td>
</tr>
<tr>
<td>ERP27</td>
<td>endoplasmic reticulum protein 27</td>
<td>9.878403494</td>
</tr>
<tr>
<td>TPPP2</td>
<td>tubulin polymerization-promoting protein family member 2</td>
<td>9.888804121</td>
</tr>
<tr>
<td>PTCRA</td>
<td>pre T-cell antigen receptor alpha</td>
<td>9.944624223</td>
</tr>
<tr>
<td>WFDC2</td>
<td>WAP four-disulfide core domain 2</td>
<td>9.967917895</td>
</tr>
<tr>
<td>AADACL2</td>
<td>arylacetamide deacetylase-like 2</td>
<td>9.969285781</td>
</tr>
<tr>
<td>LOC101748499</td>
<td>uncharacterized LOC101748499</td>
<td>9.970264104</td>
</tr>
<tr>
<td>LOC101747995</td>
<td>lymphocyte antigen 6E-like</td>
<td>9.974056023</td>
</tr>
<tr>
<td>PLA2G1B</td>
<td>phospholipase A2, group IB (pancreas)</td>
<td>10.01641832</td>
</tr>
<tr>
<td>LOC101749503</td>
<td>uncharacterized LOC101749503</td>
<td>10.03353313</td>
</tr>
<tr>
<td>LOC101751368</td>
<td>uncharacterized LOC101751368</td>
<td>10.04555491</td>
</tr>
<tr>
<td>LOC101747296</td>
<td>uncharacterized LOC101747296</td>
<td>10.05987169</td>
</tr>
<tr>
<td>LOC772381</td>
<td>uncharacterized LOC772381</td>
<td>10.1141067</td>
</tr>
<tr>
<td>THEMIS</td>
<td>thymocyte selection associated</td>
<td>10.15465609</td>
</tr>
<tr>
<td>LOC100857546</td>
<td>uncharacterized LOC100857546</td>
<td>10.19683569</td>
</tr>
<tr>
<td>LOC101748210</td>
<td>uncharacterized LOC101748210</td>
<td>10.20285846</td>
</tr>
<tr>
<td>LOC101751075</td>
<td>uncharacterized LOC101751075</td>
<td>10.22100703</td>
</tr>
<tr>
<td>LOC101748575</td>
<td>uncharacterized LOC101748575</td>
<td>10.22332601</td>
</tr>
<tr>
<td>Gene Name</td>
<td>Description</td>
<td>Score</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>EDAR</td>
<td>ectodysplasin A receptor</td>
<td>10.23185717</td>
</tr>
<tr>
<td>NGB</td>
<td>neuroglobin</td>
<td>10.26376215</td>
</tr>
<tr>
<td>LOC101749817</td>
<td>uncharacterized LOC101749817</td>
<td>10.2822197</td>
</tr>
<tr>
<td>LYZ</td>
<td>lysozyme (renal amyloidosis)</td>
<td>10.29620085</td>
</tr>
<tr>
<td>LOC101751452</td>
<td>uncharacterized LOC101751452</td>
<td>10.30136442</td>
</tr>
<tr>
<td>RGS21</td>
<td>regulator of G-protein signaling 21</td>
<td>10.33704203</td>
</tr>
<tr>
<td>VPREB3</td>
<td>pre-B lymphocyte 3</td>
<td>10.34301911</td>
</tr>
<tr>
<td>LOC101749241</td>
<td>heat shock transcription factor, X-linked-like</td>
<td>10.34304133</td>
</tr>
<tr>
<td>TGM4</td>
<td>transglutaminase 4 (prostate)</td>
<td>10.35232862</td>
</tr>
<tr>
<td>LOC101747365</td>
<td>uncharacterized LOC101747365</td>
<td>10.38027706</td>
</tr>
<tr>
<td>LOC101752250</td>
<td>cell surface glycoprotein CD200 receptor 1-A-like</td>
<td>10.41710355</td>
</tr>
<tr>
<td>LOC100858480</td>
<td>homeobox protein Hox-A3-like</td>
<td>10.43450313</td>
</tr>
<tr>
<td>VSIG1</td>
<td>V-set and immunoglobulin domain containing 1</td>
<td>10.4804671</td>
</tr>
<tr>
<td>LOC768817</td>
<td>trypsin I-P1-like</td>
<td>10.51387561</td>
</tr>
<tr>
<td>LOC770684</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>10.52069725</td>
</tr>
<tr>
<td>LOC101752033</td>
<td>uncharacterized LOC101752033</td>
<td>10.52331691</td>
</tr>
<tr>
<td>LOC770434</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>10.55064098</td>
</tr>
<tr>
<td>LOC101749761</td>
<td>uncharacterized LOC101749761</td>
<td>10.55723392</td>
</tr>
<tr>
<td>LOC428298</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>10.55850681</td>
</tr>
<tr>
<td>POU2F3</td>
<td>POU class 2 homeobox 3</td>
<td>10.5619466</td>
</tr>
<tr>
<td>LOC101751636</td>
<td>uncharacterized LOC101751636</td>
<td>10.56871619</td>
</tr>
<tr>
<td>ASIP</td>
<td>agouti signaling protein</td>
<td>10.57324007</td>
</tr>
<tr>
<td>DKK1</td>
<td>dickkopf WNT signaling pathway inhibitor 1</td>
<td>10.57438539</td>
</tr>
<tr>
<td>LOC776588</td>
<td>Ig kappa chain V-III region PC 4050-like</td>
<td>10.5981828</td>
</tr>
<tr>
<td>LOC776577</td>
<td>T-cell receptor gamma chain V region V108A-like</td>
<td>10.65449283</td>
</tr>
<tr>
<td>LOC101747589</td>
<td>spidroin-2-like</td>
<td>10.68552848</td>
</tr>
<tr>
<td>LOC101752332</td>
<td>uncharacterized LOC101752332</td>
<td>10.6975497</td>
</tr>
<tr>
<td>NEUROD6</td>
<td>neuronal differentiation 6</td>
<td>10.7490733</td>
</tr>
<tr>
<td>LOC101748686</td>
<td>uncharacterized LOC101748686</td>
<td>10.75385186</td>
</tr>
<tr>
<td>LOC101751385</td>
<td>uncharacterized LOC101751385</td>
<td>10.78847365</td>
</tr>
<tr>
<td>SLC7A1</td>
<td>solute carrier family 7 (cationic amino acid transporter, y+ system), member 1</td>
<td>10.80497799</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>LOC416500</td>
<td>uncharacterized LOC416500</td>
<td>10.85342653</td>
</tr>
<tr>
<td>LOC771012</td>
<td>coagulation factor X-like</td>
<td>10.93366115</td>
</tr>
<tr>
<td>GCNT2</td>
<td>glucosaminyl (N-acetyl) transferase 2, I-branching enzyme (I blood group)</td>
<td>10.93954983</td>
</tr>
<tr>
<td>LRRC18</td>
<td>leucine rich repeat containing 18</td>
<td>10.9539636</td>
</tr>
<tr>
<td>LOC769852</td>
<td>histone H3.2-like</td>
<td>11.01161164</td>
</tr>
<tr>
<td>LOC770639</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>11.02933555</td>
</tr>
<tr>
<td>LOC101751781</td>
<td>peroxisome proliferator-activated receptor gamma coactivator-related protein 1-like</td>
<td>11.09678762</td>
</tr>
<tr>
<td>LOC101749641</td>
<td>uncharacterized LOC101749641</td>
<td>11.10360254</td>
</tr>
<tr>
<td>EFCAB11</td>
<td>EF-hand calcium binding domain 11</td>
<td>11.11361846</td>
</tr>
<tr>
<td>TOM1L1</td>
<td>target of myb1 like 1 membrane trafficking protein</td>
<td>11.1167793</td>
</tr>
<tr>
<td>LOC101752131</td>
<td>lymphocyte antigen 6D-like</td>
<td>11.14886422</td>
</tr>
<tr>
<td>ART7B</td>
<td>GPI-anchored ADP-ribosyltransferase</td>
<td>11.16128308</td>
</tr>
<tr>
<td>ILDR1</td>
<td>immunoglobulin-like domain containing receptor 1</td>
<td>11.16657737</td>
</tr>
<tr>
<td>LOC101750937</td>
<td>immunoglobulin iota chain-like</td>
<td>11.17413922</td>
</tr>
<tr>
<td>LOC101749344</td>
<td>uncharacterized LOC101749344</td>
<td>11.18204047</td>
</tr>
<tr>
<td>CCR9</td>
<td>chemokine (C-C motif) receptor 9</td>
<td>11.20470563</td>
</tr>
<tr>
<td>LOC101750797</td>
<td>immunoglobulin omega chain-like</td>
<td>11.2067946</td>
</tr>
<tr>
<td>LOC101751813</td>
<td>uncharacterized LOC101751813</td>
<td>11.23124519</td>
</tr>
<tr>
<td>LCA5L</td>
<td>Leber congenital amaurosis 5-like</td>
<td>11.24167933</td>
</tr>
<tr>
<td>LOC101748053</td>
<td>Ig heavy chain V region C3-like</td>
<td>11.32042262</td>
</tr>
<tr>
<td>LOC101750070</td>
<td>uncharacterized LOC101750070</td>
<td>11.35826108</td>
</tr>
<tr>
<td>LOC776570</td>
<td>T-cell receptor gamma chain V region V108A-like</td>
<td>11.36107746</td>
</tr>
<tr>
<td>CRYBB2</td>
<td>crystallin, beta B2</td>
<td>11.3657975</td>
</tr>
<tr>
<td>HS1BP3</td>
<td>HCLS1 binding protein 3</td>
<td>11.38195386</td>
</tr>
<tr>
<td>GPR15</td>
<td>G protein-coupled receptor 15</td>
<td>11.38381228</td>
</tr>
<tr>
<td>LOC422654</td>
<td>chemokine (C-X-C motif) ligand 1-like</td>
<td>11.40572651</td>
</tr>
<tr>
<td>LOC101750569</td>
<td>uncharacterized LOC101750569</td>
<td>11.43979972</td>
</tr>
<tr>
<td>LOC101747596</td>
<td>uncharacterized LOC101747596</td>
<td>11.48452083</td>
</tr>
<tr>
<td>LOC101749259</td>
<td>immunoglobulin omega chain-like</td>
<td>11.5249726</td>
</tr>
<tr>
<td>LOC101747645</td>
<td>translation initiation factor IF-2-like</td>
<td>11.55261147</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Description</td>
<td>Log2 Fold Change</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>FK21</td>
<td>feather keratin 21</td>
<td>11.61292377</td>
</tr>
<tr>
<td>GPR56</td>
<td>G protein-coupled receptor 56</td>
<td>11.69546756</td>
</tr>
<tr>
<td>LOC101751426</td>
<td>uncharacterized LOC101751426</td>
<td>11.71714088</td>
</tr>
<tr>
<td>ACRBP</td>
<td>acrosin binding protein</td>
<td>11.74056924</td>
</tr>
<tr>
<td>LOC768589</td>
<td>baculoviral IAP repeat-containing protein 5.1-like</td>
<td>11.76669454</td>
</tr>
<tr>
<td>LOC101748490</td>
<td>HCLS1-binding protein 3-like</td>
<td>11.81070819</td>
</tr>
<tr>
<td>LOC101752021</td>
<td>uncharacterized LOC101752021</td>
<td>11.82694962</td>
</tr>
<tr>
<td>LOC426827</td>
<td>butyrophilin, subfamily 2, member A1-like</td>
<td>11.83392579</td>
</tr>
<tr>
<td>CDH23</td>
<td>cadherin-related 23</td>
<td>11.84942465</td>
</tr>
<tr>
<td>LOC101750872</td>
<td>Ig heavy chain V region C3-like</td>
<td>11.92904384</td>
</tr>
<tr>
<td>SCRT2</td>
<td>scratch family zinc finger 2</td>
<td>11.92923991</td>
</tr>
<tr>
<td>DCLRE1B</td>
<td>DNA cross-link repair 1B</td>
<td>11.9304158</td>
</tr>
<tr>
<td>LOC101749621</td>
<td>uncharacterized LOC101749621</td>
<td>11.94306054</td>
</tr>
<tr>
<td>LOC769638</td>
<td>T-cell receptor alpha chain V region CTL-F3-like</td>
<td>11.97130285</td>
</tr>
<tr>
<td>CCNE2</td>
<td>cyclin E2</td>
<td>12.05784284</td>
</tr>
<tr>
<td>LOC101751761</td>
<td>Ig lambda chain V-V region DEL-like</td>
<td>12.06997667</td>
</tr>
<tr>
<td>HOXB6</td>
<td>homeobox B6</td>
<td>12.07386374</td>
</tr>
<tr>
<td>LOC101751643</td>
<td>immunoglobulin omega chain-like</td>
<td>12.14417068</td>
</tr>
<tr>
<td>LOC769926</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td>12.18278229</td>
</tr>
<tr>
<td>WT1</td>
<td>Wilms tumor protein homolog</td>
<td>12.19001909</td>
</tr>
<tr>
<td>LOC101749612</td>
<td>T-cell receptor alpha chain V region RL-5-like</td>
<td>12.22987928</td>
</tr>
<tr>
<td>LOC101748861</td>
<td>uncharacterized LOC101748861</td>
<td>12.23174619</td>
</tr>
<tr>
<td>LIX1</td>
<td>limb and CNS expressed 1</td>
<td>12.27893724</td>
</tr>
<tr>
<td>LOC101748908</td>
<td>T-cell receptor alpha chain V region RL-5-like</td>
<td>12.29852086</td>
</tr>
<tr>
<td>PTGS1</td>
<td>prostaglandin-endoperoxide synthase 1 (prostaglandin G/H synthase and cyclooxygenase)</td>
<td>12.30311004</td>
</tr>
<tr>
<td>LOC101748652</td>
<td>uncharacterized LOC101748652</td>
<td>12.33956611</td>
</tr>
<tr>
<td>ANKDD1A</td>
<td>ankyrin repeat and death domain containing 1A</td>
<td>12.40434329</td>
</tr>
<tr>
<td>TNFSF8</td>
<td>tumor necrosis factor (ligand) superfamily, member 8</td>
<td>12.44842092</td>
</tr>
<tr>
<td>LOC101751584</td>
<td>uncharacterized LOC101751584</td>
<td>12.50568504</td>
</tr>
<tr>
<td>Marker</td>
<td>Gene Name</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>MMP24</td>
<td>matrix metallopeptidase 24 (membrane-inserted)</td>
<td></td>
</tr>
<tr>
<td>EME1</td>
<td>essential meiotic structure-specific endonuclease 1</td>
<td></td>
</tr>
<tr>
<td>LOC101747732</td>
<td>Ig heavy chain V region C3-like</td>
<td></td>
</tr>
<tr>
<td>LOC427060</td>
<td>feather keratin Cos1-1/Cos1-3/Cos2-1-like</td>
<td></td>
</tr>
<tr>
<td>AICDA</td>
<td>activation-induced cytidine deaminase</td>
<td></td>
</tr>
<tr>
<td>LOC770794</td>
<td>acylamino-acid-releasing enzyme-like</td>
<td></td>
</tr>
<tr>
<td>LOC100859843</td>
<td>Ig heavy chain V region C3-like</td>
<td></td>
</tr>
<tr>
<td>GALR1</td>
<td>galanin receptor 1</td>
<td></td>
</tr>
<tr>
<td>NPPC</td>
<td>natriuretic peptide C</td>
<td></td>
</tr>
<tr>
<td>LOC100857337</td>
<td>T-cell surface glycoprotein CD8 alpha chain-like</td>
<td></td>
</tr>
<tr>
<td>LOC101749128</td>
<td>immunoglobulin omega chain-like</td>
<td></td>
</tr>
<tr>
<td>KNTC1</td>
<td>kinetochore associated 1</td>
<td></td>
</tr>
<tr>
<td>MIRLET7B</td>
<td>microRNA let-7b</td>
<td></td>
</tr>
<tr>
<td>LOC101749733</td>
<td>myelin transcription factor 1-like</td>
<td></td>
</tr>
<tr>
<td>LOC101748252</td>
<td>myelin-oligodendrocyte glycoprotein-like</td>
<td></td>
</tr>
<tr>
<td>LOC101750810</td>
<td>uncharacterized LOC101750810</td>
<td></td>
</tr>
<tr>
<td>LOC101752314</td>
<td>T-cell receptor alpha chain V region RL-5-like</td>
<td></td>
</tr>
<tr>
<td>LOC424155</td>
<td>uncharacterized LOC424155</td>
<td></td>
</tr>
<tr>
<td>FLVCR2</td>
<td>feline leukemia virus subgroup C cellular receptor family, member 2</td>
<td></td>
</tr>
<tr>
<td>LOC101748805</td>
<td>uncharacterized LOC101748805</td>
<td></td>
</tr>
<tr>
<td>GPR162</td>
<td>G protein-coupled receptor 162</td>
<td></td>
</tr>
<tr>
<td>PHF13</td>
<td>PHD finger protein 13</td>
<td></td>
</tr>
<tr>
<td>LOC101751517</td>
<td>uncharacterized LOC101751517</td>
<td></td>
</tr>
<tr>
<td>LOC101751056</td>
<td>uncharacterized LOC101751056</td>
<td></td>
</tr>
<tr>
<td>YDJC</td>
<td>YdjC homolog (bacterial)</td>
<td></td>
</tr>
<tr>
<td>LOC101750483</td>
<td>uncharacterized LOC101750483</td>
<td></td>
</tr>
<tr>
<td>LXN</td>
<td>latexin</td>
<td></td>
</tr>
<tr>
<td>UPB1</td>
<td>ureidopropionase, beta</td>
<td></td>
</tr>
<tr>
<td>MIR21</td>
<td>microRNA 21</td>
<td></td>
</tr>
<tr>
<td>AACS</td>
<td>acetoacetyl-CoA synthetase</td>
<td></td>
</tr>
<tr>
<td>LOC416197</td>
<td>proteinase-activated receptor 2-like</td>
<td></td>
</tr>
<tr>
<td>GSTA</td>
<td>glutathione S-transferase class-alpha</td>
<td></td>
</tr>
</tbody>
</table>
Table 18 continued

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>NKX2-5</td>
<td>NK2 homeobox 5</td>
<td>13.62231498</td>
</tr>
<tr>
<td>MIR223</td>
<td>microRNA 223</td>
<td>13.62762508</td>
</tr>
<tr>
<td>REXO1</td>
<td>REX1, RNA exonuclease 1 homolog (S. cerevisiae)</td>
<td>13.64041442</td>
</tr>
<tr>
<td>MIR221</td>
<td>microRNA 221</td>
<td>13.64550083</td>
</tr>
<tr>
<td>CCDC146</td>
<td>coiled-coil domain containing 146</td>
<td>13.69779293</td>
</tr>
<tr>
<td>DDX4</td>
<td>DEAD (Asp-Glu-Ala-Asp) box polypeptide 4</td>
<td>13.71106465</td>
</tr>
<tr>
<td>TMEM209</td>
<td>transmembrane protein 209</td>
<td>13.714986</td>
</tr>
<tr>
<td>SPIC</td>
<td>Spi-C transcription factor (Spi-1/PU.1 related)</td>
<td>13.77095602</td>
</tr>
<tr>
<td>SLC31A2</td>
<td>solute carrier family 31 (copper transporter), member 2</td>
<td>13.82481955</td>
</tr>
<tr>
<td>LOC776590</td>
<td>Ig kappa chain V-VI region NQ2-6.1-like</td>
<td>13.87024911</td>
</tr>
<tr>
<td>CNTRL</td>
<td>centriolin</td>
<td>13.88334016</td>
</tr>
<tr>
<td>MIR146A</td>
<td>microRNA 146a</td>
<td>13.93070038</td>
</tr>
<tr>
<td>RRP12</td>
<td>ribosomal RNA processing 12 homolog</td>
<td>13.95287772</td>
</tr>
<tr>
<td>LOC428086</td>
<td>stromelysin-1-like</td>
<td>14.00198867</td>
</tr>
<tr>
<td>DOHH</td>
<td>deoxyhypusine hydroxylase/monoxygenase</td>
<td>14.15314032</td>
</tr>
<tr>
<td>HSD11B1L</td>
<td>hydroxysteroid (11-beta) dehydrogenase 1-like</td>
<td>14.17788666</td>
</tr>
<tr>
<td>LOC101749651</td>
<td>uncharacterized LOC101749651</td>
<td>14.26699877</td>
</tr>
<tr>
<td>LOC100857518</td>
<td>LIM and senescent cell antigen-like-containing domain protein 1-like</td>
<td>14.40856858</td>
</tr>
<tr>
<td>LOC101750543</td>
<td>uncharacterized LOC101750543</td>
<td>14.4323853</td>
</tr>
<tr>
<td>LOC101747797</td>
<td>Ig heavy chain V region C3-like</td>
<td>14.44816794</td>
</tr>
<tr>
<td>B3GNTL1</td>
<td>UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase-like 1</td>
<td>14.47403544</td>
</tr>
<tr>
<td>TATDN1</td>
<td>TatD DNase domain containing 1</td>
<td>14.48650824</td>
</tr>
<tr>
<td>SKA3</td>
<td>spindle and kinetochore associated complex subunit 3</td>
<td>14.51259234</td>
</tr>
<tr>
<td>TNFRSF9</td>
<td>tumor necrosis factor receptor superfamily, member 9</td>
<td>14.57601778</td>
</tr>
<tr>
<td>TRAF5</td>
<td>TNF receptor-associated factor 5</td>
<td>14.72706956</td>
</tr>
<tr>
<td>GZMM</td>
<td>granzyme M (lymphocyte met-ase 1)</td>
<td>14.73336493</td>
</tr>
<tr>
<td>APEH</td>
<td>acylaminoacyl-peptide hydrolase</td>
<td>14.73507998</td>
</tr>
<tr>
<td>DCAF6</td>
<td>DDB1 and CUL4 associated factor 6</td>
<td>14.77063293</td>
</tr>
<tr>
<td>RASAL1</td>
<td>RAS protein activator like 1 (GAP1 like)</td>
<td>14.81604865</td>
</tr>
</tbody>
</table>
Table 18 continued

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLA2G5</td>
<td>phospholipase A2, group V</td>
<td>14.85680483</td>
</tr>
<tr>
<td>TIE1</td>
<td>tyrosine kinase with immunoglobulin-like and EGF-like domains 1</td>
<td>14.86262767</td>
</tr>
<tr>
<td>MMP7</td>
<td>matrix metallopeptidase 7 (matrilysin, uterine)</td>
<td>14.97929121</td>
</tr>
<tr>
<td>SH2D2A</td>
<td>SH2 domain containing 2A</td>
<td>14.98501026</td>
</tr>
<tr>
<td>MIRLET7D</td>
<td>microRNA let-7d</td>
<td>15.02476742</td>
</tr>
<tr>
<td>LOC395611</td>
<td>glutathione S-transferase class-alpha</td>
<td>15.08078006</td>
</tr>
<tr>
<td>CD5</td>
<td>CD5 molecule</td>
<td>15.09227402</td>
</tr>
<tr>
<td>NTHL1</td>
<td>nth-like DNA glycosylase 1</td>
<td>15.16087592</td>
</tr>
<tr>
<td>SNX22</td>
<td>sorting nexin 22</td>
<td>15.21360929</td>
</tr>
<tr>
<td>LOC100859645</td>
<td>glutathione S-transferase-like</td>
<td>15.45739691</td>
</tr>
<tr>
<td>TNFRSF13C</td>
<td>tumor necrosis factor receptor superfamily, member 13C</td>
<td>15.63816154</td>
</tr>
<tr>
<td>CXCR5</td>
<td>chemokine (C-X-C motif) receptor 5</td>
<td>15.74255944</td>
</tr>
<tr>
<td>CEBPZ</td>
<td>CCAAT/enhancer binding protein (C/EBP), zeta</td>
<td>15.88663731</td>
</tr>
<tr>
<td>PDCD1LG2</td>
<td>programmed cell death 1 ligand 2</td>
<td>15.96443112</td>
</tr>
<tr>
<td>LOC101751147</td>
<td>Ig lambda chain V-1 region-like</td>
<td>15.99127382</td>
</tr>
<tr>
<td>LPXN</td>
<td>leupaxin</td>
<td>16.28446808</td>
</tr>
<tr>
<td>LIMS1</td>
<td>LIM and senescent cell antigen-like domains 1</td>
<td>16.58788004</td>
</tr>
<tr>
<td>LOC101747522</td>
<td>collagen alpha-1(XVIII) chain-like</td>
<td>16.77798727</td>
</tr>
<tr>
<td>TLX1</td>
<td>T-cell leukemia homeobox 1</td>
<td>16.92958205</td>
</tr>
<tr>
<td>PAX5</td>
<td>paired box 5</td>
<td>17.10971845</td>
</tr>
</tbody>
</table>
Appendix D

PERMISSION LETTERS
Appendix E

AACUC APPROVAL FORM

UNIVERSITY OF DELAWARE

COLLEGE OF AGRICULTURE AND NATURAL RESOURCES

AGRICULTURAL ANIMAL CARE AND USE COMMITTEE

Application for Use of Agricultural Animals

In Teaching or Research

AACUC Protocol Number: (27) 03-12-14R

TITLE OF PROJECT: Scientific Investigation into the response of Broiler Chickens to heat stress by transcriptome analysis

INSTRUCTOR/PRINCIPAL INVESTIGATOR: Carl Schmidt

New or Three Year Review (mark one)

NEW □ THREE YEAR x□

If this is a 3 year renewal, what is the assigned existing protocol number?
_(27) 12-22-10R

(This section for Committee use only)

Application Approved (date): 01/05/2011

Application Rejected (date): _____________

Reason for Rejection: ____________________________
APPLICATION INFORMATION:
Title: Scientific Investigation into the response of Broiler Chickens to heat stress by transcriptome analysis

Principal Investigator(Research): Carl J. Schmidt

Address: 107 Allen Lab, 601 Sincock Lane, University of Delaware, Newark, Delaware 19716

Telephone: (302)-831-1334 Email: schmidtc@udel.edu

Proposed start date: February 1 2011 End date: January 31, 2014

Teaching/Outreach □ Research X

If TEACHING box was checked, select from the following:

 Demonstration □ Laboratory □ Student Project □

If student project, please define project: __________________________

Have all participants listed above reviewed the application and is familiar with the proposed work?

 YES X□ NO □

If no, identify those needing to review application.

 __________________ __________________ ________________
Are all proposed animal care management procedures 1) defined as “pre-approved” by the Animal Care and Use Committee, or 2) part of the Standard Operating Procedures developed by the Animal Care and Use Committee for that particular species?

YES □ NO □ To be determined by AACUC □

Have all participants been trained? YES □ NO □

Which participants have not been trained?

____________ ________________ _______________

Name the person responsible for conducting the training.

If after hours participation is required by students, please describe how this is being handled. (e.g. supervisors, assistants, etc.) Please include the times and days that students may be on site.

__

ANIMAL INFORMATION:

Common Name of the Animal Requested: Chickens

Amount Being Requested: 1600

Source of Animals: Allen Family Foods and Chet Utterback at the University of Illinois

Where are the animals being held: UD Poultry Farm
Briefly Describe the Goals or Objectives of this Application (use additional space as needed).

The goal of this study is to determine the ability of the modern broiler chicken to handle heat stress compared to the heritage variety. Following treatment, birds will be euthanized by cervical dislocation and organs harvested for transcriptome analysis.

Rationale for scale of study: This is a new area of research, using new genomic approaches to understand how birds respond to heat stress. The large numbers of birds are necessitated in order to achieve statistical significance in our gene mapping studies.

Birds: Heritage birds will be obtained from Chet Utterback at the University of Illinois and the Ross708 birds from a local supplier. Birds will be wing tagged and randomly placed into control and experimental groups as described below (Heat Shock Scheme). In each experiment 100 birds from each line will be included in each experimental group. The size of the facilities at the University of Delaware limit the number of birds per chamber, hence we anticipate multiple replicates over time to a total of 1600 birds per line. Blood will be taken from each bird for DNA extraction prior to heat stress. Also, 12 birds from each group will be removed on post hatch days 2, 7 and 21, euthanized (cervical dislocation) and tissues harvested. Blood biomarker data using the iSTAT will be collected from these birds prior to euthanasia. Chambers will be monitored on a daily basis to insure adequate feed and water and to remove any sick or dead birds.

Heat Shock Scheme: Controls are hatched from eggs incubated at 37°C (99°F) while thermal conditioned embryos will be incubated at 39.6°C (103°F) from embryonic days 10-18, then returned to 37°C. Following hatch through day 21, they will be kept at ambient temperatures. At day 22, the original Control birds will be split into two populations (Control A and B) and the *In Ovo* Heat-conditioned bird also split into two groups (*In Ovo* Heat Conditioned A and B). The A populations will be kept at ambient temperatures while the B populations will be heat stressed at 35°C (95°F) or 7 hours per day for 21 days. There will be 20 birds per chamber. Multiple replicates (hatches) will be
conducted. At the end of the trial (6 weeks from hatch), birds will be euthanized and tissues collected.

Attached below is additional protocol information.

Does this procedure involve surgery? YES NO X□

If yes, explain in detail the surgery.

Are drugs, vaccines and/or medications being used? YES □ NO X□

If yes, describe what is being used. Include dosages and routes of administration.

How often are animals monitored and how are sick or injured animals being handled?

The birds will be checked daily and given food and fresh water *ad libidum*. Sick or injured animals will be euthanized by cervical dislocation.

What is the method of euthanasia, if specified in the protocol?

Cervical dislocation as per AVMA Guidelines on Euthanasia 2007

List the veterinarian who is on-call:

Name: Miguel Ruano Telephone: 302-831-1539

Does this application require approval from Occupational Health & Safety (OHS)? YES □ NO X□

If yes, what form(s) are attached? ________________________

222
NOTE: OHS approval is required for experiments involving the use of hazardous substances such as radioactive materials, highly toxic or carcinogenic materials, human reproductive hazards, or zoonotic or human pathogens.
Ross Heritage heat stress experiment: Eggs will be either heat stressed or maintained as controls from embryonic days 10-18, and then returned to normal temperatures. Subsequently, both heat stressed and control birds will be split into two groups each, with one group heat stressed from days 21-42 post-hatch, with the second group kept at ambient temperatures to function as a control. So, there will be a total of 8 groups at the end of each experiment.
Tissue Samples: Genomic DNA & RNA:

- Blood
- Brain
- Heart
- Liver
- Duodenum
- Jejunum
- Ileum
- Large Intestine
- Ceca (and contents)
- Fat pad
- Breast muscle
- Spleen

Weekly Measurements:

- iSTAT metabolic measurements
- Weight

Day 21/42

- Shank length
- Shank Width

Morphometric:

- Liver
- Spleen
- Duodenum
- Jejunum
- Ileum
- Large Intestine
- Breast muscle
- Heart

Samples are needed for:

- RNAseq
- microRNA
- Genomic DNA
• SNP
• CVN
• Epigenetics