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ABSTRACT 

“Lucky-region” fusion (LRF) is a synthetic imaging technique that has proven 

successful in enhancing the quality of images distorted by atmospheric turbulence. 

The LRF algorithm selects sharp regions of an image obtained from a series of short 

exposure frames, and fuses the sharp regions into a final, improved image. In previous 

research, the LRF algorithm had been implemented on a PC using the C programming 

language. However, the PC did not have sufficient sequential processing power to 

handle real-time extraction, processing and reduction required when the LRF 

algorithm was applied to real-time video from fast, high-resolution image sensors. 

This thesis describes two hardware implementations of the LRF algorithm to achieve 

real-time image processing. The first was created with a VIRTEX-7 field 

programmable gate array (FPGA). The other developed using the graphics processing 

unit (GPU) of a NVIDIA GeForce GTX 690 video card. The novelty in the FPGA 

approach is the creation of a “black box” LRF video processing system with a general 

camera link input, a user controller interface, and a camera link video output. We also 

describe a custom hardware simulation environment we have built to test the FPGA 

LRF implementation. The advantage of the GPU approach is significantly improved 

development time, integration of image stabilization into the system, and comparable 

atmospheric turbulence mitigation. 
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Chapter 1 

INTRODUCTION 

1.1 Background 

Often, it is extremely important to be capable of obtaining photographic or 

video images over long distances. This is particularly vital in military applications 

including target acquisition, remote surveillance, target tracking, and biometrics. 

However, long range visual identification and detection is commonly hindered by 

turbulence due to inclement atmospheric conditions. Atmospheric turbulence causes 

distortions and warping during imaging. As the distance between the target image and 

imaging system increases, the effects of atmospheric turbulence increase in severity. 

Optical turbulence is the result of variations in the refractive index in the path between 

the camera sensor and the target [1][2][3]. 

The refraction index of the air varies based on copious atmospheric 

characteristics including temperature, humidity, and pressure. These fluctuations are 

seldom homogeneous, such as refractive index changes due to non-uniform 

temperature distributions.  Light waves travelling through such chaotic regions of 

changing refractive index undergo a complex combination of refraction and scattering, 

resulting in extensive spatially and temporally varying distortions in the images [4]. 

Turbulence can be comprised of geometric distortion (motion), spatial and temporal 

blurs, locally varying blurs, and out-of-focus blurs [5][6]. The atmosphere can also 

cause differences in the scene from frame to frame, hindering the tracking of moving 

targets [1]. 
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A variety of image processing methods have been developed in an effort to 

compensate for atmospheric distortions. Many of these techniques were originally 

developed for astronomical applications, where it is generally assumed that the 

distortions are independent of the position in the image plane. This is called the 

isoplanatic condition [7][8]. An early predecessor to Lucky Region Fusion (LRF) was 

a method called lucky frame selection, which involved selecting the frames with the 

highest quality from a set of randomly distorted incoming frames [2][9][10]. However, 

this approach  was not viable under conditions where the isoplanatic condition did not 

hold, due to a extremely low probability of finding entire frames of high 

quality[7][10]. Lucky Region Fusion (LRF) was a post-detection technique that was 

the natural extension of the lucky frame selection approach. Lucky Region Fusion 

detected portions of incoming frames with high image quality and fused high quality 

portions from various frames in order to reconstruct the original image even under 

anisoplanatic conditions[7][11][12][13]. This version of LRF was a post-detection 

method, like many other similar software based solutions such as speckle imaging or 

blind-deconvolution [2][3][5].  These methods, when implemented through software 

on a PC, were generally not capable of the computing power necessary for real-time 

processing, selection, and reduction of information from real-time visual data 

[2][11][13]. Military operations usually require observation of the target in real-time. 

1.2 Motivation 

The LRF algorithm has previously been implemented in software on a 

workstation PC using the C programming language. This software version of the 

algorithm was a post-detection implementation, performing the algorithm on pre-

recorded images or video over the course of several seconds or minutes. This platform 
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did not have adequate sequential processing power necessary for real-time image data 

from high-resolution image sensors [2][7]. 

The LRF algorithm is straightforward enough to easily lend itself to a parallel 

implementation. As a result, a natural choice to accelerate the algorithm for real-time 

video processing was to migrate to a hardware platform. A field programmable gate 

array (FPGA) is an integrated circuit consisting of hundreds of thousands of 

configurable logic gates. It is designed to be ‘on the fly’ configurable by means of a 

hardware description language (HDL), such as VHDL or Verilog. Moreover, an FPGA 

has parallel processing capability similar to an application-specific integrated circuit 

(ASIC). As such, a design implemented on an FPGA has many of the advantages of a 

software implementation, especially the ability to adapt the algorithm, while also 

gaining an integrated circuit’s parallel processing acceleration. As demonstrated in 

Figure 1.1, due to parallel processing, the maximum processing bit rate of an FPGA is 

much higher than that of most sequential processors [2]. 

 

Figure 1.1: Comparison of sequential processing versus parallel processing. 
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A graphics processing unit (GPU) is similarly capable of parallel processing of 

large amounts of data for real-time atmospheric turbulence mitigation. Unlike in 2009, 

when the LRF algorithm was first implemented in software, todays GPUs have the 

speed, power, memory, and mature programming platforms such as Open Computing 

Language (OpenCL) necessary to efficiently implement LRF in parallel. Moreover, 

development using a GPU is generally much faster than attempting to implement the 

same system using a HDL on an FPGA. 

This thesis describes the Lucky Region Fusion (LRF) algorithm, an effective 

software image processing technique being accelerated by utilizing hardware to 

achieve real-time image processing. Chapter 2 introduces the LRF algorithm and 

reviews and details the results of previous work on software and hardware 

implementations of LRF. It describes the implementation of the algorithm using a field 

programmable gate array (FPGA) embedded in a high-speed camera, and details the 

improved implementation of the algorithm where the image  processing system is a 

“black box” with the FPGA separated  from the camera. Chapter 3 describes further 

enhancements to the FPGA “black box” system, including a custom hardware 

simulation environment, improved user interface and parameter adjustment 

capabilities, and an approximate solution to the reduced frame rate limitation of the 

FPGA system. It also goes into extensive detail on the methodology and simulation 

experiments used during the formation of the final version of the FPGA system. 

Chapter 4 explores an alternative hardware implementation implemented on a graphics 

processing unit (GPU) and contains figures displaying and comparing the results of 

the both the FPGA and GPU LRF implementations. 
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Chapter 2 

PREVIOUS WORK 

2.1 Overview of LRF Algorithm 

Lucky Region Fusion (LRF) is a multiple frame image restoration technique 

that has been proven to compensate for atmospheric medium-induced distortions even 

under anisoplanatic conditions [7]. Unlike other techniques which attempt to mitigate 

turbulence by modelling or characterizing the turbulence itself, multi-frame image 

restoration techniques such as LRF strive to estimate the original image by processing 

a series of degraded images [14].  In particular, LRF is a method which takes 

advantage of the chaotic spatial and temporal variations in image quality caused by 

turbulence. Within a set of distorted images, small sections of an image will often be 

of high resolution for short periods of time. These high-resolution regions are known 

as “lucky regions”. The Lucky Region Fusion algorithm locates, captures, and 

combines the regions with the best image quality at high speed in order to form a 

‘fused’ image with improved image quality [2][7][15]. 

The LRF algorithm attempts to improve total image quality through three 

major steps: 

1. Compute the image quality map (IQM) for each incoming image. An 

IQM is a spatial representation that quantitatively describes the clarity 

of an image. In the current implementation of the algorithm, it is 

determined by the sharpness of the edges of objects in the image, along 

with the distribution of those edges. 

2. Compare the IQM of each incoming image to the IQM of current 

‘fused’ image to determine which regions are clearer in the incoming 

image, if any. If no regions are clearer in the incoming frame, it is 

discarded. 
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3. Merge the selected clear regions into the fused video stream. Repeat 

these steps for each new incoming frame. 

2.2 Implementation Procedure for FPGA 

2.2.1 Algorithm Mathematics for Hardware LRF 

Implementation of the hardware algorithm followed a series of steps equivalent 

to those presented in Section 2.1. First, an image quality metric was defined. There are 

many viable choices for an image quality metric. The vector r = {x, y} represents 

spatial coordinates. If we define In(r) to be the input source stream, then one could 

define an image quality metric Qn(r) by gradient or by square-intensity [2][7][15]. 

This image quality metric coincides with the sharpness function introduced in Ref [16] 

"Real-time correction of atmospherically degraded telescope images through image 

sharpening." [12] 

(1)  
𝑄𝑛(𝒓) = |∇𝐼𝑛(𝒓)| 𝑜𝑟  𝑄𝑛(𝒓) =  𝐼𝑛

2(𝒓) 

The primary advantage of an edge-image detection system is that it permits estimation 

of the image quality metric without direct calculation of the input image spatial 

derivatives.12 The Sobel edge detection operator was chosen as the basis image 

quality metric for the LRF hardware implementation due to its relative ease in 

implementation using hardware. This is an approximation of a gradient image quality 

metric 

Next, this image quality metric was used to compute the image quality map 

(IQM). The IQM quantifies the local quality of an image within a region of radius a 

centered around point r. Formally, the IQM is defined as the convolution of the above 

spatially varying image quality metric, Qn(r), and a kernel Ka(r). (typically Gaussian, 
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Ka(r) = -exp(x2 + y2)/a2), where a is an important scalar quantity known as the kernel 

size or kernel radius [7][15]. 

(2)  
𝑀𝑛(𝒓) =  𝑄𝑛(𝒓) ∗  𝐾𝑎(𝒓) 

Finally, the selected regions with higher IQM are merged into the final fused image 

[7][15]. 

(3)  

𝐼𝐹(𝒓) =  
∑ 𝑀𝑛(𝒓)𝐼𝑛(𝒓)𝑛

∑ 𝑀𝑛(𝒓)𝑛
 

Figure 2.1 shows the above process, in parallel for a frame buffer containing N frames. 

 

Figure 2.1: Block diagram for hardware LRF algorithm. Edges are found and blurred 

to produce image quality maps. Higher quality regions are fused into the 

output stream. 

2.2.2 Detailed Hardware Implementation of Algorithm 

In section 2.2.1, a general theoretical overview of the steps to implement LRF 

was presented. Here, the details of each step are expanded upon. Although there have 

been two generations of the LRF FPGA hardware acceleration platform (see below), 

both platforms perform the major steps of the algorithm in similar ways. 
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LRF processing begins by first computing an image quality metric using the 

Sobel edge detection operator. Edge detection operators such as Sobel are easy to 

implement using hardware. The Sobel method computes the derivatives of the signal 

intensity in both the x and y directions to determine the areas where the intensity 

changes most rapidly [2]. The Sobel operator approximates these derivatives by 

convolving the image with two 3x3 convolution masks, one for the x direction and 

another for the y direction [17][18]. Representing these partial derivatives by Dx and 

Dy, an ideal Sobel edge detector would calculate the magnitude of the derivative of the 

image pixel as |D| = √(Dx
2 + Dy

2). Implementing a square root operation in hardware 

can be prohibitively expensive because a square root is solved by iterative 

approximation [19]. As a result, the initial version of the LRF hardware acceleration 

algorithm simply used the approximation |D| = |Dx| + |Dy|, which is a sufficient 

approximation in most scenarios [2]. In the second generation LRF system, this 

approximation was improved by using |D| = (123/128) * |max(Dx, Dy)| + (51/128) * 

|min(Dx,.Dy)|.  Note that since the coefficients of the above equation can be 

represented as fractions of 1024, they are easy to implement in hardware using simple 

bit shifting. This function has an average error of 2.5% and a maximum error of 

approximately 5% compared to the true formula [19]. Note that because the pixels on 

the edge of the image do not have a complete set of neighboring pixels, those pixels 

needed to be treated separately [20]. This was accomplished by duplicating the lines of 

pixels near the edges of the image and then applying the Sobel mask normally. The 

result of the Sobel edge detection on each incoming image is a frame known as the 

Edge Map. (See Figure 2.2b) 
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Figure 2.2: Examples of real-time LRF processing with the first generation system. 

(a) (left) Live image before processing. (b) (right) Edge Map created 

using Sobel Edge Detection. 

 

Figure 2.3: Examples of real-time LRF processing using the first generation system. 

(a) (left) IQM. (b) (right) Keep Map. Bright regions represent high 

values on the keep map, whereas dark regions are low values. This image 

primarily consists of bright pixels, so there is very little turbulence 

present to be corrected. 

In order to compute the image quality map (IQM), recall from section 2.2.1 

that the image quality metric (in this case the Edge Map) must be convolved with a 
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kernel of radius a. In the initial version of the hardware system (first generation, see 

section 3.2), this was accomplished by averaging each pixel in the edge map by a one-

dimensional 15-pixel mask (radius a = 7), in the horizontal direction and in the 

vertical direction [2]. This is essentially the equivalent of the two-dimensional mean 

filter of radius a. Ideally, as discussed in Section 2.2.1, we would use a Gaussian filter, 

but the mean filter was much faster to implement in hardware and consumed less 

computational resources. The second generation of the FPGA system performs the 

same calculation, except that the radius is adjustable. This computation produces a 

blurred version of the edge map, which is used as the IQM. The next step of the 

algorithm compares the IQM of the incoming (‘live’) image and the cumulative fused 

(‘synthetic’) image in order to determine the lucky regions. The IQMs of both the live 

and synthetic images are compared one pixel at a time to produce a binary frame. Each 

entry in this frame corresponds to one pair of pixels, and has the value 1 if the IQM of 

the live pixel’s intensity is greater than or equal to that of the synthetic pixel or 0 

otherwise [2]. This binary array is then blurred using a 5x5 convolution mask to 

produce a frame called the Keep Map. Each value in the Keep Map is between 0 and 

25, where a value of 25 represents a region where the incoming live image is of 

significantly higher resolution than the synthetic image, whereas a value of 0 

represents the opposite extreme. Figure 2.4 shows a graphical illustration of this 

concept. The Keep Map is used to determine the proportion of the new synthetic pixel 

which will be derived from the new live image and what proportion will come from 

the previous synthetic image [2]  (See Figures 2.3a and 2.3b). 
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Figure 2.4: Keep Map calculation example. Array on left is binary array where 1 

represents a pixel where Live frame is sharper than synthetic frame, and 

vice-versa for 0. Array on the left is the Keep Map after applying 5x5 

blur to the array on the left. Note that values outside the edges are treated 

as zeros only for the purposes of this example. 

2.3 First Generation System 

The first generation of the FPGA hardware accelerated LRF system was 

developed as a proof of concept. A FastVision FastCamera13 was used to capture in 

the incoming frames at a high frame rate. The FastCamera13 contained a Micron MI-

MV13 1.3 megapixel CMOS sensor capable of sending 10 pixels per clock cycle at 66 

MHz to deliver up to 500 frames per second at the camera’s full 1280x1024 

resolution. The FastCamera13 smart camera was also chosen because it contained a 

Xilinx Virtex II FPGA, which was used to implement the LRF algorithm. The 

experimental setup utilized a baseboard heater to simulate turbulence as the camera 

acquired images from a target at a distance of approximately 10 meters. 

The first generation of the LRF system had several important limitations. The 

Virtex II FPGA within the smart camera was released by Xilinx in 2002. As a result, it 

only contained 2160 Kbits of block RAM (BRAM), which was used by the LRF 

algorithm for frame storage. To compensate for this limited memory, which could 
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only store one frame at a time, the first generation system would perform the LRF 

computation and continuously update the single synthetic frame. When the number of 

fused frames, N, reached a certain value, the system would output the fused frame to 

the frame grabber and the process would begin again. Typically N was set to 30, 

which was empirically determined to be the average value necessary to achieve visible 

improvement with the experimental setup. Due to this memory limitation, this version 

of the LRF system was limited to an output frame rate of 1/30 the input frame rate. 

(See Figure 2.5).  Other limitations of this system were its dependency on the 

FastCamera13, and a fixed IQM blur radius. 

 

Figure 2.5: (a) Block diagram. (b) Visual representation of 1/N frame rate limitation. 

2.4 Second Generation System 

The second generation FPGA LRF hardware acceleration system adopted a 

“black box” approach. In this methodology, the LRF algorithm was implemented on a 

separate FPGA, and the experimental platform containing this FPGA would interact 

with a separate, independent camera. This removed all dependency on the 

FastCamera13 while simultaneously enabling a wider choice of potential cameras or 

FPGAs. The experimental black box setup was primarily composed of the Xilinx 
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VC709 connectivity kit with a Virtex 7 FPGA, and a Toyon Boccaccio FPGA FMC 

Mezzanine card to interface with any camera that utilized a Camera Link interface. 

The Virtex 7 FPGA on the VC709 has 52,920 Kbits of BRAM. The VC709 also was 

equipped with two 4 GB 1866 MTs DDR3 SODIMMs. Experiments were run by 

connecting the LRF system to a Basler aCA 340-km high speed camera, and 

configuring it to 512x512 resolution, 100 frames per second (maximum 444 fps). Data 

from the LRF platform was delivered to an Imperx FrameLink Express frame grabber 

in a PC. 

One of the primary limitations of the first generation system was the inability 

to dynamically adjust the important camera and algorithm parameters, including 

camera pixel depth, camera exposure time, LRF display mode, and most importantly, 

IQM kernel size (blur radius). The ability to adjust the fusion kernel size was 

especially crucial in order to adjust for fluctuations in the imaging medium [3][7][15].  

In the second generation system, these parameters were implemented as input signals 

that could then be adjusted using the VC709 board’s pushbuttons and dip switches. 

The proposed final version of the second generation LRF system was to 

implement a circular frame buffer to store N synthetic frames and process the data in 

parallel. This would allow the system to no longer fuse independent groups of N 

frames, but instead fuse successive groups of N frames at the full frame rate (see 

Figure 2.6) [2]. Even with the greater BRAM capacity of the Virtex 7 on the VC709, 

the BRAM alone is not sufficient to contain the 30 or more frames to be stored in this 

frame buffer. The LRF system, including a MicroBlaze™ processor and adjustable 

parameters, uses 30 to 40% of the BRAM resources at any given time while still only 

storing 1 frame. Consequently, the frame buffer was to be built utilizing the DDR3 
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SODIMMs on the VC709. Chapter 3 describes the process of building such a system. 

Diagrams of the planned system can be seen in Figures 6 and 7. Figure 2.7 shows the 

full block diagram for the LRF system. Figure 2.8 zooms into the LRF processing 

block, clearly displaying the parallel processing of N frames simultaneously. 

 

Figure 2.6: (a) Block diagram. (b) Visual representation of circular frame buffer to 

output frames at the full frame rate. 

 

Figure 2.7: System diagram for LRF including a MicroBlaze soft processor and a 

DDR controller. 
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Figure 2.8: Detailed block diagram for second generation LRF algorithm module. 

This is a close up of the inside of the “LRF Processing” block in Figure 

2.7. The operations are performed N times in parallel. 
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Chapter 3 

METHODOLOGY FOR EXTENDING SECOND GENERATION FPGA LRF 

SYSTEM 

3.1 Improvements to the Second Generation System 

The proposed second generation system described in Chapter 2 had yet to be 

fully implemented. The independent “black box” operation using the VC709 FPGA 

platform was complete. More importantly, this system allowed the user to adjust 

several crucial LRF algorithm parameters in real-time by means of the board’s 

pushbuttons and dip switches. However, many of the limitations of the first generation 

system remained. This Chapter details the endeavor of improving the second 

generation system to reach the planned goal as shown in Section 2.4. 

From Section 2.4 of Chapter 2, we described the integration of the ability to 

alter key algorithm and camera parameters into the second generation LRF system. 

The VC709 had considerably more resources than the smart camera with the Virtex 2, 

so it was feasible to create a Xilinx MicroBlaze soft processor to control such 

parameters. With the MicroBlaze instantiated, it was possible to write a small C 

program that would run directly on the VC709. These programs were used to write 

values directly to the registers that corresponded to each LRF parameter that was to be 

changed. Through serial communication using a PC, a graphical user interface was 

implemented in both Python and C# to facilitate dynamic adjustment of these 

parameters. This user interface was also used to serially communicate with the camera 

to adjust integration time and frame rate as necessary. 

Another limitation with the test setup for the previous system was the reliance 

on a baseboard heater or hotplate to produce artificial ‘turbulence’ to examine the 

performance of the LRF hardware algorithm. This was a poor substitute for real 
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turbulence, which could not easily be produced in a university environment. However, 

the Intelligence Optics Group at the Army Research Laboratory (ARL) in Adelphi, 

MD constructed an experimental turbulence setup using a periscope and imaging a 

water tower at a distance of 2.3 km along a horizontal path about 4° above the horizon. 

Video data of real turbulence was gathered through this apparatus, and several samples 

of different turbulence conditions at various times were cataloged throughout the day. 

An EDT PCI Digital Video Camera Link Simulator was acquired and installed in a 

PC. This Camera Link Simulator operated like a ‘reverse frame grabber’, enabling the 

video of turbulence data to be passed through the VC709 LRF platform as if it were 

data from a camera. This data was then processed in real-time. Another benefit of this 

system was the ability to create completely artificial blurred images and pass those 

through the reverse frame grabber to see how the algorithm performed under 

theoretical or ideal conditions. An example of the artificial data is seen in Figure 3.1, 

and an example of the system working on real turbulence can be seen in Figure 3.2 in 

Section 3.2. 

The primary limitation of the first generation system was the reduction of the 

output frame rate to 1/N of the input frame rate, where N is the number of independent 

frames fused at a time (typically 30). The first generation output method was to add N 

frames, then output 1 frame, and then restart the process with new set of N frames. A 

temporary approximate solution to this reduction in frame rate was devised for the first 

generation system and implemented on the second generation system. Similar to an 

IIR filter, the idea was to gracefully decay older frames and continuously output the 

synthetic frames. This was accomplished by first scaling the Keep Map to vary from a 

range 0 to 25 to a range of 0 to 128. (The first generation system actually performed a 
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similar operation, converting to a 0 to 32 range, as operations are much easier for 

hardware if using powers of 2.) A small adjustable value was added to each value in 

the Keep Map, but each entry was limited to a maximum of 128. This caused new live 

data to be very slightly favored over old synthetic data, causing the older data to 

slowly decay. In this way, the synthetic stream could be output continuously at the full 

frame rate. Normally, a value between 1 and 4 added to the scaled Keep Map would 

yield the most promising results. See Figure 3.3 in Section 3.2 for an example using a 

value of 2. 

3.2 Results of Second Generation System before Frame Buffer 

In this section, the results from the second generation Lucky Region Fusion 

system with the improvements described in Section 3.1 are presented. The images in 

the figures below represent both operation of the algorithm on artificial turbulence and 

on real turbulence data gathered from the ARL setup described in Section 3.1. 

One of the tests for the LRF system was to see how it performed on known, 

artificial simulation data. The Camera Link Simulator was capable of feeding any 

stream of images into the LRF FPGA through the Boccaccio Camera Link card. In 

Figure 3.1, a pattern of random shapes, randomly blurred, was fed into the LRF 

system. The algorithm did well at clearing up this data. 
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Figure 3.1: Screenshot of algorithm working on a test setup creating synthetic 

‘turbulence’. The left video is blurred randomly, with occasional clear 

regions appearing briefly and randomly. The right video shows the 

results after LRF processing. 

A much more important test of LRF’s capabilities was its performance on real 

turbulence data. The image data was from a water tower located 2.3 km from the 

Intelligent Optics Lab at the Army Research Laboratory in Adelphi, MD. At such 

distances, there was substantial turbulence distorting the image. This data was passed 

through the Camera Link Simulator into the system. Figure 3.2 shows the results of 

the LRF processing with the 1/30 frame rate limitation in place. 
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Figure 3.2: Screenshot showing the algorithm at work on a video stream fed through 

the Camera Link Simulator to the LRF system black box. The left video 

of a water tower at a distance of 2.3 km imaging through real turbulence. 

The right video shows the results after LRF processing. Note that the 

frame rate for the LRF video is only 3 fps compared to 100 fps for the 

live video, showing the 1/30 frame rate limitation. 

As described in Section 3.1, an approximate solution to the frame rate issue 

was applied to the LRF system. This version decays old synthetic frames gracefully 

over time, and allows for the continuous output of synthetic frames at the full frame 

rate. Figure 3.3 shows the results of LRF processing using this method. The output 

frame rates are the same in both videos. 
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Figure 3.3: Screenshot showing the algorithm at work on a video stream fed through 

the Camera Link Simulator to the second generation LRF system. The 

left video is the same water tower at a distance of 2.3 km, imaging 

through real turbulence. The right video shows the results after LRF 

processing. The frame rate for the LRF video is now 100 fps, the same as 

the live video. The 1/30 frame rate limitation has been eliminated. 

3.3 Attempts to Integrate DDR to Create Circular Frame Buffer 

In order to realize the final version of the second generation FPGA LRF 

system as described in Section 2.4 and shown in Figure 2.7, a circular frame buffer 

needed to be built utilizing the VC709’s DDR3 SODIMMs. This would provide a 

more exact solution to the reduced frame rate problem of the first generation system, 

as opposed to the approximate solution described in Section 3.1. However, interfacing 

the DDR with the existing LRF Verilog code proved to be far more time-consuming 

than originally predicted.  To facilitate communication with the DDR, Xilinx provided 

a tool called the Memory Interface Generator (MIG). Additionally, the frame buffer 

module of the existing LRF Verilog code needed to be altered so that the image pixel 

data could be sent to the MIG’s User Interface (UI) in the expected format. 
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3.3.1 Characteristics of Xilinx MIG 

A Xilinx Virtex 7 FPGA such as that found on the VC709 Connectivity Board 

includes a memory interface solution core. This core is a combined physical layer and 

controller to interface the FPGA with DDR3 SDRAM devices. The Xilinx CORE 

Generator™ tool was used to invoke the MIG to communicate with the DDR3 

SODIMMs on the VC709. This extensive set of graphical user interface (GUI) wizard 

tools was used to properly configure the memory controller for the specific Virtex 7 

FPGA and DDR3 SDRAM being used [21]. 

 

Figure 3.4: Xilinx MIG GUI. [21] 

Once the MIG generated the memory interface, it needed to be connected to 

the controlling application, which in our case was the existing LRF Verilog code. The 
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memory controller provides a User Interface (UI) that is analogous to a simple FIFO 

interface, because it always returns the data in order [21]. 

The MIG UI consisted of three major paths: Command, Write, and Read. Each 

path would be composed of signals that were asserted by the application (LRF code) 

and other signals that were asserted by the UI as a result of the current DDR status.  

For example, the Command path has two signals: the application enable (app_en) 

signal which is asserted by the user logic (i.e., our Verilog code), and the application 

ready (app_rdy) signal asserted by the UI [21]. Commands sent when the app_rdy 

signal was de-asserted would be ignored by the UI, which could result in lost data.   

Thus, when modifying the LRF frame buffer Verilog module to interface with the 

MIG UI, it was imperative to produce an app_en signal that remained asserted along 

with valid application command (app_cmd) and application address (app_addr) values 

until the app_rdy signal was also asserted. 

 

Figure 3.5: Timing for Xilinx MIG UI Command Path. [21] 

A similar relationship existed on the Write path between the user logic signals 

app_wdf_wren and app_wdf_data and the UI signal app_wdf_rdy. Note that 

app_wdf_data is the actual pixel data that we wish to store into DDR for later use. 
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After configuring the MIG GUI to use the specific DDR3 SODIMMs found on the 

VC709 board (Micron MT8KTF51264HZ-1G9E1), the app_wdf_data signal had a 

maximum data width of 512 bits per clock cycle [21][22]. Furthermore, the MIG was 

configured as a 4:1 memory controller to DRAM clock ratio with a 64 bit memory at 

the application interface. This essentially means the memory clock is four times the 

speed of the FPGA clock. Also, since the memory is DDR (double data rate), it writes 

on both the positive and negative clock edge of this faster clock. All of this means that 

behind the scenes, on every FPGA clock cycle when we write 512 bits of 

app_wdf_data, it is in reality written to the physical DDR in eight 64-bit chunks. This 

is known as a burst length 8 (BL8) transaction [21]. 

 

Figure 3.6: Burst Length 8 Timing for Xilinx MIG UI Write Path. [21] 

The Read path is the simplest of the three. The read data, app_rd_data, is 

returned by the UI in order and is only valid when the app_rd_data_valid signal is 

asserted [21]. The user logic needs only to take into account the app_rd_data_valid 

signal to make sure it is processing correct data from the DDR SDRAM. Note that like 
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the app_wdf_data signal, the app_rd_data signal was limited to 512 bits using the 

VC709’s DDR3 SDRAM. 

 

Figure 3.7: Timing for Xilinx MIG UI Read Path. [21] 

There are several important aspects of the above discussion of the 

characteristics of the MIG memory controller. First, the application data 

(app_wdf_data) must be sent to the UI in sets of 512 bits or smaller. This is actually 

quite a limiting factor for LRF, because as the preceding chapter stated, we wanted to 

store 30 or more frames worth of data at a time. Another very important thing to 

consider about the memory controller UI is that while it is designed to act like a 

simple FIFO, it is still quite different from a Xilinx BRAM FIFO previously used by 

LRF. With BRAM, for all intents and purposes the data is available to be read 

immediately after it is written. However, with DDR, the data becomes available some 

indeterminate time after it is written. As a result, the UI sends ready and valid signals 

as discussed above to let the application known when the data is available or when the 

data being sent back is valid. This in turn meant that it was necessary to rebuild the 
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LRF frame buffer module to tolerate unknown delays between the writing of data and 

its availability to be used again, and to utilize the UI ready and valid signals. 

3.3.2 Reconstructing the LRF Frame Buffer 

The second generation LRF system was described above in Chapter 2. As 

detailed in that chapter, the LRF code was transferred to the VC709 FPGA platform. 

Thus, we had a system as seen in Figure 3.8 below. A Camera Link camera sends data 

through the Boccaccio card into the FPGA in sets of up to 24 bits [23][24]. Those data 

bits could represent 1-3 eight-bit pixels, or 1-2 ten-bit pixels, or 1-2 twelve-bit pixels, 

or a single sixteen-bit pixel, depending on how the camera was configured [24]. 

Although the LRF code could handle any of those configurations, for legacy reasons 

we typically used two ‘taps’ of ten-bit pixels, because that was the bit depth of the 

original FastCamera13 system. We wanted to be able to compare the results of the two 

generations of LRF easily. In any event, one of the first things done by LRF was to 

pass the data from the Boccaccio into data formatting and pixel FIFO modules, which 

converted any pixel data depth from the camera into four sets of ten-bit pixels bits for 

LRF processing. Similarly, at the output side, there was an output FIFO to convert the 

40 bits back down to 24 bits for the Boccaccio, which would then be sent over a 

Camera Link cable to a compatible frame grabber for display. This version of the LRF 

algorithm was using the FPGA’s BRAM for the frame buffer. Each synthetic frame to 

be stored could be put into one or more parallel instantiations of BRAM modules, in 

sets of 40 pixels at a time. However, as stated in Chapter 2, the VC709 had insufficient 

amounts of BRAM to implement the circular frame buffer necessary to store the 30 or 

more synthetic frames desired for the final version of the second generation system, as 

shown in Figure 2-7. 



 27 

 

Figure 3.8: LRF Black Box FPGA System before integration of DDR Memory 

Controller for Circular Frame Buffer. 

The strategy for realizing the final version of the second generation system was 

to replace only the frame buffer module of the LRF code with a new frame buffer 

module which utilized the VC709’s two on-board DDR3 SDRAM blocks. Ideally, the 

rest of the LRF modules could then remain untouched and continue to operate as they 

always had. The first attempt at writing a DDR frame buffer module was made by 

former CVORG researcher David Koeplinger. His original design can be seen below 

in Figure 3.9. 
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Figure 3.9: Original DDR Frame Buffer Design. 

This design was far more complex than the original BRAM frame buffer.  A 

large part of this complexity stems from the discussion in the previous section. Several 

additional signals needed to be added to the frame buffer module to communicate with 

the Xilinx DDR3 MIG memory controller module. These include the ready signals 

(app_rdy, app_wdf_rdy) and valid signals (app_rd_valid), to name a few. Moreover, 

these signals then needed to be controlled by a state machine, which could control the 
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flow of data through the system so that, for example, data was not sent to the DDR 

when the DDR ready signal was de-asserted. 

In addition to the MIG and DDR state machine, the frame buffer also included 

two major blocks: the input formatter and output formatter. The input formatter, 

output formatter, and state machine together formed a module called the DDR3 

controller. Recall from the previous section that one of the major limitations of the 

input data into the DDR3 MIG memory module was that the width of the 

app_wdf_data was limited to 512 bits. There were two problems with the 512 bit 

width size. First, recall that the rest of the LRF system was set up to handle four sets 

of ten-bit pixels, or 40 bits at a time, which does not factor nicely with 512. Second, 

and far more important, was the fact that we wanted to handle 30 or more frames of 

data in parallel for the LRF frame buffer, and 30 * 40 = 1200, which is far greater than 

512. To solve these issues, the input and output formatter modules were created. 

Setting the number of synthetic frames to process simultaneously to 32 yielded a 

synthetic data width of 40 * 32 = 1280 bits. Then, the input formatter zero-padded 

each of the ten-bit pixels with two zeros, creating twelve-bit “pixels” for DDR storage, 

such that 12* 4 = 48 and 48 * 32 = 1536-bit wide synthetic pixel data width. Since 

1536 is a multiple of 512, we could then split the synthetic data into three 512-bit parts 

and send each to the DDR MIG memory module on the app_wdf_data signal. The data 

was placed into a FIFO so that it could be pulled out by the state machine and sent to 

the DDR when the DDR was ready to receive it. Similarly, the output formatter read 

the 512-bit chunks of data from DDR on the app_rd_data signal, stored every three 

into a signal 1536 bits wide, then truncated off the zero padding to yield a signal 1280 

bits wide. This represented 32 * 40 bits, or 32 separate synthetic frames as originally 
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stored. The output formatter also included logic to synchronize the synthetic frames 

with the Live frames coming in from the camera, so that each synthetic frame was 

being compared with the correct Live frame for LRF processing. 

3.3.3 Frame Buffer Simulations 

Each of the portions of the frame buffer described above was developed and 

coded in Verilog. There were many different components and signals involved in the 

frame buffer, so we decided it would be best to run simulations to make sure each 

component was operating correctly before plugging the whole frame buffer block into 

LRF. The Xilinx Vivado Design Suite® (version 2013.2) was used both to write the 

Verilog code for the frame buffer components and to simulate the output using the 

native Vivado Simulator. We created a test bench that would send simulated “pixels” 

of data it sets of 32 frames of four ten-bit pixels for the synthetic data, and frame of 

four ten-bit pixels for the live data, exactly as we would expect from LRF and 

described in the section above. In other words, the synthetic data width was 1280 bits 

per pixel clock and the live data width was 40 bits per pixel clock as the inputs to the 

frame buffer module. It should be noted that the pixel clock is based on the Camera 

Link standard and the limitations of the Boccaccio FMC card and thus limited to a 

maximum of 66 MHz, but this is much slower than the FPGA clock of 200 MHz 

[22][23]. Consequently, the logic manipulating the data for the frame buffer could 

more than three times faster than the incoming data. This was important, because from 

the discussion above, the incoming synthetic data needed to be split into three smaller 

pieces of 512 bits each. The FPGA clock was fast enough to operate on three sets of 

512 bits before the next set of data would come in from the simulated test bench 

“camera”. 
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Simulating the frame buffer module proved to be an arduous and time-

consuming process. The Vivado Simulator produces waveform timing diagrams for 

the signals one wishes to examine, similar to Figure 3.10 below. As can be seen in that 

Figure, early attempts to produce output data (save_data_out signal) were rather 

unsuccessful. The first tests involved a complete, but simplified, version of the frame 

buffer shown in Figure 3.2.The only differences with the simplified version were: (1) 

the synthetic width was 640 bits rather than 1280 bits and zero-padded to 768 bits 

rather than 1536 bits, and (2) for early simulation purposes, the DDR was replaced 

with a BRAM. These simplifications were made to make it easier to detect errors in 

the output waveforms. The main aspects being testing in these early stages was the 

splitting of the data into three parts (256 bits each in this case), storing them into 

BRAM, and then reading them back in the correct order and in sync with the live data. 

 

Figure 3.10: Early simulation of frame buffer design. 
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Testing the early system was time-consuming, because each of the Vivado 

simulations would require 10 to 30 minutes to complete for waveform windows 

between 1 and 10 microseconds. Also, it was apparent that the entire frame buffer 

module was not operating properly, for we were not seeing the correct data at the 

output, as seen in Figure 3.10 above. It quickly became clear that in order to properly 

test the system, each of the sub-blocks needed to be tested individually. This process 

slowly allowed us to find and correct the initial problems. We obtained output data 

that seemed to be correct as seen on the 512 bit app_rd_data signal in Figure 3.11 

 

Figure 3.11: Correct output data app_rd_data using early frame buffer design. 

The next step was to simulate the frame buffer with the full synthetic data 

width of 1280 bits (representing 32 parallel frames) with a model for the DDR3. When 
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configured, the Xilinx MIG also generated a simulation model for the DDR3 hardware 

specified during memory controller generation. This allowed for the monitoring of the 

important memory controller UI signals, such as app_wdf_data, app_rdy, and 

app_rd_data. In addition, some of the DDR3 status signals could also be monitored, 

most notably init_calib_complete, which indicated when the initial calibration of the 

DDR3 SODIMM hardware was complete. Unfortunately, there were a number of 

problems with the DDR simulation model that made development extremely slow. We 

discovered that until the init_calib_complete signal asserts, nothing could be written to 

or read from the DDR. After some trial and error, it was found that this 

init_calib_complete signal, even with the simulation’s SIM_CAL_OPTION set to 

“FAST”, did not assert until after 47 microseconds on the simulation waveform 

window (see Figure 3.12).  Previously, we were running the BRAM simulations for 

about 1 to 10 microseconds, which required 10 to 30 minutes of real time to complete. 

The DDR simulations, consequently, often required between 90 minutes to 2 hours 

before we could see or test any output at all. As a side note, if the 

SIM_CAL_OPTION setting was not set to “FAST”, the simulation would also 

simulate the power on startup time and thus require over 500 to 700 microseconds on 

the waveform for init_calib_complete to assert; this took over 18 hours of real time to 

simulate! In any event, the typical 90 minute simulation times drastically slowed the 

testing of the DDR3 version of the frame buffer module. 
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Figure 3.12: 65 μs simulation. The init_calib_complete signal asserts at 47 μs. 

Extensive testing and simulation was done on the frame buffer system with 

DDR3. Even after repeatedly tweaking and rewriting the memory controller state 

machine to match the guidelines as described in Section 3.3.1, we often found that the 

output data would be slightly incorrect. For example, the output data might have a 

pixel missing, or a pixel might have been repeated on the output unexpectedly, or the 

data might come out in the incorrect order. In order to narrow down where the 

potential problems might occur, we decided to modify David’s design from Figure 3.9. 

The modified design can be seen in Figure 3.13. In the new design, we drop the live 

and synthetic synchronization logic. Instead, we remove one frame from the synthetic 

side and attach the live data to the end of the input data signal. Thus, instead of a 

separate 1280 bit synthetic signal representing 32 frames and another single frame of 
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live data, we have a single 1280-bit input stream representing 31 synthetic frames and 

1 live frame. From there, this 1280 bit signal is zero-padded to 1536 bits just as before. 

This 1536-bit signal is split into 3 parts of 512 bits, each of which enters a dual clock 

FIFO, with the input clock being the pixel clock (65 MHz) and the output clock being 

the FPGA UI clock (200 MHz). The state machine would then read each of these 

FIFOs in turn, based on the ready signals from the MIG controller UI, and write the 

data to the DDR. The entire process would then be reversed on the read-side, with the 

data being reconstructed back into a 1536-bit wide signal, then the zero-padding 

trimmed off to recover the original 1280-bit signal representing the 31 synthetic 

frames and 1 live frame. This method does lose a single synthetic frame of accuracy 

on the LRF processing. However, the advantage of automatically syncing the live and 

synthetic data at the output without any extra logic is significant. 

 

Figure 3.13: Modified frame buffer design and data path. 

The modification of the frame buffer module described above eventually 

reached a point where it appeared to pass all of the simulations. Figure 3.7 shows the 

correct waveforms from a 65 microsecond simulation. At every point during the 
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simulation, the output data from the simulated DDR matched the input data. We were 

then ready to actually replace the frame buffer in the LRF module with this new one to 

see if similar results could be observed. Fortunately, the LRF code and frame buffer 

were designed to be modular and it was relatively straightforward to replace the 

existing buffer with the new one with only a few parameters being changed. 

 

Figure 3.14: 65 μs simulation. The output matches the input. 

3.3.4 Integrating Frame Buffer into Existing LRF Code 

As with any FPGA design, the LRF system with the new frame buffer needed 

to go through both the Synthesis and Implementation steps in order to generate a bit 

file that could be programmed onto the VC709. Early attempts at synthesis required 30 

to 60 minutes, and uncovered some unforeseen problems with the combined design. 

As can be seen in Figure 3.15, the estimated Utilization of the VC709’s resources far 
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exceeded its capabilities. The report shows and estimated 172% of the lookup tables 

(LUTs) and 218% of the BRAM being required to implement the design. 

 

Figure 3.15: Post-synthesis utilization report. Insufficient LUT and BRAM. 

What is happening here is the LRF processing of 31 frames is actually far more 

resource intensive than anticipated. Recall that previously, when the LRF was using 

BRAM to store a single synthetic frame, over 30% of the BRAM was being utilized. 

However, from Figure 3.16, notice that the DDR module storing all 30 frames only 

utilizes 14% of the total BRAM. Therefore, as far as storage is concerned, our design 

goal was met. That being said, Figure 3.16 also illustrates the problem. Previously, 

when operating on a single synthetic frame, only about 4 to 6% of the BRAM was 

being used for LRF calculations such as horizontal and vertical blurring. On the other 

hand, with the new system, performing these same LRF operations on 31 frames in 

unison each requires about 4-6% of the total BRAM, which is cumulatively more than 

the VC709 has available [25]. 
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Figure 3.16: Utilization report. DDR module u_ip_top only uses 14% of total  

 

Figure 3.17: Utilization report. Each synthetic IQM calculation requires 4% BRAM. 

This was a troubling result, because it meant that even if the DDR storage part 

of the frame buffer worked perfectly, we would not be able to process 30 or more 

frames of data simultaneously with a LRF blur radius up to 30, as we could with the 

single frame system. Nevertheless, we still wanted to know how well the DDR frame 

buffer could integrate into the system. The total amount of BRAM required for the 
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synthetic calculations depended on both the LRF radius and the number of synthetic 

frames. Specifically, the number of 36 Kb block RAM elements required for the 

expensive LRF vertical blur calculation is given by equation (4). The number of block 

RAM elements required for the remaining delay buffer calculations is given by 

equation (5). In these equations, R is the LRF blur radius, and F is the total number of 

frames to be processed (both synthetic and live). 

(4)  

(2𝑅 + 2) ∙ 𝐹 

(5)  

(𝑅 + 2) ∙ 𝐹 

By maximizing equations (4) and (5) while taking into account the total number of 

BRAM on the VC709’s Virtex 7 FPGA (XC7VX690T) being 1470, and the DDR 

frame buffer consistently requiring 203 (14%) of the BRAM tiles, we found that we 

could create a system with a radius of 25 and 16 frames (15 synthetic, 1 live) while 

staying under the BRAM limit [25]. Figures 3.18 confirms that the BRAM usage has 

been reduced to 99% (and LUTs down to 88%). 
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Figure 3.18: Utilization problems corrected. 

Finally, with Synthesis complete, we were able to run the Implementation step, 

which placed and routed the design and generated a bit file to program onto the 

VC709’s FPGA. Implementation required well over 3 hours to complete. 

Unfortunately, the results on the output for the full system failed to meet the promising 

results of the simulation. Figure 3.19 shows the output from the camera after LRF 

processing with the new frame buffer. There is no discernable picture, which is 
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obviously not good. The most positive aspect of the result is that the output frame rate 

is correct, that is, we are seeing N frames out for every N frames in. Also, the white 

streaks in the image does seem to correspond to data, for it changes when objects pass 

in front of the camera lens, and they vanish when the lens is covered completely. 

 

Figure 3.19: Video output after unsuccessful Frame Buffer integration. 

We have a number of theories and ideas on why there are problems with the 

output and what could be done to fix them. For example, the frame buffer input FIFOs 

might be overflowing at certain points in time causing data to be lost. Another idea 

involves the valid signals from the Camera Link somehow going out of sync, causing 

the frame grabber to reconstruct the data incorrectly. However, at this point we 

realized that the development time on the FPGA was becoming a major hurdle. With 
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simulations requiring two or more hours, and synthesis/implementation requiring 

another 3 hours every time we wanted to change anything, a search for another 

solution seemed prudent.  Also, recall that even if the frame buffer module worked 

perfectly, the VC709 could only support up to a 16 frames at 25 radius for LRF 

processing. In order to process more frames, we would need to either completely re-

optimize the LRF code, or acquire a more powerful FPGA platform. Therefore we 

decided to explore the option of implementing LRF on a GPU platform instead to see 

if we could achieve comparable results. That exploration is discussed in Chapter 4. 
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Chapter 4 

LRF GPU IMPLEMENTATION 

4.1 Benefits of a GPU Approach 

As discussed in Chapter 2, the LRF algorithm has previously been 

implemented on a workstation PC using the C programming language. However, due 

to the large amounts of image data processed by LRF, the sequential processing of 

workstation’s CPU platform was insufficient for real-time atmospheric turbulence 

mitigation. Therefore, parallelization of the algorithm on an FPGA platform was 

investigated and realized, as discussed in Chapters 2 and 3. At the end of Chapter 3, it 

became apparent that the simulation and development times involved in expanding the 

LRF algorithm could quickly become impractical. 

There is another method of hardware based processing parallelization common 

in image processing, the graphics processing unit (GPU). In fact, in many ways a GPU 

is ideal for the type of processing done by LRF, as GPUs are typically designed to 

process large numbers of pixels simultaneously. In 2009, when the LRF algorithm was 

first implemented in software on a workstation PC, a GPU solution was suggested but 

originally rejected. At the time, parallel programming platforms like Compute Unified 

Device Architecture (CUDA) were still relatively new. Even when accelerated with a 

GPU, at the time there was insufficient processing power necessary for real-time 

image data from fast, high-resolution image sensors.2,7  In the years since LRF was 

first implemented in software and the on an FPGA, GPU platforms and programming 

frameworks have advanced considerably. In principle, the GPU has become a 

competitive and viable alternative for real-time acceleration of the LRF algorithm. 
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A significant advantage to working with a GPU is the ability to use high-level 

frameworks designed for parallel programming of heterogeneous frameworks [26]. 

Unlike a hardware prototyping language like VHDL or Verilog, the GPU 

programming frameworks are much closer in structure and syntax to a high-level CPU 

programming language such as C. This typically means the code is much easier and 

faster to understand and debug. More importantly, compile times are on par with 

typical CPU programming languages, which vastly improves development time. 

Perhaps the most well-known of these frameworks are CUDA and Open Computing 

Language (OpenCL). CUDA is a couple of years older than OpenCL and generally 

has more documentation, but created by NVIDIA exclusively for NVIDIA GPUs. 

Although we are currently using NVIDIA GPUs for testing purposes, we decided to 

use OpenCL because it is compatible with any GPU. 

The OpenCL framework provides a number of useful abstractions to make 

working with GPUs more efficient. At the most basic level, there are two major 

components to an OpenCL system, the host, and one or more devices [27]. The host is 

typically a CPU which runs a high-level programming language such as C (extended 

by OpenCL). The host schedules and sends data to the device(s) in order for it to be 

processed in parallel. The host assigns parallel computational tasks, known as kernels, 

to multiple processing elements in the devices for simultaneous computation [27]. 

(These GPU kernels are not to be confused with the convolution kernels described in 

Chapter 2.) A device is a general term for a component capable of parallel processing, 

and typically refers to a GPU [26][27]. OpenCL further abstracts the device down to 

portions called compute units, work-groups, and work-items. Work-items are the 

smallest of these abstractions. Work-items represent an individual execution of a 
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kernel on a specific set of data. In image processing like LRF, a work-item could 

represent an operation on an item as small as a single pixel. If the kernel is a task such 

that each pixel could be calculated individually, such as multiplying the pixel value by 

some number, then each pixel could be a work-item and all of them could be 

calculated at once. A work-group is a combination of work-items which all have 

access to the same computing resources, and a processing resource that can support a 

work-group is known as a compute unit [27]. All of the work-items in a work-group 

can be synchronized on the device. Moreover, each work-item in a work group can 

access a very fast block of memory on the compute unit called local memory [27]. In 

image processing, a work-group might represent a row or column of pixels, or a small 

sub-image, or even an entire frame. This work-group and work-item model is 

extremely efficient for image processing tasks due to this potential for very high data 

throughputs. 

A host sends data and kernels to a device for parallel processing. The data is 

stored on the device in global memory, which can be accessed by all of the compute 

units on the device [27]. In optimized OpenCL implementations, portions of the global 

memory are copied to the much faster local memory, such that the work-items in each 

work-group only work on the data that they need. Each work-item also has tiny but 

extremely fast private memory that it uses for intermediate calculations [27]. When the 

compute items finish the kernel tasks, they send the processed data back to global 

memory, so that it can then be read back by the host. Figure 4.1 shows the relationship 

between work-groups and kernels. Figure 4.2 displays the OpenCL device model. 
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Figure 4.1: OpenCL kernel and work-groups. [27] 

 

Figure 4.2: OpenCL device and memory model. [27] 

4.2 Development of the GPU LRF System 

The previous section gave a concise overview of the OpenCL host/device 

model. For development of the host side code, OpenCL is typically an extension of the 

C programming language. However, there other options depending on the needs of the 

developer. Since for LRF our primary concern was faster development times, we 

opted to use the Python programming language with the PyOpenCL library. In 
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practice, PyOpenCL is simply a Python wrapper for the underlying OpenCL C code 

implementation. Run times on Python are usually slower than C since Python being an 

interpreted language and not a compiled language, but we thought the increased 

development speed using Python was worth the tradeoff. We were attempting to 

determine if a GPU LRF implementation was viable or even possible. However, as 

noted in Chapter 5, future work involves complete optimization of the GPU code, 

including porting it to C. 

Initial development of the GPU version of the LRF algorithm was done using 

recorded image data of the water tower as shown in Section 3.2. Recall that various 

sets of this turbulent image data were recorded over the course of the day, allowing for 

the testing of the algorithm in different turbulence conditions. Use of the Python 

version of the Open Computer Vision (OpenCV, not to be confused with OpenCL) 

library allowed us to read in this image data, as well as display the image data to a 

monitor. The images were read into two-dimensional Numerical Python (numpy) 

arrays. These numpy arrays could then be passed as data buffers to the OpenCL 

kernels for parallel processing. 

Chapter 2 describes the general steps of the LRF algorithm. In order to realize 

this system on a GPU, each of the steps of the LRF algorithm was made into an 

OpenCL kernel. The OpenCL Sobel kernel takes in the input frame and outputs an 

edge map frame. It was optimized using work-groups and work-items as described 

above, such that the Sobel convolution windows could quickly operate on a group of 

pixels by accessing only the local memory. In the FPGA version discussed in Chapter 

2, the Sobel calculation was approximated as |D| = |Dx| + |Dy|, but the GPU 

implementation makes use of the optimized hypotenuse (hypot) function to perform 
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the full Sobel calculation, |D| = √(Dx
2 + Dy

2). Similarly, a local memory optimized 

general two-dimensional convolution function was created to handle the blur of the 

edge map and creation of the keep maps discussed in Chapter 2. In the FPGA version, 

the image filter for this blur convolution was a simple mean filter due it being easy to 

implement in Verilog. However, using the Python frontend on the host side, the GPU 

version could easy pass over the Gaussian filter recommended by Aubailly, et al. [15].  

Finally, when satisfied that the LRF algorithm was running correctly on the recorded 

data, we used the Python ctypes library and the frame grabber application program 

interface (API) to read data from the Camera Link camera into numpy arrays, which 

could then be GPU processed. 

For our experiments, we used the GPUs on the NVIDIA Quadro K5000 and 

the NVIDIA GeForce GTX 690 video cards. The GPU systems could perform all of 

the steps of the LRF algorithm and output the result around real-time speeds. That was 

an encouraging result, so we explored adding additional features to the GPU version 

that were absent from the FPGA version. The most important of these additional 

features were variable frame buffer size and image stabilization. Perhaps the most 

powerful feature of the GPU implementation was the relative ease with which we 

could implement different sized frame buffers. The GPUs we were testing contained 

over 4 GB of on-board GDDR5 video memory. Unlike the FPGA, in which the DDR 

memory was difficult to use (see Chapter 3), the video RAM on the GPU was handled 

by OpenCL internally. Thus, as long as sufficient memory was available on the card, it 

was a simple matter to create an adjustable frame buffer parameter to store more or 

less synthetic frames, as desired. With our 512x512 pixel images, we found that we 

could create a frame buffer as large as 60 frames or more. However, the larger frame 
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buffers came at the cost of reduced frame rate, such that a 60 frame buffer of 512x512 

images might drop below our minimum real-time speed threshold of 30 frames per 

second. Therefore, most testing was still done using the original 30 frame buffer. 

Another important addition to the LRF system made possible with the GPU 

host/device dynamic was image stabilization. Image stabilization is compensating for 

unintended motion in the image. For example, it is often used to correct the shaking of 

a camera. A large problem with correcting atmospheric turbulence using an algorithm 

like LRF is the fact that atmospheric turbulence seems to introduce small, random, 

non-linear apparent motion throughout the image. When comparing one frame to a 

subsequent frame using LRF, this apparent motion can cause the incorrect pixels to be 

compared with each other and yield erroneous results. Figure 4.3 shows a visual 

representation of a random vector field similar to the motion one might expect from 

turbulence [28]. 

 

Figure 4.3: Random vector field similar to apparent motions of turbulence. [28] 
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Image stabilization is typically done on entire images to correct global motion. 

However, when dealing with atmospheric turbulence, the apparent motion is in 

different directions throughout the image. Hence, we developed an image stabilization 

system in which the original image is split into several sub-images, and then image 

stabilization is applied to each one. Afterward, the sub-images are then reconstructed 

back into a stabilized image.  

The image stabilization method we used is called phase correlation. It is a 

relatively simple method used to correct for translational motion between images [29]. 

First, we created a reference frame, which was the mean or median (changeable) of an 

adjustable number (typically 30) of input frames stored in a reference frame buffer. 

The 2D Fourier transform is then computed on both the reference frame and the 

current live input frame that we want to stabilize. 

(6)  

𝐆a = ℱ{src1}, 𝐆b = ℱ{src2} 

Where src1 and src2 are the input and reference images. Next, the cross-power 

spectrum is calculated: 

(7)  

𝑅 =  
𝐆a  ∘  𝐆b

∗

|𝐆a  ∘  𝐆b
∗ |

 

Where in the above equation, ∘ denotes that the transforms are multiplied element-

wise, and * is the complex conjugate. We then find the normalized cross-correlation 

with the inverse Fourier transform: 

(8)  

𝑟 = ℱ−1{𝑅} 

And finally, the location of the peak is given by: 

(9)  
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(∆𝑥, ∆𝑦) = argmax(𝑥,𝑦){𝑟} 

This peak represents the translational shift between the input frame and the reference 

frame [29]. This shift is then used to remap the input frame pixel locations to the 

corrected pixel locations, canceling the shift and stabilizing the image. The stabilized 

image was then sent through the LRF algorithm as normal. 

Testing this image stabilization concept was initially done on the host side of 

the system using the OpenCV phase correlate function on a variable number of sub-

images between 4 (each sub-image 128x128 pixels) and 32 (each sub-image 16x16 

pixels). Larger numbers of sub-images would typically yield more accurate results, but 

at the cost of output frame rate. While this CPU processing was much slower than the 

rest of the GPU pipeline, it was useful for determining whether or not the stabilization 

made enough of a difference in image quality to attempt to implement it on the GPU. 

4.3 Promising Results 

The GPU parallel hardware implementation of the LRF algorithm produced 

comparable – and in some cases, superior – results to the FPGA implementation in a 

fraction of the development time. Both the FPGA and GPU versions feature an 

adjustable LRF blur radius. The GPU version, however, also allows for an adjustable 

synthetic frame buffer size, changeable blur method (either mean or Gaussian), and 

adjustable keep map averaging kernel radius. Both systems can process either live 

camera data or recorded video. The FPGA version using the IIR filter method to 

approximate a circular frame buffer (see Chapter 2) was capable of very fast frame 

rates on the order of 150 FPS with 512x512 resolution. The GPU version, on the other 

hand, is capable of considerably improved image quality over the FPGA version due 

to image stabilization, a potentially larger frame buffer, and use of a Gaussian blue for 
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the LRF calculations. Currently, the GPU version operating on 512x512 resolution 

with a 30 synthetic frame buffer reaches frame rates of 40 to 50 FPS on a NVIDIA 

GeForce GTX 690 graphics card. Future work will involve further optimizing the 

GPU implementation by updating the LRF kernels to utilize local memory, and be 

converting the image stabilization to the GPU. These improvement should result in 

even faster frame rates for the GPU system. The Figures below present images of the 

results of the GPU implementation. 

 

Figure 4.4: GPU LRF Results under moderate turbulence conditions. (a) (left) Live 

input video, unprocessed. (b) (right) LRF output from GPU. The lines on 

the distance resolution chart are noticeably sharper. The “IOL” in the 

upper right corner of the chart is more legible. 
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Figure 4.5: Live, unprocessed video data under poor turbulence conditions. Most of 

the lines on the long distance resolution chart are blurred, and none of the 

letters are readily legible. 
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Figure 4.6: LRF output after FPGA processing of the image in Figure 4.5. The 

approximated frame rate solution described in Section 3.1 was used with 

keep value 2. The LRF radius for the mean blur filter was 7.  
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Figure 4.7: GPU output after processing of the image in Figure 4.5. Image 

stabilization using a mean reference frame made from a buffer of 30 

frames.16 sub-images were used in the image stabilization. A circular 

frame buffer of 30 frames was used for the LRF calculations. A Gaussian 

blur was utilized with an LRF radius of 4 and standard deviation of 1.5.  

Inspection of Figures 4.5, 4.6, and 4.7 above clearly demonstrates the 

atmospheric turbulence mitigation of LRF. The GPU results are of comparable – and 

perhaps even superior – quality to the FPGA results, judging by the sharpness and 

legibility of the two long distance resolution charts. 
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Chapter 5 

CONCLUSION 

5.1 Conclusion 

An overview of the LRF algorithm was presented. The first and second 

generations of a FPGA hardware implementation of LRF were described in detail. An 

in-depth overview of the process and methodology of building upon the second 

generation system was discussed in Chapter 3. An alternative approach to LRF 

hardware acceleration using a GPU was then explored in Chapter 4. LRF was 

originally implemented in software as a post-processing technique, but the relative 

simplicity of the algorithm and the large amounts of data to be processed suggested 

the adoption of a parallelized hardware approach. This concept was first proven to be 

viable with the first generation system, which was capable of LRF processing in real 

time, albeit with some limitations. The second generation system addressed each of 

the limitations of the first system, as well as adding additional features for testing and 

simulation. However, fully realizing the second generation system proved to require 

too much development time to be viable using the current development platforms. An 

alternative approach using a GPU was developed with comparable atmospheric 

turbulence mitigation and real-time frame rate capabilities to the FPGA version. 

5.2 Future Work 

Future work involves fully integrating image stabilization onto the GPU so that 

all of the image processing is done in parallel. Another significant enhancement would 

be to separate the blur do to object motion from the blur due to atmospheric turbulence 

so that the system could properly process video with moving targets. Optimizing the 

system to process data at extremely high frame rates is also desirable. Higher 
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resolution, such as 1k x 1k or 2k x 2k, processing while maintaining real-time LRF 

processing is another potential improvement. Presently, the LRF algorithm has only 

been used with greyscale cameras. A future improvement will be to update the system 

so that it will operate with a color camera. Future versions will also expand the input 

and output capabilities of the system so that it is compatible with other interfaces than 

Camera Link, such as DVI or HDMI. 
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