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Displacement-based internal design of geosynthetic-reinforced earth
structures subjected to seismic loading conditions

F. VAHEDIFARD�, D. LESHCHINSKY† and C. L. MEEHAN†

A majority of the existing analytical approaches for displacement-based seismic design of geosyn-
thetic-reinforced earth structures (GRESs) have been developed by considering only a translational
mode of failure (external sliding stability), and consequently do not provide a means for assessing the
seismic displacement of GRESs due to rotational movements (internal stability). Internal rotational
failure can degenerate to a translational one should it be more critical; however, the reverse is not
true, which makes rotational failure a more generic mechanism. To address this issue, this paper
presents a new analytical–numerical framework for the displacement-based design of GRESs, which
assesses the potential for earthquake-induced displacements via an internal stability (rotational) failure
mechanism. For design purposes, in order to determine the superimposed force in the reinforcement
due to seismicity and its associated displacement, the proposed approach examines two limiting
conditions: (a) the upper-bound force that can be mobilised in the reinforcement, as determined by
pseudo-static limit equilibrium; and (b) the force that can be induced in the reinforcement by a given
earthquake acceleration applied over a finite time increment. Either condition satisfies equilibrium.
The prevailing seismically induced force and displacement in the reinforcement for each time
increment are determined by selecting the smaller value that results from these two conditions. As an
auxiliary tool, a set of pullout simulations was performed using finite-element analysis in order to
relate the force and displacement in the geosynthetic reinforcement for various geosynthetic
stiffnesses. To illustrate the application of the proposed method, a design example using a Kobe
earthquake record is presented. For this example, the superimposed force in the reinforcement due to
seismicity, the seismic displacement, and the seismic rotation are calculated. The required unfactored
geosynthetic strength is then determined using a uniform distribution function.

KEYWORDS: design; earthquakes; geosynthetics; limit equilibrium methods; reinforced soils; seismicity

INTRODUCTION
The post-earthquake serviceability of geosynthetic-reinforced
earth structures (GRESs) is a major design concern that
cannot be properly addressed using pseudo-static stability
analysis methods alone. In addition, using pseudo-static
stability analysis for designing GRESs can sometimes lead
to irrationally large reinforcement lengths (Ling et al., 1997;
Vahedifard et al., 2012). In the past few years, performance-
based seismic design methods that calculate earthquake-
induced displacement have seen increased utilisation for
GRESs (e.g. FHWA, 2009; NCMA, 2009). FHWA (2009)
recommends a displacement-based design methodology for
assessing the external seismic stability of mechanically
stabilised earth (MSE) walls. Following this approach, the
total (static and dynamic) thrust force is calculated using
either the Mononobe–Okabe (M-O) formulation or a method
called ‘generalised limit equilibrium slope stability’.

In an ideal case, a fully coupled dynamic analysis using
numerical modelling (i.e. finite-element (FE) or finite-
difference (FD) methods) can provide the most accurate
prediction of stress-deformation behaviour of GRESs under
seismic loading, by considering all potential deformation
mechanisms. However, this type of seismic analysis is

computationally expensive, and requires several difficult-to-
determine input parameters along with a relatively high
level of engineering expertise to execute effectively. As a
compromise between the simple pseudo-static method and
the more complex numerical techniques that are available,
analytical displacement-based methods offer a number of
advantages: they are already commonly used in practice
for unreinforced slope displacement predictions, so practi-
tioners are familiar with their use; they provide signifi-
cantly more useful information than simple pseudo-static
methods; they have a lower complexity and need fewer
input parameters than traditional numerical modelling ap-
proaches; and they are believed by many to provide a
reliable index of slope performance under seismic loading
through their predictive calculation of permanent earth-
quake-induced displacements (e.g. Jibson, 2007).

Numerous analytical displacement-based methods currently
exist for either predicting earthquake-induced displacements in
GRESs or performing displacement-based design of GRESs
(e.g. Cai & Bathurst, 1996; Ling et al., 1997; Ausilio et al.,
2000; Michalowski & You, 2000; Huang et al., 2003; Paulsen &
Kramer, 2004; Nakajima et al., 2010). Most of these existing
methods typically couple a pseudo-static limit equilibrium (LE)
approach with an extension of Newmark’s (1965) displace-
ment-based analytical framework to determine earthquake-
induced displacements. Each of these analytical methods as-
sumes a certain governing failure mechanism under seismic
loading. The associated ‘failure mass’ of soil is determined
from this initial failure mechanism assumption. For purposes of
analysis or design, the failure mass is divided into a number of
wedges, and the ‘yield acceleration’ (the pseudo-static coeffi-
cient that corresponds to a safety factor of one) is determined

Manuscript received 25 October 2011; revised manuscript accepted 11
September 2012. Published online ahead of print 14 November 2012.
Discussion on this paper closes on 1 October 2013, for further details
see p. ii.
� Department of Civil and Environmental Engineering, Mississippi
State University, MS, USA.
† Department of Civil and Environmental Engineering, University of
Delaware, Newark, DE, USA.



by solving the LE equations. A majority of the existing dis-
placement-based pseudo-static LE methods (e.g. Cai & Bath-
urst, 1996; Ling et al., 1997; Nakajima et al., 2010) were
developed by considering only a translational mode of failure
(i.e. external sliding stability) for calculating earthquake-
induced displacement, and consequently do not provide a
means for assessing the seismic displacement of GRESs due to
rotational movements (internal stability). This observation is of
particular concern, as Leshchinsky et al. (2009) have demon-
strated that internal stability may control the required tensile
strength of the reinforcement for GRESs. Moreover, internal
rotational failure can degenerate to a translational one should it
be more critical (e.g. Leshchinsky & Zhu, 2010); however, the
reverse is not true, which makes rotational failure a more
generic mechanism.

To address this issue, this paper presents a new analytical–
numerical framework for the displacement-based design of
GRESs, which assesses the potential for earthquake-induced
displacements via an internal stability (rotational) failure
mechanism. For design purposes, in order to determine the
superimposed force in the reinforcement due to seismicity
and its associated displacement, the proposed approach ex-
amines two limiting conditions.

(a) The upper-bound force that can be mobilised in the
reinforcement, as determined by pseudo-static LE. For a
given earthquake acceleration, this would be the maxi-
mum force that can be induced in the reinforcement by
the inertial response of the sliding body.

(b) The force that can be induced in the reinforcement by a
given earthquake acceleration applied over a finite time
increment. This second limiting condition examines the
‘time limitation effect’, which accounts for the transient
characteristics of the applied ground motion.

The smaller of the forces yielded from these two conditions
controls the seismically induced force and displacement in
the reinforcement for each time increment. In order to relate
the force and displacement in the geosynthetic reinforce-
ment, a set of pullout simulations was performed using FE
analysis for various geosynthetic stiffnesses. The summation
of the incremental displacements and induced forces in the
reinforcement over the entire time series analysis provides
the necessary information to guide the design of a GRES.

METHODOLOGY AND FORMULATION
Leshchinsky et al. (2012) presented an analytical solution

based on LE and using a log-spiral failure surface to extend
the M-O method for unreinforced slopes. Using a similar
formulation, Vahedifard et al. (2012) proposed a pseudo-static
LE approach for assessing the internal stability of GRESs that
can be utilised for a given reinforcement strength to determine
the yield acceleration required for calculating seismic displa-
cements in Newmark-type methods. However, for design
purposes, it is also desirable to have a displacement-based
method to assess the required reinforcement strength under
seismic conditions. The method proposed by Vahedifard et al.
(2012) is utilised in this paper to determine the static resultant
force in the reinforcement. For brevity, some fundamentals
related to this paper are not reiterated here; interested readers
are referred to Vahedifard et al. (2012).

The proposed model assumes a rotational (internal) mode
of failure along a log-spiral failure surface (Fig. 1). The
proposed model treats the reinforced soil mass inside the
failure surface as a rigid body, and represents the reinforce-
ment acting outside the failure surface as a spring. This
approach assumes that the reinforcement layers hold the
sliding mass coherent during shaking, and that consequently
the internal deformations are not significant.

Figure 2 shows the flow of calculations that are necessary
to perform the displacement-based design process utilised in
this paper. The associated assumptions that are made for
each of the steps in the calculation are discussed in more
detail in the following sections. As shown in Fig. 2, after
calculating the mobilised resultant reinforcement force under
static loading conditions (Tstat), in a parallel attempt the
seismic-induced displacement and force in the reinforcement
are calculated using two approaches: a pseudo-static LE
approach and an acceleration time-series integration
approach. Since the induced force that is predicted by the
time series approach cannot exceed the required force to
satisfy equilibrium at each time increment, the LE equations
provide an upper limit to the force and displacement that
can be mobilised. As an auxiliary tool, a set of pullout
simulations using FE analysis was performed to establish a
rational relationship between reinforcement displacement and
force during shaking. The scope of the proposed approach is
limited to cases where pullout failure of the reinforcement
does not control the internal design. This limitation is not a
concern for most GRESs constructed using extensible rein-
forcement (e.g. geogrids or geotextiles), as this mode of
failure is not an issue for nearly all typical design cases.

Step 1: Static reinforcement force from limit equilibrium
Leshchinsky et al. (2010) present stability charts for the

static design of GRESs that fail internally via a rotational
failure mechanism. These charts were developed for GRESs
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Fig. 1. Notation and convention: (a) static condition, state of LE;
(b) dynamic condition, rotation initiated
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constructed using cohesionless soils, and for horizontal back-
slope conditions. The general approach that was used to
develop these stability charts can be extended as shown in
Fig. 1(a) and equation (1) to allow for the static design of
GRESs with an inclined backslope.

For a given log-spiral failure surface, static failure of the
sliding mass is prevented by the reactive static force that is
mobilised in the reinforcement. In order to determine the
reinforcement force that is required to resist sliding, an LE

analysis approach is applied. In this analysis, the trace of
the log-spiral is defined by the radius vector
R ¼ A exp (�łd�), where A is the log-spiral constant,
łd ¼ tan(�design), and � is the angle in polar coordinates.
For a given log-spiral failure surface (Fig. 1(a)), the static
reinforcement force that is needed for equilibrium (Tstat) can
be determined by applying moment equilibrium about the
pole of the log-spiral (Leshchinsky et al., 2010; Vahedifard
et al., 2012)

(eq. 2)
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where ª is the unit weight of reinforced soil; H is the height
of the slope; Æ is the backslope angle; �1 and �2 are the angles
of the points where the log-spiral enters and exits the slope
(Fig. 1(a)); ø is the batter; q is the surcharge; D is the
elevation of line of action of the resultant reinforcement force
(Tstat), and Rh is the horizontal resistance of the facing at the
bottom of the slope. In this study, the impact of facing is not
considered, and Rh is ignored; this is a legitimate assumption
in certain structures, such as wrapped-face GRESs or small-
block facing walls. Because of publication space restrictions,
the effects of toe resistance are ignored in the current study;
toe resistance effects and their implications in the context of
design of reinforced earth structures are addressed by Lesh-
chinsky & Vahedifard (2012). The elevation of D is a function
of the reinforcement spacing and the assumed distribution of
the individual reinforcement forces; the effect of the assumed
location of D is examined in more detail by Vahedifard et al.
(2012).

The maximum required static reinforcement force,
max(Tstat), can be calculated by utilising a maximisation
process in conjunction with equation (1); this process is
explained in more detail by Leshchinsky et al. (2010). The
objective of this process is to identify the test body that
requires the maximum reactive force from the reinforcement
that is needed to satisfy the LE state. This process yields
values that are necessary to determine the ‘critical slip
surface’ (Xc, Yc and A) that corresponds to the value of
max(Tstat). Note that the equivalent reinforcement force
under the static condition is assumed to act horizontally.

Step 2-1: Seismic reinforcement force and displacement from
limit equilibrium

If unfactored soil strengths and geosynthetic reinforcement
strengths equal to the reactive resistances are used in the
equilibrium calculations, the GRES shown in Fig. 1(a) will
be in a state of incipient static failure (i.e. it will be at its
limit state, with its factor of safety (FS) ¼ 1.0). If any
additional earthquake-induced forces are added to this sys-
tem, the sliding mass will move. For GRES design purposes,
additional reinforcement strength is needed to resist the
earthquake-induced forces that are imposed to the system –
that is, the reinforcement needs to provide more strength to
stabilise the GRES.

During earthquake shaking, the reinforced soil mass is
subjected to additional seismic forces. As shown in Fig.
1(b), this shaking at each time increment can be represented
by inertial forces that act at the centre of gravity of the
sliding mass. In response to these inertial forces, the resul-
tant force in the reinforcement (Tdyn1) changes, and needs to
be recalculated in response to the dynamic loading condi-
tion. For the purposes of the analyses herein, it is assumed
that this resultant dynamic reinforcement force acts horizon-
tally (Fig. 1(b)).

In a similar fashion as the calculations that were per-
formed to determine Tstat, we can use the equation for
moment equilibrium about the pole of the log-spiral to
determine the associated value of the resultant dynamic
force in the reinforcement from the LE approach (Tdyn1) for
each time increment in the analysis.
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where Kh(i) and Kv(i) are the horizontal and vertical seismic
coefficients at time increment (i), and the other variables are
as defined previously.

Entering the calculated Xc, Yc and A values from the static
case (equation (1)) into equation (2), one can calculate
Tdyn1(i), which corresponds to a known log-spiral along which
the static strengths, � and Tstat, are fully mobilised. Unlike
the procedure followed with equation (1), a maximisation
process is not utilised for this step in the analyses; instead
the critical log-spiral from the static case is used. This
assumption is shown to be reasonable by the experimental
results provided by Leshchinsky et al. (2009), and is also
consistent with the failure surface assumptions that are made
by FHWA (2009) and AASHTO (2007) for assessing the
internal stability of earth-retaining structures under seismic
loading conditions.

From the geometry shown in Fig. 1(b), one can calculate
the angle where the radius intersects the equivalent rein-
forcement force, �r, from the relationship

Ae�łd�r cos �r ¼ Ae�łd�1 cos �1 � D (3)

As shown in Fig. 2, Tdyn1 is determined for each time
increment (i) of the earthquake time series. For each step, its
value should be checked to ensure that it does not exceed
the pullout capacity. If a value of Tdyn1 greater than the
pullout capacity is calculated, the displacement results from
the model should not be used, as the scope of the current
paper is limited to cases where pullout does not occur. In
this case, the force in the reinforcement will be the pullout
force.

For each time increment, the superimposed force in the

reinforcement due to seismicity from the LE equations
(Tmd1) can be determined as

Tmd1(i) ¼ T dyn1(i) � T stat (4)

Note that Tmd1(i) > 0 and

dT md1(i) ¼ Tmd1(i) � T md(i�1) (5)

where dTmd1 is the incremental superimposed force in the
reinforcement from the LE equations. Note that dTmd1 is
determined by taking the difference between the superim-
posed force in the reinforcement in the current time incre-
ment from LE (Tmd1(i)) and the prevailing value from the
previous time step (Tmd(i�1)).

Since LE analysis cannot directly relate displacement,
stiffness and force in the reinforcement, an intermediate
calculation tool is needed for this purpose. As will be
discussed later in this paper, a set of FE analyses will be
used to determine the displacement that corresponds to
dTmd1:

As shown in Fig. 1, Tstat and Tdyn1 act horizontally.
Consequently, Tmd1 and dTmd1 also act horizontally. From
these forces, it is possible to determine the horizontal
component of incremental displacement, d˜x1, using the FE
charts that are provided later in this paper. The resultant
displacement from the LE approach, d˜1, can be calculated
using the equation (see Fig. 3)

d˜1(i) ¼
d˜x1(i)

cos �r

(6)
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Step 2-2: Seismic reinforcement force and displacement from
integration

The force-based procedure that was explained in the
previous section yields the upper-bound force that can be
mobilised in the reinforcement, as determined by pseudo-
static LE. For a given earthquake acceleration, this is the
maximum force that can be induced in the reinforcement
by the inertial response of the sliding body. However, since
the body is accelerating for a limited time, it may not
reach the force and displacement values that are determined
using the LE equations. Therefore it is also necessary to
assess the force that can be induced in the reinforcement
by a given earthquake acceleration applied over a finite
time increment. Following this approach, the force and
displacement in the reinforcement can be determined using
an integration procedure that is applied to the earthquake
acceleration time series.

As shown in Fig. 2, for each time increment i, we have

a(i) ¼ ah(i) cos �r � av(i) sin �r (7)

where a(i) is the acceleration perpendicular to the radius
leading to rotational acceleration, and ah(i) and av(i) are the
input horizontal and vertical accelerations, respectively
(ah ¼ Khg, av ¼ Kvg, and g ¼ gravitational acceleration).

One can calculate angular velocity, vø, for each time
increment as

vø(i) ¼
ffiffiffiffiffiffi
a(i)

R

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a(i)

Ae�łd�r

r (8)

Since the movement (i.e. rotation) is small and the change
in R is negligible, R is constant in equation (8) during the
seismic event. This assumption is proved to be reasonable
by a set of large-scale shaking table test results provided by
Leshchinsky et al. (2009), which show that in a rotational
mode of failure the reinforcement holds the failure mass
coherent, and internal deformations are not significant.

The perpendicular velocity of the rotating mass, v, for
each time increment is equal to

v(i) ¼ Rvø(i)

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a(i)Ae�łd�r

q (9)

and the incremental resultant displacement from the integra-
tion procedure, d˜2, is

d˜2(i) ¼
v(i) � v(i�1)

2
dt (10)

where dt ¼ ti � ti�1.
The horizontal component of displacement from the inte-

gration approach, ˜x2, can be determined using the equation

˜x2(i) ¼ d˜2(i) þ˜(i�1)

� �
cos �r (11)

Note that the horizontal component of displacement from
the integration approach (˜x2) is determined by summation
of the incremental displacement in the reinforcement in the
current time increment from integration (d˜2(i)) and the
prevailing value from the previous time step (˜(i�1)).

For the next step in the analysis, a series of curves that
relate the force and displacement in the reinforcement prior
to pullout is used to determine the dynamic force (Tdyn2) that
corresponds to the calculated horizontal component of dis-
placement from the integration approach (˜x2). These curves
were developed using FE analysis, following the procedure
that is discussed in more detail later in this paper.

The superimposed force in the reinforcement (Tmd2) and
incremental superimposed force in the reinforcement (dTmd2)
from the integration procedure are calculated using the equa-
tions

Tmd2(i) ¼ Tdyn2(i) � T stat (12)

dTmd2(i) ¼ T md2(i) � Tmd(i�1) (13)

In these analyses, it is assumed that the reinforcement will
not experience any retraction during the seismic event.
Consequently, negative values of Tmd2 will be set to zero
(Fig. 2).

In a similar fashion to the LE approach, the incremental
superimposed force in the reinforcement (dTmd2) is calcu-
lated by taking the difference between the superimposed
force in the reinforcement in the current time increment
from the integration approach (Tmd2(i)) and the prevailing
value from the previous time step (Tmd(i�1)).

Step 3: Seismic displacement
At each step in an acceleration time series, the LE ap-

proach (step 2-1, equations (2)–(6)) can be used to deter-
mine the upper-bound force and associated displacement that
can be mobilised in the reinforcement. In addition, the
integration approach described herein (step 2-2, equations
(7)–(13)) provides a means to calculate the displacement
and associated force that can be induced in the reinforce-
ment over a finite time increment. The smaller of the forces
yielded from these two conditions controls the seismically
induced force and displacement in the reinforcement for
each time increment. In the analysis, this is determined
using the following calculation process (Fig. 2).

dTmd(i) ¼ min dTmd1(i); dT md2(i)ð Þ (14)

d˜(i) ¼ min d˜1(i); d˜2(i)

� �
(15)

where dTmd is the prevailing incremental superimposed force
in the reinforcement, and d˜ is the prevailing incremental
displacement. The summation of the incremental displace-
ments and induced forces in the reinforcement over the
entire time series analysis provides the necessary information
to guide the design of a GRES. This is achieved by perform-
ing the following calculations for each time increment (i).

Tmd(i) ¼ dTmd(i) þ Tmd(i�1) (16)

˜(i) ¼ d˜(i) þ˜(i�1) (17)

( , )X Yc c

θ

Δ

R
r� r

Δx

Δy

� r

Fig. 3. Rotational failure of GRES, and seismic rotation and
displacement components
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In addition to the resultant displacement along the shear
plane (˜), it can also be instructive to look at the total
angular rotation (Ł) that occurs as a result of shaking (see
Fig. 3). This can be achieved by performing the following
calculation for each time increment (i).

Ł(i) ¼
˜(i)

R

¼ ˜(i)

Ae�łd�r

(18)

From the geometry shown in Fig. 3, the horizontal (˜x) and
vertical (˜y) components of the resultant displacement can
be calculated using the equations

˜x(i) ¼ RŁ(i) sin �r

¼ Ae�łd�rŁ(i) sin �r

(19)

˜y(i) ¼ RŁ(i) cos �r

¼ Ae�łd�rŁ(i) cos �r

(20)

At the end of a given shaking event, we have a certain
seismic-induced superimposed force, Tmd, that remains in the
reinforcement, and a corresponding displacement. Over time,
this superimposed force will relax to its original value.
However, the displacement will remain permanent.

The displacement-based design approach presented herein
is not intended to calculate the displacement of GRESs for
analysis purposes, but will provide the reinforcement
strength and pullout resistance for design purposes. The
design approach that is presented ensures that the reinforce-
ment will not be ruptured – that is, its stretching in terms of
GRES displacement will always be small, or else the rein-
forcement will be ruptured or pulled out.

It is widely recognised that the shear strength of soil
under seismic conditions can be degraded by a shaking
event. To account for this degradation, the authors recom-
mend the use of �residual (or �cv) for design; this contrasts
with the recommendation made by FHWA (2009) and
AASHTO (2007) to use �peak for design purposes (although
AASHTO limits � to 408). The authors consequently recom-
mend the use of �cv for use with the design approach that is
proposed in this paper. The use of �cv (or �residual) in the
seismic design of reinforced earth structures has been advo-
cated by a number of researchers (e.g. Bolton, 1986; Jewell,
1996; Liu & Ling, 2012) to account for the strength
degradation and strain-softening of backfill soil that can
occur during a seismic event. Further discussion regarding
the use of peak against residual shear strength for GRES
design purposes can be found in the papers by Leshchinsky
(2001) and Liu & Ling (2012).

RELATIONSHIP BETWEEN FORCE AND
DISPLACEMENT IN EQUIVALENT GEOSYNTHETIC
LAYER

As explained in the previous sections, an intermediate-
stage tool is needed that can directly relate displacement,
stiffness and force in the reinforcement. For a given rein-
forcement stiffness, this tool will be utilised in the current
approach to find the horizontal displacement (˜x1) that
corresponds to the superimposed force calculated from the
LE equations (Tmd1). In parallel, the tool will also be
employed to determine the dynamic force (Tdyn2) that corre-
sponds to the horizontal displacement calculated using the
integration process (˜x2). This relationship can be found by
calibrating the model based on experimental test results (e.g.
Paulsen & Kramer, 2004) or by using numerical tools. In

this study, two-dimensional FE analyses were performed
using the program ABAQUS (2007) to develop a series of
force–displacement curves.

As shown in Fig. 1(b), displacement of the sliding mass
(which is assumed to be a rigid body) becomes feasible only
when the anchored reinforcement stretches. The reinforce-
ment can stretch from pullout (slippage between the geosyn-
thetic and surrounding soil), from true deformation (strain in
the geosynthetic itself), or from both mechanisms acting
together. In this study, a series of FE analyses was per-
formed to simulate the behaviour of a ‘long’ geosynthetic
that is stretched to simulate force–displacement behaviour
of a geosynthetic that is not experiencing pullout. So, in the
FE analysis, a pullout test with very long reinforcement was
simulated. Fig. 4, which is not drawn to scale, shows a
schematic view of the model that was used in the analyses.
If the reinforcement is embedded to a sufficiently long
length, its rear end will not move (i.e. it will not be able ‘to
feel’ the load applied at the intersection with the log-spiral).

As shown in Fig. 4, FE analyses were used to simulate
the behaviour of a very long equivalent geosynthetic layer
that was embedded between two confining soil layers. The
geosynthetic was modelled using a uniform mesh comprising
two-node linear two-dimensional truss elements that obeyed
linear elastic behaviour. The behaviour of the interface be-
tween the geosynthetic and the reinforced soil was simulated
using interface elements that utilised a ‘penalty’ formulation
approach (ABAQUS, 2007).

The geosynthetic/soil interface angle was assumed to be
given by tan � ¼ 0.8 tan�, where � is the interface friction
angle. The soil layers surrounding the geosynthetic were
modelled using four-node bilinear plane-strain quadrilateral
elements that utilised the Mohr–Coulomb constitutive mod-
el. Poisson’s ratio was assumed to be 0.3 for both the
reinforced soil and the equivalent geosynthetic layer. The
Young’s modulus of the reinforced soil was assumed to be
35 MPa. Parametric studies using this model showed that the
Poisson’s ratios that were chosen for the geosynthetic and
surrounding soil layers had little or no impact on the model
results within the displacement range of interest.

In the FE analyses, incremental pullout displacements
were applied to one end of the geosynthetic reinforcement
layer at a very slow rate (1 mm/min), causing the reinforce-
ment to stretch along its length. The reaction force at the
front edge of the geosynthetic (where the displacement was
applied) was monitored, and the resulting data were used to
plot the associated curve of pullout force against displace-
ment. For each displacement increment that was applied, the
reinforcement strains the most at the point of application,
with the strain decreasing along the length of the reinforce-
ment as load is shed into the surrounding soil layers. For
sufficiently long reinforcement, there is zero reinforcement
strain at the far end of the layer. At a given location, the
load carried by the reinforcement can be determined by

Interface, δ � 0·8 tanφ

Reinforced soil,   ,γ φ

L H100�

H/2

Δ /10� H

Reinforcement, Jeq

H/2Reinforced soil,   ,γ φ

Interface, δ � 0·8 tanφ

Fig. 4. Schematic view of the FE model utilised for pullout
simulation
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multiplying the local strain by the modulus of the reinforce-
ment (J).

Numerous pullout simulations were performed over a wide
variety of input parameters. However, as space is limited
herein, only the results for two friction angles of the
reinforced soil (� ¼ 308 and 408) and two different heights
(H ¼ 3 m and 6 m) are provided (Figs 5 and 6). Results are
presented for variations in the geosynthetic modulus (J) over
a range from 300 to 3000 kN/m per m. The results of the
FE simulation for H ¼ 3 m and H ¼ 6 m are illustrated in
Figs 5 and 6 respectively.

In Figs 5 and 6, an equivalent normalised modulus of
geosynthetic, Jeq, was used, which is equal to

J eq ¼
nJ

ªH2
(21)

where n is the number of geosynthetic layers in a GRES, J
is the geosynthetic modulus, ª is the unit weight of the
reinforced soil, and H is the height of the earth structure.

The geosynthetic modulus can be calculated by multiplying
Young’s modulus, E, by the geosynthetic thickness.

The authors would like to reiterate that the FE analysis
utilised in the current study is just one of several possible
ways to develop force–displacement curves (e.g. experimen-
tal data, linear spring-slider models or more complex FE
models). As explained previously, these curves act as an
auxiliary tool within the proposed analytical framework.

ILLUSTRATIVE DESIGN EXAMPLE
The following example shows how the methodology that

is presented can be utilised for the seismic design of a
GRES. For this example, a strong ground motion recorded
at the Kakogawa station during the Kobe (1995) earth-
quake (Mw ¼ 6.9) is used (Fig. 7). The peak ground
acceleration (PGA) for this strong motion is 0.345g. As
shown, just the horizontal component is considered in the
current example. In order to design a GRES to resist this
applied ground shaking, the approach that is presented
herein will be utilised to determine the superimposed force
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in the reinforcement due to seismicity (Tmd), the resultant
displacement along the shear plane (˜), and the total
rotation (Ł). A reinforcement force distribution function
will then be used to determine the maximum unfactored
reinforcement force under the static condition (Tmax- j) and
the superimposed force due to seismicity (Tmd- j) in each
of the reinforcement layers.

For purposes of this example, the following structure is
considered: a wrapped-face GRES with ø ¼ 08, a horizontal
crest, H ¼ 6 m, and Sv ¼ 0.5 m, where Sv is the uniform
vertical spacing between the reinforcement layers. The spa-
cing from the base to the first layer is taken to be 0.5Sv,
which leads to a total of 12 reinforcement layers (n ¼ 12).
Wrapped facing does not generate toe resistance, Rh, and
consequently Rh is zero in this example. The contributory
area of each layer is taken as the vertical height of the
wrapped portion, and is consequently equal to 0.5 m. For
calculating Tmax at each reinforcement layer, the location of
each geosynthetic layer is approximated to be at the middle
of the contributory area. A uniform (D ¼ H/2) distribution
function was chosen to distribute the force among the rein-
forcement layers. For the reinforced soil, two types of
cohesionless backfill material were examined (� ¼ 308 and
408), which were both assumed to have a ª ¼ 20 kN/m3: For
purposes of design, two types of geosynthetic were examined,
with different stiffnesses (J ¼ 300 and 3000 kN/m per m).

To solve this problem, the step-by-step procedure shown
in Fig. 2 was carried out. In order to select the appropriate
FE force–displacement curves for use in this design process,
the equivalent reinforcement stiffness for each type of rein-
forcement is calculated based on the reinforcement type.
Using a geosynthetic with J ¼ 300 kN/m per m Jeq will be

J eq ¼
nJ

ªH2

¼ 12 3 300 (kN=m per m)

20 (kN=m
3
) 3 62 (m2 )

¼ 5 m�1

Similarly, Jeq ¼ 50 m�1 for a geosynthetic with
J ¼ 3000 kN/m per m.

The failure surfaces for the different � values that were
examined are shown in Fig. 8. Values of Tmd, ˜ and Ł for
friction angles of 308 and 408 are shown in Figs 9 and 10
respectively. Table 1 provides a summary of the results for
the cases that were investigated. As noted before, a uniform
distribution function (D ¼ H/2) was employed in this exam-
ple, and the maximum tensile force under the static condi-
tion for the jth reinforcement layer (Tmax- j), and the
superimposed force due to seismicity for the jth reinforce-
ment layer (Tmd- j) were determined accordingly.

As explained previously, the current approach is intended
to determine the value of Tmd that corresponds to a certain
seismic displacement. For comparison purposes, the Tmd

values calculated using the proposed displacement-based ap-
proach are compared with those obtained using a pseudo-
static approach. Following a pseudo-static methodology, the
seismically induced force in the reinforcement can be calcu-
lated by multiplying the weight of the failure mass (W) by

Kh
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Fig. 7. Strong ground motion recorded at Kakogawa station
during Kobe (1995) earthquake (Mw 6.9)
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the pseudo-static coefficient (Kh ¼ PGA/g). For � ¼ 308,
utilising the geometry of the failure surface shown in Fig. 8
and a PGA of 0.345g (Fig. 7), one can calculate the
seismically induced force in the reinforcement from a pseu-
do-static approach as

WKh ¼ AH2ªKh

¼ 0:2673 3 62 (m2=m) 3 20 (kN=m2
) 3 0:345

¼ 66:4 kN=m

where A is the area of the failure mass determined from Fig.
8, and the other variables are as defined previously. Using a
similar calculation for � ¼ 408, WKh ¼ 54.1 kN/m. As shown
in Table 1, for the cases that were examined in this example,
the proposed displacement-based approach yields Tmd values
that are 36% to 182% smaller than those that result from a
pseudo-static approach.

SUMMARY AND CONCLUSIONS
The significant importance of post-earthquake serviceabil-

ity of GRESs has led to an increasing trend towards the use
of displacement-based design methods within the past dec-
ade. This paper presents a new analytical–numerical frame-
work for the displacement-based design of GRESs, which
assesses the potential for earthquake–induced displacements
via a rotational failure mechanism. While the majority of
the existing analytical approaches for displacement-based
seismic design of GRESs are developed by considering only
a translational mode of failure (i.e. external sliding stability),
the proposed approach provides a rational framework for
assessing the seismic displacement of GRESs due to internal
stability (rotational movement). This failure mechanism may
control the required tensile strength of the reinforcement for
GRESs. Moreover, an internal rotational failure mode can
degenerate to a translational one should it be more critical;
however, the reverse is not true, which makes rotational
failure a more generic mechanism.

For design purposes, in order to determine the super-
imposed force in the reinforcement due to seismicity and its
associated displacement, the proposed approach examines
two limiting conditions.

(a) The upper-bound force that can be mobilised in the
reinforcement, as determined by pseudo-static LE. For a
given earthquake acceleration, this would be the maxi-
mum force that can be induced in the reinforcement by
the inertial response of the sliding body.

(b) The force that can be induced in the reinforcement by a
given earthquake acceleration applied over a finite time
increment. This second limiting condition examines the
time limitation effect, which accounts for the transient
characteristics of the applied ground motion.

The smaller of the forces yielded from these two conditions
controls the seismically induced force and displacement in
the reinforcement for each time increment. In order to relate
the force and displacement in the geosynthetic reinforce-
ment, a set of pullout simulations was performed using FE
analysis for various geosynthetic stiffnesses. The summation
of the incremental displacements and induced forces in the
reinforcement over the entire time series analysis provides
the necessary information to guide the design of a GRES.

Using a Kobe earthquake record, a design example was
solved to illustrate the application of the proposed method.
The superimposed force due to seismicity, seismic displace-
ment, and seismic rotation were calculated for various soil
friction angles and geosynthetic stiffnesses. For each case
that was examined, a uniform distribution function is used to
determine the required unfactored geosynthetic strength in
the individual reinforcement layers. For the examples that
were provided, the proposed displacement-based approach
yielded superimposed forces in the reinforcement due to
seismicity that were 36% to 182% smaller than those that
resulted from a pseudo-static approach.
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Table 1. Summary of results for design example

Case �: degrees J: kN/m
per m

Jeq: m�1 Tstat: kN/m WKh: kN/m Tmd: kN/m Tdyn: kN/m Tmax- j + Tmd- j:
kN/m

˜: cm Ł 3 10�2:
degrees

1 30 300 5 130.1 66.4 23.5 153.6 12.8 8.5 60.5
2 30 3000 50 130.1 66.4 23.5 153.6 12.8 1.7 12.3
3 40 300 5 83.0 54.1 32.0 115.0 9.6 3.9 26.2
4 40 3000 50 83.0 54.1 39.6 122.6 10.2 1.1 7.2
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NOTATION
A log-spiral constant

a(i) acceleration perpendicular to radius of
log-spiral failure surface at time
increment i

ah(i), av(i) horizontal and vertical accelerations at
time increment i

D elevation of line of action of resultant
reinforcement force, measured from toe
of structure

E Young’s modulus
g gravitational acceleration
H height of slope
i increment in earthquake acceleration

time series
J, Jeq geosynthetic modulus, equivalent

geosynthetic modulus
Kh(i), Kv(i) horizontal and vertical seismic

coefficients at time increment i
n number of geosynthetic layers
q uniform surcharge acting on crest
R log-spiral radius

Rh horizontal resistance of facing at bottom
of slope

Rr radius where the trace of log-spiral
intersects the equivalent reinforcement
force

Sv uniform vertical spacing between
reinforcement layers

Tdyn(i), Tdyn1(i), Tdyn2(i) seismic force in reinforcement at time
increment i (prevailing value), from
limit equilibrium equations and from
integration approach respectively

dTdyn(i), dTdyn1(i), dTdyn2(i) incremental seismic force in
reinforcement at time increment i
(prevailing value), value from limit
equilibrium equations, and value from
integration approach respectively

Tmax- j maximum tensile force under static
condition for jth reinforcement layer

Tmd(i), Tmd1(i), Tmd2(i) superimposed force in the reinforcement
due to seismicity at time increment i
(prevailing force), from limit
equilibrium equations and from
integration approach respectively

dTmd(i), dTmd1(i), dTmd2(i) incremental superimposed force in
reinforcement due to seismicity at time
increment i (prevailing value), value
from limit equilibrium equations, and
value from integration approach
respectively

Tmd- j superimposed force due to seismicity for
jth reinforcement layer

Tstat resultant reinforcement force under
static loading

dt time step in earthquake acceleration
time series; dt ¼ t(i) � t(i�1)

v(i) perpendicular velocity of rotating mass
at time increment i

vø(i) angular velocity of rotating mass at time
increment i

W weight of failure mass
Xc, Yc coordinates of pole of log-spiral in

Cartesian coordinate system

Æ backslope angle of crest
�r angle of rotation to point where radius

intersects equivalent reinforcement force
�1, �2 angle of rotation to points where log-

spiral enters and exits slope
ª unit weight of soil

˜(i), ˜1(i), ˜2(i) resultant seismic displacement at time
increment i (prevailing value), value
from limit equilibrium equations, and
value from integration approach
respectively

d˜(i), d˜1(i), d˜2(i) incremental resultant seismic
displacement at time increment i
(prevailing value), value from limit
equilibrium equations, and value from
integration approach respectively

˜x(i), ˜x1(i), ˜x2(i) horizontal component of seismic
displacement at time increment i
(prevailing value), value from limit
equilibrium equations, and value from
integration approach respectively

d˜x(i), d˜x1(i), d˜x2(i) incremental horizontal component of
seismic displacement at time increment i
(prevailing value), value from limit
equilibrium equations, and value from
integration approach respectively

˜y(i), ˜y1(i), ˜y2(i) vertical component of seismic
displacement at time increment i
(prevailing value), value from limit
equilibrium equations, and value from
integration approach respectively

d˜y(i), d˜y1(i), d˜y2(i) incremental vertical component of
seismic displacement at time increment i
(prevailing value), value from limit
equilibrium equations, and value from
integration approach respectively

Ł(i), Ł1(i), Ł2(i) seismically induced rotation at time
increment i (prevailing value), from
limit equilibrium equations and from
integration approach respectively

dŁ(i), dŁ1(i), dŁ2(i) incremental seismically induced rotation
at time increment i (prevailing value),
value from limit equilibrium equations,
and value from integration approach
respectively

�cv constant-volume angle of friction
�design design internal angle of friction
�peak peak angle of friction

�residual residual angle of friction
łd tan�
ø slope batter (slope face

inclination ¼ 908� ø)
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