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ABSTRACT

Graphic Processing Units (GPU) has been proved to be a promising platform

to accelerate large size Fast Fourier Transform (FFT) computation. However, current

GPU-based FFT implementation only uses GPU to compute, but employs CPU as a

mere memory-transfer controller. The computation power in today’s high-performance

CPU is wasted. In this project, a hybrid optimization framework is proposed to use

both CPU and GPU in heterogeneous CPU-GPU systems to compute large scale 2D

and 3D FFTs that exceed GPU memory. This work introduces a flexible partition-

ing scheme that makes it possible to decompose FFT for two computing devices with

hugely different performance characteristics. The partitioning scheme enables concur-

rent execution of FFT sub-problems on CPU and GPU. Additionally, our approach

integrates several FFT decomposition paradigms to tailor the extraction of compu-

tation and communication patterns for CPU and GPU, and in the process exploits

more hidden parallelism than other heterogeneous methods. In addition, our work

automatically adapts to different hardware configurations by tuning for architecture

features and the work distribution between GPU and CPU. Several empirical profiling

techniques are proposed to characterize the communication and computation of FFT

problems on GPU and CPU, and we develop effective heuristics to guide the entire

empirical tuning process. Our library also overlaps data transfers to achieve higher

bandwidth over PCI bus and equally importantly maintains data and layout consis-

tency between CPU and GPU. We evaluate our hybrid FFT library from three aspects,

i.e., optimal load distribution ratios, running time, and precision of result. In particu-

lar, the library is compared with CPU based libraries FFTW and Intel MKL, as well

as a GPU based library on three GPUs, i.e., NVIDIA GeForce GTX480, Tesla C2070

and Tesla C2075. On average, our large FFT library is 121% and 145% faster than

viii



the 4-thread SSE-enabled FFTW and the 4-thread SSE-enabled Intel MKL, with max

speedups 4.61 and 2.81, respectively.
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Chapter 1

INTRODUCTION

1.1 Background of Fast Fourier Transforms on GPGPUs

Fast Fourier Transform (FFT) is one of the most widely used numerical al-

gorithms in science and engineering domains. It is not rare that large scientific and

engineering computation such as fluid dynamics simulations spend majority of execu-

tion time on large size FFTs. Recently the Graphical Processing Units (GPUs) have

been proved to be a promising platform to solve large FFT problems. At first, efforts

have been focused on solving FFT problems whose sizes can fit into the device memory

of GPU. It means that only two simple data transfers are needed in the solving of

one FFT problem, one copying all the source data from CPU memory to GPU mem-

ory using the PCI bus, and the other copying all the results back. Since the data

transfer does not have much to optimize, the prior works focus on the decomposition

of FFT problems for the two-level organization of processing cores on GPU and the

efficient usage of GPU on-device memory hierarchy. Libraries such as CUFFT from

NVIDIA [1], Nukada’s work on 3D FFT [2, 3], and Govindaraju’s [4] and Gu’s work

on 2D and 3D FFT [5] can be classified into this group. Recently, Gu et.al. [6] demon-

strated a GPU-based FFT library that can solve FFT problems larger than the GPU

device memory. Since one data transfer cannot move all data between CPU and GPU,

multiple data transfers are needed. Gu et.al. proposed a joint optimization paradigm

that co-optimizes the communication and the computation phases of FFT, and an em-

pirical searching method to find the best tradeoff between the two factors. For even

larger FFT problems, Chen et.al. presented a GPU cluster based FFT implemen-

tation [7]. However, since computation contributes only a trivial part to the overall
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execution time, the work has been almost exclusively focused on the optimization of

communication over inter-node channels.

The prior FFT work on GPU, no matter the on-card FFT libraries, the out-of-

card FFT libraries or the GPU-cluster based solutions, all involve CPU in the loop.

However, CPU is only used as a memory or communication controller, that is, executing

the memory transfer requests between CPU memory and GPU memory, or between

nodes. The computing power of CPU is wasted. Ogata et.al. [8] attempted to divide

the computation to both CPU and GPU, though targeting at problems whose sizes

can fit into the GPU memory. The small problem assumption makes the optimization

of data communication between CPU and GPU trivial because all data can be copied

to GPU in one data copying, which largely avoids the challenges of co-optimizing both

computation and communication between two different types of devices. In this work,

we present a hybrid FFT library that engages both CPU and GPU in the solving of

large FFT problems that can not fit into the GPU memory.

1.2 Challenges of Hybrid FFTs on Heterogeneous GPU/CPU Systems

Making FFT run concurrently on CPU and GPU come with significantly chal-

lenges. First of all, CPU and GPU are two computer devices with totally different

performance characteristics. Even though FFT can be decomposed in many different

ways, not a single method can arbitrarily divide a problem into subtasks with two

different performance patterns. The fundamental difficulty lies in the mathematical

properties of FFT. In FFT, a simple change to the division of computation will lead to

global effects on the data transfers, because ultimately any single point in the output

of a FFT problem is mathematically dependent on all input points. In other words, we

cannot just optimize for CPU or just optimize for GPU. While a part of computation

might be very efficient on CPU, the need to move data from previous GPU computa-

tion parts, or the need to send data to the following GPU computation parts, might

be expensive and could totally diminish all advantages gained from the optimization

of the current step. In simpler words, the first problem we need to solve is to divide a
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FFT workload between two types of computing devices that are connected by a slow

communication channel.

The second challenge is the magnitude of the vast space of possible hybrid im-

plementations for one FFT problem. In addition to the large number of possible algo-

rithmic transformations, as outlined in the first challenge, CPU and GPU architectural

features also need to be considered in the search. Reconciling CPU and GPU architec-

tures is hard because they simply like different styles of computation/communication

mix. For example, FFT might be decomposed into same computation sub-tasks but

with different memory transfer needs. CPU and GPU will respond very differently

to the subtle difference in memory transfer requests. Parameters such as the stride

of memory accesses, or the coalescing of memory requests determine whether CPU or

GPU is more appropriate for a sub-step of FFT. Moreover, the decision of workload

assignment needs to be put into a search space that consists of many different ways

of decomposition and different ways of data transfer. In particular, computation and

communication can be efficiently overlapped, an important performance booster, only

if the data dependency between the CPU parts and the GPU parts is appropriately ar-

ranged. In other words, even if we already find the best algorithm for a FFT problem,

i.e., the best division of computation, the implementation of the algorithm still needs

to be co-tuned for two different architectures.

1.3 Solutions Description

This project for the first time proposes a hybrid implementation of FFT that

can take advantage of both CPU and GPU in a heterogeneous computer node in solving

large FFT problems. The work makes three main contributions: (1) a hybrid large-

scale FFT decomposition framework that combines the Radix algorithm and the Cooly-

Turkey algorithm to enable the extraction and the tailoring of different workload and

data transfer patterns appropriate for the two different computing devices, (2) an

empirical performance modeling for FFT sub-steps on CPU and GPU, which estimates

performance based on several key parameters, and replaces an exhaustive walk-through

3



of the vast space of possible hybrid implementations of FFT on CPU/GPU with a

guided empirical search, and (3) key heuristics to purposefully expose opportunities

of overlapping communication with computation in the process of decomposing FFT,

and heuristics to find the best tradeoff among computation time, data transfer cost,

and their overlapping.
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Chapter 2

OVERVIEW OF FFT ALGORITHM

2.1 Overview of General FFT Algorithm

FFT algorithms recursively decompose a N -point DFT into several smaller

DFTs [9], and the divide-and-conquer approach reduces the operational complexity

of a Discrete Fourier Transform (DFT) from O(N2) into O(NlogN). There are many

FFT algorithms, or in other words, different ways to decompose DFT problems.

2.1.1 Cooley Tukey Algorithm

Our hybrid FFT library is based on the general Cooley-Tukey factorization FFT

algorithm [10]. In this section we briefly introduce the FFT algorithms and overview

how they are incorporated into our hybrid approach. The DFT transform of an input

series x(n), n = 0, 1, ..., N − 1 of size N is presented as Y (k) =
∑N−1

n=0 x(n)W nk
N . We

can map the one dimensional input into two dimensions indexed by l in L dimension

and m in M dimension, respectively. The Cooley-Tukey FFT decomposes the original

DFT into three sub-steps: (1) Perform M DFTs of size L, A(p,m) =
∑L−1

l=0 x(l,m)W lp
L ;

(2) Multiply twiddle factors, B(p,m) = A(p,m)W pm
N ; and (3) Perform L DFTs of size

M, Y (p, q) =
∑M−1

m=0 B(p,m)Wmq
M . Therefore, Y (k) = Y (pM + q).

In essence, Cooley-Tukey introduces a decomposition approach that divides one

dimensional computation into two. Moreover, the Radix algorithm is a special case of

the Cooley-Tukey algorithm for power-of-two FFT problems.

2.1.2 Other FFT Algorithms

There are many other FFT algorithms [11] distinct from CooleyTukey method.

Prime-Factor(Good-Thomas) [12] decomposes a DFT of size N = N1×N2, where N1
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and N2 are co-prime numbers. Twiddle factor calculation is not included in this algo-

rithm. In addition, Rader’s algorithm [13] and Bluestein’s algorithm [14] can factorize

a prime-size DFT as convolution. Actually, each of the algorithms illustrated above

has specific implementation.

2.1.3 I/O Tensor Representation

In this project, we extend the I/O tensor representation introduced in FFTW [15]

to represent the Cooley-Tukey algorithmic transformation of hybrid FFTs. An I/O ten-

sor d(C, Si, So, I, O) denotes FFTs along a data dimension where C is the size of one

dimensional FFT, Si and So represent the stride of input and output, and I and O are

the addresses of input and output array. tLM represents multiplication of twiddle fac-

tors with size L×M . The I/O tensor representation captures the two most important

factors that determine FFT’s performance, i.e., data access patterns and computation

load. As an example, the Cooley-Tukey FFT decomposition can be precisely denoted

as an extended I/O tensor representation u = {d(L,M,M, I,O), tLMd(M, 1, 1, O,O)}.

Here u is an I/O tensor that represents a multidimensional FFT.

2.2 Overview of Our Hybrid FFT Algorithm

A notable contribution in our work is the achievement of an adaptive library

for 2D FFT that automatically achieves optimal performance using available heteroge-

neous GPUs-CPUs resources. Traditional FFT libraries have been built either on gen-

eral purpose CPUs such as FFTW, SPIRAL and Intels MKL or on compute-intensive

GPUs such as CUFFT, however, there is few that takes advantage of CPU to concur-

rently compute partial well-decomposed FFT with GPU. Although CUFFT makes use

of both CPU and GPU, it only enables CPU to perform controlling GPU kernel exe-

cutions and also data transfer between host and GPU. Comparing with current FFT

libraries, we fully employ both CPU and GPU computational resources for heteroge-

neous HPC.
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In this project, a hybrid optimization framework is proposed to use both CPU

and GPU in heterogeneous CPU-GPU systems to compute large scale 2D and 3D

FFTs that exceed GPU memory. This computational model generalizes a partitioning

scheme that efficiently distributes work to two different computing devices to make

them execute FFT computation load concurrently. Generally, our hybrid FFT ap-

proach is guided by Radix algorithm and Cooley-Tukey decomposition algorithm. The

I/O tensor representation is modified to specify the partial work in CPU and GPU and

the synchronization process is identified in implementation to maintain the accuracy

of results.

In addition to the work load partitions, the optimizations in heterogeneous sys-

tem are intensively discussed. In GPU side, two levels of FFT decomposition paradigms

are studied. In general, the decomposition of large out-of-card FFT problem is per-

formed at first to generate subproblems that can fit into a GPU. We propose an scheme

for efficient data transfers between CPU and GPU through a PCI express bus. Par-

ticularly, since the data portion required to be contiguous in GPU memory has no

contiguous locality in host memory, a technique is proposed to handle the strided

memory copy between GPU and CPU to keep high PCI bandwidth. To further opti-

mize performance, we discuss the factors that restrict high PCI bandwidth based on

well-designed tests and propose a method can overlap different partial data transfers

to achieve optimal performance.

Furthermore, the deeper level decomposition is applied into optimization for

kernel computation of the on-card FFTs. The on-GPU computation is based on the

specially revised codelets which are compiler generated C programs to solve small

FFTs in FFTW. Codelets are able to realize the strided data accesses to save the

execution time of matrix transpose. Moreover, codelets that are used to compute

multiple dimensional FFTs are grouped into the fewest number of kernels, and each

kernel will have minimum number of accesses to global memory with multiple accesses

to shared memory (48KB in GTX480) to hide memory latency dramatically. 32 threads

are coalesced into a single memory access so that a higher global memory bandwidth is

7



achieved. In addition, we also make use of asynchronous streams to manage concurrent

kernel executions and the overlapping between kernels and data transfers.

As for optimizations in CPU side, FFTWs advanced interface is used to trans-

form a group of complex arrays at a time. Operations on non-contiguous data is

well performed so that much execution time of transposition is saved. Improved per-

formance is obtained if we parallelize the grouped FFT computations using multiple

concurrent threads in CPU side. An additional thread is made use of to control GPU

computation so that load balancing between CPU and GPU can be gained.

To achieve overall good performance, we leave specific part of computation in

our FFT library into GPU for computation. If we expect to incorporate CPU to work

for it, more data transfers between CPU and GPU have to be processed for data

merge through a slow PCI bus even if GPU load can be somehow released. We test

the performance of such all-hybrid computation which incorporates CPU and GPU

to handle all the work. It is better than that of pure GPU computation, but not as

optimal as our partially hybrid implementation since we need to tradeoff co-optimizing

computation with communication.

Finally, in order to attain the best parallel performance, the best balance be-

tween load overhead needs to be found. We combine both performance modeling and

empirical searching at build time to determine the optimal CPU-GPU load distribu-

tions for different problem sizes and different heterogenities. Our performance modeling

is to split the total execution in either GPU or CPU into several sub-steps, analyze

the heterogeneous execution flow, and derive a performance model for each sub-step.

Therefore, the modeled performance tuning under varying load ratio can be attained

and the best ratio for each input size is able to be found by empirical searching. The

optimal ratio obtained from our performance model might not be very accurate, but

it provided us a small and very precise region where the actual optimal ratio indeed

resides in. It enables to guide us to efficiently determine the actual optimal ratio in

our performance evaluation instead of a walk-through of the vast space of all possible
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cases. Although the performance modeling and tuning is done at build time, the over-

head is negligible as it only takes in the order of microseconds to evaluate our models.

The implementation result shows that work balance is obtained under the optimal load

ratio between CPU and GPU.
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Chapter 3

OUR HYBRID GPU/CPU FFT LIBRARY

3.1 Hybrid 2D FFT Framework

Our heterogeneous 2D FFT framework solves FFT problems that are larger

than GPU memory. Suppose that the problem size is N = Y × X, where Y is the

number of rows and X is number of columns. Generally 2D FFT involves two rounds

of computation, i.e. Y dimensional 1D FFT for all columns along X dimension and

then X dimensional 1D FFT for all the rows along Y dimension. A 2D FFT for an 2D

input f(y, x) of size N is defined in equation 3.1,

out(ky, kx) =
X−1∑
x=0

W xkx
X

Y−1∑
y=0

W
yky
Y f(y, x)

=
X−1∑
x=0

W xkx
X

Y−1∑
y=0

{W yky
Y f(y, xgpu) + W

yky
Y f(y, xcpu)}

(3.1)

where x, kx = 0, 1, ..., Xgpu, ..., X − 1; y, ky = 0, 1, ..., Y − 1; xgpu = 0, 1, ..., Xgpu − 1;

xcpu = Xgpu, ..., X − 1; twiddle factor W ab
c = e−j2πab/c. From equation 3.1, the work

load of 2D FFT in the first round can be distributed into GPU and CPU, respectively.

The work ratio of GPU to CPU in round one is denoted as RX = Xgpu
Xcpu

where Xgpu

and Xcpu are the X dimensional sizes for the GPU and CPU parts in the first round.

The total 2D FFT can be represented as u2d = {d(Y,X,X, I, O), d(X, 1, 1, O,O)} in

an extended I/O tensor format. When the 1D FFTs in each round of 2D problem are

large, we further apply Y dimensional Cooley-Tukey decomposition into the large 2D

FFT to reduce computational complexity and exploit more parallelism as well. In our
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Figure 3.1: Overview of Hybrid Large Out-of-card 2D FFT.

hybrid 2D FFT framework, the tensor representation of work distribution on GPU, i.e.

ugpu, and on CPU, i.e. ucpu, are transformed as equation 3.2.

ugpu ={d(Y1, Y2Xgpu,Xgpu, Igpu,Ogpu), Sync,

tY1Y2d(Y2, Y1X, Y1X,O,O), d(X, 1, 1, O,O)}

ucpu ={d(Y1, Y2Xcpu,Xcpu, Icpu,Ocpu), Sync}

(3.2)

where Y = Y1×Y2, Sync denotes data transfer and synchronization between CPU and

GPU within computation. As a result, three dimensional computations, i.e. Y1, Y2,

X in order, need to be executed. Also note that a twiddle factor computation tY1Y2 is

introduced by the Cooley-Tukey decomposition between Y1 and Y2 step. Figure 3.1

shows the high-level working flow of our hybrid 2D FFT framework.

11



3.1.1 Load Distribution

For Y1 dimensional computation, work load is distributed between GPU and

CPU. Work ratio of GPU to CPU is again denoted as RX = Xgpu
Xcpu

, but can take values

different from that of the first round. On GPU side, a portion of Y1 dimensional

FFTs need to be firstly computed. The size of 2D FFT problem on GPU may exceed

that of GPU global memory. In this case, we divide the 2D FFT of GPU part into

several passes such that the sub-problem of each pass can fit into GPU memory and

be executed with the CPU portions concurrently. The number of passes equals to

Xgpu*Y*# of bytes per element
GPU memory in bytes

. Each pass of GPU computation takes advantage of multiple

streams to overlap computation and communication. The optimal number of streams

can be determined from our empirical search.

3.1.2 Optimizations on GPU

On GPU, all the Y1 dimensional 1D FFTs are calculated by codelets, i.e., highly-

efficient straightline code segments that solve small FFT problems. The codelet pro-

vides automatic matrix transposing within FFT substeps such that much transposition

time can be saved. The concept of codelet was first introduced in FFTW, though its

codelet generator only generates CPU code. In our work, we extends FFTW codelet

generator to generate GPU-based codelets. In addition, if size Y1 is still large, we would

further decompose Y1 = Y11×Y12 sized 1D FFT into two dimensional FFTs with smaller

sizes Y11 and Y12, respectively. Since device memory is of much higher latency and lower

bandwidth than on-chip memory, shared memory on GPU is utilized for the decom-

posed FFTs to increase device memory bandwidth dramatically. For example, NVIDIA

GTX480 GPU has 48KB shared memory which can store 6K complex single-precision

data or 3K complex double-precision data in maximum. Y1W × Y11× Y12 sized shared

memory needs to be allocated, where Y1W is chosen to 16 for half-warp of threads

in GTX480 to enable coalesced access to device memory. The number of threads in

each block, for both Y11 and Y12-step sub-FFTs, is therefore Y1W ×max(Y11, Y12). To

calculate each Y1-step 1D FFT, a size Y11 codelet is first executed to load data from
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global memory into shared memory for each block. Next, all threads in a block are

synchronized to finish its work before data in shared memory is reused by the Y12-

step codelet and subsequently written back to global memory. Experiment tests show

that such shared memory technique effectively hides the latency of global memory and

increases data reuse, both contributing to performance on GPU.

3.1.3 Asynchronous Strided Data Transfer

An efficient data transfer scheme has been exclusively studied in this section.

A technique is proposed to process strided memory copy between GPU and CPU and

to maintain high PCI bandwidth. Furthermore, we discuss the restrictions to PCI

bandwidth based on well-designed tests and propose a method that overlaps different

partial data transfers with kernel executions for performance improvement.

3.1.3.1 Data Transfer Scheme

Another performance hurdle is strided memory transfers between CPU and

GPU. Since we separate the load between CPU and GPU, the portion of input data

required to be continuous in GPU memory is not contiguous in host memory. For

each pass of our 2D FFT, if we use simple CUDA memory copy operations to trans-

fer the total Xgpu×Y1×Y2
# of passes×# of streams

sized data into GPU, we need to utilize PCI bus

Y1× Y2
# of passes×# of streams

times because we transfer Xgpu sized data each time. Clearly,

the high PCI transfer overhead will kill all potential performance gain. CudaMem-

cpy2DAsync() can make only one call to transfer a strided 2D memory area of size

Xgpu×Y2
# of passes×# of streams

into GPU at a time. Therefore, the total number of PCI trans-

fers is reduced to only Y1. Moreover, such data transfer optimization supports for

CUDA asynchronous concurrent execution. Different data transfers managed by dif-

ferent streams can be executed concurrently and can be overlapped with different

streamed GPU kernel executions.

To best use cudaMemcpy2DAsync() in hybrid FFTs, when copying the GPU

output back to CPU, it is used to copy multiple 2D strided arrays. Each streamed
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PCI transfer at this time could copy Xgpu×Y2×Y1
# of passes×# of streams

sized data. After the Y1-step

FFTs, all the streams on GPU side are synchronized, and a subsequent barrier is set

to synchronize GPU with CPU.

3.1.3.2 PCI Bandwidth Evaluation

Particularly, our asynchronous strided transfer scheme achieves more efficient

bandwidth than that of PCI transmission approach proposed in Gu’s out-of-card FFT

work [6] since we do not need to waste additional CPU resource to prepare buffer and

therefore we get rid of overhead caused by buffering method in Gu’s work.

To demonstrate the improvement of our PCI bandwidth, we used the same

subarray test as Gu’s work [6], where there are C regular subarrays of length W each.

There is a stride X −W between every two regular subarrays in a large array of size

C ×X. The regular subarrays of a fixed size C ×W = 32M need to be transfer into

GPU memory from system memory through PCI bus. Note that the large array is

contiguous in system memory but regular subarrays are not contiguous. Naive CUDA

memory-copy operation is required to occupy PCI bus C times to transfer only one

regular subarray at a time, however, our 2D strided transfer approach only needs to

use PCI bus once without allocating redundant CPU resources for Gu’s buffering.

Figure 3.2 shows the improvement of our PCI bandwidth over Gu’s work. Overall,

PCI bandwidth of our 2D hybrid implementation can achieve 6.5 GB/s on average

comparing to only 4.2 GB/s of Gu’s work and 3.4 GB/s of naive PCI transfer.

3.1.3.3 Comparison to CUFFT

Theoretically, Tesla C2070 can sustain over 200 GFLOPS on a single precision

FFTs that fits in GPU memory using CUFFT. However, this performance excludes

the time spent on transferring input to GPU and transferring result back, which users

need to do for every CUFFT call. If that time is included, also on Tesla C2070,

CUFFT only delivers 41 GFLOPS. Our library is evaluated with all time included.

Unlike N-body simulations or matrix multiplications, FFT is largely a memory-bound
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Figure 3.2: PCI Bandwidth of Different Data Transfer Schemes.

problem due to frequent data exchanges. Therefore achieving peak performance in

heterogeneous CPU-GPU system is a challenge. As evaluated in section 5, our peak

single-precision performance achieves 44 GFLOPS, and more importantly, problem

sizes for our implementation are at least twice larger than the largest problem CUFFT

can handle. The co-optimization of computation and communication for such problems

is the key innovation of our work. Note that the complexity of FFT being O(NlogN),

it is harder to solve larger FFTs efficiently.

3.1.4 Optimizations on CPUs

For Y1 dimensional computation on CPU, Y1 sized 1D FFTs are required to

calculate for Xcpu×Y2 times. For each present Y1 dimensional 1D FFT, data accesses

have a stride of Xcpu×Y2. In addition, each 1D FFT needs to do a strided transpose.

Both strided memory accesses and strided transpose are very expensive on CPU. In-

stead, we group the transformation of multiple complex arrays into a concurrent group

operation and allow it to operate on non-contiguous (strided) data. Therefore, we need
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no input or output transposition and save much execution time. We set the number

of arrays—Xcpu—to be the maximum of what a FFTW group plan could execute at

a time. For each grouped array, the plan computes size Y1 1D FFT across a stride of

Y2 ×X for input and X for output. We need to execute such kind of plan for totally

Y2 times.

3.1.5 Cooperations of CPUs and GPU

To coordinate GPU and CPU in hybrid FFT, we parallelize the workload in

CPU side, which essentially is a loop of size Y2, into 4 concurrent subsections. Inde-

pendent grouped FFT computation steps are carried out in each parallel subsection.

Workload of GPU including data transfers and kernel executions is parallelized with

CPU computations. Afterwards, jobs on GPU driven by different streams are synchro-

nized before the task synchronization between GPU and CPUs. There is no matrix

transposition on either GPU or CPU since computations in either side is re-organized

to naturally subsume the strided transposition.

The subsequent calculation of twiddle factor multiplication tY1Y2 and Y2 & X

dimensional FFTs is left for GPU. For Y2 = Y21 × Y22 dimensional FFTs, Cooley-

Tukey decomposition is again applied since relative large size of Y2 would hurt the

performance of codelet based GPU computing. Similarly, shared memory is taken into

account for reusing data between the decomposed Y21-step FFTs and the subsequent

Y22-step FFTs. For the last X-step, i.e., 1D contiguous FFT sub-problems, CUFFT

library is used because it provides good performance for row-major contiguous 1D

FFTs. Instead of using ordinary CUFFT plan, we make use of stream-enabled CUFFT

plan such that all Y2 and X dimensional computations plus both PCI transfers of Y2’s

input and X’s output become stream-based asynchronous executions.

3.1.6 Comparison to other heterogeneous FFT implementation

In addition, we also compare our hybrid FFT library against a naive hybrid

2D FFT implementation comprising of assigning GPU workload to CUFFT and CPU
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workload to FFTW. This heterogeneous method was first proposed in Ogata’s work [8].

Computation is firstly distributed along X dimension in the 1st-round of 2D FFT and

along Y dimension for the 2nd-round. In GPU side, sub-problems is further divided

into several passes to facilitate data transfer between GPU and CPU. Matrix transpose,

CUFFT and data transfer are processed in asynchronous manner. In CPU side, in-

stead of ordinary FFTW along with transpose, FFTW advanced interface is utilized to

handle strided data more efficiently. The purpose of this comparison is to see how our

optimization technique improves over a naive hybrid CUFFT/FFTW solution. In the

experiment, we vary the CPU/GPU work ratio from 0% to 100% for the naive solution

and show its double precision performance curve of size 215×213 on C2070 in figure 3.3.

The best performance for the naive hybrid FFT is only 7.7 GFLOPS which is far below

that of our hybrid version. The main reason is the lacking of co-optimization in the

naive solution.
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3.2 Hybrid 3D FFT Framework

General 3D FFT requires three rounds of computation. Each round computes

1D FFT along one dimension across the other two dimensions. Suppose the 3D in-

put has sizes (Z, Y,X), the 3D FFT can be represented in tensor form as u3d =

{d(Z,XY,XY, I, O), d(Y,X,X,O,O), d(X, 1, 1, O,O)}.

To describe how our hybrid 3D FFT works, we start with a simple hypothetical

scenario where all the work is assigned to GPU, and then continue to reveal how

computation is extracted from this GPU-only hypothetical case and is assigned to

CPU. Suppose that Z = Z1 × Z2 and Y = Y1 × Y2, the u3d can be transformed as in

formula 3.3, where |i and |o denotes respective input and output data transfers through

PCI bus.

{|i, d(Z1, XY Z2, XY ), |o|i, tZ1
Z2
d(Z2, XY Z1, XY Z1), |o|i,

d(Y1, Y2X,X), |o|i, tY1Y2d(Y2, Y1X, Y1X), |o|i, d(X, 1, 1), |o}
(3.3)

The problem with this initial formula is that the workload in the formula cannot be

well balanced between two computing devices. To balance computations between CPU

and GPU, and to enable asynchronous communications, the computations sub-steps

need to be reordered [6]. The reordered computations are summarized in equation 3.4.

{|i, d(Z1, XY Z2, XY ), d(Y1, Y2X,X), tY1Y2d(Y2, Y1X,

Y1X), |o|i, tZ1
Z2
d(Z2, XY Z1, XY Z1), d(X, 1, 1), |o}

(3.4)

Next let’s examine how the workload as represented in the equation 3.4 can be dis-

tributed to CPU and GPU. We start our discussion with a simple hypothetical scenario

where all the work is assigned to GPU. In this case only two rounds of computation

are required to execute total 3D FFT. The first round is to input data into GPU for

several passes, to calculate Z1, Y1, Y2 dimensional FFTs in order for each pass, and to

output intermediate results of Y2 into CPU. The second round is to transfer the tem-

porary results into GPU, to calculate twiddle factor tZ1
Z2

with Z2 dimensional FFTs and

execute X dimensional FFTs before final results are transferred back to CPU. Such
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Figure 3.4: Overview of Hybrid Large Out-of-card 3D FFT.

GPU execution flow in formula 3.4 achieves great performance improvement because

it saves the number of data transfers between CPU and GPU by 6×# passes times in

total, while in the original setup in formula 3.3, the total number of PCI transfers is

10×# passes since each portion of that tensor u3d requires to invoke PCI bus transfers

2×# passes times for both input and output data between CPU and GPU. The hybrid

3D FFT framework is illustrated in figure 3.4.
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3.2.1 Load Distribution

We have shown in the hybrid 2D FFT framework that if we want to achieve

actual high performance from heterogeneous implementation, we need to get rid of

frequent uses of PCI bus transfers. For the pure GPU implementation in formula 3.4, in

addition to the initial input transfer and final output transfer through PCI bus, we only

need two extra PCI transfers including copying output of Y2 dimensional FFTs from

GPU back to CPU, and copying the input of subsequent Z2 dimensional FFTs from

CPU into GPU. Therefore if we want to employ CPU for computing along with GPU,

we need to arrange the data exchange between CPU and GPU to occur between Y2 and

Z2 dimensional FFTs to reduce the total number of PCI bus transfers. Otherwise, more

PCI transfers will be invoked to merge the partial results of CPU and GPU between

two sub-steps of FFTs. Therefore, CPU is used to compute Z1, Y1 and Y2 dimensional

FFTs, and the subsequent calculation of Z2 and X dimensional FFTs would be left

for GPU to finish. In summary, the heterogeneous 3D FFT tensor on GPU ugpu and

the tensor on CPU ucpu are represented as formula 3.5, where Sync represents data

transfer and synchronization between CPU and GPU within computation.

ugpu = {|i, d(Z1, XgpuY Z2, XgpuY ),

d(Y1, Y2Xgpu,Xgpu), tY1Y2d(Y2, Y1Xgpu, Y1Xgpu),

Sync, tZ1
Z2
d(Z2, XY Z1, XY Z1), d(X, 1, 1), |o}

ucpu =

{d(Z1, XcpuY Z2, XcpuY ), d(Y,Xcpu,Xcpu), Sync}

(3.5)

For the first round computation composed of Z1, Y1 and Y2 dimensional 1D FFTs, the

work load is distributed to GPU and CPU along X dimension. Work ratio of GPU to

CPU is RX = Xgpu
Xcpu

.

3.2.2 Optimizations for GPU and Data Transfer

On GPU side, a portion of data in the total FFT problem needs to be transferred

from CPU initially. Since the size of FFTs assigned to GPU is larger than that of
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GPU global memory, the total Z1 dimensional FFTs of GPU part are split into several

passes such that subtask of each pass can fit into GPU memory. The number of passes

equals to Xgpu*Y*Z*# of bytes per element
GPU memory in bytes

. Each pass of GPU computation still makes use of

multiple streams to overlap computation and communication.

For better utilization of shared memory, Z1 = Z11 × Z12 sized 1D FFTs are

decomposed into two dimensional FFTs with smaller size Z11 and Z12. Shared memory

is allocated with size Z1W ×Z11×Z12, where Z1W enables coalesced access to shared

memory. The number of threads in each block is set to be Z1W × max(Z11, Z12)

which matches the natural parallelism for both size Z11 and Z12 1D FFTs within their

respective shared memory. The computation for decomposed FFTs within shared

memory is the same as the Y1 decomposed FFTs in our 2D hybrid FFT framework,

and therefore is not further discussed here.

Since the portion of input data that is required to be continuous in GPU mem-

ory is not contiguous in host memory, We use cudaMemcpy3DAsync() on GPU to

transfer a strided 3D memory area of size Xgpu×Y×Z2

# of passes×# of streams
into GPU at a time.

Therefore, the total number of PCI transfer is reduced to Z1. Moreover, different data

transfers managed by different streams can be executed concurrently and overlapped

with different streamed GPU kernels. For the copying of output from GPU back to

CPU, we still need the 3D strided memory copy. Each streamed PCI transfer at this

time could copy Xgpu×Y×Z2×Z1

# of passes×# of streams
sized data. After each stream finishes calculating

Z1 dimensional FFTs, it will continue to compute Y1 and Y2 dimensional FFTs with-

out waiting for other streams. All Z1, Y1 and Y2 dimensional computations plus both

Z1’s input and Y2’s output PCI transfers are asynchronous executions, and the only

synchronization needed is after the Y2-step.

3.2.3 Cooperations of CPUs and GPU

Similar to the 2D hybrid FFT, we execute the size Z1 FFTs in groups. For each

grouped array, the plan computes size Z1 1D FFTs across a stride of X×Y×Z2 for input

and Xcpu ∗ Y for output. The total number of executions of such plans is Xcpu×Z2.
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For the following Y1 and Y2 dimensional FFTs, we only need to calculate size Y FFTs

instead on CPU. The number of grouped array is Xcpu. The plan computes size Y

1D FFTs across a stride of Xcpu for input and X for output. The total number of

executions of such plans is Z. Moreover, all the grouped FFT tasks, in total Xcpu×Z2

plus Z, are distributed to 4 concurrent threads. The work of GPU is executed in a

control thread concurrently with CPU computations. There is only an invocation to

cudaThreadSynchronize() to synchronize all the streams on GPU. A subsequent barrier

is set to synchronize the work of GPU with CPUs.
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Chapter 4

LOAD BALANCING BETWEEN GPU AND CPU

The 2D and 3D hybrid FFT frameworks layout the basic schemes of workload

distribution between CPU and GPU. However, there are parameters whose values need

to be tuned for the optimal load balancing for different CPU/GPU combinations. In

this work, we combine both performance modeling and empirical searching to finish

the last mile towards the optimal load balancing. The empirical tuning is done at build

time.

Our approach is to split the total execution in either GPU or CPU into several

primitive sub-steps, analyze the heterogeneous execution flow, and derive a perfor-

mance model for each primitives. The model parameters provide estimated execution

time that is parameterized with the load ratio of GPU to total work. For each problem

size, we calibrate the models with two profiling runs, one on CPU and GPU each, to

determine the values of model parameters in different distribution ratios.Afterwards,

using those parameters, we can automatically estimate, rather than really measuring,

the total execution time of our implementation under varying ratios. We further use

dynamic-programming to find the optimal implementation for different problems using

the primitives as building blocks. However, the estimated performance might not be

completely precise. Therefore, we don’t purely rely on the aforementioned performance

estimation but only use it to provide a small region of potentially good choices, for

which we empirically measure their performance and choose the best one. Therefore,

we avoid a walk-through of the vast space of all possible combinations of primitives.

Although the modeling is done at build time, the overhead is negligible as it

only takes in the order of microseconds to evaluate our models. Experimental results

of performance tuning and validation will be described in more detail in section 5.1.
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4.1 Load Balancing of 2D FFT

Using the hybrid 2D FFT as an example, suppose that the total problem size

is Y1 × Y2 ×X. The load ratio of GPU to total work is set to Rg along X dimension,

therefore the ratio of CPU to the total is 1−Rg. The execution time of the whole process

can be modeled as 8 parameters, which are summarized in table 4.1. We used two

runs, one on GPU and CPU each, to determine T2dH2D-gpu, TY1kernel-gpu, and T2dD2H-gpu

as execution time of corresponding table 4.1’s parameters in GPU-only case, and to

determine TY1fftw-cpu as execution time of TY1fftw(1−Rg) in CPU-only case. Therefore,

each parameter value in table 4.1 can be modeled with different distribution ratios.

Table 4.1: Parameters for 2D FFT Running Time Estimation.

Parameters Description

# passes Total # of passes. Subproblem of each pass fits into GPU memory.
# streams Total # of streams that enables asynchronous kernel executions and transfers.

# thds # of threads of CPU.
T2dH2D(i, Rg) = T2dH2D-gpu ×Rg. Time of copying a 2D strided array of size

Rg×X×Y2

# passes×# streams from host to device in stream i.

TY1kernel(i, Rg) = TY1kernel-gpu ×Rg. Time of Y1-step FFTs computation of concurrent
kernel in stream i.

Thread block size is Y1W ×max(Y11, Y12), grid size is
Rg×X×Y2

# passes×# streams .

T2dD2H(i, Rg) = T2dD2H-gpu ×Rg. Time of copying a 2D strided array of size
Rg×X×Y

# passes×# streams from device to host in stream i.

TY1fftw(1−Rg) = TY1fftw-cpu × (1−Rg). Time of Y1-step FFTs on advanced FFTW plan for
grouped array of size (1−Rg)×X in CPU. Total number of plans is Y2.

TY2&X Time of subsequent calculation of Y2 and X dimensional FFTs.

On GPU side, for hybrid Y1 dimensional FFTs, the execution time is estimated

as TG2D shown in equation 4.1.

TG2D = #passes×max{[Y1 × T2dH2D(0, Rg)+

TY1kernel(0, Rg) + T2dD2H(0, Rg)]; [...];

[Y1 × T2dH2D(# streams-1, Rg)

+ TY1kernel(# streams-1, Rg)

+ T2dD2H(# streams-1, Rg)]; }

(4.1)
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On CPU side, for hybrid Y1 dimensional FFTs, the execution time is estimated

as TC2D = Y2
#thds

× TY1fftw(1−Rg).

Since synchronization is set after Y1-step FFT on both GPU and CPU side

to guarantee the correctness of results, the execution time of hybrid Y1 dimensional

FFT can be modeled as the maximum of the GPU time and CPU time, i.e., TY1 =

max{TG2D, TC2D}. And the total time estimation will be consequently calculated as

Ttotal = max{TG2D, TC2D} + TY2&X . Afterwards, empirical searching is employed to

find the parameter values that can make TG2D equal to TC2D, as well as the sub-steps

along other dimensions, which indicates the optimal load balancing.

4.2 Load Balancing of 3D FFT

The load balancing in the hybrid 3D FFT framework is similar to that of the

2D cases. Suppose that the total problem size is Z1 × Z2 × Y1 × Y2 × X. The load

ratio of GPU to total work is denoted as Rg along X dimension and ratio of CPU

to total problem is 1 − Rg. Performance parameters for the sub-steps in 3D hybrid

FFT are summarized in table 4.2. Two profiling runs still help determine T3dH2D-gpu,

TZ1kernel-gpu, TY1kernel-gpu, TY2kernel-gpu, T3dD2H-gpu, and TZ1fftw-cpu, TY fftw-cpu as execution

time in respective GPU-only and CPU-only case for the parameters in table 4.2.

On GPU side, for hybrid Z1&Y dimensional FFTs, the execution time is esti-

mated as TG3D shown in equation 4.2.

TG3D = #passes×max{[Z1 × T3dH2D(0, Rg)+

TZ1kernel(0, Rg) + TY1kernel(0, Rg)+

TY2kernel(0, Rg) + T3dD2H(0, Rg)]; [......];

[Z1 × T3dH2D(# streams-1, Rg)

+ TZ1kernel(# streams-1, Rg)

+ TY1kernel(# streams-1, Rg)

+ TY2kernel(# streams-1, Rg)

+ T3dD2H(# streams-1, Rg)]; }

(4.2)
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Table 4.2: Parameters for 3D FFT Running Time Estimation.

Parameters Description

T3dH2D(i, Rg) = T3dH2D-gpu ×Rg. Time of copying a 3D strided array of size
Rg×Y×Z2

# passes×# streams from host to device in stream i.

TZ1kernel(i, Rg) = TZ1kernel-gpu ×Rg. Time of Z1-step FFTs computation of concurrent
kernel in stream i.

Thread block size is Z1W ×max(Z11, Z12), grid size is
Rg×Y×Z2

# passes×# streams .

TY1kernel(i, Rg) = TY1kernel-gpu ×Rg. Time of Y1-step FFTs computation of concurrent
kernel in stream i.

Thread block size is Y1W , grid size is
Rg×Y2

Y1W
× Z

# passes×# streams

TY2kernel(i, Rg) = TY2kernel-gpu ×Rg. Time of Y2-step FFTs computation of concurrent
kernel in stream i.

Thread block size is Y2W , grid size is
Rg×Y1

Y2W
× Z

# passes×# streams ,

T3dD2H(i, Rg) = T3dD2H-gpu ×Rg. Time of copying a 3D contiguous array of size
Rg×Y×Z1×Z2

# passes×# streams from device to host in stream i.

TZ1fftw = TZ1fftw-cpu × (1−Rg). Time of Z1-step FFTs on advanced FFTW plan
for grouped array of size Y in CPU.
Total # of plans is (1−Rg)×X × Z2.

TY fftw(1−Rg) = TY fftw-cpu × (1−Rg). Time of Y -step FFTs on advanced FFTW plan
for grouped array of size (1−Rg)×X in CPU. Total # of plans is Z.

TZ2&X Time of subsequent calculation of Z2 and X dimensional FFTs.

On CPU side, for hybrid Z1&Y dimensional FFTs, the execution time is esti-

mated as TC3D represented in equation 4.3.

TC3D =
(1−Rg)×X × Z2

#thds
× TZ1fftw

+
Z

#thds
× TY fftw(1−Rg)

(4.3)

Similarly, since a synchronization is set after Z1&Y -step FFT on both GPU and

CPU side, the execution time of hybrid Z1&Y dimensional FFT can be modeled as

the maximum of the GPU time and CPU time, i.e., TZ1&Y = max{TG3D, TC3D}. The

total time estimation is calculated as Ttotal = max{TG3D, TC3D} + TZ2&X . Empirical

searching techniques similar to 2D cases are used to balance the substeps, as well as

those along other dimensions.

26



Chapter 5

PERFORMANCE EVALUATION

In this section, we evaluate the hybrid 2D and 3D FFT implementation on

three heterogeneous computer configurations. A single model of CPU, Intel i7 920, is

coupled with three different NVIDIA GPUs, i.e. GeForce GTX480, Tesla C2070 and

Tesla C2075 in the three experiments. The configurations of the GPUs, CPU and FFT

libraries are summarized in table 5.1.

We compare our library in both single- and double-precisions against FFTW and

Intel MKL, two of the best performing FFT implementations on CPU. Moreover, our

hybrid FFT library is compared with Gu’s out-of-card FFT work [6], a highly efficient

GPU-based FFT library and the only one that we know can handle the problems

sizes larger than GPU memory. The whole design of this performance evaluation is to

let us see how much performance improvement can be achieved by using both CPU

and GPU in computation, against the best-performing GPU-only or CPU-only FFT

implementations. Please note that we can’t compare our library with other GPU-based

FFT implementations because all of them require problem sizes to be smaller than GPU

memory, and therefore are unable to handle the problem sizes used in this evaluation.

In FFTW, Streaming Single Instruction Multiple Data Extensions (SSE) on Intel CPU

Table 5.1: Configurations of GPU, CPU, FFTW and MKL.

GPU Memory Compute Capability NVCC & CUFFT
GeForce GTX480 1.5GB 2.0 3.2

Tesla C2070 6GB 2.0 3.2
Tesla C2075 6GB 2.0 3.2

CPU Frequency Cores FFTW & MKL
Intel i7 920 2.66GHz 4 3.3.2 & 10.3
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is enabled for better performance. Also FFTW results are got with the ‘MEASURE’

flag, the second most extensive performance tuning mode. The ‘EXHAUSTIVE’ flag in

FFTW, which represents the most extensive searching and tuning, is not used because

the problem sizes in this evaluation are so large that FFTW can’t finish its search under

the ‘EXHAUSTIVE’ mode. For example, we tried running FFTW in ‘EXHAUSTIVE’

mode for a 228 FFT problem, but found FFTW couldn’t finish the search in 3 days. In

addition, Intel MKL automatically enables SSE at run time. Both FFTW and MKL

are chosen to run with four threads. Even though the i7 CPU supports 8 hyperthreads,

the 8-thread FFTW and MKL didn’t show performance advantage over, actually in

some cases were slower than, the 4-thread versions.

All FFT problems are out-of-place with separate input and output with initial

inputs filled by random numbers. For double-precision implementation on GTX480, we

choose the test cases from 32M points (i.e. 225) to 256M points (i.e. 228). 32M-point

FFT is twice the maximal problem size that GTX480 memory can accommodate and

256M-point FFT is the maximum problem size that can fit into host memory. For

single precision tests on GTX480, the sizes are from 64M points (i.e. 226) to 512M

points (i.e. 229). Similarly, for Tesla C2070/C2075, test cases are from 256M points

(i.e. 228) to 512M points (i.e. 229) for double precision implementation and from 512M

points (i.e. 229) to 1024M points (i.e. 230) for single precision test. The performance

of a D dimensional out-of-place complex FFT is evaluated in GFLOPS defined as

GFlops =
5M

∑D
d=1 log2Nd

t
× 10−09 (5.1)

where the total problem size is M = N1 ·N2 · ... ·ND and t is execution time in seconds.

5.1 Performance Tuning with Load Distribution Ratios

For both 2D and 3D FFTs, our performance modeling and empirical searching

find the optimal ratio and best performance for different input sizes. To demonstrate

the effect and accuracy of load distribution ratio tuning on overall FFT performance,

we vary distribution ratio from 0% to 100%.
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Figure 5.1 shows the actual and modeled double-precision 2D FFT performance

on three different GPUs under different load ratios with problem size 215 × 213. In

particular, 0% represents running our hybrid FFT library only on CPU and 100%

represents running only on GPU. The two extreme cases will help demonstrating the

intrinsic overhead incurred by splitting computation/communication into two devices.

Table 5.2 shows the tested values of model parameters for the profiling runs of GPU-

only and CPU-only case described in section 4.1 and 4.2. With this preparation,

parameters in table 4.1 and 4.2 can be effectively modeled to determine the overall

performance of our implementation in GFLOPS. As shown in the figure, the estimated

optimal ratio is 100%, 100% and 96% as closed as the actual one measured on GTX480,

Tesla C2070 and C2075, respectively. Moreover, the modeled optimal and average

performance is 99%, 96%, 95%, and 98%, 93%, 91%, as closed as the actual one

measured on the three GPUs, respectively.

Figure 5.2 shows the actual and modeled double-precision 3D FFT performance

with size 210×29×29. The estimated optimal ratio is successfully identified comparing

to the actual one measured on the three GPUs. Moreover, the modeled optimal and

average performance is 100%, 95%, 93%, and 98%, 94%, 91%, as closed as the actual

one.

The modeling error is mainly caused by the overlapping between kernel computa-

tion and data communication, although the asynchronous scheme has been considered

comprehensively when designing our model parameters. The secondary reason of error

is due to the caching on CPU which causes the runtime performance slightly different

from the estimated for different ratios. However, from the accuracy test of modeling

described above, our estimation is still effective when determining optimal ratios and

the best performance.

In addition, speedups of our optimal performance over GPU-only and CPU-only

case are also tested. As shown in figure 5.1, for GTX480, Tesla C2070 and C2075, the

optimal ratios of GPU to total work are 71.9%, 78.2% and 78.2%, respectively. The

29



Table 5.2: Valid Model Parameters in Seconds for FFTs of Size 215 × 213 and 210 ×
29 × 29.
Parameter Time Parameter Time Parameter Time
T2dH2D-gpu 0.003 TY1kernel-gpu 0.041 T2dD2H-gpu 0.042
TY1fftw-cpu 0.195 TY2&X 1.137

T3dH2D-gpu 0.024 TZ1kernel-gpu 0.014 TY1kernel-gpu 0.028
TY2kernel-gpu 0.1 T3dD2H-gpu 0.02 TZ1fftw-cpu 0.0008
TY fftw-cpu 0.01 TZ2&X 1.221

best-balanced performance is 21.4%, 19.1% and 20.7% faster than GPU-only perfor-

mance, and is 1.09×, 1.59× and 1.76× faster than CPU-only cases. Moreover, for the

three GPUs shown in figure 5.2, the optimal ratios of GPU to the total are 75.0%,

78.2% and 78.2%. The best-balanced performance is 25.6%, 22.8% and 23.1% faster

than GPU-only performance, and is 1.25×, 1.51× and 1.62× faster than CPU-only

case.

Not shown in this figure, but the single-precision performance tuning with ratios

has similar curve as that of the double-precision case. Also the optimal ratio of GPU

to CPU in single-precision version is larger than that of double precision since GPU

has relatively higher performance on single precision operations than CPU.

5.2 Evaluation for 2D Hybrid FFT

We evaluate various 2D FFT problems on the three heterogeneous configura-

tions. The 2D hybrid FFT performance of all test points are reported with the em-

pirically found work distribution ratio of GPU to CPU. In all the figures, the test

points are indexed in an increasing order of Y in the problem sizes. Figure 5.3 shows

our single-precision 2D FFT performance on Geforce GTX480 with problem sizes from

226 to 229. On average, our single-precision 2D hybrid FFT on GTX480 achieves 25.5

GFLOPS. Our optimally-distributed performance is 16% faster than Gu’s pure GPU

version, and is also 95% faster than the 4-thread FFTW and 1.06× faster than the

4-thread MKL. In particular, even if we run our hybrid FFT only on GPU, it is still

faster than Gu’s work, a high-performance GPU-based FFT implementation, mainly
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Figure 5.1: Double-precision 2D FFT Performance Tuning.
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attributing to the asynchronous transfer schemes in our hybrid algorithm.

Furthermore, we also test 2D hybrid FFT performance in double-precision as

shown in figure 5.4. Our double-precision 2D hybrid FFT on GTX480 achieves 13.1

GFLOPS. Moreover, our optimal performance is 20% faster than Gu’s pure GPU im-

plementation, and is 98% faster than the 4-thread FFTW and 1.04× faster than the

4-thread MKL.

Additionally, figure 5.5 and figure 5.6 show our large 2D FFT results on the

Tesla C2070/C2075 with even larger problem sizes in single and double precision. On

average, our single-precision 2D hybrid FFT achieves 37.2 GFLOPS on Tesla C2075

and 33.7 GFLOPS on Tesla C2070, which represent speedups of 26% and 24% over

Gu’s pure GPU implementation, 2.23× and 1.93× over the 4-thread FFTW, and 2.41×

and 2.09× over the 4-thread MKL, respectively.

For double precision, the performance is 19.1 GFLOPS and 17.8 GFLOPS on

Tesla C2075 and C2070, which represent 29% and 28% speedups over Gu’s pure GPU

implementation, 2.08× and 1.87× speedups over the 4-thread FFTW and 2.24× and

2.02× speedups over the 4-thread MKL.

Not shown in figures, but the overall performance of our hybrid 2D FFT is

2.22× and 22% faster than CPU-only and GPU-only case.

Particularly notable is that as Y increases, the performance of both FFTW and

MKL decreases rapidly because the data locality loses rapidly along the Y dimensional

computation when Y increases. On the contrary, our hybrid FFT demonstrates a much

more stable performance.

5.3 Evaluation for 3D Hybrid FFT

Figure 5.7, 5.9 and figure 5.8, 5.10 show the performance of our single- and

double-precision 3D hybrid FFT on GTX480 and Tesla C2075/C2070. On average our

library achieves 18.4 GFLOPS on GTX480, 23.2 GFLOPS on C2075 and 21.5 GFLOPS

on C2070.
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Figure 5.3: Single-precision 2D FFT of Size from 226 to 229 on GTX480.
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Figure 5.4: Double-precision 2D FFT of Size from 225 to 228 on GTX480.
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Figure 5.5: Single-precision 2D FFT of Size from 229 to 230 on Tesla.
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Figure 5.6: Double-precision 2D FFT of Size from 228 to 229 on Tesla.
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Figure 5.7: Single-precision 3D FFT of Size from 226 to 229 on GTX480.

On average, our hybrid 3D FFT library is 19.5% faster than Gu’s GPU only

FFT implementation, 74.2% faster than the 4-thread FFTW and 1.09× faster than

MKL. Not shown in figures, but our 3D performance is 2.02× and 18% faster than

CPU-only and GPU-only case. Similar to their 2D performance, FFTW’s and MKL’s

3D performance decrease quickly as Z increases due to the loss of data locality though

MKL generally performs better than FFTW for large Zs. Our hybrid library generally

maintains its good performance for the same large Z cases.

5.4 Accuracy of Our Hybrid FFT

The correctness of our hybrid FFT library is verified against FFTW and MKL.

All three libraries are tested with the same single-precision input data randomly chosen

from -0.5 to 0.5 and the difference in output is quantified as normalized RMSE over

the whole data set. The normalized RMSE evaluates the relative degree of deviations
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Figure 5.8: Double-precision 3D FFT of Size from 225 to 228 on GTX480.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

9
*9

*1
1

9
*1

0
*1

1

1
0
*9

*1
0

1
0
*1

0
*9

1
0
*1

0
*1

0

1
0
*9

*1
1

1
1
*9

*9

1
1
*9

*1
0

1
2
*8

*9

1
2
*8

*1
0

1
2
*9

*9

1
3
*8

*8

1
3
*8

*9

1
4
*7

*8

1
4
*8

*8

1
5
*7

*7

G
F

L
O

P
S

logZ*logY*logX

FFTW 1 thread
FFTW 2 threads
FFTW 4 threads

MKL 1 thread
MKL 2 threads

MKL 4 threads
Hybrid FFT Tesla C2075
Hybrid FFT Tesla C2070

GPU only: Gu et al Tesla C2075
GPU only: Gu et al Tesla C2070

Figure 5.9: Single-precision 3D FFT of Size from 229 to 230 on Tesla.
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Figure 5.10: Double-precision 3D FFT of Size from 228 to 229 on Tesla.

and is a wildly used metric for numeric accuracy. The normalized RMSE is defined as√∑N−1
i=0 (Xi −Ri)2 + (Yi − Si)2

2N
/

√∑N−1
i=0 (R2

i + S2
i )

2N
. (5.2)

The normalized RMSEs of single- and double-precision for both 2D and 3D

FFTs are shown in Figure 5.11 and figure 5.12. As we can see the normalized RMSE is

extremely small and is in the range from 2.41×10−07 to 3.18×10−07 for single precision

and 5.82× 10−16 to 8.02× 10−16 for double precision. In other words, our hybrid FFT

library produces almost the same results as FFTW and MKL.
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Figure 5.11: Accuracy of Single-precision Hybrid 2D/3D FFT.
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Figure 5.12: Accuracy of Double-precision Hybrid 2D/3D FFT.
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Chapter 6

CONCLUSION AND FUTURE WORK

In this project, we proposed a hybrid FFT library that concurrently uses both

CPU and GPU to compute large FFT problems. The library has three key components:

a decomposition paradigm that mixes two FFT algorithms to extract different types

of computation and communication patterns for the two different processor types; a

load balancer that assigns workloads according the computation capability of CPU and

GPU; and an optimizer that empirically tune the library to find the best tradeoff among

communication, computation and the overlapping between the previous two factors.

Overall, our hybrid library outperforms two best performing FFT implementations by

121% and 145%, respectively.

Our future work would be able to implement our hybrid approach in the plat-

form possessing more GPU/CPU resources. Specifically, we will extend our library to

exploit the parallelism in a cluster with multi-GPUs and multi-CPUs. Our hybrid FFT

approach and performance model would still be capable of working on such advanced

heterogeneous computing systems. Additionally, some other flexible applications, such

as sparse FFT algorithm and modeling of turbulent cloud dynamics, could be further

implemented very efficiently using our hybrid method.
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