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ABSTRACT

A DC electronic load is a test instrument that is used to simulate loading on

an electronic circuit or device. DC electronic loads can be bought as commercial

units. These units can be expensive with prices ranging from several hundred to a

few thousands of dollars. They tend to be robust and offer more features and power

ratings than what is needed by the average embedded electronics design engineer. As

a result, there have been several electronics design engineers and hobbyists who have

chosen the more cost effective and more rewarding route of designing their own DIY

DC electronic loads. One design that started the trend is demonstrated by Dave Jones

in episode 102 of his EEVblog on YouTube. In this video, Jones explained the circuitry

of the electronic load circuit operating in constant current mode and suggested some

improvements that can be made to the circuit. Many electronics hobbyists replicated

and improved upon Jones’ design in various ways and published their design files over

the Internet as part of the open source hardware movement.

This thesis documents the design of an open source DIY DC electronic load

called the FreeDum Load. The FreeDum Load aims to aggregate some of the good

features of the previous DIY designs while making improvements to areas that were

lacking. In addition, the FreeDum Load is designed to be a self-sufficient bench top

device to have the form factor of commercial electronic loads. This feature is currently

lacking in existing DIY designs as the majority of them are bare PCB boards. The

FreeDum Load features a streamlined aluminum enclosure and runs off of AC power.

It is programmable and the peripherals on board are controlled by a Freescale Kinetis

K20 microcontroller with a Cortex M4 core. Peripherals include a 3.2 inch back-lit

LCD touchscreen display, a quadrature encoder with RGB LED feedback, and a fan

controller with DC fans for cooling. In addition, some firmware has been written for

xi



the Kinetis K20 microcontroller to drive the LCD, quadrature encoder, and the fan

controller. The firmware proved to be challenging as existing libraries and sample

code for the Kinetis K20 microcontroller were non-existent in the open source commu-

nity. Freescale, the manufacturer of the microcontroller, offered some support in its

CodeWarrior IDE, but the IDE itself is proprietary and has a high licensing cost.

As a result of this project, the first hardware revision of the FreeDum Load has

been completed and a prototype unit has been constructed. A second revision is needed

to correct some of the hardware design mistakes made. Major changes would include

starting with a completely new microcontroller that would be easier to program with

an open source IDE, adding a heatsink to the device, and cutting down costs of the

components so the FreeDum load can be made much cheaper than commercial units.

Overall, this thesis documents the knowledge gained from the full prototype design

life cycle including knowledge of analog circuit design, PCB layout, soldering, PCB

fabrication, Cortex M4 firmware development, and mechanical construction.

xii



Chapter 1

INTRODUCTION

1.1 Background

An electronic load is a test instrument that is used to simulate loading on an

electronic circuit or device. It is particularly useful for gaging the performance of

power sources such as power supplies, batteries, photovotaic cells, and generators. The

instrument simulates the loading of a power source by acting as a current sink that can

be set and varied electronically. It is a substitute to the conventional way of connecting

the tested circuit to various fixed value load resistors in order to produce various load

currents. Simple electronic loads are controlled using a potentiometer for adjusting the

load. More advanced electronic loads are programmable stand-alone devices that are

controlled via a microcontroller or computer. They are capable of performing more

measurements and can operate in various modes such as constant current, voltage,

resistance, or power modes. There are both AC and DC electronic loads. In its most

basic form, the electronic load circuit can even be integrated into a more complex

circuit design when a variable current sink is required. Overall, the electronic load is

an invaluable tool for electronics design and testing, especially in applications where

it is important to define and validate the reliability and efficiency of the power sources

used in a design.

1.2 Motivation

The goal of this project is to design a relatively low-cost programmable DC

electronic load that is enclosed in a presentable and functional package. The target

users for this device are embedded hardware designers and electronics hobbyists who

work with embedded systems involving microcontroller circuits running at low DC
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voltages. Currently, commercial DC electronic loads are available on the market, but

these units tend to be large, more powerful than needed, and expensive. The lowest

priced commercially available unit costs around $350 with higher-end models costing

up to $3,000. Although these units are robust and useful in industrial settings, their

capabilities over-exceed the needs of the average embedded electronics design engineer.

As a result, many electronics hobbyists and researchers do not have the budget to

purchase such an expensive piece of specialized test instrument. Instead, they have

decided to design their own do-it-yourself DC electronic loads.

Several open source, do-it-yourself, DC electronic load projects already exist in

the public domain which are published on forums and blogs by electronics hobbyists

and researchers. These previously published projects served as inspiration and moti-

vation for the FreeDum Load, the name given to the project discussed in this paper.

The goal is to improve upon these designs because many of the existing designs lack

reproducibility or robustness.

For example, some of these designs incorporate and reuse existing “scrap” com-

ponents that are found around the designer’s work bench. Fiscally, these designs work

well for the individual designer’s budget because they use materials which the individ-

ual already possesses. However, the use of scrap parts that are on hand could limit

the functionality and specifications of the design. Furthermore, the design might not

be easily reproducible by others who do not have the components already on hand.

Instead, others who wish to reproduce the design would have to acquire the parts used.

This would mean extra costs that were not factored into the original design. It is also

possible that a component used in the design is difficult to acquire because it is no

longer manufactured or is an OEM only component salvaged from another circuit. An-

other example would include a published design that does come with a bill of materials

consisting of off-the-shelve parts and even design files for easy reproducibility, but the

design itself lacks robustness. It could be that the design is a bare-board circuit or

lacks a functional or “hacked” enclosure to contain the project. Often, crude holes

are cut out of makeshift enclosures to fit a component, or a prototyping board is laid
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around a mess of wires. The problem with projects like these is that they lack the

transportability of commercial units.

This project hopes to eliminate the cost of commercial DC electronic loads

and the lack of reproducibility and robustness found in many existing DIY designs.

The goal is to design a device that looks streamlined and marketable like commercial

devices but also reproducible by the DIY electronics hobbyist community. Although

many design principles and best practices were adapted from existing electronic load

projects, novel electronic components were specifically selected and purchased to best

meet the requirements and budget for this project. The components used are readily

available through major electronic component retailers such as Digikey or Mouser.

This allows anyone to reproduce the design with ease. Details regarding the project

will be made available to the public as open source hardware, which means all design

files and source code will be published on the Internet so anyone may reproduce or

improve upon the existing work free of royalties. This is in the open hardware spirit of

the existing designs that have already been published. Some of these preceding open

source projects will be discussed in the next chapter.
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Chapter 2

EXISTING MODELS AND DESIGNS

2.1 Commercially Available Models

Figure 2.1: An Array brand electronic load (Array, n.d.).

Most commercial models are capable of testing both AC and DC, but this paper

will be only discussing DC electronic loads. Several commercial DC electronic loads

currently exist on the market. The form factor of these models are similar in appear-

ance to the typical brick-like power supply. They have control dials and buttons to

adjust various settings, and plus and minus terminals for the input. They also have a

digital display showing ideal and actual settings measured by the device. Some can be
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controlled programmatically via a PC and measurements can be stored. Most impor-

tantly, commercial electronic loads have built in protective circuitry to protect against

over current, over voltage, over temperature, and reverse polarity.

Table 2.1 lists the prices and features of four different brands of the commercially

available models of DC electronic loads. The cost of these units range from several

hundred dollars up to several thousand. The unit costing the least is the TP3710A

from Tekpower at $399.99. It is interesting to note that Tekpower devices are the

same as those offered by ARRAY but sold under a different brand and at a lower

price. Despite this, $399 is still a hefty fee to pay for an electronic load. Embedded

circuit engineers might not require the full range of current and power ratings offered

by commercial units so it might be viable to try to design a cheaper alternative.

Brand Model Cost
Max Input Ratings

Data Link
Voltage Current Power

ARRAY 3720A $695 80V 30A 250W RS232, USB, GPIB
ARRAY 3721A $695 80V 40A 400W RS232, USB, GPIB
ARRAY 3722A $695 200V 20A 200W RS232, USB, GPIB
ARRAY 3723A $769 200V 30A 350W RS232, USB, GPIB
ARRAY 3710A $349 360V 30A 150W RS232, RS485, USB
ARRAY 3711A $499 360V 30A 300W RS232, RS485, USB
BK Precision 8512 $2,595 500V 30A 600W RS232, RS485, USB
BK Precision 8500 $1,095 120V 30A 300W RS232, RS485, USB
BK Precision 8540 $525 60V 30A 150W None
Tekpower TP3710A $399.99 360V 30A 150W RS232, RS485, USB
Tekpower TP3711A $499.99 360V 30A 300W RS232, RS485, USB
Tekpower TP3723A $999.95 360V 30A 350W RS232, RS485, USB
Agilent 6060B $2,910 60V 60A 300W GPIB

Table 2.1: A comparison of prices and specifications of various commercial DC elec-
tronic loads.

2.2 Open Source Designs

Several open source hobbyists have shared and discussed their design of the

electronic load over the Internet. These open source projects served as inspiration and
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background research for the design presented in this paper so it is pertinent to describe

some of these projects in the following section.

2.2.1 EEVblog Episode #102

The prototype that started the popularity of a do-it-yourself electronic load and

a design which is referenced by many later electronic load projects is presented in a

YouTube video made by Dave Jones of EEVblog. In this video, Jones (2010) goes

over the basics of a constant current load circuit that he constructed using basic parts

he ”had lying around”. Dave had a premade PCB board that he had designed for a

battery capacity logger, which had the appropriate connections and footprints, so he

populated this new electronic load circuit on top of this board.

For the circuit, he used a MTP3055 N-channel logic MOSFET and 1Ω power

resistor fed by a LM324 op-amp to make an adjustable constant current load based an

input voltage (Jones, 2010). The mechanics of how the basic load circuit works will

be discussed in section 3.1. This constant current load circuit is prefaced by a voltage

divider and another voltage follower op-amp connected to a 10-turn potentiometer.

The 10-turn pot allows for a fine-grain adjustment of the input voltage (0 to 5 volts)

(Jones, 2010). This voltage is then divided in half after the voltage follower giving

0 to 2.5 volts. In a perfect situation, the circuit should be able to generate from 0

to 2.5 amps at the output, but in reality the output is about 0 to 1.25 amps (Jones,

2010). Jones (2010) explains this is due to the LM324 having ”issues with it can’t go to

the supply rail” and not being able to drive the MOSFET to achieve a higher output

voltage across the load resistor. He also explains that this issue can be solved with

a precision, rail-to-rail, op-amp. This advice was used in the design of the FreeDum

Load as one can see later in the description of the design. At the output of the circuit,

Jones uses another spare part, a cx101 3-digit LCD panel meter, in common-ground

configuration, at the output to display the set current. Another design choice Jones

points out is that for the 1Ω shunt resistor, he chose to use ten 10Ω resistors in parallel.

The reasons are discussed in subsection 3.2.1 as the FreeDum load adopts this design
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advice, as well. To prevent overheating, Jones attaches a heatsink to the MOSFET to

dissipate the heat that is going to be generated from the current that is going to be

sunk.

Lastly, Jones (2010) discusses his original battery capacity logger board which

included an intelligent microcontroller to control and log the current output. The

PWM input from the microcontroller simulates the potentiometer and the output is

inputted back to the microcontroller via an ADC. With some programming, this set up

allows for generation of different operating modes such as constant current, constant

power, constant resistance, or pulse loads (Jones, 2010).

Figure 2.2: Screen shot of Dave Jones’ adjustable electronic load design as seen from
EEVblog episode #102 (Jones, 2010).

2.2.2 Martin Lorton’s Electronic DC Load

Another YouTube blogger, Martin Lorton, known as mjlorton on YouTube,

decided to create his own electronic load after a forum member on his website shared

a modified design of Dave Jones’ electronic load. Lorton wanted an electronic load for

himself because he is a electronics hobbyist who works with solar power and electronic

measurement equipment. In 2012, Lorton made a series of YouTube videos sharing the

7



design process of his electronic load. Lorton’s design made some improvements to Dave

Jones’ circuit design based on his own power measurement needs, mostly by replacing

the key components in Dave Jones’ electronic load circuit with components that have

the required specifications. For the N-channel MOSFET, which is the component

responsible for sinking the majority of the current, Lorton chose the BUZ31L H-ND

from Infineon Technologies, which is rated to handle maximum of 200V and 13.5A. He

decided to put two of these MOSFETs in parallel in order for them to share the load

and the heat dissipation (Lorton, 2012). For his load resistor, Lorton decided to use

a single 1Ω power resistor rated at 50W. The input to the circuit is changed from one

10-turn pot to two 10-turn pots (50K and 5K) in series for finer control (Lorton, 2012).

The op-amps in the circuit remained unchanged. An LM7806 linear regulator powers

the op-amps. Overall, Lorton (2012) designed his electronic load to handle a max load

of 30V and 2A or 60W.

Lorton (2013) took his design one step further and decided to put his completed

circuit in an aluminum enclosure, and substituted the panel meter component in Jones’

design with two backlit-LCD displays, which shows the input voltage and the current

being sunk. The backlit-LCDs and the rest of the circuit require an external, dedicated

power supply, so a separate DC input exists on the enclosure (Lorton, 2013). There are

external connection terminals with access to the power supply inputs and current out-

puts so the current data can be logged via an multimeter. A large heatsink is mounted

to the back of the enclosure and an L-shaped bracket is mounted to the heatsink to

make sure the unit can stand upright (Lorton, 2013). Despite the improvements, the

circuits in this design are still completely analog without any digital components. Lor-

ton (2013) mentioned in his video that for his next revision of the device, he plans to

add a low-voltage cut-off feature, to prevent over draining of lithium-ion batteries, and

to replace the potentiometers with an Arduino control.
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Figure 2.3: Screenshot from Martin Lorton’s video showing the front and back of his
Electronic DC Load (Lorton, 2013).
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2.2.3 Re:load

In 2013, Nick Johnson of Arachnid Labs designed his own DC electronic load

PCB which he named the Re:load. Even though Arachnid Labs does not explicitly

reference or explain the origin of the circuit, the internal dummy load circuit used in

the Re:load is very similar to that of the one presented by Dave Jones in his video. The

MCP6002 low-power rail-to-rail op-amps in the circuit are powered by a LP2950 linear

regulator. The MOSFET that Johnson (2014) chose was the BTS117. He specifically

chose the BTS117 because it has built in ESD, over-current, over-voltage, and over-

temperature protection. Like Lorton, Johnson chose to place one single power resistor

instead of ten in parallel acting as the shunt resistor connected to the MOSFET capable

of handling 3W. Current control is handled by a 10kΩ potentiometer although the

potentiometer used seems to be cheaper and does not seem to provide as much granular

control as those used by Jones and Lorton. Johnson laid out his whole circuit on a

PCB on which there is a footprint for the heatsink to be attached. Re:load also does

not include a dedicated power supply so an external power supply is needed to provide

power to the linear regulator, provided that it is also not the supply to be tested by the

electronic load. It is rated to handle 3.3 to 30V, 0-3A (0-5A for a bigger version with

a bigger heatsink), 12W (20W for bigger version) (Johnson, 2014). Overall, Re:load

is designed from the ground up with completely new components compared to Dave

Jones’ design but much simpler in functionality; it does not have an output display

and relies completely on external lab equipment to monitor the output.1 Arachnid

Labs currently sells Re:load as a DIY bare-board kit priced at $15 ($20 for the bigger

version). Source design files with the bill of materials are also provided should anyone

wish to reproduce the board without buying the kit.

1 In late 2014, Arachnid labs started work on a more advanced, programmable version
of the Re:load, called Re:load Pro. It features a dedicated external enclosure, back-lit
LCD display, and USB powered. It was released in early 2015 and available for sale
for $150.
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Figure 2.4: Photo of the two available versions of Re:load posted on the Arachnid
Labs website (Johnson, 2014).
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2.2.4 Other Designs

ITead Studio’s C8051F Electronic Dummy Load Kit is a bare PCB board but

it includes some advanced features: C8051F330 microcontroller, Nokia 5110 LCD that

displays real time data, and constant current and constant voltage operating modes

(Itead, 2010). It is capable of handling up to 2A. This kit currently sells on the ITead

Studio’s website for $35.

Figure 2.5: Photo of ITead Studio’s electronic load board (Itead, 2010).

An electrical engineer, Lee Wiggins, by username of Wigman27, posted an ex-

tensive guide on the Instructables website explaining how he designed and constructed

his programmable constant current power resistance dummy load. Like most of the
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other designs mentioned thus far, his design was also inspired by Dave Jone’s EEVblog

video. It is, however, comparatively more sophisticated than the rest. To start off, the

circuit is programmable and controlled by an Arduino. The use of the microcontroller

enabled input to be done through a rotary encoder instead of a potentiometer, which

most of the other designs used. The output is shown on a LCD backlit screen. Most

of the components are surface mount and all laid out on a single PCB as opposed

to through-hole soldered. Laying out all components on a single PCB allows for the

reduction of wires and better cable management. Wiggins (2013) also had the idea

of mounting a DC fan to the heatsink to cool the MOSFET. The only flaw to this

design is that it lacks a dedicated power supply so the device itself will have to be

powered off of an external source (Wiggins, 2013). Wiggins currently sells his PCB

for $10 and has his bill of materials published on Instructables so others can use his

board to make their own electronic load. According to the comments section, others

have successfully created their own electronic load through the use of Wigman’s PCB

board, although they did not completely replicate the rest of his design such as using

the same aluminum case, heatsink, and internal wiring scheme (Wiggins, 2013).

2.3 Design Summary

The do-it-yourself DC electronic load designs listed in the previous sections all

have areas where they excel and areas where they are lacking. Microcontroller input

via a rotary encoder, back-lit LCD output, and an aluminum enclosure are the good

features of some of these designs. One common feature that many of DIY designs

lacked that commercial devices have is a dedicated supply to power the test circuit

and the peripherals on board the device. This prevents the electronic load from being

an appliance that can function without any additional equipment. Another problem

is that in most of these designs, the heatsink on the board is exposed. It can cause

accidental burns and in general takes away from the aesthetics of the packaging. The

design of the FreeDum Load aims to aggregate some of the good features of the previous

designs while making improvements to areas that are lacking.
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Figure 2.6: Photo of the internals of Wigman’s electronic load as posted in his In-
structables guide (Wiggins, 2013).
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Chapter 3

FREEDUM LOAD HARDWARE DESIGN

3.1 The Basic Electronic Load Circuit

Like the designs discussed in the previous chapter, the circuit design of the

FreeDum Load uses an extension of the basic electronic load circuit proposed by Dave

Jones in his EEVblog episode. The electronic load circuit in its minimally functional

form consists of an operational amplifier, an N-channel MOSFET, and a shunt resistor

(Fig. 3.1). The basic functionality of this circuit acts as a voltage controlled current

sink. The MOSFET and the resistor are arranged in high side configuration with the

drain terminal of the MOSFET connected to the power source to be tested, the source

of the MOSFET connected to the shunt resistor, and the resistor connected to common

ground. In this configuration, the MOSFET acts as a variable resistor in series with

the shunt resistor. Together, these two components act as the current sink.

The output of the op-amp in the circuit is connected to the gate of the MOSFET,

which controls the resistance of the MOSFET and thus the amount of current that

flows though the MOSFET and the shunt resistor. The voltage input of the circuit

that controls the amount of current to be sunk is connected to the positive terminal

of the op-amp. The voltage relative to ground at the junction of the load resistor and

the drain of the MOSFET is connected to the negative terminal of the op-amp. Due

to the operational characteristics of the op-amp, the op-amp will attempt to drive the

circuit at its output so the voltages at its positive and negative input terminals match.

In other words, the voltage fed into the input at the positive terminal will result at

the negative terminal. Using a load resistor of 1Ω and an input voltage of X volts at

the positive input of the op-amp, the op-amp will cause the voltage difference across
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Figure 3.1: The schematic of the basic circuit.

the 1Ω resistor to also be X volts. Using Ohm’s Law, X volts dropped over 1Ω results

in X amps of current flowing through the resistor. Assuming the power source to be

tested (labeled ”Power Source” in Fig. 3.1) connected to this circuit is providing more

than X volts, the voltage in excess of X volts will be dropped across the MOSFET.

3.2 Expansion of the Basic Circuit

The previous section describes the most basic form of the electronic load circuit

for the purpose of explaining the operation of such a circuit and how it functions as

a current sink. This basic circuit can be added onto more complicated circuit designs

whenever a current sink is required in context. However, the goal of this design project

was not to incorporate this circuit into an existing circuit but to design a stand-alone

bench top test device that is capable of acting as a variable load to any power source

that needs to be tested. Rather, the aim is to have an electronic load that is not

only programmable and customizable but is also self-contained in its own packaging.

Some modifications and several components were added to the basic circuit to allow

for greater versatility, functionality, and also programmability. Each modification or
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addition to the basic circuit that is found in the resulting design is described in more

detail in the following subsections along the reasons for the design decision.

3.2.1 Parallel Load Resistors

As suggested by Dave Jones in his video blog, the single 1Ω resistor in the basic

electronic load circuit is replaced by the equivalent circuit of ten 10Ω resistors in paral-

lel. The tolerance of the resistors chosen is 1%. The reason behind this configuration is

threefold. First, it is much more cost effective to obtain ten 1% 10Ω 2W resistors than

one 1% 1Ω 20W resistor. Second, even though the equivalent resistance is the same,

the actual resistance of the equivalent circuit would be closer to the specification due

to the averaging of the manufacturing errors present in the ten resistors (Jones, 2010).

Lastly, having ten resistors in a parallel configuration allows the circuit to sink more

current and more power than one resistor by itself. Sharing the current amongst the

ten resistors will allow for better heat dissipation. The specific power resistors used in

the circuit are WHC10RFET manufactured by Ohmite. They are rated to handle 2W

each so ten resistors together can handle a maximum 20W of power.

3.2.2 Op-Amp

The op-amp used in the circuit is the ADA4528 made by Analog Devices. It

is a precision rail-to-rail op-amp with a low offset voltage. This op-amp is chosen in

order to use the full range of rail to rail voltages available to drive the MOSFET.

Figure 3.2 shows that the op-amp is powered off of a single supply of 5V. The positive

terminal of the op-amp is driven by the output from the digital to analog converter of

the microcontroller used in the FreeDum Load’s design.

3.2.3 Op-Amp Buffer Circuit

The ADA428-2 contains two op-amps and the FreeDum Load utilizes both. The

most basic electronic load circuit only require one op-amp to control the MOSFET.

The second op-amp has been wired in a feedback buffer configuration. The input of the

buffer is tied to the output of the electronic load circuit, at the junction between the
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Figure 3.2: The schematic of the expanded circuit.
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source of the MOSFET and the parallel resistors. The output of the buffer is connected

to the analog to digital converter on the microcontroller to be read back via feedback.

Since the supply rail to the op-amp is from 0 to 5V, the buffer is only able to output a

maximum of 5V. This should be no problem as the load circuit is not designed to sink

more than 3A making the theoretical voltage at the output to be 3V max.

3.3 Peripherals

3.3.1 Microcontroller

In order to control the current being dropped across the load, some type of

voltage control needs to be implemented at the positive terminal of the op-amp circuit.

In Dave Jones’ (2010) simple electronic load design, he used a 10-turn pot. In order to

make the FreeDum Load’s design more sophisticated, a microcontroller was employed.

A microcontroller allows greater functionality to be added to the circuit via software

controls. The microcontroller can be made to drive the circuit via PWM or a digital to

analog converter port. The microcontroller can also be used to log data via an analog

to digital converter, and it can drive additional electronic peripherals in the circuit.

The microcontroller used in this project is the MK20DX256ZVLQ. It is part of

Freescale’s Kinetis K20 series of MCUs built on the ARM Cortex-M4 core. The Kinetis

K20 family of microcontroller was chosen because it had all the peripheral buses and

ports needed for the project already built-in. The MK20DX256ZVLQ features a 144-

pin LQFP package with a 100 MHz core operating frequency, 256 KB of flash, and

64KB internal RAM. The 100MHz operating frequency would allow the microcontroller

to quickly drive a LCD to display graphics, read input from its sensors, and sample

data from the ADC at a higher frequency. Sufficient flash memory and RAM are

needed to store LCD graphics and any data points that are logged. The features that

stood out regarding this microcontroller was that it has both a 16-bit analog to digital

converter and a 12-bit digital to analog converter built into the chip. These are rather

uncommon features not found in other microcontrollers at the time. Having all the
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desired peripherals in one part makes it more cost efficient and also more space efficient

for the PCB layout.

Figure 3.3.1 shows the schematic of the microcontroller. 0.1µF decoupling ca-

pacitors were put between all the power and ground pins of the microcontroller. A reset

switch labeled SW3 is tied to the reset pin. An 8 MHz external crystal is attached to

the microcontroller using the proper connection circuit as documented in the microcon-

troller’s reference manual. 22pF capacitors were used as part of the crystal connection

circuit because that value is more commonly used and close enough to the calculated

value of 26pf, assuming Cstray of 5pF and CL of 18pF according to the crystal’s data

sheet (Abracon, 2011).

3.3.2 LCD Display

An LCD display is employed to display information regarding user input, the

mode of operation, and circuit output. The LCD in the FreeDum Load is a third party

3.2 inch touch LCD with a 320 by 240 resolution. It has a SSD1289 LCD controller and

a XPT2046 touch screen controller. The screen is backlit. The LCD controller has a 16

bit data line input. The touch screen interface is controlled via SPI. It is important to

note that the LCD includes a 5V to 3.3V voltage regulator, the 3.3V which is in turn

used to power the microcontroller. Without the LCD board, the microcontroller would

not work since there are no additional voltage regulators found on the main board.

The decision to use the voltage regulator on the LCD was due to space efficiency. The

LCD break out board snaps onto the main board via a row of headers.

3.3.3 The USB Port

Since the MK20DX256ZVLQ supports USB peripherals, a USB port is included

in the design. The USB port can be used to download data from the device or be used

to configure the device. The USB port lay out includes 2 line ESD protection. 33Ω

termination resistors are placed on the D+ and D- lines. The USB lines go to a 5 pin

20



F
ig

u
re

3
.3

:
T

h
e

sc
h
em

at
ic

of
th

e
m

ic
ro

co
n
tr

ol
le

r.

21



Figure 3.4: The schematic of the lcd screen.

connector on the board, which then connects to a USB-B style port that is mounted

on the back panel of enclosure via a cable.

3.3.4 Controller Dial

The controller dial on the FreeDum Load is a PEL12T incremental rotary en-

coder with a RBG LED illuminated shaft that offers colored feedback. The shaft also

acts as a push-switch. This dial would be used in conjunction with the touchscreen

display to adjust the operating mode and settings of the device. Figure 3.6 shows the

schematic of the rotary encoder. On the left side are terminals A, B, and C with A

and B being the outputs of the quadrature that would tell the microcontroller of the

relative position and direction of rotation of the shaft. The schematic includes a filter-

ing circuit as suggested by the manufacturer’s data sheet (Bourns, 2014). Terminals 1

to 4 are the microcontroller inputs to the RGB LEDs and the push switch. Current

limiting resistors with values depending on the different color LED forward voltages
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Figure 3.5: The schematic of the usb port.

are attached to the LED inputs and a pull down resistor is attached to the push switch

input.

Figure 3.6: The schematic of the rotary encoder.

3.3.5 External Power Supply

One major design consideration for the FreeDum Load was that its circuit com-

ponents such as the microcontroller and the op-amp that drives the MOSFET should

be powered off of a dedicated built-in power supply. As mentioned previously, many
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other open source electronic loads require power from an external supply. This external

power supply should not be the same as the power source being tested. Omission of

a dedicated supply is likely done for simplicity’s sake but adds the hassle of requiring

extra equipment to power the electronic load. To make the FreeDum Load a self-

sufficient device, all components on the board are powered by a AC to DC converter

that supplies 12V. The specific AC to DC converter model is the LS25-12 made by

TDK-Lambda Americas Inc. The 12V output from the AC to DC converter is fed to

the 5 voltage linear regulator, which drives the op-amps in the circuit and the LCD.

The connection from the AC to DC converter to the voltage regulator is controlled by

a push switch that determines whether power is delivered to the device. The AC input

of the converter is connected to a 3-prong AC port, which is found on the back of the

FreeDum Load enclosure.

Figure 3.7: The schematic of the power supply and voltage regulator.

3.3.6 Fan Controller and Fans

To dissipate the heat dropped across the transistor, the FreeDum Load includes

brushless DC fans and a PWM fan speed controller. The fan controller used is the

TC655. Temperature data from a thermistor connected to CON4 is fed to Vin of the

fan controller. The PWM output at Vout is adjusted between 30% and 100% based

on the voltage at Vin. Sense 1/Sense 2 are used to monitor the actual RPM of the

fans. Data can be read and fan speed can be controlled via the SMBus lines which are
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connected to the microcontroller. The rest of the fan controller circuit (resistor and

capacitor values and configurations) are taken from the Typical Application Circuit

from the TC655 data sheet (Microchip, 2014). The fans are 12V DC fans that are

directly powered by the power supply.

Figure 3.8: The schematic of fan controller circuit.

3.4 Manufacturing and Assembly

3.4.1 PCB Manufacturing

The schematic and PCB layout for the FreeDum board was done in Eagle Layout

Editor 6.5. All of the circuits mention above were laid out on a double-sided PCB. The

PCB layout is shown below. The PCB was fabricated by OSH Park. All components

were soldered on by hand after fabrication. After the headers have been soldered on,

the LCD break out board is snapped onto the main PCB. Photos of the completed

PCB with and without the LCD break out board attached can be seen in Figures 3.10

and 3.11.
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Figure 3.10: The front of the board.

Figure 3.11: The front of the board with LCD attached.
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Figure 3.12: The back of the board.

Figure 3.13: The front panel of the enclosure.
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3.4.2 Enclosure

The FreeDum Load has a dedicated enclosure to make it a streamlined bench

top device. It is a one piece extruded aluminum housing with removable aluminum

end panels and internal PCB guides for easy of slotting of PCBs. The enclosure has

external dimensions of 3.18in x 6.14in x 5.38in. The end panel of the the enclosure

were modified and used as the front and the back side of the electronic load device. For

the front panel, a rectangle the size of the LCD was cut out so that the screen sits flush

with the panel (Fig. 3.13). The rest of the main board sits behind the front panel.

Circular holes are cut out for the two push button switches and the input terminals.

For the back panel, holes for the USB port, two 1.5in DC fans, and the power adapter

port were cut out (Fig. 3.15). The external power supply was mounted to a aluminum

panel and slotted into one of the enclosures slots (Fig. 3.14). The actual PCB of

the FreeDum Load sits perpendicular to the aluminum panel and flush with the front

panel of the enclosure. The PCB board is attached to the aluminum panel by the metal

tab on the MOSFET. The intended idea is that the MOSFET would dispensate heat

through the aluminum panel and through out the case, which would then be cooled off

by the fans.
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Figure 3.14: The AC to DC converter slotted inside the case.

Figure 3.15: The back panel of the enclosure.
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Chapter 4

FIRMWARE

Due to the scope and the time frame of the project, firmware for the Free-

Dum Load has not been completed. Only some of the peripherals of the device were

programmed to test whether the microcontroller and the accessories perform as they

should. The following sections will outline the tools used to program the microcon-

troller and some of the the firmware written.

4.1 IDE and Programmer

In order to cut down the development costs of the project, many integrated

development environments were evaluated. The first IDE used was the emIDE, a free

IDE for embedded programming. Since there is no cost associated with this IDE, others

who wish to reproduce the design of the FreeDum Load could download it and reuse

the firmware. Unfortunately, the emIDE had limited support for the Freescale’s Kinetis

K20 series of microcontrollers. One of the major inconveniences from using the emIDE

was its lack of customized start up code for the Kinetis K20. The start up code is the

code run at the power on/reset of the microcontroller which is responsible for copying

the code from ROM to RAM, clearing the BSS, and setting up the interrupt vector

table of the microcontroller. From the Embedded Application Wizard, the emIDE

was only capable of generating a very generic startup code for the Cortex M4 device.

Furthermore, this startup code was written in assembly, making it difficult to update

and understand. Additional startup code written in C was found for the Kinetis chip

on the Freescale website but it was unclear how this code was to be integrated with

the assembly already generated by emIDE.
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Eventually, emIDE was given up and the Freescale CodeWarrior Development

Studio was looked at as another option for development. One advantage to using

CodeWarrior is that CodeWarrior is the official IDE for Freescale so it provides built-

in support libraries for Freescale’s microcontrollers. Despite this, CodeWarrior was

not considered as an option because Freescale only offers the software on a 30-day

evaluation license. After the trial expires, the license would cost $400 for the cheapest

annual license. Attempts were made to ”export” the support source code generated by

CodeWarrior and “import” it into emIDE but it proved to be a time-consuming and

difficult process as the project files generated by the CodeWarrior wizard were rather

complicated.

In the end, the majority of the firmware for this project was developed using

Rowley CrossWorks IDE for ARM. It proved easy to use and generated the proper

startup code for the Kinetis K20 chips. However, the code size was restricted to 16KB

for the trial version of the software. To break the restriction, a personal license for

CrossWorks had to be purchased which cost $100.

Figure 4.1: The jtag connection to the microcontroller.

The Seggar J-Link EDU debug probe was used with the Olimex ARM-JTAG-20-

10 adapter to program and debug the firmware on the microcontroller. The debugger

is connected via USB to the PC and connected to the FreeDum Load’s PCB board via

the 10-pin JTAG connection at Connector 3 (Fig. 4.1). The J-Link EDU costs $60 and

the adapter costs about $5. This debugger combination worked with all three IDEs
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mention above. Another debugger used was the ARM-USB-TINY-H by Olimex. This

debugger is a cheaper alternative to the J-Link EDU (costing about $40), but did not

seem to work with emIDE. The J-Link EDU is the more reliable option.

4.2 Source Code

One of the first tasks set out was to program the LCD display since it can be

used to give I/O feedback to help test the rest of the peripherals. Fortunately, an

electronics hobbyist by the name of Huub Smeitink shared a library that he wrote for

the SSD1289. The library was written for a PIC microcontroller, so ports referenced

in Huub’s code had to be converted to the ports for the K20 microcontroller. LCD

controller code for the MK20DX256ZVLQ can be found in Appendix A.1. Huub also

packaged a small C# program along with his support library, which can be used to

generate a RGB value array given a bitmap input. This array can then be plotted

on the LCD using the LCD Image() function allowing easy display of images on the

screen. Another part of the firmware that was done was the driver for the TC655 fan

controllers using SMBus. The code allows the SMBus to drive the DC fans in the

FreeDum Load to run at various speeds. The SMBus code can be found in Appendix

A.2. Lastly, code was written for the quadrature encoder and this is included in the

appendix as well. Microcontroller port set up code is not included in the appendix for

brevity’s sake.
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Chapter 5

DESIGN PITFALLS

Several mistakes were made during the design of the electronic load. This chap-

ter will discuss the design pitfalls and any future changes that can be made for revision

two of the FreeDum Load.

5.1 Op-Amp Rail

One design flaw in the FreeDum load circuit is that the rail voltage driving the

op-amp is potentially not high enough. Currently the whole electronic load circuit is

powered off of 5V DC from the linear regulator, including both op-amps in the circuit.

This means that the maximum output at both op-amps would be 5V. The voltage

output is especially important for the op-amp that is driving the N-channel MOSFET

because VGS at the gate of the MOSFET needs to be at a certain threshold in order to

allow current to pass through the MOSFET. Usually N-channel MOSFETs are used

in a low-side configuration in a design and VG=VGS, but in the basic electronic load

circuit, the source of the MOSFET is not connected to ground but rather to the shunt

resistor. This means that when the voltage at the resistor is increased, VG at the gate

must also increase to compensate for the increase in VS in order to maintain the same

VGS.

With the circuit in its current state, the maximum possible VG is 5V, limited

by the rail of the op-amp. Looking at NXP’s (2011) data sheet for the BUK9504-40A,

a VGS of 2V will lead to a drain current of 10A at VDS of 25V. This is an optimistic

rating. In reality, the electronic load circuit in the FreeDum Load’s design cannot even

drop 10A because that would mean VG would need to be 12V, 7V higher than the

op-amps output voltage of 5V. Although the FreeDum load is only designed to sink
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a max of 3A of current, it is unclear whether a 5V rail for the op-amp is sufficient to

even turn on the MOSFET enough to allow 3A to pass through. The rail voltage and

the maximum op-amp output were not considered, and the MOSFET was assumed

to work and chosen based on the MOSFET’s maximum power ratings. In the second

revision of the FreeDum Load, the rail voltage driving the op-amp might have to be

increased or another MOSFET with different transfer characteristics might have to be

chosen.

5.2 Heatsink

Another design flaw was the lack of the inclusion of a proper heatsink to dissipate

heat across the transistor. The lack of a heatsink further limits the amount of current

that can be dropped by the transistor. The heatsink was initially eliminated from

the FreeDum Load’s design to keep the enclosure of the FreeDum load compact. It

was assumed that the DC fans and the aluminum case itself were sufficient enough to

dissipate the heat. This set up might have been too optimistic. The thermal resistance

of the aluminum case is unknown, which makes it impossible to do thermal calculations

and find out the safe operating temperatures for the MOSFET. As a result, due to fear

of overheating the MOSFET, not much testing was done on the load circuit to see how

much current it can handle. For revision two of the FreeDum Load, a heatsink will

have to be included and a larger enclosure will have to be chosen to accommodate for

the heatsink.

5.3 Microcontroller

In addition to hardware design errors, the firmware writing process would have

been made easier if a different brand of microcontroller as used in the design. Although

the Kinetis K20 microcontrollers were the latest and greatest at the time, they proved to

be too complicated to program. Open source support for the microcontroller, especially

the Cortex M4 processor, was nonexistent. It is often more efficient to borrow and build

off of existing open source libraries and example projects. Although some support
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libraries and guides were found for STM branded Cortex core microcontrollers released

by the open source hardware community, it was unclear how these resources translated

to the Kinetis series. In addition, it was rather inconvenient that CodeWarrior, the

IDE that comes with the proper support libraries for the microcontroller, was not free

to use. The high cost of the IDE is counterproductive to making a cost-effective DIY

electronics project.

5.4 Design Cost

Finally, one of the goals of this project was to design an electronic load that

would be cheaper to make than to buy a commercial unit. In table 2.1, the lowest

costing unit is about $400. All parts and materials used in the FreeDum Load, including

the LCD, enclosure, AC/DC converter, and the electronic components cost about $130

total. To fabricate the PCB, the cost would be about $23 per board. This material

cost does not include the JTAG debugger needed to program the microcontroller on

the board and the accompanying adapter, which cost an additional $65. Assuming

once the firmware is completed and released to the public, the firmware can be loaded

onto the microcontroller via the free trial version of CodeWarrior. This would bring

the total hardware costs to about $223 should someone wish to reproduce the design.

Although the total cost is lower than $400, this cost is still higher than expected. To

make the design worthwhile to reproduce, the total cost would have to be around $100.
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Chapter 6

CONCLUSION

Although some errors and mistakes were made in the design, a functional proto-

type for the FreeDum Load was produced as the result of this project. The prototype

has complete packaging as intended and it is capable of running off of 120V AC power

from a wall socket. The unit is capable of displaying graphics on the LCD and drive the

fans based on the input on the rotary encoder. It is a functional stand-alone appliance

and not a bare board PCB like so many of the projects that inspired the FreeDum

Load.

Firmware for the ADC has been started although not complete. Revision two

of the hardware is needed before any more firmware can be written. Revision two of

the FreeDum Load would include amendments to the design pitfalls described in the

previous chapter. Two major changes would include starting with a completely new

microcontroller that would be easier to program and adding a heatsink to the device.

Overall, many embedded electronic design skills were gained through out the design

process including knowledge of analog circuit design principles, PCB layout, soldering,

PCB fabrication, Cortex M4 firmware development, and mechanical construction. This

project involved all the steps of a full prototype design life cycle from start to finish.
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Figure 6.1: The FreeDum Load complete in case and powered on.
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Appendix A

FIRMWARE

A.1 LCD Driver

A.1.1 LCD Support.h

//PTC4 - PIN109 = LCD_BLCNT

#define LCD_BLCNT 4

//PTC11 - PIN116 = LCD_RESET

#define LCD_RESET 11

5 //PTC12 - PIN117 = LCD_RD

#define LCD_RD 12

//PTC13 - PIN118 = LCD_WR

#define LCD_WR 13

//PTC18 - PIN125 = LCD_RS

10 #define LCD_RS 18

//PTC19 - PIN126 = LCD_CS

#define LCD_CS 19

//PTD0 - PIN127 = LCD_D0

#define LCD_D0 0

15 //PTD1 - PIN128 = LCD_D1

#define LCD_D1 1

//PTD2 - PIN129 = LCD_D2

#define LCD_D2 2

//PTD3 - PIN130 = LCD_D3

20 #define LCD_D3 3

//PTD4 - PIN131 = LCD_D4

#define LCD_D4 4

//PTD5 - PIN132 = LCD_D5

#define LCD_D5 5
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25 //PTD6 - PIN133 = LCD_D6

#define LCD_D6 6

//PTD7 - PIN136 = LCD_D7

#define LCD_D7 7

//PTD8 - PIN137 = LCD_D8

30 #define LCD_D8 8

//PTD9 - PIN138 = LCD_D9

#define LCD_D9 9

//PTD10 - PIN139 = LCD_D10

#define LCD_D10 10

35 //PTD11 - PIN140 = LCD_D11

#define LCD_D11 11

//PTD12 - PIN141 = LCD_D12

#define LCD_D12 12

//PTD13 - PIN142 = LCD_D13

40 #define LCD_D13 13

//PTD14 - PIN143 = LCD_D14

#define LCD_D14 14

//PTD15 - PIN144 = LCD_D15

#define LCD_D15 15

45 #define LCD_DATA_PORT PTD ->PDOR

#define SET_BLCNT PTC ->PSOR |= GPIO_PSOR_PTSO(GPIO_PIN(LCD_BLCNT))

#define SET_LCD_RESET PTC ->PSOR |=

GPIO_PSOR_PTSO(GPIO_PIN(LCD_RESET))

#define SET_LCD_RD PTC ->PSOR |= GPIO_PSOR_PTSO(GPIO_PIN(LCD_RD))

#define SET_LCD_WR PTC ->PSOR |= GPIO_PSOR_PTSO(GPIO_PIN(LCD_WR))

50 #define SET_LCD_RS PTC ->PSOR |= GPIO_PSOR_PTSO(GPIO_PIN(LCD_RS))

#define SET_LCD_CS PTC ->PSOR |= GPIO_PSOR_PTSO(GPIO_PIN(LCD_CS))

#define CLR_BLCNT PTC ->PCOR |= GPIO_PCOR_PTCO(GPIO_PIN(LCD_BLCNT))

#define CLR_LCD_RESET PTC ->PCOR |=

GPIO_PCOR_PTCO(GPIO_PIN(LCD_RESET))

#define CLR_LCD_RD PTC ->PCOR |= GPIO_PCOR_PTCO(GPIO_PIN(LCD_RD))

55 #define CLR_LCD_WR PTC ->PCOR |= GPIO_PCOR_PTCO(GPIO_PIN(LCD_WR))

#define CLR_LCD_RS PTC ->PCOR |= GPIO_PCOR_PTCO(GPIO_PIN(LCD_RS))

#define CLR_LCD_CS PTC ->PCOR |= GPIO_PCOR_PTCO(GPIO_PIN(LCD_CS))
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#define MAX_X 320

#define MAX_Y 240

60

void Write_Command(uint32_t Wcommand);

void Write_Data(uint32_t Wdata);

void Write_Command_Data(uint32_t Wcommand ,uint32_t Wdata);

void LCD_Set_Address(uint32_t PX1 ,uint32_t PY1 ,uint32_t PX2 ,uint32_t

PY2);

65 void LCD_Init ();

void LCD_Fill(uint32_t color);

void LCD_Image(uint32_t pos_x ,uint32_t pos_y ,uint32_t dim_x ,uint32_t

dim_y ,const uint32_t *picture);

A.1.2 LCD Support.c

#include "LCD_Support.h"

void LCD_Init ()

{

//Turn on LCD backlight

5 //PTC4 - PIN109 = LCD_BLCNT

SET_BLCNT;

//PTC12 - PIN117 = LCD_RD

SET_LCD_RD;

//PTC11 - PIN116 = LCD_RESET

10 //Reset is active low

//Set LCD Reset high

SET_LCD_RESET;

//Delay 5 milliseconds

time_delay_ms (5);

15 //Set LCD reset low

CLR_LCD_RESET;

//Delay 15 milliseconds

time_delay_ms (15);

//Set LCD Reset high
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20 SET_LCD_RESET;

time_delay_ms (15);

//PTC19 - PIN126 = LCD_CS

CLR_LCD_CS;

25 time_delay_ms (5);

Write_Command_Data (0x0000 ,0x0001);

Write_Command_Data (0x0003 ,0xA8A4);

Write_Command_Data (0x000C ,0x0000);

Write_Command_Data (0x000D ,0x080C);

30 Write_Command_Data (0x000E ,0x2B00);

Write_Command_Data (0x001E ,0x00B7);

Write_Command_Data (0x0001 ,0x293F);

Write_Command_Data (0x0002 ,0x0600);

Write_Command_Data (0x0010 ,0x0000);

35 Write_Command_Data (0x0011 ,0x60B8);

Write_Command_Data (0x0005 ,0x0000);

Write_Command_Data (0x0006 ,0x0000);

Write_Command_Data (0x0016 ,0xEF1C);

Write_Command_Data (0x0017 ,0x0003);

40 Write_Command_Data (0x0007 ,0x0233);

Write_Command_Data (0x000B ,0x0000);

Write_Command_Data (0x000F ,0x0000);

Write_Command_Data (0x0041 ,0x0000);

Write_Command_Data (0x0042 ,0x0000);

45 Write_Command_Data (0x0048 ,0x0000);

Write_Command_Data (0x0049 ,0x013F);

Write_Command_Data (0x004A ,0x0000);

Write_Command_Data (0x004B ,0x0000);

Write_Command_Data (0x0044 ,0xEF00);

50 Write_Command_Data (0x0046 ,0x013F);

Write_Command_Data (0x0030 ,0x0707);

Write_Command_Data (0x0031 ,0x0204);

Write_Command_Data (0x0032 ,0x0204);

Write_Command_Data (0x0033 ,0x0502);
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55 Write_Command_Data (0x0034 ,0x0507);

Write_Command_Data (0x0035 ,0x0204);

Write_Command_Data (0x0036 ,0x0204);

Write_Command_Data (0x0037 ,0x0502);

Write_Command_Data (0x003B ,0x0302);

60 Write_Command_Data (0x0023 ,0x0000);

Write_Command_Data (0x0024 ,0x0000);

Write_Command_Data (0x0025 ,0x8000);

Write_Command_Data (0x004f ,0x0000);

Write_Command_Data (0x004e ,0x0000);

65 Write_Command (0x0022);

time_delay_ms (1);

SET_LCD_CS;

time_delay_ms (1);

}

70

void Write_Command(uint32_t wcommand)

{

// TFT_RD = 1;

SET_LCD_RD;

75 // TFT_RS = 0;

CLR_LCD_RS;

LCD_DATA_PORT = wcommand;

// TFT_WR = 0;

CLR_LCD_WR;

80 Short_Pause (1000);

// TFT_WR = 1;

SET_LCD_WR;

}

85 void Write_Data(uint32_t wdata)

{

// TFT_RD = 1;

SET_LCD_RD;
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90 // TFT_RS = 1;

SET_LCD_RS;

LCD_DATA_PORT = wdata;

95 // TFT_WR = 0;

CLR_LCD_WR;

Short_Pause (1000);

100 // TFT_WR = 1;

SET_LCD_WR;

}

void Write_Command_Data(uint32_t Wcommand ,uint32_t Wdata)

105 {

Write_Command(Wcommand);

Write_Data(Wdata);

}

110 void LCD_Set_Address(uint32_t PX1 ,uint32_t PY1 ,uint32_t PX2 ,uint32_t

PY2)

{

Write_Command_Data (0x44 ,(PX2 << 8) + PX1); // Column address

start2

// Write_Command_Data (0x45 ,PX1); // Column address start1

Write_Command_Data (0x45 ,PY1); // Column address start1

115 // Write_Command_Data (0x46 ,PX2); // Column address end2

Write_Command_Data (0x46 ,PY2); // Column address end2

//LCD IN PORTRAIT MODE

//4E => ROW

Write_Command_Data (0x4E ,PX1); // Column address end1

120 //4F => COLUMN

Write_Command_Data (0x4F ,PY1); //Row address start2

Write_Command (0x22);
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}

125 void LCD_Fill(uint32_t color)

{

uint32_t i,j;

// TFT_CS = 0;

CLR_LCD_CS;

130 time_delay_ms (1);

LCD_Set_Address (0 ,0 ,239 ,319);

Write_Data(color);

for(i = 0; i <= 319; i++)

{

135 for(j = 0; j <= 239; j++)

{

// TFT_WR = 0;

CLR_LCD_WR;

140 // time_delay_ms (1);

// TFT_WR = 1;

SET_LCD_WR;

145 // time_delay_ms (1);

}

}

// TFT_CS = 1;

SET_LCD_CS;

150 time_delay_ms (1);

}

void LCD_Image(uint32_t pos_x ,uint32_t pos_y ,uint32_t dim_x ,uint32_t

dim_y ,const uint32_t *picture){

unsigned int x, y;

155 // TFT_CS = 0;

CLR_LCD_CS;
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time_delay_ms (1);

LCD_Set_Address(pos_x , pos_y , pos_x + dim_x - 1, pos_y + dim_y -

1);

for(y = pos_y; y < (pos_y + dim_y); y++ ) {

160 for(x = pos_x; x < (pos_x + dim_x); x++ ) {

Write_Data (* picture ++);

}

}

// TFT_CS = 1;

165 SET_LCD_CS;

time_delay_ms (1);

}

A.2 Fan Controller Driver

A.2.1 SMBus Support.h

#define TC655_ADDRESS_WRITE 0x36

#define TC655_ADDRESS_READ 0x37

//RPM Output 1

#define RPM1 0x00

5 //RPM Output 2

#define RPM2 0x01

//Fan Fault 1 Threshold

#define FAN_FAULT1 0x02

//Fan Fault 2 Threshold

10 #define FAN_FAULT2 0x03

// Configuration

#define CONFIG 0x04

// Status Register

#define STATUS 0x05

15 //Fan Speed Duty Cycle

#define DUTY_CYCLE 0x06

// Manufacturer Identification

#define MFR_ID 0x07
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// Version Identification:

20 // X = 0 TC654 , X = 1 TC655)

#define VER_ID 0x08

// ==================================================

// TC655 Duty Cycle Register Specific Defintions

// ==================================================

25 #define DC30 0x00

#define DC34_67 0x01

#define DC39_33 0x02

#define DC44 0x03

#define DC48_67 0x04

30 #define DC53_3 0x05

#define DC58 0x06

#define DC62_67 0x07

#define DC67_33 0x08

#define DC72 0x09

35 #define DC76_67 0x0A

#define DC81_33 0x0B

#define DC86 0x0C

#define DC90_67 0x0D

#define DC95_33 0x0E

40 #define DC100 0x0F

// ===========================================================

// TC655 Fan Fault Threshold Register Specific Defintions

// ===========================================================

//2

45 #define Threshold_100RPM 0x02

//5

#define Threshold_250RPM 0x05

//10

#define Threshold_500RPM 0x0A

50 //20

#define Threshold_1000RPM 0x14

//40

#define Threshold_2000RPM 0x28
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//60

55 #define Threshold_3000RPM 0x3C

//80

#define Threshold_4000RPM 0x50

//100

#define Threshold_5000RPM 0x64

60 //120

#define Threshold_6000RPM 0x78

//140

#define Threshold_7000RPM 0x8C

//160

65 #define Threshold_8000RPM 0xA0

//180

#define Threshold_9000RPM 0xB4

//200

#define Threshold_10000RPM 0xC8

70 //220

#define Threshold_11000RPM 0xDC

//240

#define Threshold_12000RPM 0xF0

// ===============================================

75 // TC655 and General SMBus Functions

// ===============================================

/*

Function: SMBus_Init(void)

Description:

80 Configures the SMBus controller to use I2C0 SDA and SCLK

*/

void SMBus_Init(void);

/*

Function: void SMBus_StartTX_Write(void)

85 Description:

Starts a SMBus Transmission in Master Mode Write

*/

void SMBus_StartTX_Write(void);
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/*

90 Function: void SMBus_StartTX_Read(void)

Description:

Starts a SMBus Transmission in Master Mode Read

*/

void SMBus_StartTX_Read(void);

95 /*

Function: void Wait_For_ACK(void)

Description:

If in Write mode:

Wait until slave device acknowledges receipt of transmission from

master

100 If in Read mode:

Wait until I2C peripheral acknowledges receipt of data from slave

*/

void Wait_For_ACK(void);

/*

105 Function: void SMBus_Write_Byte(uint8_8)

Description:

Write Byte of Data to the SMBus

*/

void SMBus_Write_Byte(uint8_t);

110 /*

Function: void SMBus_StopTX(void)

Description:

Sends Stop command onto the SMBus

*/

115 void SMBus_StopTX(void);

// ============================================

// TC655 Register Specific Functions

// ============================================

/*

120 Function: uint8_t TC655_Read_Register(uint8_t)

Arguments: TC655 register to be read

Return: Contents of that register
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Description:

Reads one of the various registers of the Microchip TC655

125 */

uint8_t TC655_Read_Register(uint8_t);

/*

Function: uint8_t TC655_Write_Register(uint8_t , uint8_t)

Arguments: TC655 register to be written to

130 Data to be written to the specified register

Description:

Writes an 8 bit value to one of the various registers of the

Microchip TC655

*/

void TC655_Write_Register(uint8_t ,uint8_t);

135 // ===========================================

// TC655 Operational Specific Functions

// ===========================================

/*

Function: void TC655_Fans_Full_On(void)

140 Description:

Turns both fans on to 100%

*/

void TC655_Fans_Full_On(void);

/*

145 Function: void TC655_Fans_Adj_On(uint8_t)

Arguments: Duty cycle from 30% to 100%

Description:

Turn both fans on with a duty cycle from 30% to 100%

*/

150 void TC655_Fans_Adj_On(uint8_t);

/*

Function: void TC655_Fans_Full_Off(void)

Description:

Places TC655 in shutdown mode. Effectively turns off both fans

155 */

void TC655_Fans_Full_Off(void);
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/*

Function: void TC655_Fans_Temp_Controlled(void)

Description:

160 Both fans’ speed is determined by value of temperature sensor

*/

void TC655_Fans_Temp_Controlled(void);

A.2.2 SMBus Support.c

void SMBus_Init(void)

{

//Turn on clock to I2C0 module

SIM ->SCGC4 |= SIM_SCGC4_I2C0_MASK;

5 //Setup I2C baud rate and hold times

//SDA hold time = bus period (s) mul SDA hold value

//SCL start hold time = bus period (s) mul SCL start hold

value

//SCL stop hold time = bus period (s) mul SCL stop hold

value

//I2C baud rate = bus speed (Hz)/(mul SCL divider)

10 // 75KHz = 48MHz /( 1 640 )

// To achieve this ICR = 0x2D. Mul = 1

// or

// 75KHz = 48MHz /( 2 320 )

// To achieve this ICR = 0x28. Mul = 2

15 // or

// 75KHz = 48MHz /( 4 160 )

// To achieve this ICR = 0x20. Mul = 4

// or

// Current Implementation is: Mul = 1, ICR = 2D

20 I2C0 ->F = 0x2D;

// Enable I2C module

I2C0 ->C1 = I2C_C1_IICEN_MASK;
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return;

25 }

void SMBus_StartTX_Write(void)

{

30 I2C0 ->C1 |= I2C_C1_TX_MASK;

I2C0 ->C1 |= I2C_C1_MST_MASK;

//Note TC655 Address = 0b0011 011

//For a write operation 8th bit = 0

// Therefore resulting value to write = 0b00110110

35 SMBus_Write_Byte(TC655_ADDRESS_WRITE);

return;

}

void SMBus_StartTX_Read(void)

40 {

I2C0 ->C1 |= I2C_C1_TX_MASK;

I2C0 ->C1 |= I2C_C1_MST_MASK;

//Note TC655 Address = 0b0011 011

//For a read operation 8th bit = 1

45 // Therefore resulting value to write = 0b00110111

SMBus_Write_Byte(TC655_ADDRESS_READ);

return;

}

50 void Wait_For_ACK(void)

{

while ((I2C0 ->S & I2C_S_IICIF_MASK)==0){}

I2C0 ->S |= I2C_S_IICIF_MASK;

}
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void SMBus_StopTX(void)

{

I2C0 ->C1 &= ~I2C_C1_MST_MASK;
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I2C0 ->C1 &= ~I2C_C1_TX_MASK;

60 }

void SMBus_Write_Byte(uint8_t write_data)

{

I2C0 ->D = write_data;

65 }

// =========================================

// Begin: TC655 SMBus Specific Functions

// =========================================

70 uint8_t TC655_Read_Register(uint8_t read_register)

{

uint8_t temp;

SMBus_StartTX_Write ();

Wait_For_ACK ();

75 SMBus_Write_Byte(read_register);

Wait_For_ACK ();

/* Do a repeated start */

I2C0 ->C1 |= I2C_C1_RSTA_MASK;

// Resend TC655 address with LSB = 1 for read operation

80 SMBus_Write_Byte(TC655_ADDRESS_READ);

Wait_For_ACK ();

//Put in Rx Mode

I2C0 ->C1 &= (~ I2C_C1_TX_MASK);

//Turn off ACK

85 I2C0 ->C1 |= I2C_C1_TXAK_MASK;

//Dummy read to clear superfluous data in register

temp = I2C0 ->D;

//Wait until data from slave is received in register

Wait_For_ACK ();

90 //Send stop signal

SMBus_StopTX ();

//Read the actual data that the slave sent

temp = I2C0 ->D;
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return temp;

95 }

void TC655_Write_Register(uint8_t write_register , uint8_t data)

{

SMBus_StartTX_Write ();

100 Wait_For_ACK ();

// Transmit the register to be written to

SMBus_Write_Byte(write_register);

Wait_For_ACK ();

//Send data to be written to specified register

105 I2C0 ->D = data;

Wait_For_ACK ();

//Send stop signal

SMBus_StopTX ();

//Wait a little while before writing again

110 Short_Pause (1000);

return;

}

void TC655_Fans_Full_On ()

115 {

//Make sure device is not in Shutdown Mode

//Set Control of Fan Speed to SMBus

//0010 1010

TC655_Write_Register(CONFIG ,0x2A);

120 //Set Duty Cycle of fans to 100%

TC655_Write_Register(DUTY_CYCLE , DC100);

return;

}

125 void TC655_Fans_Adj_On(uint8_t duty_cycle_percent)

{

//Make sure device is not in Shutdown Mode

//Set Control of Fan Speed to SMBus
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//0010 1010

130 TC655_Write_Register(CONFIG ,0x2A);

//Set Duty Cycle of fans to duty_cycle%

TC655_Write_Register(DUTY_CYCLE , duty_cycle_percent);

return;

}

135

void TC655_Fans_Full_Off ()

{

//Place TC655 in Shutdown Mode

//Set Control of Fan Speed to SMBus

140 //0010 1011

TC655_Write_Register(CONFIG ,0x2B);

return;

}

145 void TC655_Fans_Temp_Controlled ()

{

//Make sure device is not in Shutdown Mode

//Set Control of Fan Speed to Thermistor

//0000 1010

150 TC655_Write_Register(CONFIG ,0x0A);

return;

}

A.3 Quadrature Encoder Driver

void Quad_Enc_Init(void){

// enable the clock for FTM1

SIM ->SCGC6 |= SIM_SCGC6_FTM1_MASK;

// enable the counter

5 FTM1 ->MODE |= FTM_MODE_FTMEN_MASK;

// enable the counter to run in the BDM mode

FTM1 ->CONF |= FTM_CONF_BDMMODE (3);
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//load the Modulo register and counter initial value

//Use the entire 16bit register before triggering an overflow

10 // Maximum Decimal Value of Count before overflow = 65,535

FTM1 ->MOD = 0xFFFF;

FTM1 ->CNTIN = 0x00;

// configuring FTM for quadrature mode

//Turns on the Quadrature encoder and turns on the input filters

15 //FTM1 ->QDCTRL |= FTM_QDCTRL_PHAFLTREN_MASK |

FTM_QDCTRL_PHBFLTREN_MASK |

// FTM_QDCTRL_QUADEN_MASK;

FTM1 ->QDCTRL |= FTM_QDCTRL_PHBPOL_MASK | FTM_QDCTRL_PHAPOL_MASK

| FTM_QDCTRL_QUADEN_MASK;

// Starts the clock timer.

// Clock Source = System Clock / 4 = 24MHz

20 FTM1 ->SC |= FTM_SC_CLKS (1);

// configuring the input pins:

//PORTA - PTA12 - PIN64 = FTM1_QD_PHA - ALT7 Function

PORTA ->PCR [12] = PORT_PCR_MUX (7); // FTM1 CH0

//PORTA - PTA13 - PIN65 = FTM1_QD_PHB - ALT7 Function

25 PORTA ->PCR [13] = PORT_PCR_MUX (7); // FTM1 CH1

return;

}
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