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Abstract. We explore a connection between Gaussian radial basis functions and polynomials.
Using standard tools of potential theory, we find that these radial functions are susceptible to the
Runge phenomenon, not only in the limit of increasingly flat functions, but also in the finite shape
parameter case. We show that there exist interpolation node distributions that prevent such phe-
nomena and allow stable approximations. Using polynomials also provides an explicit interpolation
formula that avoids the difficulties of inverting interpolation matrices, without imposing restrictions
on the shape parameter or number of points.
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1. Introduction. Radial basis functions (RBFs) have been popular for some
time in high-dimensional approximation [2] and are increasingly being used in the
numerical solution of partial differential equations [6, 13, 16, 19]. Given a set of
centers xc0, . . . , x

c
N in R

d, an RBF approximation takes the form

F (x) =

N
∑

k=0

λk φ
(

‖x− xck‖
)

, (1.1)

where ‖ · ‖ denotes the Euclidean distance between two points and φ(r) is a function
defined for r ≥ 0. The coefficients λ1, . . . , λN may be chosen by interpolation or other
conditions at a set of nodes that typically coincide with the centers. Common choices
for φ fall into two main categories:

• Infinitely smooth and containing a free parameter, such as multiquadrics
(φ(r) =

√
r2 + c2) and Gaussians (φ(r) = e−(r/c)2);

• Piecewise smooth and parameter-free, such as cubics (φ(r) = r3) and thin
plate splines (φ(r) = r2 ln r).

Convergence analysis of RBF interpolation has been carried out by several re-
searchers – see, e.g. [17, 18, 24]. For smooth φ, spectral convergence has been proved
for functions belonging to a certain reproducing kernel Hilbert space Fφ [18]. This
space, however, is rather small since the Fourier transform of functions in Fφ must
decay very fast or have compact support [24]. More recently, in [25] Yoon obtained
spectral orders on Sobolev spaces, and in [10] error analysis was performed by consid-
ering the simplified case of equispaced periodic data. In this article, we use standard
tools of polynomial interpolation and potential theory to study several properties of
Gaussian RBF (GRBF) interpolation in 1-D, including convergence and stability.

As is well known in polynomial interpolation, a proper choice of interpolation
nodes is essential for good approximations. It is also known that for fixed N in
the limit c → ∞, RBF interpolation is equivalent to polynomial interpolation on
the same nodes [5]; hence, the classical Runge phenomenon, and its remedy through
node spacing, applies. For practical implementations it is well appreciated that node
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clustering near the boundaries is helpful [9, 19], but to our knowledge there has been no
clear statement about the Runge phenomenon or asymptotically stable interpolation
nodes for finite-parameter RBFs. The question has perhaps been obscured somewhat
by the fact that the straightforward approach to computing the λk is itself numerically
ill-conditioned when the underlying approximations are accurate [21].

In this paper we explore the fact that GRBFs with equally spaced centers are
related to polynomials through a simple change of variable. Using this connection,
in Section 2 we demonstrate a Runge phenomenon using GRBFs on equispaced and
classical Chebyshev nodes, and we compute asymptotically optimal node densities
using potential theory. Numerical calculations suggest that these node densities give
Lebesgue constants that grow at logarithmic rates, allowing stable approximations. In
Section 3 we explore the algorithmic implications of the connections we have made and
derive a barycentric interpolation formula that circumvents the difficulty of inverting a
poorly conditioned matrix, so approximations can be carried out to machine precision
without restrictions on the values of the shape-parameter c and number of centers N .
Finally, Section 4 contains observations on multiquadrics and other possible extensions
of the methods presented.

2. Gaussian RBFs as polynomials. In (1.1) we now choose d = 1, Gaussian
shape functions, and centers xck = −1 + 2k/N = −1 + kh, k = 0, . . . , N . Hence the
GRBF approximation is

F (x) =

N
∑

k=0

λke
−(x+1−kh)2/c2 = e−(x+1)2/c2

N
∑

k=0

λke
(2kh−k2h2)/c2e2kxh/c

2

. (2.1)

Making the definition β = 2h/c2 = 4/Nc2 and using the transformation

s = eβx, s ∈ [e−β , eβ ],

we find that

G(s) = F (log(s)/β) = e−
N
4β

(log s+β)2
N
∑

k=0

λ̃ks
k = ψNβ (s)

N
∑

k=0

λ̃ks
k, (2.2)

where the λ̃k are independent of s. In this section we regard β as a fixed parameter
of the GRBF method.

From (2.2) it is clear that G/ψNβ is a polynomial of degree no greater than N . If
F is chosen by interpolation to a given f at N +1 nodes, then we can apply standard
potential theory to find necessary convergence conditions on the singularities of f in
the complex plane z = x+ iy.

Lemma 2.1. Suppose f is analytic in a closed simply connected region R that

lies inside the strip −π/2β < Im(z) < π/2β and C is a simple, closed, rectifiable

curve that lies in R and contains the interpolation points x0, x1, . . . , xN . Then the

remainder of the GRBF interpolation for f at x can be represented as the contour

integral

f(x)− F (x) = βηN (x)

2πi

∫

C

f(z)eβz

ηN (z)(eβz − eβx)
dz

where ηN (x) = e−
Nβ
4

(x+1)2
N
∏

k=0

(eβx − eβxk).
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Fig. 2.1. Level curves of the logarithmic potential for β = 1 and µ(t) = 1/2. The straight line
represents the interval [−1, 1].

Proof. Consider the conformal map w = eβz and let g(s) = f(log(s)/β). Under
this transformation, the region R is mapped to a closed simply connected region that
lies in the half-plane Re(w) > 0. Thus g/ψNβ is analytic in this region in the w-plane
and we can use the Hermite formula for the error in polynomial interpolation [4],

g(s)−G(s) = ψNβ (s)

(

g(s)

ψNβ (s)
−

N
∑

k=0

λ̃ks
k

)

=
ψNβ (s)

∏N
k=0(s− sk)
2πi

∫

C

g(w)

(w − s)ψNβ (w)
∏N
k=0(s− sk)

dw,

where sk = eβxk and C is the image of C in the w-plane. A change of variables
completes the proof.

We now turn our attention to necessary conditions for uniform convergence of
the interpolation precess. To this end, let µ be the limiting node density function of
nodes on [−1, 1] and define

uβ(z) =
β

4
Re
[

(z + 1)2
]

−
∫ 1

−1

log(|eβz − eβt|)µ(t)dt. (2.3)

Since our analysis parallels with the convergence proof for polynomial interpolation
(see, e.g., [4, 15, 23]), we shall refer to this function as the logarithmic potential and
its level curves equipotentials.

In the theorem below we shall assume that µ is such that there exist a and b,
a < b, with the property that if K ∈ [a, b] then there exists a simple, closed, rectifiable
curve that satisfies uβ(z) = K and contains the interval [−1, 1] in its interior. We
denote this curve by CK and by RK the part of the plane which lies inside it. We
also require that if K1 > K2 then RK1

⊂ RK2
. To illustrate this feature, consider the

logarithmic potential for uniformly distributed nodes on [−1, 1] and β = 1. In this
case we have that µ(t) = 1/2. The level curves of u1 are presented in Figure 2.1. In
this instance one could choose a = 0.5 and b = 0.7.

Theorem 2.2. Suppose µ satisfies the properties above and let B be the closure

of Rb. If f is an analytic function in an open region R which lies inside the strip
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−π/2β < Im(z) < π/2β and contains B in its interior, then the GRBF interpolation

described above converges uniformly with respect to z ∈ B.
Proof. Since R is open and B is closed, there exist K1 and K2, such that K1 <

K2 < b and RK1
∪ CK1

lies inside R. Using Lemma 2.1 we have that for any x on
CK2

,

|f(x)− F (x)| ≤ βM

2πδ

∫

CK1

|ηN (x)|
|ηN (z)|

dz, (2.4)

where M is the largest value of |f(z)eβz| on CK1
and δ is the smallest value of |eβz−eβx|

for z ∈ CK1
and x ∈ CK2

.
We also have that

|ηN (x)|
|ηN (z)|

= exp
{

−N
(

log |ηN (z)|
1
N − log |ηN (x)|

1
N

)}

. (2.5)

A bound on this exponential can be obtained using the limiting logarithmic potential.
Notice that

lim
N→∞

log |ηN (z)|
1
N = −uβ(z) = −K1 for z ∈ CK1

and

lim
N→∞

log |ηN (x)|
1
N = −uβ(x) = −K2 for x ∈ CK2

.

Hence, for any given ε, 0 < ε < (K2 −K1)/2, there exists Nε such that for N > Nε,

−K1 − ε < log |ηN (z)|
1
N < −K1 + ε

−K2 − ε < log |ηN (x)|
1
N < −K2 + ε,

which implies that

log |ηN (z)|
1
N − log |ηN (x)|

1
N < mε, (2.6)

where mε = K2 −K1 + 2ε > 0.
Combining (2.4), (2.5), and (2.6) gives

|f(x)− F (x)| ≤ βMκ

2πδ
e−Nmε , N > Nε, x ∈ CK2

(2.7)

where κ is the length of CK1
.

This last inequality implies that |f − F | → 0 uniformly as N → ∞ on CK2
.

Since f − F is analytic in RK2
, by the maximum modulus principle we have that F

converges uniformly to f in RK2
.

We point out that, as happens in polynomial interpolation, the convergence in
(2.7) is exponential with a rate that is governed by the equipotentials induced by the
nodes.

2.1. The Runge phenomenon. The Runge phenomenon is well understood in
polynomial interpolation in 1-D [4, 8] . Even if a function is smooth on the inter-
polation interval [−1, 1], polynomial interpolants will not converge to it uniformly as
N →∞ unless the function is analytic in a larger complex region whose shape depends
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on the interpolation nodes. Clustering nodes more densely near the ends of the inter-
val avoids this difficulty. Specifically, points distributed with density π−1(1−x2)−1/2,
such as Chebyshev extreme points xj = − cos(jπ/N) and zeros of Chebyshev and
Legendre polynomials, are common choices of interpolation nodes on [−1, 1]. Uni-
form convergence of polynomial interpolants is guaranteed for these nodes as long as
the function being interpolated is analytic inside an ellipse with foci ±1 and semiminor
larger than δ, for some δ > 0 [8].

In this section we show that for GRBFs uniform convergence may be lost, not
only in the polynomial limit c → ∞ but also for constant β (which implies c → 0
as N → ∞), if the distribution of interpolation nodes is not chosen appropriately.
Theorem 2.2 can be used to state the regularity requirements of the function being
interpolated using a given node distribution and enables us to determine whether the
interpolation precess is convergent.

We point out that for β ¿ 1,

uβ(z) = − log(β)−
∫ 1

−1

log |z − t|µ(t)dt+O(β). (2.8)

In this case, the level curves of uβ are similar to equipotentials of polynomial interpo-
lation and the convergence of the GRBF interpolation process can be predicted from
the well-known behavior of polynomial interpolation.

Equipotentials for β = 0.1, 0.8, 2, 5 are presented in Figure 2.2. On the left of this
figure, we present contour maps obtained with a uniform node distribution, and on the
right, contour maps obtained with the Chebyshev extreme points. Equipotentials for
β = 0.1 are similar to equipotentials for polynomial interpolation [8], as expected. By
Theorem 2.2, convergence is guaranteed if the function is analytic inside the contour
line that surrounds the smallest equipotential domain that includes [−1, 1], whereas
any singularity inside this region leads to spurious oscillations that usually grow expo-
nentially. Therefore, it is desirable to have the region where the function is required
to be analytic as small as possible. In this sense, we note that for β = 0.1, Chebyshev
distribution is close to optimal, and for β = 5, uniform distribution seems to be more
appropriate. We also note that, for large β, Chebyshev density over-clusters the nodes
near the ends of the interval. In fact, if this clustering is used with β = 5, even the
interpolation of f ≡ 1 is unstable; in this case there is no equipotential region that
encloses [−1, 1].

To demonstrate how the equipotentials and singularities of the interpolated func-
tion restrict the convergence of GRBF interpolation, in Figures 2.3 and 2.4 we show
two pairs of interpolants. Each pair consists of one function that leads to the Runge
phenomenon and one that leads to a stable interpolation process. In Figure 2.3, eq-
uispaced nodes were used. The interpolation of f(x) = 1/(1 + 25x2) is convergent,
while the interpolation of f(x) = 1/(4 + 25x2) is not. Notice from Fig. 2.2 that
the former function is singular at points inside the smallest equipotential domain
and the singularities of the latter function lie outside this region. For Chebyshev
nodes and β = 2, interpolation of f(x) = 1/(x2 − 1.8x + 0.82) generates spurious
oscillation in the center of the interval. Interpolation of a slightly different function,
f(x) = 1/(x2 − 1.8x+ 0.85), gives a well-behaved interpolant.

2.2. Lebesgue constants. Although Theorem 2.2 guarantees convergence for
sufficiently smooth functions and properly chosen interpolation points, approxima-
tions may not converge in the presence of rounding errors due to the rapid growth of
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Fig. 2.2. Contour maps of the logarithmic potential. Plots on the left were obtained with
uniform node distribution. Plots on the right were obtained with Chebyshev distribution.

the Lebesgue constant. For GRBF interpolation, we define the Lebesgue constant by

ΛGRBFN = max
x∈[−1,1]

N
∑

k=0

|Lk(x)| , (2.9)
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f(x) = 1/(1 + 25x2) f(x) = 1/(4 + 25x2)

Fig. 2.3. Interpolation of f with 25 equispaced nodes and β = 0.8. Closed curves are level
curves of the logarithmic potential, dots mark the singularities of f , and straight line represents the
interval [−1, 1].

f(x) = 1/(x2 − 1.8x+ 0.82) f(x) = 1/(x2 − 1.8x+ 0.85)

Fig. 2.4. Interpolation of f with 41 Chebyshev nodes and β = 2. Closed curves are level curves
of the logarithmic potential, dots mark the singularities of f , and straight line represents the interval
[−1, 1].

where

Lk(x) = e−
Nβ
4 ((x+1)2−(xk−1)2)

N
∏

j=0
j 6=k

(eβx − eβxj )
(eβxk − eβxj ) (2.10)

is the GRBF cardinal function. Notice that Lk(xk) = 1, Lk(xj) = 0 (j 6= k), and

by (2.2) Lk(x) ∈ Span
{

e−(x−xck)
2/c2

}

. Thus, the unique GRBF interpolant can be

written as

F (x) =

N
∑

k=0

Lk(x)f(xk) (2.11)

and it follows that

‖F − f‖∞ ≤ (1 + ΛGRBFN )‖F opt − f‖∞, (2.12)

where F opt is the best approximation to f in the GRBF subspace with respect to the
infinity norm.

Figure 2.5 illustrates how the GRBF Lebesgue constant grows with N for equis-
paced nodes (left) and Chebyshev nodes (right). As expected, for small β the GRBF
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Fig. 2.5. Lebesgue constant for different values of β. Dashed lines mark the Lebesgue constant
values for polynomial interpolation.

Lebesgue constants approximate the polynomial Lebesgue constants, which behave
asymptotically as O(2N/(N logN)) for equispaced nodes and O(logN) for Cheby-
shev nodes [8, 22]. This figure shows that the Lebesgue constants grow exponentially
for both node distributions, except for large values of β for uniform nodes and small
values of β for Chebyshev nodes.

In the presence of rounding errors, (2.12) indicates that if computations are carried
out with precision ε then the solution will generally be contaminated by errors of size
εΛGRBFN [22]. For instance, if f(x) = 1/(x2− 1.8x+0.85) and β = 2, the convergence
of the interpolation process on Chebyshev nodes in double precision stops at N = 80,
with a minimum residue of O(10−7) due to rounding error. Similar results have been
observed on equispaced nodes if β is small.

2.3. Stable interpolation nodes. Our goal now is to find node distributions
that lead to a convergent interpolation process whenever the function is analytic on
[−1, 1]. This only happens if [−1, 1] is itself an equipotential, as it is the case for
Chebyshev density in polynomial interpolation. Therefore, we seek a density function
µ that satisfies

β

4
Re
[

(x+ 1)2
]

=

∫ 1

−1

log(|eβx − eβt|)µ(t)dt + constant, x ∈ [−1, 1]. (2.13)

In order to find a numerical solution to this integral equation, we assume that the
optimal µ can be approximated by

µ(t) ∼=
Nµ
∑

k=0

ak
T2k(t)√
1− t2

, (2.14)

where T2k is the Chebyshev polynomial of order 2k. We consider only even functions
in our expansion because we expect the density function to be even due to symmetry.
This generalizes the Chebyshev density function µ(t) = π−1(1−t2)−1/2. We also tried
more general expressions, replacing

√
1− t2 with (1− t2)−α, and found that α = 1/2

was suitable.
Figure 2.6 shows density functions computed with the expression above. We

computed the coefficients ak by discrete least-squares and the integral in (2.13) was
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Fig. 2.6. Numerical approximations of the optimal density functions for several values of β.
Dashed line shows the Chebyshev density function.
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Fig. 2.7. Node locations obtained using density function computed by solving the integral equa-
tion (2.13) for N = 20 and several values of β.

approximated by Gaussian quadrature. We used Nµ = 9 and 50 points to evaluate
the residue in the least-squares process. With this choice of parameters the residual
was less than 10−7 in all computations.

In Figure 2.7 we show 21 nodes computed using (2.13) and (2.14) for several values
of β. For large values of β the nodes are nearly equally spaced and for small values they
are approximately equal to Chebyshev extreme points. The optimal equipotentials
obtained for β = 0.1, 0.8, 2, 5 are presented in Figure 2.8. For all these values of β,
[-1,1] seems to be a level curve of the logarithmic potential.

As mentioned in section 2.2, in the presence of rounding errors the Lebesgue
constant also plays a crucial role. Fortunately, for the optimal nodes computed nu-
merically in this section, experiments suggest that the Lebesgue constant grows at
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Fig. 2.9. Lebesgue constant for different values of β and optimal node distribution.

logarithmic rate. Figure 2.9 presents computed Lebesgue constants for different val-
ues of β on optimal nodes.

Figure 2.10 shows the convergence of the GRBF interpolation to the four functions
used to illustrate the Runge phenomenon in section 2.1. Now all four functions can
be approximated nearly to machine precision. The algorithm used to obtain these
data is presented in Section 3. Notice that the convergence rates are determined by
the singularities of the function being interpolated. Dashed lines in this figure mark
the convergence rates predicted by (2.7). For instance, if f(x) = 1/(1 + 25x2) and
β = 0.8 then mε is approximately the difference between the value of the potential in
[−1, 1] and the potential at z = 0.2i (where f is singular), giving mε

∼= 0.23.
Notice that for β = 2 the equipotentials that enclose the interval [−1, 1] are
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Fig. 2.10. Maximum error of the interpolation process using optimal nodes. Left: f(x) =
1/(1 + 25x2) (•) and f(x) = 1/(4 + 25x2) (∗). Right: f(x) = 1/(x2

− 1.8x + 0.82) (•) and f(x) =
1/(x2

− 1.8x+ 0.85) (∗). Dashed lines mark convergence rates predicted by (2.7).

contained in a bounded region (Fig. 2.8). This indicates that the convergence rate
given by (2.7) is the same for all functions that have singularities outside this region.
In polynomial interpolation, convergence to entire functions is much faster than to
functions with finite singularities. This is not the case for GRBFs. With β = 2
we found that the rate of convergence of interpolants of 1/(1 + 4x2), 1/(100 + x2),
sin(x), and |x+2| were all about the same. What these functions have in common is
that they are analytic inside the smallest region that includes all equipotentials that
enclose [−1, 1].

It is also worth noting that the one-parameter family µγ of node density functions
proportional to (1− t2)−γ [8] was used in [9] and [19] to cluster nodes near boundaries
in RBF approximations. Although numerical results showed improvement in accuracy,
no clear criteria for choosing γ was provided in those papers. By using these node
density functions and minimizing the residue in (2.13) with respect to γ, we found
that optimal values of γ are approximately given by γ ∼= 0.5e−0.3β . We point out,
however, that interpolations using these density functions may not converge if large
values of N are required.

2.4. Location of Centers. Up to this point we have assumed that the centers
are uniformly distributed on [−1, 1]. Here we briefly investigate the consequences of
choosing centers xck that are equispaced on the interval [−L,L], where L 6= 1, and
also discuss results where centers are not equally spaced. Taking centers outside the
interval of approximation is of practical interest, as it was suggested in [9, 16] to
improve edge accuracy.

For equispaced centers on [-L,L], a straightforward modification of (2.2) gives

F (x) = e
−Nβ
4L

(x+L)2
N
∑

k=0

λ̃ke
kβx,

where β = 4L/Nc2. In this case the logarithmic potential becomes

uLβ (z) =
β

4L
Re
[

(z + L)2
]

−
∫ 1

−1

log(|eβz − eβt|)µ(t)dt.
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Fig. 2.11. Equipotentials for β = 2 (compare with Fig. 2.2). Uniformly distributed centers on
interval specified above. Interpolation points are uniformly distributed on [−1, 1]

Equipotentials for different values of L are presented in Figure 2.11. We consid-
ered equispaced interpolation nodes on [−1, 1]. Notice that if L = 0.5 there is no
guarantee of convergence, as no equipotential encloses [−1, 1]. For L =0.75, 1.25, and
1.5, there are equipotentials enclosing this interval. The region where f is required to
be smooth seems to increase with L. We also point out that the asymptotic behavior
for small β given in (2.8) holds independently of L, indicating that center location is
irrelevant in the polynomial limit.

It is common practice to chose the same nodes for centers and interpolation. In
Figure 2.12 we show the graphs of the GRBF interpolants, for f(x) = 1/(x2 − 1.8x+
0.82) and f(x) = 1/(x2−1.8x+0.85), where both centers and interpolation nodes are
Chebyshev points. These data suggest that interpolation with Chebyshev centers also
suffers from the Runge phenomenon. These results are similar to the ones obtained in
Figure 2.4 for equispaced centers. Notice that we cannot use the definition involving
h for β if the centers are not equispaced; in this case we use the definition β = 4/Nc2.

3. Algorithmic implications. It is well-known that most RBF-based algo-
rithms suffer from ill-conditioning. The interpolation matrix

[

φ(‖xi − xcj‖)
]

in most
conditions becomes ill-conditioned as the approximations get more accurate, to the
extent that global interpolants are rarely computed for more than a couple of hundred
nodes. Based on numerical and theoretical observations, in [21] Schaback states that
for RBFs, “Either one goes for a small error and gets a bad sensitivity, or one wants a
stable algorithm and has to take a comparably larger error.” Several researchers have
addressed this issue [3, 7, 14, 20]. In particular, Fornberg and Wright [11] recently
presented a contour-integral approach that allows numerically stable computations of



POLYNOMIALS AND POTENTIAL THEORY FOR GAUSSIAN RBFS 13
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Fig. 2.12. GRBF interpolation using Chebyshev points for centers and interpolation nodes, β = 2.

RBF interpolants for all values of the free parameter c, but this technique is expensive
and has been applied only for experimental purposes.

For GRBFs with equispaced centers, (2.11) provides an explicit interpolation
formula through the use of the cardinal functions Lk, so the difficulty of inverting
the interpolation matrix can be avoided. This is equivalent to Lagrange polynomial
interpolation.

Notice that the exponential term e−
Nβ
4 ((x+1)2−(xk−1)2) in (2.10) becomes very

close to zero for certain values of x if N is large, affecting the accuracy of the approx-
imations. A simple modification of (2.10) improves matters:

Lk(x) =

N
∏

j=0
j 6=k

e−
β
4 ((x+1)2−(xk−1)2)(eβx − eβxj )

(eβxk − eβxj ) . (3.1)

The direct implementation of (3.1) together with (2.11) provides a simple algorithm
for computing the GRBF interpolant for moderate values of N . In our experiments,
effective computations were carried out up to N = 300. We shall next derive a more
stable formula to handle larger problems.

In [1] Berrut and Trefethen point out the difficulties of using the standard La-
grange formula for practical computations and argue that the barycentric form of
Lagrange interpolation should be the method of choice for polynomial interpolation.
For GRBFs we define the barycentric weights by

wk =









N
∏

j=0
j 6=k

e−
β
4
(xk+1)2

(

eβxk − eβxj
)









−1

, (3.2)

and thus we have that

Lk(x) = L(x)
wk

e−
β
4
(x+1)2 (eβx − eβxk)

(x 6= xk),

where

L(x) =

N
∏

j=0

e−
β
4
(x+1)2

(

eβx − eβxj
)

.
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Therefore, the GRBF interpolant can be written as

F (x) = L(x)

N
∑

k=0

wk

e−
β
4
(x+1)2 (eβx − eβxk)

f(xk). (3.3)

For reasons of numerical stability, it is desirable to write L as a sum involving the
barycentric weights. For polynomial interpolation this is done by considering that 1
can be exactly written in terms of interpolation formulas, since it is itself a polynomial.
Unfortunately, a constant function is not exactly represented in terms of GRBFs.
Nevertheless, this difficulty can be circumvented if we properly choose a function that
belongs to the GRBF space. In our implementation, we consider the function

v(x) =
1

N

N
∑

k=0

e−
Nβ
4

(x−xck)
2

.

Notice that in this case,

L(x) =
v(x)

N
∑

k=0

wk

e−
β
4
(x+1)2 (eβx − eβxk)

v(xk)

.

Combining the last expression with (3.3) gives our GRBF barycentric formula:

F (x) = v(x)

N
∑

k=0

wk
(eβx − eβxk)f(xk)

N
∑

k=0

wk
(eβx − eβxk)v(xk)

. (3.4)

As mentioned in [1], the fact that the weights wk appear symmetrically in the de-
nominator and in the numerator means that any common factor in all the weights
may be canceled without affecting the value of F . In some cases it is necessary to
rescale terms in (3.2) to avoid overflow. In our implementation we divided each term

by
∏N
j=1 |eβxj − e−β |1/N .
In [12] Higham shows that for polynomials the barycentric formula is forward sta-

ble for any set of interpolation points with a small Lebesgue constant. Our numerical
experiments suggest that the GRBF barycentric formula is also stable.

Figure 2.10 was obtained using the barycentric formula. We point out the the di-
rect inversion of the interpolation matrix becomes unstable even for moderate values
of N . In Figure 3.1 we compare the convergence of the GRBF interpolant com-
puted with the barycentric formula with the one found by inverting the interpolation
matrix (standard RBF algorithm). We first computed approximations with β fixed
(left). Notice that for the standard implementation convergence rate changes at a
level around 10−2 and the method becomes very inefficient for larger values of N .
For the barycentric formula, on the other hand, convergence continues to machine
precision. For these approximations we used nodes computed with an approximate
optimal density function as in section 2.3. We also compared the algorithms for fixed
c. In this instance we used Chebyshev nodes, as c constant implies that β → 0 as
N becomes large and approximations become polynomial. The performance of the
standard algorithm is even worse in this case.
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Fig. 3.1. Maximum error of the interpolation of f(x) = 1/(1 + 25x2) using barycentric inter-
polation (•) and the standard RBF algorithm (∗). Left: β fixed. Right: c fixed.

4. Final remarks. GRBFs using equally spaced centers are easily related to
polynomials in a transformed variable through (2.2). This connection allows us to
apply polynomial interpolation and potential theory to draw a number of precise
conclusions about the convergence of GRBF interpolation. In particular, for a given
interpolation node density one can derive spectral convergence (or divergence) rates
based on the singularity locations of the target function. Conversely, one can easily
compute node densities for which analyticity of the function in [−1, 1] is sufficient
for convergence and for which the Lebesgue constant is controlled. Furthermore,
the polynomial connection allows us to exploit barycentric Lagrange interpolation to
construct a simple, explicit interpolation algorithm that avoids the ill-conditioning of
the interpolation matrix. We stress that the convergence illustrate in Fig. 3.1 is made
possible only through the use of both the stable nodes and the stable algorithm.

Numerical evidence suggests that other RBFs such as multiquadrics may also be
susceptible to the Runge phenomenon and dependent on node location for numeri-
cally stable interpolations. Figure 4.1 shows graphs of multiquadric interpolants of
two functions. We first considered the small β case (nearly polynomial) with the
same function that caused the Runge phenomenon for GRBFs on equispaced nodes.
The high oscillations of the interpolant at the ends of the interval indicates that this
function also causes the Runge phenomenon for multiquadrics. The multiquadric in-
terpolant of f(x) = 1/(x2 − 1.8x + 0.82) with β = 2 and equispaced centers also
presented spurious oscillations, as its GRBF counterpart did, when Chebyshev inter-
polation nodes were used.

Practical interest in RBF methods is fueled by their flexibility in the node and
center locations and by their simple use in higher dimensional approximation. The
results of this paper do not extend immediately in either of those directions, except
to a tensor-product situation of uniform center locations in a box. Still, we believe
that the explicit GRBF interpolation algorithm in particular may be adaptable to
selective resolution requirements and geometric flexibility.
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A. LeMéhauté, C. Rabut, and L. Schumaker, editors, Surface fitting and multiresolution
methods, Proc. Chamonix, Vanderbilt University Press, 1997, pp. 131-138.

[7] G.E. Fasshauer, Solving differential equations with radial basis functions: multilevel methods
and smoothing, Adv. Comp. Math., 11 (1999), pp. 139-159.

[8] B. Fornberg, A Practical Guide to Pseudospectral Methods. Cambridge University Press, Cam-
bridge, UK, 1996.

[9] B. Fornberg, T. A. Driscoll, G. Wright, and R. Charles, Observations on the behavior of radial
basis function approximations near boundaries, Computers Math. Applic., 43 (2002), pp.
473-490.

[10] B. Fornberg, N. Flyer, Accuracy of radial basis function interpolation and derivative approxi-
mations on 1-D grids, Adv. in Comput. Math., to appear.

[11] B. Fornberg, G. Wright, Stable computation of multiquadric interpolants for all values of the
shape parameter, Computers Math. Applic., to appear.

[12] N.J. Higham, The numerical stability of barycentric Lagrange interpolation, IMA J. Numer.
Anal., to appear.

[13] E.J. Kansa, Multiquadrics - A scattered data approximation scheme with applications to com-
putational fluid dynamics - II. Solutions to hyperbolic, parabolic, and elliptic partial dif-
ferential equations, Computers Math. Applic., 19 (1990), pp. 147-161.

[14] E.J. Kansa and Y. C. Hon, Circumventing the ill-conditioning problem with multiquadric radial
basis functions: Applications to elliptic partial differential equations, Computers Math.
Applic., 39 (2000), pp. 123-137.

[15] V.I. Krylov, Approximate calculation of integrals, A.H. Stroud, trans., Macmillan, New York,
1962.

[16] E. Larsson and B. Fornberg, A numerical study of some radial basis function based solution
methods for elliptic PDEs, Computers Math. Applic., 46 (2003), pp. 891-902.

[17] W.R. Madych, Miscellaneous error bounds for multiquadric and related interpolators, Comput.
Math. Appl., 24 (1992), pp. 121-138.

[18] W.R. Madych and S. A. Nelson, Bounds on multivariate polynomials and exponential error
estimates for multiquadric interpolation, J. Approx. Theory, 70 (1992), pp. 94-114.

[19] R.B. Platte and T.A. Driscoll, Computing eigenmodes of elliptic operators using radial basis
functions, Computers Math. Applic., to appear.

[20] S. Rippa, An algorithm for selecting a good value for the parameter c in radial basis function
interpolation, Adv. Comp. Math., 11 (1999), pp. 193-210.

[21] R. Schaback, Error estimates and condition numbers for radial basis function interpolation,
Adv. in Comput. Math., 3 (1995), pp. 251-264.



POLYNOMIALS AND POTENTIAL THEORY FOR GAUSSIAN RBFS 17

[22] L.N. Trefethen and J.A.C. Weideman, Two results on polynomial interpolation in equally spaced
points, J. Approx. Theory, 65 (1991), pp. 247-260.

[23] J.A.C. Weideman and L.N. Trefethen, The eigenvalues of second-order spectral differentiation
matrices, SIAM J. Numer. Anal., 25 (1988), pp. 1297-1298.

[24] H. Wendland, Gaussian interpolation revisited, K. Kopotun, T. Lyche, and N. Neamtu, editors,
Trends in approximation theory, Venderbilt University Press, 2001, pp. 1-10.

[25] J. Yoon, Spectral approximation orders of radial basis function interpolation on the Sobolev
space, SIAM J. Math. Anal., 33 (2001), pp. 946-958.


