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ABSTRACT

OctoRoACH is a miniature eight legged robot which is envisioned to be a step

toward the development of small crawling robots that can be used for reconnaissance,

search and rescue, sensor coverage, etc. To enable the robot to complete task along

these lines, it is necessary to solve the motion planning problem for these types

of robotic platforms. In this thesis, we study a kinematic model that serves as an

abstraction of the quasi-static motion behavior of the OctoRoACH robot. We see the

eight-legged mechanism being abstracted into a switching four-bar linkage. Three

motion primitives are defined for this model: straight line motion, left turn arc and

right turn arc. The work described in this thesis contributes by providing a method

to quantify the radius of curvature of the curved paths generated by this kinematic

model. Once the link between model parameters and path curvatures is made, then

the wealth of existing motion planning methods, specifically the ones that involve

a well studied nonholonomic kinematic model known as the Dubin’s car, become

relevant to the kinematic analysis and the study of the motion planning problem in

these miniature robots.
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Chapter 1

INTRODUCTION

1.1 Miniature Legged Robots

Robots are designed to make people’s life more convenient, increase produc-

tion efficiency through automation and in general performing tasks that are not

desirable for humans. Compared to stationary robots, which complete tasks within

a fixed workspace, mobile robots have a workspace that is not constrained by their

own geometry, but by that of their environment. There are three different types of

ground mobile robots that move on land: wheeled, tracked and legged. It is quite

common to require robots to conduct tasks in unstructured environments. However,

the need of wheeled robots for prepared surfaces makes their deployment in such

environments problematic, and has restricted them to a small range of the terrestrial

terrains. On the other hand, legged robots do not need continuous contact with the

ground for every leg and for all time, so they have the potential to operated better

on uneven terrain. Miniature legged robots are particularly interesting because they

can crawl and squeeze themselves in places that bigger ones cannot. Figure 1.1 shows

the miniature robot STAR [1] which is designed in UC Berkeley.
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Figure 1.1: A miniature legged robot (STAR) [1]

Inspired by the locomotion behavior of insects, several quarupedal, hexapedal

and octopedal robots have been designed in the past ten years. Since 2003, Case

Western Reserve University has been designing a series of highly mobile small quadruped

robots, which are called as Mini-Whegs (Figure 1.2).

Figure 1.2: Mini-whegs robot [2, 3]

The 9 cm-long quarupedal robot, Mini-whegs can run forward and backward
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on both left and right sides. The three spoked appendages of each leg, called “whegs”

enable it to step over obstacles.

The family of multi-legged crawling robot has been expanded by other re-

searchers with DASH (Figure 1.3a) [4], Medic (Figure 1.3b) [5] and iSprawl (Figure

1.3c) [6].

(a) Dash runs on rough terrain [4] (b) Medic robot on a US dollar [5]

(c) iSprawl robot [6]

Figure 1.3: Crawling Robots

Both DASH and iSprawl are sprawled-posture hexapods, they use a statically-

stable switching tripod gait to move in their environment.
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In 2010, the 10cm-long hexapedal robot DynaRoACH (Figure 1.4a) [7], was

fabricated through a novel manufacturing technique termed the Smart Composite

Microstructuring (SCM) [24] process. This fabrication process made it possible to

integrate a whole system at a centimeter scale. The eight legged robot OctoRoACH

(Figure 1.4b [8]), which we will study in this thesis, resembles DynaRoACH. Oc-

toRoACH is more stable than DynaRoACH. Through using eight-leg configuration,

OctoRoACH avoid the intermittent bipedal gait of the opposite center legs [8].

(a) DynaRoACH robot [7] (b) OctoRoACH robot [8]

Figure 1.4: Two crawling robot cousins inspired by cockroach morphology and loco-

motion behavior

These robots are good for inspection, reconnaissance, search-and-rescue and

sensor coverage in unstructured environments because of their small size and unique

structure. In order to complete any one of these tasks, it is critical to be able to plan

the motion of the robot from point A to point B. Our ultimate goal is to develop a

motion planning algorithm which is compatible with the morphology and kinematics

of robots such as the ones shown in Figure 1.4. Doing so is nontrivial because existing

motion planning methods do not directly apply.
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1.2 Motion Planning

Given initial configuration Pi and final configuration Pf , generating a contin-

uous trajectory connecting the start point to the goal point and avoiding obstacles is

an instance of a motion planning problem. Motion planning as a problem, appears

in several real-world applications, such as designing a collision-free trajectory for

mobile robots; enabling robots to conduct space exploration; automatically parking

a vehicle in the crowded road; welding, painting and assembling tasks in manufac-

turing; even in designing a drug which can insert molecules into a protein cavity [9].

The completion of most reconnaissance or search task by a mobile robot typically

involves motion planning; the OctoRoACH is no exception.

Usually, motion planning and vehicle navigation are problems that are stud-

ied at the discrete level. One can transform the continuous model into a discrete

one and implement some type of a discrete combinatorial search [10]. Combinatori-

al methods can yield algorithmically complete solutions for many motion planning

problems. When a solution do exist, the algorithm will find it in finite time, if it

doesn’t exist, the algorithm will return failure to find the solution, then the method

is called algorithmically complete [10]. However, the implementation difficulties and

their computational complexity render them inappropriate for many real-world ap-

plications. As an alternative to combinatorial methods, sampling-based algorithms

are easier to implement and impose smaller computational overhead. The solution

guarantees that are obtained with sampling based methods are usually of probabilis-

tic nature, which means that with enough sample points, the probability to find the

solution converge to one [10].

Among some popular sampling-based motion planning algorithms are Ran-

domized Potential Field Methods [16], Probabilistic RoadMaps (PRMs) [11,12] and
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Rapidly-exploring Random Trees (RRTs) [10, 13, 14].

PRMs are multiple-query methods and perform well in high-dimensional state

space. But computing a roadmap in advance may be infeasible. RRTs are single-

query counterparts of PRMs.

It is important to note that these algorithms usually involve robot models with

trivial dynamics. In particular, robots are assumed to be points and it is suggested

that two spatially nearby configurations can be connected by a straight line [10].

For most ground vehicles, legged or wheeled, such motion is infeasible, since they

cannot move at an arbitrary direction. Thus, motion planning for the OctoRoACH

resembles more the type of planning problems for nonholonomic systems.

For the problem set in continuous space and time, we find significant prior

work [25], [26], [27], [28], [29], [30]. One particularly interesting problem formulation

is the Dubin’s car model [20]. In the context of this model it was discovered that

given the configuration of the initial and final points, the planar curve with minimum

length that connects these two points while obeying the model’s prescribed velocity

orientation and radius of curvature constraints can be found. In order to study

the slow, quasi-static planar motion of OctoRoACH, a newly kinematic abstraction

is developed in [23], which has the form of a four-bar mechanism (Figure 1.5). A

four-bar is a mechanism composed of four bodies (bars) which are connected in a

kinematic chain by four joints.
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Figure 1.5: The switching four bar mechanism that will serve as an abstract kinematic

model for the OctoRoACH

Existing motion planning methods either assume an omnidirectional point

robot or use motion primitives (elementary, basic, motion behaviors like the ones in

Dubin’s model) to compose a motion plan. The Octoroach cannot be viewed as an

omnidirectional point since it is subject of nonholonomic constraints. If we establish

motion primitives for the OctoRoACH, then it is reasonable to expect that some of

the powerful existing motion planning methodologies for nonholonomic systems, may

apply. For planar motion, the most basic motion primitives that can be envisioned

for the OctoRoACH is going straight and turning left or right.

Actually, motion primitives discretize the space of action trajectories [10].
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Take a video game as an example. If we have a database of basic movements, such

as kicking, punching, jumping, etc., we can use them to make different fighting

maneuvers for our character. These basic movements can be thought of as motion

primitives. Motion primitives do not need to be executed in a fixed time interval.

We can define a more general kind of discretization to handle such models.

The discrete-time model can be used to formulate a discrete-time state transition

equation of the form

xk+1 = fd(xk, uk) (1.1)

in which xk = x((k − 1)∆t), xk+1 = x(k∆t), and uk is the action in Ud that is

applied from time (k − 1)∆t to time k∆t. fd : X×Ud → X that represents an

approximation to f , the original state transition function. Every constant action

u ∈ Ud applied over ∆t can be considered as a motion primitive.

With this, motion plans can now be described as a concatenation of a variety

of well-defined motion primitives.

Motion primitives have been widely studied to solve motion planning prob-

lems. A maneuver-based method to solve motion-planning problems for nonlinear

system with symmetries, such as helicopters, mobile robots and autonomous vehi-

cles has been developed in [33]. A novel computational and modeling framework and

related algorithms using motion primitives to steer underactuated, nonholonomic me-

chanical systems is found in [34]. Planning for vehicles based on discretization of their

workspace induced by motion primitives has been performed in [35], [36], [37], [38], in

which complex planning computation is reduced while satisfying motion constraints.

A similar approach to path planning has been proposed by Brocket and is

called motion description language (MDL) [39], [40], [41]. The basic idea in MDL

is to use the collections of primitives to form a formal basis for robot programming
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and incorporate kinematic and dynamic models of robots in the form of differential

equations. References [42], [43] extend the early idea to a version of language, known

as MDLe. The simplest element of MDLe is the atom, an vanishing vector field

defined on space-time. An atom is a triple of the form σ = (u, ξ, T ) where u is the

state input, ξ is a boolean interrupt function while T denotes the time. Applying

the input to the kinetic state machine until the boolean interrupt function becomes

zero or until time elapses is called running the atom. A string consists of atoms and

carries its own interrupt function and timer are called behaviors. Behaviors can be

used to form partial plans, and finally be nested into plans.

This methodology can be applied to complete robot navigation tasks, multi-

robot motion control [44], motion planning for nonholonomic robots [42], [43].

1.3 Contribution

The work presented in this thesis has made contributions to motion planning

for small multi legged locomotion.

While several planners have been designed for wheeled robots using the Du-

bin’s Car model [31], none such application has been reported in the context of legged

robots. The closest work along this line is reported in [47] currently under review.

The difference here is that in this thesis, motion planning is performed using Dubin’s

curves as opposed to a direct incorporation of the OctoRoACH kinematic abstrac-

tion in an RRT planner. In order to utilize the Dubin’s car model, we need first to

discover how we can generate net motions in the model that correspond to straight

and curved paths and quantify path curvatures in terms of the model’s parameters

as well.

Many real world applications require to plan the motion of a robot so that

it goes from an initial position A in the workspace to a final desired one, B. This

9



results in sequences of curves that the robot needs to follow to realize the task. The

major contribution of this thesis is that it provides a method that links the high-level

specifications regarding the path that the robot needs to follow (curvature, direction

of motion etc.) to the low-level controls (touchdown, liftoff angles) of a robot model

to realize these paths.

More specifically, the contributions of this thesis are as follows:

1. Find the combinations of model parameters that produce the desired motion

primitives, the concatenation of which drives the robot towards a desired loca-

tion.

2. Quantify the geometry of the produced primitives in terms of curvature, and

associate that curvature with the model parameters.

3. Test the hypothesis that the coarse kinematic behavior of this model, as ex-

pressed by the average of those motion primitives, can be related to the Dubin’s

car model.

If this hypothesis is proven correct, then under certain conditions and sim-

plifying assumptions, a large collection of tools available in the motion planning

literature for nonholonomic systems can be made availabe potentially for this ab-

stract model, the switching four-bar linkage, which is intended to capture at a high

level the quasi-static kinematics of a large range of miniature crawling robots.

This thesis advocates that there is significant evidence in support of this

hypothesis. The match we have observed between the Dubin’s model solutions and

the OctoRoACH model simulations is encouraging, but more analysis is needed to

investigate the source of the small path deviations that are observed.
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Chapter 2

ROBOT DESCRIPTION AND MODELING

In this chapter, we will give a brief overview of the robot that is at the center

of our study of path planning. We present an abstract kinematics model that is to

be used later for motion analysis and planning.

2.1 Robot Design

The OctoRoACH robot has a rectangular body 130 mm long and 60 mm wide.

Its height is 30 mm and its weight is 35 g. It has eight legs, four on each side. Each

side of the legs is independently driven by a DC brushed motor.

Figure 2.1: The OctoRoACH robot. (Courtesy of A. O. Pullin; reproduced from [8]

with the author’s permission)
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The two sides are not mechanically coupled. The maximum speed the robot

can reach is 0.5 m/s with a maximum stride frequency of 25 Hz. The OctoRoACH

was designed at the University of California, Berkeley, and manufactured by Motile

Robotics, Inc. for the ARL MAST Consortium.

The rear view (Figure 2.2a) of the ideal robot mechanism kinematics indicates

that the ab- and adduction of different pairs of legs on each side occurs out of

phase when the middle member of the linkage is translated vertically. The side view

(Figure 2.2b) of the ideal robot mechanism kinematics shows that protraction and

retraction of the legs is controlled by the motion of the middle member in the fore-aft

direction [8].

(a) Robot rear view

(b) Robot side view

Figure 2.2: Rear and side view of OctoRoACH (Courtesy of A. O. Pullin; reproduced

from [8] with the author’s permission)
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2.1.1 Fabrication

The transmission mechanism is fabricated using a scaled version of the smart

composite microstructures (SCM) process [24]. The SCM method is inexpensive, it

can provide a relatively strong, lightweight mechanism which has minimum friction

and backlash while keeping the cost low. What is more, the energy absorbing struc-

ture and high surface-to-weight ratio it provides enable the robot to survive falls

from large heights.

2.1.2 Leg Design

The leg is designed to have a C shape, similar to RHex [22]. This C shape

has three primary advantages [7].

First, for primary loading, the C leg would have material flexure different from

the material compression in straight vertical leg, resulting in lower vertical stiffness.

Second, in case of obstacle climbing, the C section can fold backwards when colliding

with an object which is taller than the swing clearance height enabling the leg to

move forward and step on the obstacle. Finally, a typical straight leg has isolated

point contact, whereas the C shape leg, has a rolling contact with the ground.

2.2 Robot Model

2.2.1 OctoRoACH motion behavior abstraction

The kinematic model we describe here is proposed by Konstantinos Karydis

and the kinematic analysis is collaborated between Konstantinos Karydis and me

in [23].

The configuration variables of this model consist of the Cartesian position

(x, y) of the centroid G with respect to an inertial coordinate frame Oxy, and the

intersection angle between the longitudinal body-frame axis and y-axis of the inertia

13



frame, which is called θ (heading angle). Figures 2.4a and 2.4b show the foot fall

pattern of the robot. The robot implements an alternating tetrapod gait, assuming

a relatively slow quasi-static motion that excludes flight phases which are typical of

running. The solid circles in Figure 2.4 represent leg tips in contact with the ground.

As shown in Figures 2.4a and 2.4b, the legs 1,2,3,4 move simultaneously while legs

5,6,7,8 form the other quadruped [23]. An ideal horizontal robot model is shown in

Figure 2.3.

θ

α

β

α

β

1

6

3

8

5

2

7

4

O

y

x

G

Figure 2.3: The OctoRoACH robot model [23].
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(a) (b)

Figure 2.4: OctoRoACH foot fall pattern [23].

In Figure 2.3 we see that, leg 1 and leg 3 of the model have the same angle

α with respect to the longitudinal body-frame axis. Similarly, leg 2 and leg 4 rotate

with some angle β 6= α relative to the longitudinal body-frame axis. Due to the

mechanical restriction, the angles of ipsilateral (pertaining to the same side of the

body) legs of each quadruped corresponding to the longitudinal body-frame axis are

always the same. In other words, the legs in this model have the same angular velocity

and motion phase. The same happens for the other quadruped. Because these two

legs on each side move in synchrony and have the same phase angle, they are further

abstracted into a single virtual leg. The virtual legs connect to imaginary joints

on the body-frame longitudinal axis, and generate the same displacement and angle

motion as the pair of homolateral legs. This reduction gives rise to an abstraction

of the robot kinematics in the form of a tetrapod. This kinematic abstraction obess

the following three assumptions [23].

Assumption 1. Only one pair of the virtual legs is in contact with the ground

propelling the robot.

Assumption 2. Once a pair of virtual legs turns active, the ground contact points

remain fixed until the other pair turns active.
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Assumption 3. The legs in each pair begin and complete the step at the same time

instant.

Figure 2.5: A kinematic tetrapod abstraction of the kinematics of the OctoRoACH

in the horizontal plane [23].

Based on the above assumptions, the kinematic robot model during quasi-

static motion can be viewed as a switching four-bar linkage. Figure 2.6 shows the

situation when the right pair is active. When this pair of legs reaches the end of

their motion range, the left pair becomes active, and the cycle is repeated.
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Figure 2.6: Abstracted model for OctoRoACH [23].

2.2.2 OctoRoACH kinematic analysis

When one pair is active-say the right one, for the sake of argument-the active

four bar linkage represents a one degree of freedom mechanism whose motion is

determined by φ1. Similarly, for the left pair, φ3 determines the motion of the other

tetrapod. One tetrapod (four-bar linkage) becomes the mirror image of the other.

For this reason we analyze here-one pair- (the right pair), which is assumed hinged

at the fixed ground points, O1, O2. The position vector-loop equation is [23]

RAO1
+RO1O2

−RAB −RBO2
= 0. (2.1)
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Using the exponential representation of the participating vectors in equation (2.1),

we can obtain [23]

lej(π−φ1) + aRe
j(φ1−π/2+θ1) − dejπ/2 − lej(φ2) = 0. (2.2)

Then, by setting e±jθ = cos θ± j sin θ , and separating real and imaginary parts [23]

l sin φ1 + aR sin(q1 − φ1)− d− l sinφ2 = 0

l cosφ1 + l cosφ2 − aR cos(q1 − φ1) = 0.
(2.3)

Note that d is the distance between hip joints A and B, l is the length of the virtual

leg. Distance d is set to 13 cm, matching the length of the torso of the physical

OctoRoACH platform. Parameter l is set to 3 cm, which is half of the robot’s width.

From Figure 2.6, the relation between the spatial coordinates of A,B and G is as

follows:

xA = xG − d/2 cos(θ + π/2)

yA = yG + d/2 sin(θ + π/2)

xB = xG + d/2 cos(θ + π/2)

yB = yG − d/2 sin(θ + π/2).

(2.4)

Note that segment O1A has length l, and is oriented π/2− φ1 + θ relative to

the y axis, while segment O2B has length l, and is oriented π/2− φ2 − θ relative to

the y axis. Hence, the spatial coordinates of O1, O2 can be set

xO1
= xA − d/2 sin(θ + π/2− φ1)

yO1
= yA + d/2 cos(θ + π/2− φ1)

xO2
= xB + d/2 sin(π/2− θ − φ2)

yO2
= yB − d/2 cos(π/2− θ − φ2).

(2.5)
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The single degree of freedom in the system, φ1, appears explicitly in the above

expressions. Let angular velocity φ̇1 be constant during the whole step. Hence, φ1

at any given time t can be expressed as

φ1 = φ0
1 + φ̇1t. (2.6)

Since this is a one degree of freedom system, angle φ2 can be expressed as a function

of φ1, and generally written as

φ2 = f(φ1). (2.7)

Along similar lines, after explicitly solving (2.3), θ can be expressed as a function of

φ1 and φ2, in the form

θ = g(φ1, φ2). (2.8)

Before moving forward, we would like to define some variables first.

1. φtd (touchdown angle), is the angle that both legs in a pair touch the ground,

as Figure 2.7a shows.

2. φlo(liftoff angle), is the angle that both legs in a pair lift off the ground, as

Figure 2.7b shows.

3. ψ (sweep angle), the range of values for each φi, as Figure 2.7c shows.

ψi =
∣∣φtd

i

∣∣+
∣∣φlo

i

∣∣ . (2.9)

These angles are viewed as model parameters, and will be used to generate

motion primitive in the next chapter.
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(a) Touchdown angle

φlo1

φlo2 φlo3

φlo4

(b) Liftoff angle

(c) Sweep angle

Figure 2.7: Angle input of OctoRoACH model [23].

Since we have obtained the relation between the position of A,B,G,O1, O2

and the values at angles of φi, θ, the steps of the algorithm that calculates the angles

of the right pair of legs in this abstract model is as follows.
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Algorithm 2.1 Solve positions based on motion primitive parameters for right pair

1 Specify motion primitive parameters φtd
1 , φ

td
2 , φ

lo
1 , φ

lo
2 .

2 Give the initial θ, xG, yG.

3 Define points A, B according to the value of θ, xG, yG based on equation (2.4).

4 Define the fixed points O1, O2 based on equation (2.5).

5 Calculate aR and qs.

6 Let φ1 change linearly, solve for φ2 and θ as a function of φ1.

7 Calculate the position of point A, B and G.

Utilizing the kinematic model, we are able to analyze the kinematics for right

pair. Since the right and left pairs are just the mirror image of each other, we can

plot the trajectory for one single step and make minor adjustments to compute the

evolution during the other step. Temporally concatenating these single steps, the

primitive elementary motions for the model can be generated.

21



Chapter 3

PRIMITIVE MOTIONS

Given the kinematics analysis performed in the previous chapter, we now use

it to discover how to generate gross motions for the abstract model that resemble

straight and curved paths. This part of work is collaborated between me, Konstanti-

nos Karydis, Dr. Poulakis and Dr. Tanner in [23]. I put forward the method to

introduce asymmetry between touchdown and liftoff angle to produce curved path.

3.1 One Stride Computation Procedure

At the end of Chapter 2, we obtained a procedure to analyze the kinematics

for right leg-pair. Since left leg-pair just mirrors the right pair, we can specify the

computation procedures for one stride as follows.

Based on this procedure, we can plot the horizontal path generated for the

geometric center of the mechanism in one single stride. Figure 3.1 shows an example

of this one stride path for the Octoroach kinematic abstraction.
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Algorithm 3.1 Simulation Procedure for one step

1 Specify motion primitive parameters φtd
1 , φ

td
2 , φ

lo
1 , φ

lo
2 .

2 Give the initial θ, xG, yG in right pair.
3 Calculate points A, B according to the value of θ, xG, yG based on (2.4).
4 Calculate the fixed points O1, O2 based on (2.5).
5 Calculate aR and qs.
6 Let φ1 change linearly, solve for φ2 and θ as a function of φ1.
7 Calculate the position of point A, B and G.
8 Specify motion primitive parameters φtd

3 , φ
td
4 , φ

lo
3 , φ

lo
4 .

9 Give the initial θ, xG for left pair.
10 Calculate points A, B according to the value of θ, xG,yG based on (2.4).
11 Calculate the fixed points O3, O4.
12 Calculate aR and qs.
13 Let φ3 change linearly, solve for φ4 and θ as a function of φ3

14 Calculate the position of point A, B and G.
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Trajectory for one stride

Figure 3.1: One stride trajectory for Octoroach, φtd
i = φlo

i = π/6, (i = 1, 2, 3, 4). In

order to distinctly show the path, x and y axis are not in the same scale.
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3.2 Primitive Parametrization

The analysis of kinematics of the abstract model in a single step forms the

basis for the definition of primitive motions.

Different pair parameterizations in terms of touchdown and liftoff angles pro-

duce different postures for the model at the end of each step, as Figure 3.2 shows.

−0.5 0 0.5 1 1.5 2 2.5
0
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3
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10

x(cm)

y(
cm

)

Figure 3.2: One stride path for different parameterizations. Blue solid line corre-

sponds to φtd
i = π/4(i = 1, 2, 3, 4), φlo

1,2 = π/4 − 0.5, φlo
3,4 = π/4 + 0.5, red dotted

line corresponds to φtd
i = φlo

i = π/6, (i = 1, 2, 3, 4), black dashed line corresponds

to φtd
i = π/3, (i = 1, 2, 3, 4), φlo

1,2 = π/3 + 0.2, φlo
3,4 = π/3 − 0.2. Note that angular

velocity φ̇1 and φ̇3 remain constant for each case. In order to show the displacement

in x axis clearly, x axis and y axis are not in the same scale.
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The idea is to concatenate left-right pair step motions, which have been iden-

tically parameterized, repeat this cycle for a specified number of iterations and thus

form one motion primitive. In Figure 3.2, the blue solid line makes a left turn, the

red dashed line goes straight while the black dotted line turns right. Our hypothesis

now is that if we concatenate this left-right pair cycles into sufficiently long strings,

we can produce three motion primitives (go straight, turn left, turn right).

3.2.1 Straight line Paths

In order to generate a straight line path, we need to set the leg angle model

parameters as follows [23].

φtd
SL = φtd

1 = φtd
2 = φtd

3 = φtd
4

φlo
SL = φlo

1 = φlo
2 = φlo

3 = φlo
4 = φtd

SL.
(3.1)

where the subscript SL is used to denote straight path configuration.

The configurations in (3.1) suggest that to produce a straight line, the touch-

down and liftoff angle should be symmetric, which means that φtd and φlo are equal in

magnitude and opposite in sign. Substitute (3.1) into (2.9), we can find the equality

of sweep angle of each leg.

ψSL = ψ1 = ψ2 = ψ3 = ψ4 =
∣∣φtd

SL

∣∣+
∣∣φlo

SL

∣∣ = 2φtd
SL. (3.2)

Figure 3.3a and Figure 3.3b show the initial and straight line path configurations,

respectively.
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(a)

(b)

Figure 3.3: Straight line model configuration: lift off angles are equal in magnitude

and opposite in sign compared to touchdown angles [23].
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(a) One cycle path
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(b) Head angle

Figure 3.4: Evolution of model’s state for the straight line path. Blue solid line

corresponds to φtd
sl = π/6, red dotted line corresponds to φtd

sl = π/4, black dashed

line corresponds to φtd
sl = π/3. Angular velocities φ̇1 and φ̇3 remain constant for each

case. (a) Increasing φtd
sl enables the robot to propel itself for a longer distance in y

axis. (b) Increasing φtd
sl causes the robot’s in heading angle to oscillate more.
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Figure 3.4 demonstrates how the state of the model evolves over time for the

straight line case. All plots correspond to one cycle (one left-right pair switching),

with the same initial geometric center position and body orientation for all runs. As

we increase the value of sweep angles (which is equivalent to increasing touch-down

angle) takes longer steps covering more ground in each step while the oscillation of

the heading angle becomes more pronounced.

3.2.2 Curved Paths

Next, we would like to investigate the combination of model parameters that

generates curved paths. Figure 3.4b shows that the heading angle, θ, is cyclic in

the straight line case. This is due to the symmetry of leg sweep angle. Introducing

asymmetry into the sweep angle, we compute new paths and observe the evolution

of the heading angle (Figure 3.5).
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Figure 3.5: Head angle for asymmetric sweep angles
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Figure 3.5 shows that the heading angle is not symmetric anymore and this

offset in orientation adds up from stride to stride, to generate a curved path.

The asymmetry in the sweep angle of the leg is denoted

∆ψ = |min{ψ1, ψ2} −min{ψ3, ψ4}| . (3.3)

Figure 3.6a and Figure 3.6b show how the asymmetry in the sweep angle

manifests itself in the case where the model turns to the right, if we change the sign

of ∆ψ in Figure 3.6b, the model will turn counter-clockwise (left).
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(a)

(b)

Figure 3.6: Model parameter configuration for curved path generation [23]. Courtesy

of Konstantinos Karydis; reproduced from (Karydis et al., 2014) with the author’s

permission.

The evolution of the geometric center of the model when generating clockwise

curves is depicted in Figure 3.7. All paths shown contain twenty strides and start
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at the same initial conditions for the geometric center and body orientation. We see

that increasing ∆ψ generates paths with smaller radius of curvature.
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Figure 3.7: Clockwise curved paths. All paths contain twenty strides and have

touchdown angles, φtd
i = π/6, (i = 1, 2, 3, 4). The blue solid line corresponds to

∆ψ = 2π/9, the red dotted line corresponds to ∆ψ = π/6, and the black dashed

line corresponds to ∆ψ = π/12. The angular velocities φ̇1 and φ̇3 remain constant

for each case. Increasing the sweep angle asymmetry, ∆ψ, will increase the path

curvature.

In this chapter, we utilized the kinematic model developed in Chapter 2, to

define a small number of motion primitives. Specific model parameter combinations

have been identified in order for the model to generate straight line and curved paths.

The key insight is that when the legs sweep along different arcs between the left and
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the right leg pair, i.e., there is asymmetry in the sweep angles in the two steps, then

the model’s heading angle ends the stride with an offset. The sweep angle asymmetry

is denoted ∆ψ, and it was observed that larger ∆ψ produces bigger path curvature.

Our next goal is to quantify path curvatures in terms of the model’s parameters, so

that we can link the model’s behavior to that of the Dubin car model.

The definition of primitive motions is a product of joint work with Kon-

stantinos Karydis. The individual contribution is in introducing asymmetry between

touchdown and liftoff angle as a way to generate curved paths in the model.
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Chapter 4

CURVATURE CALCULATION

Now we move on to my own work. To use the Dubin’s Car model for planning,

we need first to relate the desired path curvature to the parameters of the switching

four-bar model of the OctoRoACH, such as touchdown and liftoff angles, that realize

these paths. To express the curvature of paths, we draw from differential geometry

of curves and surfaces [32]. A challenge we face is that the model’s paths are not

smooth, but exhibit kinks and corners at points where left and right pairs switch from

one to another, as we can see in Figure 4.1. These corners give rise to discontinuities

in the trajectory of velocity and acceleration, as Figure 4.2 shows. Since velocity and

acceleration are discontinuous at switching points between steps, the local expression

of the curvature

k =
x′y′′ − x′′y′

(x′2 + y′2)
3

2

(4.1)

is discontinuous at these switching points as well.

33



−0.02 0 0.02 0.04 0.06 0.08 0.1 0.12
0

1

2

3

4

5

6

x(cm)

y(
cm

)

Trajectory for one stride
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Figure 4.1: Planar paths for two consecutive steps. x axis and y axis are not in the

same scale to show the corner distinctly. For these curved paths, the touchdown

angle was φtd = π/6 and the sweep asymmetry angle was ∆ψ = 0.2.
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Figure 4.2: Velocity and acceleration along two strides (note the discontinuity be-

tween steps). For this simulation, the touchdown angle was φtd = π/6, and the sweep

angle asymmetry was ∆ψ = 0.2.

Due to the discontinuities, it is impossible to directly use (4.1) to obtain the

radius of curvature for the path. The next section describes an approach to address

this challenge.

4.1 Gauss-Bonnet Theorem

Before presenting the Gauss-Bonnet Theorem, we need to introduce some

terminology.

Definition (Regular surface [32]). A subset S ⊂ R3 is a regular surface if, for each

p ∈ S, there exists a neighborhood V in R3, a neighborhood U in R2 and a map

x : U → V ∩ S of U ⊂ R2 onto V ∩ S ⊂ R3 such that (Figure 4.3)
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1. x is differentiable. This means that if we write

x(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) ∈ U

the functions x(u, v), y(u, v), z(u, v) have continuous partial derivatives of all

orders in U .

2. x is a homeomorphism. Since x is continuous by condition 1, this means that

x has an inverse x−1 : V ∩ S → U which is continuous; that is, x−1 is the

restriction of a continuous map F : W ⊂ R3 → R2 defined on an open set W

containing V ∩ S

3. (The regularity condition.) For each q ∈ U , the differential dxq : R2 → R3 is

one to one.

The mapping x is called a parameterization or a system of (local) coordinates

in (a neighborhood of)p. The neighborhood V ∩ S of p in S is called a coordinate

neighborhood.

(u, v)

v

u

S

x(u, v), y(u, v), z(u, v)

p V
V ∩ S

U

x

x

y

z

Figure 4.3: Regular surface [32]
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Definition. [32] Let α : [0, l] → S be a continuous map from the closed interval

[0, l] into the regular surface S. If

1. α(0) = α(l)

2. t1 6= t2, t1, t2 ∈ [0, l], implies that α(t1) 6= α(t2)

3. There exists a subdivision 0 = t0 ≤ t1 ≤ · · · ≤ tk ≤ tk+1 = l, of [0, l] such that

α is differentiable and regular in each [ti, ti+1], i = 0, . . . , k,

then α is a simple, closed, piecewise regular, parameterized curve.

Condition 3 guarantee curve α fails to have a well-defined tangent line only

at a finite number of points.

The points α(ti), i = 0, . . . , k are called vertices of α, and the signed angle

ϕi which determines the angle from α′(ti − 0) to α′(ti + 0) is called the external

angle at the vertex α(ti). The sign of ϕi is determined by the right hand rule, for

−π < ϕi < π. Figure 4.4 shows the vertices and the external angles for them.

α(tj)

ϕj > 0

ϕi < 0α(ti)

Figure 4.4: Vertices and external angles [32]
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Definition (Jacobian). Given a function f : Rn → Rn with y = f(x), written ex-

plicitly as





y1 = f1(x1, x2, · · · , xn)

y2 = f2(x1, x2, · · · , xn)

...

yn = fn(x1, x2, · · · , xn)

the Jacobian matrix, sometimes simply called “the Jacobian” [45] is defined by

J(x1, · · · , xn) =




∂y1
∂x1

· · · ∂y1
∂xn

...
. . .

...

∂yn
∂x1

· · · ∂yn
∂xn




.

Definition (Orientable surface [46]). A regular surface S is called orientable if it is

possible to cover it with a family of coordinate neighborhoods in such a way that if a

point p ∈ S belongs to two neighborhoods of this family, then the change of coordinates

has positive Jacobian at p. The choice of such a family is called an orientation of S,

in this case, is called oriented. If such a choice is not possible, the surface is called

nonorientable.

Definition (Patch/Local Surface [46]). A patch or local surface is a differentiable

mapping

x : U → Rn

where U is an open subset of R2.
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Definition (Injective Patch [46]). An injective patch is a patch such that x(u1, v1) =

x(u2, v2) implies that u1 = u2 and v1 = v2 for all (u1, v1) and (u2, v2).

Definition (Unit Normal Vector Field/Surface Normal [46]). For an injective patch:

x : U → R3 the unit normal vector field or surface normal U is defined by

U(u, v) =
xu × xv

‖xu × xv‖
(u, v) (4.2)

at those points (u, v) ∈ U at which xu × xv does not vanish.

xu(u, v) =
∂x1

∂u
(u, v) + ∂x2

∂u
(u, v) + ∂x3

∂u
(u, v)

xv(u, v) =
∂x1

∂v
(u, v) + ∂x2

∂v
(u, v) + ∂x3

∂v
(u, v)

are the partial derivatives of x with respect to u and v.

Definition. [46] Let W be a differential vector field on an open subset U ⊂ Rn, and

let vp be a tangent vector to Rn at p ∈ U . Then the derivative of W with respect

to vp is the tangent vector DvW ∈ Rn
p given by

DvW = W̃ (p+ tv)′(0)p = lim
x→0

W̃ (p+ tv)− W̃ (p)

t
|p. (4.3)

To measure how a regular surface M bends in R3, one way is to estimate how

the surface normal U varies from point to point. This can be done by defining the

shape operator.

Definition (Shape Operator [46]). Let M ⊂ R3 be a regular surface, and let U be

a surface normal to M defined in a neighborhood of a point p ∈ M . For a tangent

vector vp to M at p we put S(vp) = −DvU. Then S is called the shape operator.

Definition (Gaussian curvature [46]). Let M be a regular surface in R3. The Gaus-

sian curvature K of M are the functions K defined by K(p) = det(S(p))
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Definition (Polygonal region [46]). A polygonal region is a regular region with a

finite number of vertices, each of which has a nonzero external angle.

Definition (Polygonal decomposition [46]). A polygonal decomposition of a regular

region Q of an abstract surface is a finite collection ℜ of polygonal regions called

faces such that

1. each R ∈ ℜ is homeomorphic to a disk;

2. the union of all regions in ℜ is Q;

3. if R1,R2 ∈ ℜ, then the intersection R1 ∩ R2 is either a common edge or a

common vertex of R1 and R2

Definition (Euler characteristic [46]). Let R be a polygonal decomposition of a reg-

ular region O of an abstract surface. We put

V = the number of vertices of R

E = the number of edges of R

F = the number of faces of R

Then χ(O) = F − E + V is called the Euler characteristic of O.

Theorem (Gauss-Bonnet Theorem [32]). Let R ⊂ S be a regular region of an orient-

ed surface and let C1, . . . , Cn be the closed, simple, piecewise, regularcurves which

form the boundary ∂R of R. Suppose that each Ci is positively oriented and let

ϕ1, . . . , ϕp be the set of all external angles of the curves C1, . . . , Cn. Then

n∑

i=1

∫

Ci

kg(s) ds+

∫ ∫

R

K dσ +

p∑

l=1

ϕi = 2πχ(R) (4.4)

where s denotes the arc length of Ci, kg(s) is the geodesic curvature of the regular

arcs of Ci, K denotes the Gaussian Curvature, χ(R) is the Euler characteristic.
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For the planar case, the Gaussian curvature is zero and the Euler characteristic

equals to 1. Equation (4.4) reduces to

n∑

i=1

∫

Ci

kg(s) ds+

p∑

l=1

ϕi = 2π. (4.5)

4.2 Application Of The Gauss-Bonnet Theorem

In the two-dimensional planar motion of the abstract model, the Gauss-

Bonnet Theorem implies

L∑

j=0

∫ sj+1

sj

k(s) ds+
L∑

j=0

ϕj = 2π. (4.6)

In (4.6), L is the total number of steps that the model takes, sj is the arc

length of the j-th step, and k(s) is the curvature of the curve associated with each

step, given by

k =
x′y′′ − x′′y′

(x′2 + y′2)
3

2

. (4.7)

The instantaneous change in orientation is denoted ϕj. Select an appropriate

number of steps that allows the model to complete a closed circular curve, that is,

∫

C

ds = 2πR. (4.8)

Substituting (4.8) into (4.6), we find

R =

∫
C
ds

∑L
j=0

∫ sj+1

sj
k(s) ds+

∑L
j=0 ϕj

. (4.9)

Since the model’s path is constructed by concatenating the displacements

generated by the left and right pairs, we focus on the radius of curvature in a single

step. Let wl denotes the left switch angle, wr denotes the right switch angle, ll

denotes the left stride length, lr denotes the right stride length, cl denotes the left
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stride curvature integral, cr denotes the right stride curvature integral and p denotes

the number of steps to complete the circle. Utilizing (4.9), since the number of left

cycles and right cycles in the path are equal, the radius of curvature for the robot

can be expressed as

R =
p(ll + lr)

p(wl + wr) + p(cl + cr)
=

ll + lr
wl + wr + cl + cr

. (4.10)

For touchdown angles φi
td = π/6, (i = 1, 2, 3, 4), Table 4.1 lists the resulting

path characteristics of the closed circular curve produced by different sweep angle

asymmetries.

Table 4.1: Whole asymmetry data ( l = 3, d = 13)

∆ψ (rad) 0.2 0.18 0.16 0.14 0.12 0.1

left-right switch angle (rad) 0.0716 0.0620 0.0531 0.0448 0.0370 0.0297

right-left switch angle (rad) 0.0378 0.0331 0.0286 0.0243 0.0201 0.0162

left stride length (m) 0.0339 0.0335 0.0331 0.0328 0.0324 0.0320

right stride length (m) 0.0254 0.0259 0.0264 0.0269 0.0273 0.0278

left stride curvature integral -0.0306 -0.0255 -0.0209 -0.0168 -0.0132 -0.0101

right stride curvature integral -0.0031 -0.0034 -0.0036 -0.0037 -0.0036 -0.0035

strides 85 95 106 121 140 168

radius (m) 0.80 0.89 1.00 1.14 1.33 1.6

Substituting the values of wl, wr, ll, lr, cl, cr into (4.10), we can verify the va-

lidity of the equation. There is always some small offset, the endpoints of the curve

do not coincide exactly, which can be attributed to numerical errors and the fact

that the model’s path is circular only on average.
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With this analysis, we can map the desired aggregate path characteristics

with the model parameters that can generate paths with these attributes. In other

words, we know how to run the model so that we produce desired paths on average.

This knowledge can now be used to associate the motion of the abstract model to the

curves of Dubin’s car, for which extensive analysis exists and applications to motion

and path planning abound.
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Chapter 5

PATH PLANNING

In order to complete inspections, reconnaissance, search-and-rescue and sensor

coverage in unstructured environments using a crawling robot such as the Octoroach,

its critical to be able to plan the motion of this robot from point A to point B.

The kinematic model and the corresponding motion primitives we have obtained

in Chapter 3, in conjunction with the path characterization offered in the previous

chapter will be used in this chapter to develop a path planning methodology for the

OctoRoACH.

5.1 The Dubin’s Car Model

Here, we have a simplified model: a car which can only move forward and

always moving at a unit velocity so that we don’t need to worry about acceleration

and brake. This model, is called a Dubin’s car model.

In 1957, Lester Eli Dubins demonstrated that any curve generated by this

model is necessarily a continuously differentiable curve which is either

1. an arc of a circle of radius R connected by a line segment, connected by an arc

of a circle of radius R.

2. a sequence of three arcs of circle of radius R.

3. a subpath of a path of type (1) or (2).
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Let S denote a straight line segment, L a left turn arc, R a right turn arc,

There can be six combinations of arcs and segments that conform to the description

provided by Dubins regarding the optimal curves connecting one planar position and

orientation to another: D = [LSL,RSR,RSL, LSR,RLR,LRL]. A more detailed

characterization and computational prescription of these paths is given in literature

[10]. In this thesis, we directly use those known minimum-length solutions for the

Dubins’ model to solve the path planning problem for the OctoRoACH.

5.2 Minimum Radius

Due to the mechanism geometry, the angle between O1A and the robot’s

longitudinal axis should be no larger than π. In other words, the asymmetry in the

sweep angle ∆ψ should be no larger than π/2 − φtd. Since the radius R decreases

monotonically as ∆ψ increases, we can obtain the minimum radius Rmin at the

configuration of the largest ∆ψ. For example, if φtd = π/6, then the smallest radius

can be obtained at ∆ψ = π/3.
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Figure 5.1: Abstracted model for OctoRoACH [23].

5.3 Planning Examples

Suppose the robot’s geometric center initially coincides with the origin of the

global, inertial coordinate frame with the longitudinal axis of the body frame aligned

with the positive y semi-axis of the global frame. The goal for the system is for the

geometric center to reach the (100 cm, 0) point with the system’s orientation being

that of the negative y semi-axis (Figure 5.2).
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D = 100 cm

Figure 5.2: Initial and final configurations in the first motion planning problem

instantiation

If the system were the Dubin’s Car, then the minimum length path between

these two configurations could have been obtained by solving a geometric construc-

tion problem, knowing the combination of line segments and arcs that make this

optimal curve (Figure 5.3). Note that the smallest radius for φtd = π/6 is obtained

at ∆ψ = π/3, where R = 18.75 cm.
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Figure 5.3: The Dubin’s curve that connects initial and final configuration in the

first problem instantiation

The optimal curve in this case is a RSR path: the robot first traverses a

circular arc path of 90◦ with R = 18.75 cm, then moves along a straight segment for

62.5 cm, and then traverses another circular arc of same radius and angle, but in the

opposite direction. Implementing this path plan in our model, we first set ∆ψ = π/3

and ψ1 > ψ3 to achieve a tight right turn. For the straight line motion segment, we

set ∆ψ = 0. Since the model needs almost 27 steps to transcribe a circular path with

∆ψ = π/3, we let the model take ⌊27
4
⌋ steps. The resulting path the model produces

shown in Figure 5.4.
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Figure 5.4: Realization of the path plan on the robot model for the first problem

instantiation

A comparison of Figure 5.3 and 5.4 reveals that there are differences between

the plan and its realization. One reason is that the Dubin’s path segments are

always an idealization of the model’s motion. Another factor that contributes to the

mismatch is the cumulative effect of numerical errors in matlab simulations. Yet

another factor is that the motion of the model is quantized: it cannot stop the step

mid-way, and therefore it is impossible for the model to realize 27
4
steps in a circular

path.

49



A different target configuration is shown in Figure 5.5.

Pi Pf

y

x

D = 100 cm

Figure 5.5: Initial and final configurations in the second motion planning problem

instantiation

The Dubin’s curve solution to this example is shown in Figure 5.6. After

making the inner tangent line for the two circle, it shows that the robot first needs

to turn 126◦ clockwise , then go straight for 50 cm, and finally make another 126◦

counter-clockwise turn.

50



Figure 5.6: Dubin’s curve solution for the second problem instantiation

To implement this plan, the model needs to take ⌊126∗27
360

⌋ steps along a circle

with radius R = 18.75 cm, continue straight for another 50 cm, and then walk ⌊126∗27
360

⌋

steps of the curved resemble path counter-clockwise.
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Figure 5.7: Realization of the path plan on the model for the second problem instan-

tiation

In this chapter we cast the path planning problem for OctoRoACH model

as a path planning problem for Dubin’s car, by associating the optimal Dubin’s

curves to model parameters that make the path generated by the model match

those of Dubin’s. A key to this association has been the application of the Gauss-

Bonnet theorem that allowed the quantification, on average, of the model’s paths as

a function of model’s parameters.

52



Chapter 6

CONCLUSIONS AND FUTURE WORK

This chapter gives a short summary of the work presented in this thesis and

suggest possible future directions this research can take on the topic of motion plan-

ning for miniature multi legged robots.

6.1 Problem Addressed

The Dubin’s car model has been widely used in solutions of motion planning

problems for wheeled robots. There is a body of literature on its use that can be

leveraged for the solution of motion planning problems involving miniature legged

robots.

In this thesis, we utilized an existing kinematic model that was developed as

an abstraction of the quasi-static motion behavior of the OctoRoACH robot. The

eight-legged mechanism has been abstracted into a switching four-bar linkage. The

kinematics analysis of the model enables us to compute the heading angle and the

position of the geometric center of the robot after each step, assuming continuous

contact of active legs with the ground and no slipping.

Chapter 3 presents a kinematics analysis of the motion generated when the

hind left and front right legs are pushing the model mechanism forward. It is indi-

cated that the analysis of the case where the hind right and front left are pushing,

mirrors the former one. This analysis forms the basis for the definition of primitive

motions for the robot. Through concatenating these left-right leg pair cycles, we
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can form motion primitives that inform us on how the robot can move straight and

turn. We thus define three motion primitives: go straight, turn left, turn right. We

identify the combinations of model parameters that generate these primitive motion

behaviors. Specifically, we discovered that straight line motion is achieved by setting

touchdown and liftoff angles of the active legs to be equal in magnitude and opposite

in sign. To generate a curved path, one can introduce some asymmetry between

touchdown and liftoff angles. In particular, clockwise (right) turn requires the liftoff

angle of the right pair to be larger in size than the touchdown, and the liftoff angle

of the left pair to be smaller in size than the touchdown angle. This implies that in

terms of leg sweeping angles, ψ1 > ψ3; for counterclockwise (left) turn, these angle

relations are reversed, and the sweep angle of left pair ends up being larger than

that of the right pair, ψ3 > ψ1. We observed that in curved path motion, the radius

of curvature is monotonically decreasing with ∆ψ. The model kinematic analysis

and motion primitives is a product of collaboration within our research group, with

contributions from Konstantinos Karydis, Dr. Tanner and Dr. Poulakakis.

In Chapter 4, we offer a method to analytically compute the curvature of

a path, using Gauss-Bonnet Theorem. In the planar motion case of our switching

four bar mechanism, the Gauss-Bonnet Theorem simplifies to a directly computable

equation. Application of this theorem allows us to account for the discontinuities in

velocity, acceleration and curvature that occur when the mechanism switches between

steps. This gives us an equation which yields an average estimate of the radius of

curvature for the curved paths produced in our two of the three motion primitives.
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Figure 6.1: Model matches experiment data

This is where the main contribution of this thesis lies. Specifically, it is in

associating model parameters to motion primitive geometries in an analytic, quan-

titative way, that gives the motion planner a look-up table like Table 4.1. Perhaps

more importantly, this thesis outlines a methodology for generating tables like Table

4.1 for different desired motion primitives, and different possible model instantia-

tions. As soon as the desired motion primitives are associated to average motion

behaviors of the actual robotic hardware (Figure 6.1), the model populated with

the parameters drawn from a table like Table 4.1 can be directly used for motion

planning. Figure 6.1 shows how the path we plot for the model match with the real

robot. The pink lines are the exact paths of OctoRoACH while the black solid lines

are the average of these experiments. The blue dashed lines are the paths we plotted
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for the model in Matlab. We can find that the black solid lines match with the blue

dashed lines quite well. Plots (a), (b), (c), (d) show the right turn cases while plots

(f), (g), (h), (i) show the left turn cases and plot (e) shows the straight line case.

Having established the motion primitive parameters and given the character-

ization of the resulting curvature of the paths generated, we associate the primitive

motions of this model to the curves of the Dubin’s car model. We borrow the so-

lution approach to the path planning problem based on Dubin’s model to show in

two examples that the solution transfers over the legged robot model. We notice

that there exist some small path deviations, which is reasonable since the Dubin’s

car model is ideal and the model’s motion is quantized. Besides, matlab simulation

involve some numerical errors.

6.2 Perspectives On Future Work

In this thesis, we have proposed a method to plan the motion of the miniature

legged robot OctoRoACH by approximating path derived using Dubin’s car model.

Since the switching four bar mechanism used in this thesis can be thought of repre-

sentative template model of low-speed crawling gaits, the algorithm proposed in this

thesis can be used to plan the motion of other crawling robots. However, it should be

mentioned that, Dubin’s model does not take obstacles into consideration. To cope

with this situation, future work will focus on extending the basic motion primitive

path planing method we have described here to computing some obstacle-free paths

for multilegged crawling robots like OcotRoACH.

With the ability to find paths that connect the initial position of the robot with

the final, desired one and avoid obstacles that may exist in between, we can explore

the potential of these robots in real-life tasks such as search-and-rescue missions or

exploration of an unknown environment. To achieve such tasks, the robot platform
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must be augmented with a number of suitable sensors that will enable the robot

to sense its environment and locate it self. Future work will examine how sensor

data can be used to plan suitable paths in real-time. Furthermore, applications of

these robots as part of multi-agent systems will be explored. We anticipate that the

simple kinematic model of the robot, together with the analytic characterization of

the geometric properties in terms of practically relevant quantities of the paths it can

produce will serve as a building block towards engaging robots like the OctoRoACH

in real-world tasks.

57



BIBLIOGRAPHY

[1] Zarrouk D, Pullin A, Kohut N, Fearing R.“STAR, A Sprawl Tuned Autonomous
Robot.” In: Proceedings of the IEEE International Conference on Robotics and
Automation, Karlsruhe, Germany 2013, pp 20-25

[2] Morrey JM, Lambrecht B, Horchler AD, Ritzmann RE, Quinn RD. “Highly Mo-
bile and Robust Small Quadruped Robots.” In: Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, Las Vegas, NV 2003
vol 1, pp 82-87

[3] Lambrecht B, Horchler AD, Quinn R. “A small, insect-inspired robot that runs
and jumps.” In: Proceedings of the IEEE/RSJ International Conference on
Robotics and Automation, Barcelona, Spain 2005, pp 1240-1245

[4] Birkmeyer P, Peterson K, Fearing RS. “DASH: A dynamic 16g hexapedal robot.”
In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, Saint Louis, MO 2009, pp 2683-2689

[5] Kohut N, Hoover A, Ma K, Baek S, Fearing R. “MEDIC: A legged millirobot
utilizing novel obstacle traversal.” In: Proceedings of the IEEE International
Conference on Robotics and Automation, Shanghai, China, 2011, pp 802-808

[6] Kim S, Clark JE, Cutkosky MR. “iSprawl: Design and Tuning for High-speed
Autonomous Open-loop Running.” The International Journal of Robotics Re-
search, 2006, 25(9):903-912

[7] Hoover AM, Burden S, Fu XY, Sastry S, Fearing RS. “Bio-inspired design
and dynamic maneuverability of a minimally actuated six-legged robot.” In:
Proceedings of the IEEE International Conference on Biomedical Robotics and
Biomechatronics, Tokyo, Japan, 2010, pp 869-876

[8] Pullin A, Kohut N, Zarrouk D, Fearing R. “Dynamic turning of 13 cm robot
comparing tail and differential drive.” In: Proceedings of the IEEE International
Conference on Robotics and Automation, Saint Paul, MN, 2012, pp 5086-5093

58



[9] Choset H, Burgard W, Hutchinson S, Kantor G, Kavraki LE, Lynch K, Thrun
S. Principles of Robot Motion: Theory, Algorithms, and Implementation, MIT
Press, 2005

[10] S. M. LaValle. Planning Algorithms, Cambridge University Press, 2006

[11] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars. “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces.” In: Pro-
ceedings of the IEEE International Conference on Robotics and Automation,
12(4) 1996, pp 566-580

[12] L. E. Kavraki, M. N. Kolountzakis, and J. C. Latombe. “Analysis of probabilistic
roadmaps for path planning.” In: Proceedings of the IEEE Transactions on
Robotics and Automation, 14(1):166-171, 1998

[13] J. J. Kuffner and S. M. LaValle. “RRT-connect: An efficient approach to single-
quert path planning.” In: Proceedings of the IEEE International Conference on
Robotics and Automation, 2000, pp 995-1001 vol.2

[14] S. M. LaValle and J. J. Kuffner. “Randomized kinodynamic planning.” Inter-
national Journal of Robotics Research, 20(5):378-400, May 2001

[15] Karydis K, Poulakakis I, Tanner HG “A switching kinematic model for an oc-
tapedal robot.” In: Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, Vilamoura, Algarve, 2012 Portugal, pp 507-512

[16] J. Barraquand and J.C. Latombe. “Robot motion planning: A distributed
representation approach.” The International Journal of Robot and Research,
10(6):628-649, December 1991

[17] E. Frazzoli, M. A. Dahleh, and E. Feron. “Real-time motion planning for ag-
ile autonomous vehicles.” The Journal of Guidance, Control, and Dynamics,
25(1):116-129, 2002

[18] M. S. Branicky, M. M. Curtis, J. A. Levine, and S. B. Morgan. ”RRTs for
nonlinear, discrete, and hybrid planning and control.” In IEEE Conference on
Decision and Control, 2003, pp 657-663, Vol.1

[19] Jean-Claude Latombe. Robot Motion Planning, Boston: Kluwer Academic Pub-
lishers, 1991

59



[20] L.E. Dubins. “On curves of minimal length with a constraint on average curva-
ture, and with prescribed initial and terminal positions and tangents.” American
Journal of Mathematics, 79 (1957) 497-516

[21] Peng Cheng, Zuojun Sheng and Steven M. Lavalle. “RRT-Based Trajectory
Design for Autonomous Automobiles and Spacecraft.” Archives of Control Sci-
ences, Volume 11, 2001, No. 3-4, pp 51-78

[22] Uluc Saranli , Martin Buehler , Daniel E. Koditschek. “RHex: A simple and
highly mobile hexapod robot” International Journal of Robotics Research, 2001
vol.20, no.7, pp 616-631

[23] Konstantinos Karydis, Yan Liu, Ioannis Poulakakis, Herbert G. Tanner. “A
Template Model for Miniature Legged Robots”, submitted, 2014

[24] Hoover AM, Steltz E, Fearing RS. “RoACH: An autonomous 2.4g crawling hexa-
pod robot” In Proceedings of the IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, Nice, France, pp 26-33, 2008

[25] D. J. Balkcom and M. T. Mason. “Time optimal trajectories for bounded ve-
locity differential drive vehicles” International Journal of Robotics Research,
21(3):199-217, 2002
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Appendix

PERMISSION FROM ANDREW PULLIN FOR USING

OCTOROACH FIGURE

Hi Yan,

I’m happy to hear that you used the robot as a tool for a successful project.

Using content from the OctoRoACh paper, or any picture or likeness of the robot is

absolutely fine.

Will any of your work be shown at the upcoming MAST meeting?

Let me know if you want any higher resolution versions of any of the images

from the paper.

- Andrew

On 2/24/2014 12:28 PM, Yan Liu wrote: Andrew,

Greetings.

First let me introduce myself. I am a master candidate in Cooperative

Robotics Labtorary in Mechanical Engineering in University of Delaware. My mas-

ter thesis focuses on finding the motion planning strategy for Octoroach, During my

research, I have read your paper ”Dynamic turning of 13 cm robot comparing tail

and differential drive”. The work you have done is awesome. The robot offered me

an excellent platform to study the motion planning trajectory.

Now, I am writing my master thesis. Since my motion planning strategy is

for your Octoroach, I would like to ask for your permission to involve some pictures

of your paper ( the rear and side view of the robot) into my thesis.
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Looking forward to your reply. Thanks.

Yan
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