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ABSTRACT

Chemotherapy is mostly effective in helping cancer patients but invariably some

cells will mutate to become more fit against chemotherapeutic agents. We build upon

previous work that focuses on transfecting tumor cells via a delivery virus. The trans-

fected cells then become both chemoresistant and sensitive to ganciclovir, which is an

acyclic nucleotide antiviral agent. A positive selection phase of chemotherapy admin-

istration and negative selection phase of ganciclovir injection enables a chemoresistant

tumor to be eradicated by a bystander effect. The bystander effect occurs when gan-

ciclovir is applied and is strong enough to eradicate the tumor if cell populations and

parameters are favorable. An ordinary differential equation model is used to represent

the biological phenomena. A control system is developed in computer simulation to find

the optimal treatment strategy. We improve upon previous research by modifying the

cost function to measure for absolute minimum tumor size and also by incorporating

realistic physiological parameters into our models.
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Chapter 1

INTRODUCTION

Pancreatic cancer is the 4th most common form of cancer in the USA, 8th

worldwide and has a poor prognosis (7). The one and five year post-diagnosis survival

rates are 25% and 6% respectively. The development of cancer may involve the over-

expression of oncogenes, inactivation of tumor suppressor genes or the deregulation

of various signaling proteins (8). In order to determine an effective chemotherapeutic

treatment schedule to cure pancreatic cancer, we build an ODE model based on previ-

ous work (14). Chemotherapy causes apoptosis in rapidly-dividing cells. This prevents

cancer cells from successfully multiplying (9). However, cancerous cells can mutate to

become chemoresistant. If these chemoresistant cells have a greater fitness than other

cell types then they could grow to become the dominant cell type. If this happens,

the cancerous tumor becomes extremely difficult to cure. To avoid this problem our

model has a positive selection phase for transfected cells where chemotherapy kills the

chemosensitive cells (X population). The ideas of transfection and a positive selec-

tion process were introduced by Martinez-Quintanilla et al. (10,11). In their paper,

pancreatic carcinoma cell lines are transfected via a plasmid containing one of two

separate genes encoding either multidrug resistance gene1 (MDR1) or Dihydrofolate

reductase (DHFR), combined with a gene encoding herpes simplex virus thymidine ki-

nase (HSV-TK). This is captured in our model with the three types of cell populations.

As the proportion of the tumor that is composed of chemosensitive cells decreases, the

Z cells (induced chemoresistant cells) are able to outcompete the Y type cells (natural

chemoresistant cells) and thus comprise a larger portion of the tumor than before the

positive selection phase.
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Ganciclovir is an acyclic nucleotide antiviral agent. This transfection uses a

hybrid gene that encodes an enzyme that confers ganciclovir sensitivity, and a second

gene that confers resistance to another chemotherapy. After this positive selection

phase the tumor is mostly comprised of cells that fall within two population types.

One type, Y type cells, are chemo and ganciclovir (GCV) resistant and the other type,

Z, are chemoresistant and GCV susceptible. If there are enough Z-type cells relative

to the entire tumor, bystander effects due to apoptosis of Z when GCV is applied

will reduce the number of Y -cells to extinction. The bystander effect originates when

tyrosine kinase diffuses out of the Z cell into the neighboring cells, making them also

GCV-sensitive. This will effectively eradicate any cancer because Z-type cells will also

go extinct when treated with GCV. If however, the bystander effect is not strong enough

to completely wipe out the Y population, then the remaining Y -cells will repopulate

and become an incurable tumor.

The HSV-TK mono-phosphorylates GCV that is subsequently converted by

mammalian cellular kinases to GCV-triphosphate, a potent inhibitor of DNA poly-

merase that blocks DNA replication and causes cell death (2, 22). DHFR and MDR1

are well known and widely utilized chemoresistance genes that can induce chemore-

sistance in tumor cells via transfection (5). This transfection and positive selection

process are also used and accounted for in the original ODE model (14).

One way we improve this model is by updating the model parameters with

biologically relevant values found from previous literature. In unpublished work by

Stephany Rojas-Garcia, the author used data fitting to obtain values for several model

parameters including cell growth rates and chemotherapeutic effectiveness on different

cell types. The untreated tumor growth curves of 18 orthotopic implanted pancreatic

tumor-bearing mice (16) were required for the elaborate data fitting approach and pa-

rameter estimation. By utilizing GFPs, Bouvet (16) reported the whole body optical

image in real time of genetically fluorescent pancreatic tumors growing and metasta-

sizing in live mice. The experimental data was fitted to a logistic growth model using

a simulated annealing optimization method. Other necessary parameters were taken
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from a paper by Wein et al. (15) that developed a mathematical model to analyze the

infection process of a replication-competent virus to a three-dimensional tumor. The

values of cell death rates for X, Y , and Z are taken from the paper by Stark et al.

(17).

The remainder of this thesis is organized in the following way: section 2 provides

a biological background, section 3 presents our model, section 4 shows our results, and

section 5 is our conclusion.

Table 1.1: Parameter Values

Parameter Value Meaning Source

dX(t) 0.009464 Chemotherapy Sensitive Cell Death Rate mm3

day
M. J. Stark, et al., 1995

dY (t) 0.009464 Naturally Chemo-Resistent Cell Death Rate mm3

day
M. J. Stark, et al., 1995

dZ(t) 0.009464 Induced Chemo-Resistant Cell Death Rate mm3

day
M. J. Stark, et al., 1995

r 0.0676 Chemotherapy Sensitive Cell Growth Rate mm3

day
Data Fitting

λ 0.0676 Naturally Chemo-Resistant Cell Growth Rate mm3

day
Data Fitting

s 0.0676 Induced Chemo-Resistant Cell Growth Rate mm3

day
Data Fitting

K 302.3935 Tumor Carrying Capacity mm3 Data Fitting
k 1.0∗104 Burst Size PFU

cell
Wu, 2004

p 24 Virus Death Rate 1
day

Wu, 2001

Θ 1.0∗106 Tumor Cell Density cells
mm3 Wein et al., 2003

R0 3.73 Basic Reproductive Ratio Wein et al., 2003
CX(t) 0.95 Chemotherapy Efficacy - Chemotherapy Sensitive Cell 1

day
Data Fitting

CY (t) 0.0 Chemotherapy Efficacy - Naturally Chemo-Resistent Cell 1
day

Data Fitting

CZ(t) 0.0 Chemotherapy Efficacy - Induced Chemo-Resistant Cell 1
day

Data Fitting

gX(t) 0.9 Death Rate Due to GCV Sensitivity 1
day

Data Fitting
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Chapter 2

BIOLOGICAL BACKGROUND

2.1 Cancer

A simple definition of cancer is a disease that causes a tissue to fail to regulate

its growth correctly. The genes that regulate cell growth are altered and the normal

cell is transformed into a cancer cell. These genes are grouped into oncogenes, which

promote cell growth and reproduction, and tumor suppressor genes, which suppress cell

division. When these genes act incorrectly, i.e. by over-expressing normal oncogenes or

under-expressing tumor suppressor genes, then malignant transformations are possible

(1).

Smaller mutations such as point mutations, deletions, and insertions sometimes

negatively affect functionality. Additionally, DNA replication handles a large amount

of data and will therefore likely result in errors occasionally. Hence, intricate methods

of fixing and preventing errors are innate to the process of DNA replication. Apoptosis,

programmed cell death through self-destruction, happens when a severe error occurs

and serves as a safety from cells against cancer. However, if a process meant to mediate

errors is not successful then the mutations will remain and be passed to any daughter

cells (4).

2.2 Chemotherapy

Chemotherapy is the treatment of cancer with one or more cytotoxic drugs

as part of a treatment schedule. Chemotherapeutic agents work by targeting cells

that replicate quickly by impairing mitosis or causing apoptosis. Consequently, it

not only causes harm to cancerous cells but also normal cells that characteristically

divide quickly, such as cells in bone marrow and the digestive tract, which causes
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adverse side effects. Chemotherapeutic drugs have a more significant affect on more

differentiated tumors due to the fact that mechanisms regulating cell growth are still

kept intact. As the generations of tumor cells increases, differentiation is generally lost

and chemotherapeutic agents are less effective against tumors. In the area near the

center of a solid tumor cell division has effectively ceased, making them insensitive to

chemotherapy. Naturally and as time goes on, cancer cells gain chemoresistance.

5



Figure 2.1: In biology, differentiation describes the processes by which immature cells

become more mature cells with specific functions. However when talking

about cancer, differentiation describes how much or how little the tumor

tissue resembles the normal tissue it came from. Well-differentiated can-

cer cells look more similar to normal cells and tend to grow and spread

slower than poorly differentiated or undifferentiated cancer cells (23).
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2.3 Chemoresistance

Cancerous cells become chemoresistant through natural mutation or transfec-

tion of engineered genes (see figure 2.2). Commonly found chemo-resistance genes are

variants of dihydrofolate reductase (DHFR) and multidrug resistance gene1 (MDR1)

(5) . In our model we assume that a small percentage of the initial tumor is made of

chemo-resistant cells (14).

DHFR is used as a catalyst for the reduction of folate to tetrahydrofolate

(3). This enzyme then acts as a cofactor in the creation of nucleic and amino acids.

Methotrexate (MTX) is a chemotherapeutic agent that has a greater affinity to DHFR

than folate. Therefore, DHFR more readily binds to MTX, preventing potential pro-

duction of tetrahydrofolate and subsequent nucleotides. Ideally, methotrexate would

show this behavior for all tumor cells. Unfortunately, mutants of DHFR show a lower

affinity for the drug, which allows them to continue preferential binding to folate.

P-glycoprotein (PGP) is a facilitator of molecule movement, dealing with both

extracellular and intercellular transport. PGP can act as chemotherapy efflux pump

that decreases intercellular concentrations of drugs, therefore reducing their effective-

ness. MDR1 up-regulates the expression of PGP, resulting in increased chemoresistance

to many types of chemotherapy.
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Figure 2.2: Left side: MTX binds with DHFR and blocks it such that no amino

acids are created. With mutant DHFR (DHFR*), the DHFR* is not

blocked by MTX because DHFR* preferentially binds with folate instead

to produces nucleotides. Right side: Small pumps on the surface of

cancer cells actively move chemotherapeutic drugs from inside the cell to

the outside. These pumps are present in normal cells, but mutants have

more of them and therefore more chemotherapeutic drugs are pumped

out.
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2.4 Transfected Cells

In previous work by Martinez-Quintanilla et al. (10,11), the authors transfect

colon and pancreatic carcinoma cells lines using a plasmid containing one of two sep-

arate genes encoding either DHFR or MDR1, together with a gene encoding herpes

simplex virus thymidine kinase (HSV-TK). These transfected genes guarantee the sur-

vival from chemotherapy and consequently create a third type of cell population (Z

cells).

The HSV-TK encodes an enzyme in the transfected cell which causes it to be

susceptible to ganciclovir, an antiviral drug, which is popular in numerous anti-cancer

gene therapy approaches due to its ease in which it can be incorporated into the DNA

of cells. The cell transmission of the tyrosine kinase enzyme transforms the initially

inert GCV and causes the formation of double-strand breaks in cell DNA which in turn

triggers apoptosis. Intercellular transfer of the GCV to neighboring cells then occurs

through gap junctions, which are 2-4 nm apart, and causes a bystander effect when

transfected cells come into contact with chemo-resistant cells at gap junctions. The

result leads to an apoptosis trigger in cells that are not ordinarily targeted by the drug

(14).

Thus our strategy to eradicate tumor populations has two steps. In the first

step, chemotherapy causes a positive selection for chemo-resistant cells by killing off all

chemo-susceptible cells, leading to an increased proportion of transfected cells. Ideally,

the amount of transfected cells surpasses the amount of the chemo-resistant mutant

population because this results in a greater bystander effect. The second step is a nega-

tive selection stage where ganciclovir is injected and the remaining cells are eradicated

through triggered apoptosis and a bystander effect.

2.5 Bystander Effect

Since the bystander effect is what ultimately kills the chemo and ganciclovir

resistant cells if it is large enough, it is paramount that we maximize its benefits. If

the bystander effect is too small though, possibly because the number of transfected
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cells is too small compared to the total tumor population, then those mutant cells would

not be completely destroyed after the injection of GCV. This is partly because, the

low proportion of transfected cells to other cell types in the tumor translates to a low

probability of exchange of metabolized ganciclovir through contact. In this unfavorable

scenario, the remaining cells would proliferate leading to a tumor comprised solely of

chemo and ganciclovir-resistant cells. Our research strives to find the chemotherapy

schedule that grants the most favorable positive and negative selection phases and

yields the greatest chance of complete tumor eradication.
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Chapter 3

MODEL

3.1 Mathematical Model

In our model we consider transfection via oncospecific viral vectors, specifically

a replication-competent delivery virus. The replication-competent virus differs from

the nonreplication-competent one because it has the gene necessary to evolve the lytic

cycle. In the replication-competent approach, hybrid genes not only spread through

mitosis of transfected cells but also by virus lysis. In our ODE model, the virus is not

allowed to infect the Y -type cells because we want to focus on the dynamics that result

when the virus can only infect X-type cells. Our model draws upon previous research

of modeling solid tumor growth (18, 19, 20, 21).

Ẋ = rXCX (t)

(
1 − (X+Y+Z)

K

)
(3.1)

−X

[
dX + βV + g (t) b

(
Z

X+Y+Z

)]
Ẏ = λYCY (t)

(
1 − (X+Y+Z)

K

)
(3.2)

−Y

[
dY + g (t) b

(
Z

X+Y+Z

)]
Ż = βXV + sZCZ (t)

(
1 − (X+Y+Z)

K

)
(3.3)

−Z [dZ + a+ g (t)]

V̇ = kaZ − uV (3.4)
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Figure 3.1: Diagram of ODE model. Variables corresponding to the 4 equations are

shown in blue circles. The value in the red rectangle inhibits, as shown

with the dashed lines. Blue arrows show g(t) decay terms.

X are chemosensitive / ganciclovir insensitive cells, Y represent chemoresistant / gan-

ciclovir insensitive cells, Z are chemoresistant / ganciclovir sensitive cells, and V are

the viruses that contain the gene that confers chemoresistance and GCV susceptibil-

ity. r, λ, and s are exponential growth rates while dX , dY , and dZ are natural decay

rates of each cell type. K is the carrying capacity of the tumor. CX , CY , and CZ are

multiplicative constants that represent the efficacy of chemotherapeutic treatments on

the respective species. g(t) represents the injection of ganciclovir, scaled for efficacy,

that mainly affects the transfected cells. The bystander effect is modeled by

12



b

(
Z(t)

X(t) + Y (t) + Z(t))

)

where its effect increases as the ratio of Z over the total population increases. A sigmoid

function is used to model the bystander effect. It is a dimensionless approximation

of the probability that type X and Y cells are located close to type Z cells. This

assumption is reasonable because as the amount of transfected cells increases toward

the tumor carrying capacity, the likelihood of interaction between cells of type X, Y ,

and Z increases. In our model we use a linear approximation of the generic sigmoid

function b.

β is a mass action rate that corresponds to infection related dynamics. A larger

value of mass action rate leads to increased growth of Z-type cells and decreased growth

of X and Y populations. Virulence is represented by parameter a. Burst size k is the

number of free virus released when a cell is lysed.

The model parameters in our replication-competent delivery virus model can be

changed to make a low virulence scenario as well as a high virulence scenario. A high

virulence virus spreads through the tumor quicker, however the higher infection rate

leads to an increase in burst size and thus a higher virus-induced death rate. A low

virulence virus spreads slowly and has a lower burst size. We try to find the treatment

switch time from chemotherapy to ganciclovir that achieves the smallest minimum

tumor size.

min (X(t) + Y (t) + Z(t))

Minimum tumor size better captures tumor extinction than the previous cost function

of

max

(
Z(t)

X(t) + Y (t) + Z(t)

)

13



used by Cannon et al (14). Maximizing bystander effect is a tool that leads to tumor

extinction but there are non-favorable cases for low virulence where the ratio of

(
Z(t)

X(t) + Y (t) + Z(t))

)

could be increasing while the tumor size increases.

Because a low virulence delivery virus spreads slowly throughout the tumor,

it is able to spread in an optimal way. As chemotherapy kills the X-type cells, the

more prevalent Z-type cells outcompete the Y -type and the tumor can be completely

eradicated with the application of GCV and the resulting bystander effect. The tradeoff

of a low virulence delivery virus is that the slow proliferation means that the patient

must be exposed to the toxic chemotherapy for longer times.

On the other hand, a high virulence delivery virus spreads quickly but also has

a higher burst size. Consequently the cells have an increased viral death rate due to

infection. The transfected cells increase to a high peak quickly then begin to decrease.

If the tumor is left untreated the natural chemotherapy resistant cells are able to out-

compete the transfected cells and the tumor becomes untreatable making the window

of opportunity smaller. In both cases by introducing ganciclovir at the optimal time,

the greatest reduction in tumor size is achieved.

3.2 MATLAB Model

We use initial conditions of X = 99, Y = 1, Z = 1, V = 99 or X = 99, Y =

1, Z = 0, V = 99 and define C = 1 if chemotherapy is being applied and C = 0 if

chemotherapy is not being applied. The schedule of chemotherapy treatment is not

allowed to switch faster than a feasible interval which we define. We decimate our total

treatment duration into 10 intervals of equal length. Our model is capable of finding

optimal schedules that include timed pulses of chemotherapy, however due to the fact

that turning on and off chemotherapy rapidly can be biologically unrealistic, we only

test continuous-dose schedules of different durations. In each interval chemotherapy
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is either administered or not administered and when the cost function is optimal we

switch from chemotherapy to GCV. For example, a treatment schedule of 1111100000

would mean that chemotherapy was applied for 5 intervals, then chemotherapy turned

off while GCV turned on for the remaining duration.

The model’s optimization method according to the cost function is beneficial

because it finds the most favorable treatment schedule out of all of the different possi-

bilities (on the order of 210 including timed pulses). This is especially necessary when

using the high virulence, fast spreading delivery virus because the tumor will reach a

minimum size quickly but will also regrow quickly.

In some cases, the tumor size continues to decrease as long as chemotherapy is

applied. While this behavior seems perfect at first, further investigation shows that

because the cost function is optimal at the end of the 10 intervals of chemotherapy, the

model never switches from chemotherapy to ganciclovir and no bystander effect takes

place. To ensure that the Y -type cells will be killed via the bystander effect, we define

a number where GCV will be applied if the tumor size decreases below this threshold

i.e. (10−5, 1e-5). Consequently our 99% effectiveness approach may cut off the optimal

cost function early.
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Chapter 4

RESULTS

4.1 High Virulence Delivery Virus

We first examine the behavior of a delivery virus with high virulence. This

means the virus has a high infection rate and high lytic rate and therefore it spreads

and causes damage quickly to cells. However, this also means it’s more likely to kill off

all the X-type cells that it can infect and so induced chemotherapy-resistant cells will

not adequately spread throughout the tumor.
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Figure 4.1: Treatment fails because GCV is never applied because the cost function

is never satisfied. Tumor size doesn’t decrease significantly enough.

For a high virulence of 0.06 we see that the GCV is never applied within 200

days. Tumor size continues to slowly decrease as the chemotherapy kills the X type

cells. At the end of the 200 days the X type cells constitute 0.1 of the carrying capacity

of the tumor while the populations of Y and Z type cells are much smaller. Therefore

the interval is set to 100 for illustrative purposes.
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Figure 4.2: Using a high virulence delivery virus, a successful treatment needs an in-

terval of 100 days. With these parameters, the optimal treatment sched-

ule is to apply chemotherapy for 900 days then switch to GCV.

While this treatment schedule does decrease the tumor size to less than one cell,

it also requires the patient to receive chemotherapy doses for 900 days which may or

may not be biological possibly since chemotherapeutic agents are cytotoxic. At time =

900 when the GCV is applied, we see from the plot of tumor size that it is approximately

equal to one. So our control algorithm did not require a 99 percent cutoff because it

did not reach 1e-5 cells for tumor size. It is probable that this treatment eradicates

18



the tumor completely so that it does not rebound.

4.2 Low Virulence Delivery Virus

Next we look at the simulations when using a low virulence delivery virus. The

low infection and lytic rate means this type of virus has a higher probability of enabling

the induced chemotherapy-resistant cells to become the dominant cell type within the

tumor.

Figure 4.3: Our system finds a successful treatment schedule with a GCV applica-

tion time of 160 days. The bystander effect causes enough apoptosis to

completely kill off the tumor.
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From the figure above we see that indeed the Z type cells were the dominant pop-

ulation when GCV was applied at 160 days. As the number of X type cells decreases,

the Z type cells outcompete the Y type species until the cost function is optimal. Here

the bystander effect is enough to decrease the tumor size to approximately 10−15; we

consider this treatment schedule a success in reaching complete tumor eradication.

Figure 4.4: The algorithm is able to determine a treatment success and the GCV is

applied at 200 days. Though it is a treatment success, the longer required

chemotherapy time is unfavorable for the health of the patient.

When the interval parameter is equal to 100 days we still have a successful
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treatment. However, because the chemotherapy can only switch on and off based on

our interval we see that chemotherapy is turned off at time 200 days whereas from the

previous figure we saw that switching at 160 days also led to a successful treatment.

With an interval of 100 days, the patient would have to stay on chemotherapy for 40

days more. Hence it is valuable to have shorter intervals when possible.

4.3 Minimum Tumor Size

By looping through our code with different values for viral virulence and storing

important results of each iteration, we are able to plot the minimum tumor size achieved

vs. the virulence of the virus for varying parameter values. We choose virulence values

from 0.005 to 0.02 with 0.001 increments because as seen from previous figures, the

low virulence delivery virus has more favorable results as compared to a high virulence

delivery virus.
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Figure 4.5: We see a general positive correlation with three distinct tiers and a large

range in y-axis values.

The figure above allows us to further analyze the dynamics of our system. When

interval = 20 there is a general positive correlation between the minimum tumor size

reached and virulence. There appears to be three levels of cell population and when the

virulence passes a certain value, the minimum tumor size reached jumps to the next

grouping. A change of 0.015 in virulence corresponds to a 10−15 change in minimum

tumor size.
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Figure 4.6: We see that the data is now negatively correlated with a constant slope.

The range of y-axis values is smaller than in the previous case where

interval = 20.

Changing the interval to 100 changes the minimum tumor size versus virulence

to have a negative correlation. Unlike before, the slope of the line here is relatively

constant. Here the same 0.015 difference in virulence only causes a change in number

of cells of approximately 10−5.
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Figure 4.7: With a smaller interval we have to increase the value of the tumor size

threshold to 1e2. The figure appears to be negatively correlated with a

constant slope but noticing the small range of the y values we determine

that the minimum tumor size isn’t affected by the virulence much.

With an interval of 1 day we see a very slight negative correlation given the

y-axis values. However it should be noted that the threshold had to be set to 1e2

because the tumor size was never reduced below this number via chemotherapy. The

optimal control plot for these parameters would have shown a treatment failure. As

seen from the figures of minimum tumor size vs. virulence, the shape and behavior of

the plot can change depending on what the interval is set to.
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4.4 Time to Achieve

In order to further analyze the behavior of the model we also plot the time to

achieve minimum tumor size vs. virulence.

Figure 4.8: We see an overall positive correlation with three groupings of y values

and a y-axis range of 138 to 178 days.

The two data sets are mostly positively correlated but again with three distinct

tiers when interval = 20, same as minimum tumor size vs. virulence. A range of about

138 to 178 days corresponds to a virulence of 0.005 and 0.02 respectively.
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Figure 4.9: We again see a negatively correlated series with relatively constant slope

and a small range in y values. This behavior is consistent with the

minimum tumor size vs. virulence plot with corresponding parameter

values.

Note on this figure the scale of the y-axis. There is a negative correlation with relatively

constant slope but the range of time to achieve is only approximately 1.4 days.
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Figure 4.10: There is a overall increase in time to achieve until a certain level of

virulence is reached. After this value the time to achieve drops back

down. There doesn’t appear to be any general trend for this scenario.

For the extreme case of an interval of one day, we again had to set the threshold

level to 1e2. The time to achieve increases until virulence reaches 0.011, at which point

it plummets and regains slowly. The range of time to achieve is only 0.14 days and

there doesn’t appear to be any overall trend.

4.5 Simulations with Zero Initial Induced Chemoresistant Cells

We then run similar simulations for the case where the initial condition of Z

type cells is 0 because this is more biologically realistic since there initially shouldn’t be

any induced chemoresistant cells in the tumor. However we find that with these initial
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conditions of [99,1,0,99] for cell types (X, Y, Z, V ) respectively, result in treatment

schedules that require the patient to be on chemotherapy for significantly more time

to reach a successful treatment and therefore are not always biologically feasible.

4.5.1 High Virulence Delivery Virus

Figure 4.11: The treatment results in a failure because chemotherapy administration

never switches to GCV treatment. Therefore no bystander effect occurs

to completely eradicate the tumor.

Ganciclovir is never applied within the treatment schedule.
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Figure 4.12: We find that these initial conditions improve the treatment by requiring

chemotherapy for 100 less days when using initial conditions of (99 1 1

99) and interval = 100.

GCV is applied at time = 800 days, 100 days earlier than the corresponding

case with the same parameters that use initial conditions of [99 1 1 99].

29



4.5.2 Low Virulence Delivery Virus

Figure 4.13: The low virulence virus results are made worse by the (99 1 0 99) initial

conditions. With the interval set to 20 days, the treatment now fails

because GCV is never applied within the allowed time period.

We focus on the results that utilize a low virulence delivery virus. With these

initial conditions GCV is never applied. Compare to corresponding previous figure

using IC [99 1 1 99]. Now the Z type cells are not produced as much and the cost

function is never satisfied within the time constraint, resulting in a failed treatment

schedule.
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Figure 4.14: When the interval equals 100 days the chemotherapy schedule requires

900 days instead of only 200 days as in the previous corresponding sim-

ulation with ICs of [99 1 1 99]. With these new initial conditions the

patient is subjected to the adverse effects of chemotherapy for substan-

tially longer.

We again see that the more biologically relevant initial conditions of [99 1 0 99]

give results that are worse for the patient.
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4.5.3 Minimum Tumor Size

The minimum tumor size and time to achieve minimum tumor size vs. virulence

plots have their thresholds changed to 1e-1 for interval = 100 because the tumor size

never reaches the 99% effectiveness cutoff that we earlier defined as 1e-5. The results

for cases with interval = 20 and interval = 1 are omitted because they require the

threshold to be set equal to 10 and 100 respectively, which is uninformative.

Figure 4.15: The y-axis values that show that minimum tumor size with the listed

parameters is unaffected by virulence. The positive correlation of the

graph is from the trivial increase in minimum tumor size not reflected

on the plot axis.

Note the y-axis values that show that minimum tumor size with the listed

parameters is unaffected by virulence. The same behavior is observed in the case
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where interval = 1 and threshold 1e2 (not shown). The positive correlation of the

graph is from the trivial increase in minimum tumor size not reflected on the plot axis.

4.5.4 Time to Achieve

Figure 4.16: Upon careful inspection of the figure and its axes values, it is determined

that time to achieve is unaffected by virulence when using the listed

parameter values.

There appears to be a slight positive correlation with constant slope. However,

again looking at the y-axis values, realistically the time to achieve in this case is

unaffected by virulence because the range of achieve time is only 0.10 days.
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Figure 4.17: Time to achieve is unaffected by virulence.

The figure above clearly reflects the previous behavior when interval = 100 and

time to achieve is unaffected by virulence. It is important to remember that a threshold

requiring 1e2 is considered a treatment failure.

4.6 Sensitivity Analysis

We perform sensitivity analysis on our model by running simulations with vari-

ants of our original initial conditions and seeing how the treatment schedules and

successes change. Ideally we want to observe a trend where the original treatment and

success does not drastically change when the ICs are scaled by different factors.
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4.6.1 Low Virulence, Interval = 20, Original ICs [99 1 1 99]

We first examine the case of virulence = 0.02 and interval = 20. We run several

simulations using the original initial conditions of [99 1 1 99] scaled by various fac-

tors in order to obtain an approximate range in which simulations remain successful

treatments.

Figure 4.18: The output is a treatment failure where chemotherapy is switched to

GCV at 100 days. Due to the fact that the ratio of the Z type cells to

the total tumor size is too small at this time, the bystander effect is too

small to stop the tumor size from rebounding.
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In the first scenario we increase all the initial conditions by a factor of 2, resulting

in [198 2 2 198]. From the plot we see that this results in a treatment failure whereas

the original case of [99 1 1 99] was a success. Here the tumor size decreases to 102.1 as

chemotherapy is applied, then rebounds after treatment is switched to GCV. During

the application of chemotherapy from 0 to 100 days we see that the natural chemo-

resistant cells outcompete the induced chemo-resistant cells. This unfavorable situation

yields a bystander effect that is too minimal to completely eradicate the tumor. This

is seen graphically in the small dip in tumor size that occurs slightly after 100 days.
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Figure 4.19: Now with a differently scaled set of initial conditions, the time at which

GCV is applied is 80 days. Similar behavior is observed and we have a

treatment failure.

In the second run we use initial conditions of [148.5 1.5 1.5 148.5], an increase by

a factor of 1.5. Again we notice that the schedule leads to a treatment failure because

the Z type cells do not increase as fast as the Y type cells and the resulting bystander

effect is not strong enough to avoid tumor regrowth. When GCV is applied at 80 days,

the chemotherapy has reduced the tumor size to approximately 102 cells. Though this

is a treatment failure, it performs better than the case for ICs of [198 2 2 198].
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Figure 4.20: We have a successful treatment and GCV is applied at 180 days when

Z cells are the dominant type.

Here, the treatment completely cures the tumor for an IC increase factor of

1.25. Using [123.75, 1.25, 1.25, 123.75], chemotherapy is administered until time = 180

days. Inspection of the cell populations shows that the Z type cells outcompete the

Y type cells and become the dominant cell type. Thus all cell types plummet after

GCV is applied. In the original case of [99 1 1 99] and using the same parameters, the

treatment switched from chemotherapy to GCV at 160 days.
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Figure 4.21: The treatment is a success and the bystander effect that takes place at

160 days is large enough to completely eradicate the tumor.

This plot looks very similar to the original case. Treatment success is obtained

when using 0.95 of the original ICs and both simulations apply GCV at 160 days.
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Figure 4.22: The treatment reverts back to a failure when we use a factor of 0.9, ICs

of [89.1 0.9 0.9 89.1] because GCV is never applied within the duration

of the simulation. This is because the tumor size continues to decrease

as long as chemotherapy is applied, and simultaneously the tumor size

never reaches the threshold where we could logically assume that the

tumor would stochastically go extinct.

Finally we look at an approximate lower bound for ICs that still result in a

successful treatment. Multiplying the original ICs by 0.9 leads to a treatment failure

where GCV is never applied within the allowed period. It is possible that GCV would
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be applied if we specified a longer time period but that would also require the patient

to remain on chemotherapy for a longer time. From analysis of the previous figures in

this section, we conclude that the system is capable of finding a treatment schedule

that completely kills the tumor if the factor by which the initial conditions are changed

is between 0.95 and 1.25.

4.6.2 Low Virulence, Interval = 100, Original ICs [99 1 0 99]

Out of the many different possible parameter and IC combinations that we could

use next to analyze stability analysis, we choose virulence = 0.02, interval = 100, and

the original initial conditions to be scaled = [99 1 0 99].
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Figure 4.23: The simulation yields a treatment failure even though tumor size reaches

one cell, because GCV is never applied.

ICs [123.75 1.25 0 123.75], factor of 1.25, gives a result where GCV is never

applied. This is considered a treatment failure whereas the previous corresponding

plot (fig 4.14) was a treatment success with GCV being applied at time = 900 days

and tumor size decreasing to 10−1.
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Figure 4.24: These model parameters cause a treatment success and GCV is applied

at time = 800 days and tumor size reduces below one cell.

Using a factor of 1.1 results in a treatment improvement over the original case.

In this case, the chemotherapy is only applied until time = 800 days. At this point GCV

is applied and the bystander effect, while small as seen from the relatively constant

negative slope of the tumor size plot, is enough to ensure that the tumor does not

rebound.
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Figure 4.25: The treatment switches back to a failure when we use ICs of (94.05 0.95

0 94.05) since GCV is never applied.

In the final figure using these parameters, the system reverts back to resulting

in a treatment failure where GCV is never applied. While the tumor size does reach

10−1, it is susceptible to rebound because the chemoresistant Y type cells are never

moved to extinction because no bystander effect ever occurs.
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Chapter 5

CONCLUSION

In our research we use a ordinary differential equation model for a novel gene-

therapeutic approach to curing pancreatic cancer, which aims to completely eradicates

cancer cells based on a combination of chemotherapy and gene therapy. The experi-

ments conducted by Martinez-Quintanilla et al. (6,7) achieved a bystander effect but

it was not sufficient enough to completely eradicate the tumor. In our results however,

we ran many simulations using real human-relevant parameters and some resulted in

complete eradication of the tumor while others merely partially reduced the size of the

tumor.

When using a high virulence delivery virus (figure 4.2) we found that a suc-

cessful treatment needed an interval of 100 days. With these parameters, the optimal

treatment schedule was to apply chemotherapy for 900 days then switch to GCV. Since

such a long administration of chemotherapy is biologically problematic we analyzed the

system dynamics when using a low virulence delivery virus instead.

Switching to a delivery virus with a virulence of 0.02, our system found successful

treatment schedules for both the cases of interval = 20 (figure 4.3) and interval = 100

(figure 4.4). The GCV application times of 160 days and 200 days respectively were

a sizeable improvement over the high virulence delivery virus case, so we focused on

utilizing the low virulence virus.

Minimum tumor size versus virus virulence (figure 4.5) concluded that the be-

havior of the data strongly changed depending on the model parameters we assigned.

For the case of interval = 20 and initial conditions of [99 1 1 99] we saw a general

positive correlation with three distinct tiers and a large range in y-axis values.
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When interval was switched to 100 days (figure 4.6) we saw that the data was

now negatively correlated with a constant slope. The range of y-axis values was smaller

than in the previous case (figure 4.5).

Realizing that the characteristics of the results changed depending on the inter-

val, we looked into the extreme case where interval = 1 (figure 4.7). With a smaller

interval we had to increase the value of the tumor size threshold to 1e2. The figure ap-

peared to be negatively correlated with a constant slope but noticing the small range of

the y values we determined that the minimum tumor size isn’t affected by the virulence

much.

Time to achieve (number of days to reach either minimum tumor size or the

threshold) vs. virulence was investigated next. Setting parameters of interval = 20 and

IC [99 1 1 99] (figure 4.8) we see an overall positive correlation with three groupings

of y values and a y-axis range of 138 to 178 days.

Changing the interval to equal 100 days (figure 4.9) we again see a negatively

correlated series with relatively constant slope and a small range in y values. This be-

havior is consistent with the minimum tumor size vs. virulence plot with corresponding

parameter values (figure 4.6).

The achieve time plot using interval = 1 (figure 4.10) requires a threshold of

100 cells and displays an initial increase in time to achieve, until virulence reaches

approximately 0.012. After this point the series drops to the minimum value. The

range of the y-axis is only 0.14 days.

Next we used the more biologically realistic initial conditions of [99 1 0 99].

Assuming there was no initial population of Z type cells we ran our simulations and

analyzed their results. For the high virulence delivery virus we found that these initial

conditions improved the treatment by requiring chemotherapy for 100 less days (figure

4.12) than when using interval = 100 and IC [99 1 1 99] (figure 4.2).

However, the low virulence virus results were made worse by the [99 1 0 99] ICs.

With the interval set to 20 days (figure 4.13), the treatment now fails because GCV

is never applied and when the interval equals 100 days (figure 4.14) the chemotherapy
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schedule requires 900 days instead of only 200.

Minimum tumor size and achieve time are unaffected by virulence when using

parameters [99 1 0 99] and interval = 1, 20, or 100 (figures 4.15, 4.16, 4.17). Note the

y-axis scales.

Performing sensitivity analysis entailed running our optimal control simulations

again using scaled initial conditions to determine how it altered our treatment success

and treatment schedules.

Since the greatest treatment success came from the parameters virulence = 0.02,

interval = 20, and ICs = [99 1 1 99] (figure 4.3), we started with this case. First we

scale the ICs by a factor of 2, resulting in [198 2 2 198] and run the optimal control

simulation. The output (figure 4.18) is a treatment failure where chemotherapy is

switched to GCV at 100 days. Due to the fact that the ratio of the Z type cells to the

total tumor size is too small at this time, the bystander effect is too small to stop the

tumor size from rebounding.

Similar behavior is observed when using ICs of [148.5 1.5 1.5 148.5] but now

the time at which GCV is applied is 80 days (figure 4.19). It isn’t until we use a

factor of 1.25 that we have a successful treatment again. Although it is possible that a

multiplying factor between 1.5 and 1.25 could also lead to a successful treatment, we

are concerned more with overall sensitivity analysis and not finding absolute bounds on

factors. Using the 1.25 factor, [123.75 1.25 1.25 123.75], we have a successful treatment

and GCV is applied at 180 days when Z cells are the dominant type (figure 4.20).

The induced chemo-resistant cells also reach dominance in the scenario of ICs

[94.05 0.95 0.95 94.05]. The treatment (figure 4.21) is a success and the bystander

effect that takes place at 160 days is large enough to completely eradicate the tumor.

The treatment reverts back to a failure when we use a factor of 0.9, ICs of [89.1

0.9 0.9 89.1] because GCV is never applied within the duration of the simulation (figure

4.22). This is because the tumor size continues to decrease as long as chemotherapy is

applied, and simultaneously the tumor size never reaches the threshold where we could

logically assume that the tumor would stochastically go extinct.
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Next we moved to the sensitivity analysis of the case with parameters virulence

= 0.02, interval = 100, ICs [99 1 0 99]. We scaled the ICs by a factor of 1.25 and used

[123.75 1.25 0 123.75]. Consequently the simulation yielded (figure 4.23) a treatment

failure even though tumor size reaches one cell, because GCV was never applied.

Multiplying the original ICs by a factor of 1.1 results in [108.9 1.1 0 108.9].

These model parameters cause a treatment success (figure 4.24) and GCV is applied

at time = 800 days and tumor size reduces below one cell.

The treatment switches back to a failure when we use ICs of [94.05 0.95 0 94.05]

since GCV is never applied (figure 4.25). While the tumor size does decrease below

one cell, it is susceptible to rebounding to an incurable tumor because the natural

chemoresistant cells never undergo apoptosis.

As seen from our results, the optimal chemotherapy schedule and system dy-

namics determined by our control algorithm is dependent on the initial conditions and

properties of the tumor, as well as our other parameter values. For our biologically

realistic test cases the approach of using both a positive and negative selection phase

gave us desirable results. If the proportion of cell types were favorable when the ganci-

clovir was administered, the resulting bystander effect was great enough to completely

eradicate the tumor. Thus, the development of a dynamic model that describes this

biological process is a useful tool to study.

Real parameters of tumor growth and of the delivery virus found in previous

work provided a more realistic behavior to our model built upon the work in (14). This

thesis furthered previous research by combining the real-life parameter values with the

model. We also improved several aspects of the previous system (i.e. changing the

control algorithm) and added robustness through extra analysis tools. Our results

show how even a relatively simple optimal control algorithm is useful in achieving

the strongest probability of pancreatic tumor eradication, and the benefits and impor-

tance of using mathematical models and control analysis to analyze complex biological

systems.
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Appendix

MATLAB CODE

1 %run twice to avoid e r r o r

2 c l c

3 N = 10 ;

4 NN = 2ˆN;

5 cos t1 = 1000000;

6 % cost1 = 0 ;

7 c o s t o l d = cos t1 ;

8 Tmax = 0 ;

9 v i r = 0 . 0 2 ;

10

11 i n t e r v a l = 100 ;

12 IC = 1 .25∗ [ 9 9 1 0 9 9 ] ;

13

14 chemoArray = [ 0 , 512 , 768 , 896 , 960 , 992 , . . .

15 1008 , 1016 , 1020 , 1022 , 1 0 2 3 ] ; %decimal f o r

binary 0 0 0 0 0 0 0 0 0 0 . . . 1 0 0 0 0 0 0 0 0 0 . . . 1 1 . . .

16

17 virArray = [ 0 . 0 0 5 , 0 . 006 , 0 . 007 , 0 . 008 , 0 . 009 , 0 . 010 , 0 . 011 ,

0 . 012 , 0 . 013 , . . .

18 0 .014 , 0 . 015 , 0 . 016 , 0 . 017 , 0 . 018 , 0 . 019 , 0 . 0 2 0 ] ;

19

20 tumorSizeArray = [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] ;
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21 achieveTimeArray = [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] ;

22

23 f o r aLoop = 1 : 1 : 1 6

24 f o r i i = 1 :11

25 seq1 = dec2bin ( chemoArray ( i i ) ,N) ;

26 [ cost1 , Tmax1 , minTumorSize1 ] = PancOptimTest ( seq1 ,

v i rArray ( aLoop ) ) ;

27 i f co s t1 < c o s t o l d %minSize

28 seqoptim = seq1 ;

29 c o s t o l d = cos t1 ;

30 Tmax = Tmax1 ;

31 minTumorSize = minTumorSize1 ;

32 end

33 end

34

35 tumorSizeArray ( aLoop ) = minTumorSize ;

36 achieveTimeArray ( aLoop ) = Tmax;

37 costopt im = c o s t o l d ;

38 cos t1 = 1000000;

39 c o s t o l d = cos t1 ;

40 end

41

42 % f o r i i = 1 :11

43 % seq1 = dec2bin ( chemoArray ( i i ) ,N) ;

44 % [ cost1 , Tmax1 , minTumorSize1 ] = PancOptimTest ( seq1 , v i r

) ;

45 % i f cos t1 < c o s t o l d %minSize

46 % seqoptim = seq1 ;

47 % c o s t o l d = cos t1 ;
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48 % Tmax = Tmax1 ;

49 % minTumorSize = minTumorSize1 ;

50 % end

51 % end

52

53 Tmaxround = i n t e r v a l ∗( c e i l (Tmax/ i n t e r v a l ) ) ;

54 c u t o f f = Tmaxround/ i n t e r v a l ;

55 i f seqoptim == dec2bin ( chemoArray (11) ,N)

56 i f c u t o f f == 1

57 seqoptim = dec2bin ( chemoArray (2 ) ,N) ;

58 end

59 i f c u t o f f == 2

60 seqoptim = dec2bin ( chemoArray (3 ) ,N) ;

61 end

62 i f c u t o f f == 3

63 seqoptim = dec2bin ( chemoArray (4 ) ,N) ;

64 end

65 i f c u t o f f == 4

66 seqoptim = dec2bin ( chemoArray (5 ) ,N) ;

67 end

68 i f c u t o f f == 5

69 seqoptim = dec2bin ( chemoArray (6 ) ,N) ;

70 end

71 i f c u t o f f == 6

72 seqoptim = dec2bin ( chemoArray (7 ) ,N) ;

73 end

74 i f c u t o f f == 7

75 seqoptim = dec2bin ( chemoArray (8 ) ,N) ;

76 end
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77 i f c u t o f f == 8

78 seqoptim = dec2bin ( chemoArray (9 ) ,N) ;

79 end

80 i f c u t o f f == 9

81 seqoptim = dec2bin ( chemoArray (10) ,N) ;

82 end

83 end

84

85 costopt im = c o s t o l d ;

86 cos t1 = 1000000;

87 c o s t o l d = cos t1 ;

88

89 PancPlotOptim ( seqoptim , Tmax, v i r ) ;

90

91 f i g u r e ;

92 semi logy ( virArray , tumorSizeArray ) ;

93 x l a b e l ( ’ V i ru l ence ’ )

94 y l a b e l ( ’Minimum Tumor S i z e ( c e l l s ) ’ )

95 s t r 2=s p r i n t f ( ’Minimum Tumor S i z e with i n t e r v a l %d , and IC [%d

,%d,%d,%d ] ’ , i n t e r v a l , IC (1) , IC (2 ) , IC (3 ) , IC (4 ) ) ;

96 t i t l e ( s t r 2 )

97

98 f i g u r e ;

99 p lo t ( virArray , achieveTimeArray ) ;

100 x l a b e l ( ’ V i ru l ence ’ )

101 y l a b e l ( ’Time to Achieve ( days ) ’ )

102 s t r 3=s p r i n t f ( ’Time to Achieve with i n t e r v a l %d , and IC [%d,%d

,%d,%d ] ’ , i n t e r v a l , IC (1 ) , IC (2 ) , IC (3 ) , IC (4) ) ;

103 t i t l e ( s t r 3 )
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1 f unc t i on [ Cost ,Tmax, minTumorSize ] = PancOptimTest ( seq1 , a1 )

2 t t t t=cputime ;

3 l ength = max( s i z e ( seq1 ) ) ;

4

5 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6

7 %Model Parameter D e f i n i t i o n s

8 g l o b a l Tmax seq r e K deathX n C I lambda deathY b s a deathZ

G t0 t1 t2 t3 q j Beta p L k f u w Cn Ci Gr XGr YGr ZGr I

t4 t5 t i i n t e r v a l

9

10 seq = seq1 ;

11 q = 0 . 0 6 7 6 ; % un in f e c t ed tumor growth ra t e mmˆ3/day

12 e = 1 ; % B−R exponent

??

13 K = 302 .3935 ; % B−R car ry ing capac i ty [((1−d/ r ) ˆ(1/ e ) )∗

Carrying capac i ty ]

14 deathX = 0 .009464 ; % natura l death ra t e un in f e c t ed tumor

?? dX( t )

15 n = . 0 0 0 7 ; % ra t e o f change to chemores i s tant tumor

16 C = . 9 5 ; % Chemotherapy treatment e f f i c a c y

17 Cn = 0 ; % Chemotherapy treatment e f f i c a c y ( natura l chemo

r e s i s t a n t )

18 Ci = 0 ; % Chemotherapy treatment e f f i c a c y ( induced chemo

r e s i s t a n t )

19 I = 1 . 1 ; % Beta−a r a t i o
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20 f = 0 . 0 6 7 6 ; % growth ra t e o f natura l chemo r e s i s t a n t tumor

c e l l s

21 deathY = 0 .009464 ; % death ra t e o f natura l chemo r e s i s t a n t

tumor c e l l s

22 b = 2 ; % death ra t e due to bystander e f f e c t

23 j = 0 . 0 6 7 6 ; % growth ra t e o f induced chemo r e s i s t a n t tumor

c e l l s

24 deathZ = 0 .009464 ; % death ra t e o f induced chemo r e s i s t a n t

tumor c e l l s

25 % a = 0 . 0 6 ; % frequency o f i n f e c t e d c e l l l y s i n g r equ i r ed f o r

v i r a l p r o l i f e r a t i o n

26 a = a1 ; % v i r u l e n c e

27 G = 0 . 9 ; % death ra t e o f due to g a n c i c l o v i r (GCV)

s e n s i t i v i t y

28 R = 3 . 7 3 ;

29 dens i ty = 1e6 ;

30 Beta = (R∗p) /( k∗ dens i ty ) ; % v i r u s mass ac t i on ra t e

31 p = 24 ; % v i r u s death ra t e

32 L = 0 . 0 0 0 0 ; % Lyt ic r a t e

33 k = 1e4 ; % Burst s i z e PFU/ c e l l

34 u = . 0 ; % Chemotherapy e f f i c a c y on chemores i s tant

35 w = . 0 ; % Chemotherapy e f f i c a c y on Induced Res i s tant

r e s i s t a n t back to s e n s i t i v e term?

36

37 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

38 f o r t i = 0 :0

39 % Treatment Times
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40 %t i = 15 ; % Pulse time increment

41 t0 = 0 ; % Chemo treatment beg inning time ( day )

42 t1 = 0 ; % Chemo treatment end time ( day )

43 t2 = 0 ; % GCV treatment begin time ( day )

44 t3 = 0 ; % GCV treatment end time ( day )

45 i n t e r v a l = 100 ; %Faste s t switch time in days

46

47 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

48

49 % ODE

50 Tr = i n t e r v a l ∗ l ength ;

51 IC = 1 .25∗ [ 9 9 1 0 9 9 ] ;

52 s o l = ode45 (@go , [ 0 . 0 1 , Tr ] , IC ) ;

53

54 ymax=max( s o l . y ( 2 , : ) ) ;

55 zmax=max( s o l . y ( 3 , : ) ) ;

56 [ Cost , Teemax ] = min ( s o l . y ( 1 , : )+s o l . y ( 2 , : )+s o l . y ( 3 , : ) ) ;

57 [ minTumorSize ] = min ( s o l . y ( 1 , : )+s o l . y ( 2 , : )+s o l . y ( 3 , : ) ) ;

58 % [ Cost , Teemax ] = max( s o l . y ( 3 , : ) . / ( s o l . y ( 1 , : )+s o l . y ( 2 , : )+s o l . y

( 3 , : ) ) ) ;

59 Tmax = s o l . x (Teemax) ;

60 i f Tmax == i n t e r v a l ∗10

61 Tmax = s o l . x ( f i n d ( ( s o l . y ( 1 , : )+s o l . y ( 2 , : )+s o l . y ( 3 , : ) )<1e

−5 ,1 , ’ f i r s t ’ ) ) ;

62 end
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63 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

64 end

65 % Plot s

66 lw = 2 ;

67 cputime−t t t t ;

68

69 % D i f f e r n t i a l Equation Functions

70 f unc t i on ddt = go ( t , y )

71 g l o b a l seq Tmax r e K deathX n C I lambda deathY b s a deathZ

G t0 t1 t2 t3 q j bb Beta p L k f u w GG CCi CCn Cn Ci t4

t5 t i i n t e r v a l

72 X = ( y (1) ) ;

73 Y = ( y (2) ) ;

74 Z = ( y (3 ) ) ;

75 V = ( y (4) ) ;

76

77 % Floor Functions

78 i f X < . 9

79 r = 0 ;

80 e l s e i f X > . 9

81 r = q ;

82 end

83 end

84

85 i f Y < 1 .5

86 lambda = 0 ;

87 e l s e i f Y > 1 .5
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88 lambda = f ;

89 end

90 end

91

92 i f Z < . 9

93 s = 0 ;

94 e l s e i f Z > . 9

95 s = j ;

96 end

97 end

98

99 rn = round ( rand ) ;

100

101 i f str2num ( seq ( c e i l ( t / i n t e r v a l ) ) ) == 1

102 CC = C;

103 CCn = Cn;

104 CCi = Ci ;

105 GG = 0 ;

106 bb = 0 ;

107 end

108

109 i f str2num ( seq ( c e i l ( t / i n t e r v a l ) ) ) == 0

110 CC = 0 ;

111 CCn = 0 ;

112 CCi = 0 ;

113 GG = G;

114 bb = b ;

115 end

116
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117 % D i f f e r e n t i a l Equations

118 ddt = [ r∗X∗(1−CC) ∗(1 − (X + Y + Z) /K) − X∗( deathX + Beta∗V +

GG∗bb∗(Z/(X+Y+Z) ) )

119 Y∗(1−CCn)∗ lambda ∗(1 − (X + Y + Z) /K) − Y∗( deathY + GG∗bb∗(

Z/(X+Y+Z) ) )

120 Beta∗X∗V + Z∗(1−CCi)∗ s ∗(1 − (X + Y + Z) /K) − Z∗( deathZ +

GG + a )

121 k∗a∗Z − p∗V ] ;

1 f unc t i on PancPlotOptim ( seq1 , Tmax, a1 )

2 t t t t=cputime ;

3 % length = max( s i z e ( seq1 ) ) ;

4

5 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6

7 %Model Parameter D e f i n i t i o n s

8 g l o b a l LL s s CGGG CCCC CCC GGG h Tmax seq r e K deathX n C I

lambda deathY b s a deathZ G t0 t1 t2 t3 q j Beta p L k f u

w Cn Ci Gr XGr YGr ZGr I t4 t5 t i i n t e r v a l

9

10 seq = seq1 ;

11 q = 0 . 0 6 7 6 ; % un in f e c t ed tumor growth ra t e mmˆ3/day

12 e = 1 ; % B−R exponent

13 K = 302 .3935 ; % B−R car ry ing capac i ty [((1−d/ r ) ˆ(1/ e ) )∗

Carrying capac i ty ]

14 deathX = 0 .009464 ; % natura l death ra t e un in f e c t ed tumor

dX( t )
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15 n = . 0 0 0 7 ; % ra t e o f change to chemores i s tant tumor

16 C = . 9 5 ; % Chemotherapy treatment e f f i c a c y

17 Cn = 0 ; % Chemotherapy treatment e f f i c a c y ( natura l chemo

r e s i s t a n t )

18 Ci = 0 ; % Chemotherapy treatment e f f i c a c y ( induced chemo

r e s i s t a n t )

19 I = 1 . 1 ; % Beta−a r a t i o

20 f = 0 . 0 6 7 6 ; % growth ra t e o f natura l chemo r e s i s t a n t tumor

c e l l s

21 deathY = 0 .009464 ; % death ra t e o f natura l chemo r e s i s t a n t

tumor c e l l s

22 b = 2 ; % death ra t e due to bystander e f f e c t

23 j = 0 . 0 6 7 6 ; % growth ra t e o f induced chemo r e s i s t a n t tumor

c e l l s

24 deathZ = 0 .009464 ; % death ra t e o f induced chemo r e s i s t a n t

tumor c e l l s

25 % a = 0 . 0 6 ; % frequency o f i n f e c t e d c e l l l y s i n g r equ i r ed f o r

v i r a l p r o l i f e r a t i o n

26 a = a1 ; % v i r u l e n c e

27 G = 0 . 9 ; % death ra t e o f due to g a n c i c l o v i r (GCV)

s e n s i t i v i t y

28 R = 3 . 7 3 ;

29 dens i ty = 1e6 ;

30 Beta = (R∗p) /( k∗ dens i ty ) ; % v i r u s mass ac t i on ra t e

31 p = 24 ; % v i r u s death ra t e

32 L = 0 . 0 0 0 0 ; % Lyt ic r a t e

33 k = 1e4 ; % Burst s i z e PFU/ c e l l

34 u = . 0 ; % Chemotherapy e f f i c a c y on chemores i s tant
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35 w = . 0 ; % Chemotherapy e f f i c a c y on Induced Res i s tant

r e s i s t a n t back to s e n s i t i v e term?

36

37 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

38 f o r t i = 0 :0

39 % Treatment Times

40 %t i = 15 ; % Pulse time increment

41 t0 = 0 ; % Chemo treatment beg inning time ( day )

42 t1 = 0 ; % Chemo treatment end time ( day )

43 t2 = 0 ; % GCV treatment begin time ( day )

44 t3 = 0 ; % GCV treatment end time ( day )

45 i n t e r v a l = 100 ; %Faste s t switch time in days

46

47 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

48

49 % ODE

50 Tr = i n t e r v a l ∗max( s i z e ( seq1 ) ) ;

51 IC = 1 .25∗ [ 9 9 1 0 9 9 ] ;

52 s o l = ode45 (@go , [ 0 . 0 1 , Tr ] , IC ) ;

53

54 ymax=max( s o l . y ( 2 , : ) ) ;

55 zmax=max( s o l . y ( 3 , : ) ) ;

56 Cost = min ( s o l . y ( 1 , : )+s o l . y ( 2 , : )+s o l . y ( 3 , : ) ) ;

57 % Cost = max( s o l . y ( 3 , : ) . / ( s o l . y ( 1 , : )+s o l . y ( 2 , : )+s o l . y ( 3 , : ) ) ) ;
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58 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

59 end

60 % Plot s

61 lw = 2 ;

62

63 Gr = s o l . y ( 1 , : )+s o l . y ( 2 , : )+s o l . y ( 3 , : ) ;

64 XGr = s o l . y ( 1 , : ) . ∗ ( Gr.ˆ−1) ;

65 YGr = s o l . y ( 2 , : ) . ∗ ( Gr.ˆ−1) ;

66 ZGr = s o l . y ( 3 , : ) . ∗ ( Gr.ˆ−1) ;

67

68 KXGr = s o l . y ( 1 , : ) /K;

69 KYGr = s o l . y ( 2 , : ) /K;

70 KZGr = s o l . y ( 3 , : ) /K;

71

72 MAXIMUMNCR = max(KYGr) ;

73 MAXIMUM ICR = max(KZGr) ;

74 MAXIMUM BRATIO = max(ZGr) ;

75

76 t = s o l . x ;

77 chemo = c e i l ( t / i n t e r v a l ) ;

78 ganc = c e i l ( t / i n t e r v a l ) ;

79 f o r ind = 1 : l ength ( chemo )

80 i f chemo ( ind ) <= length ( seq )

81 chemo ( ind ) = str2num ( seq ( chemo ( ind ) ) ) ;

82 e l s e i f chemo ( ind ) > l ength ( seq )

83 chemo ( ind ) = 0 ;

84 end
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85 i f chemo ( ind ) == 1

86 ganc ( ind ) = 0 ;

87 e l s e i f chemo ( ind ) == 0

88 ganc ( ind ) = 1 ;

89 end

90 end

91

92 f i g u r e ;

93 subplot ( 8 , 1 , 1 : 4 )

94 p lo t ( s o l . x , KXGr, ’− ’ , ’ LineWidth ’ , lw ) ;

95 hold a l l

96 p lo t ( s o l . x , KYGr, ’−− ’ , ’ LineWidth ’ , lw ) ;

97 hold a l l

98 p lo t ( s o l . x , KZGr, ’ k : ’ , ’ LineWidth ’ , lw ) ;

99 % x l a b e l ( ’ time ’ ) ;

100 y l a b e l ( ’ Ce l l Populat ion ( r a t i o to K) ’ ) ;

101 l egend ( ’Chemo−S e n s i t i v e C e l l s ’ , ’ Natural Chemo−Res i s tant

C e l l s ’ , ’ Induced Chemo−Res i s tant C e l l s ’ )

102 a x i s ( [ 0 Tr 0 1 ] )

103 s t r=s p r i n t f ( ’ Optimal Control with v i r u l e n c e %d , i n t e r v a l %d ,

and IC [%d,%d,%d,%d ] ’ , a , i n t e r v a l , IC (1 ) , IC (2 ) , IC (3 ) , IC

(4 ) ) ;

104 t i t l e ( s t r )

105 subplot ( 8 , 1 , 5 : 6 )

106 semi logy ( s o l . x , Gr , ’− ’ , ’ LineWidth ’ , lw )

107 % x l a b e l ( ’ Time ’ )

108 y l a b e l ( ’Tumor S i z e ( c e l l s ) ’ )

109 % a x i s ( [ 0 Tr min (Gr) 100 ] )

110 % a x i s ( [ 0 Tr 0 K] )
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111

112 subplot ( 8 , 1 , 7 )

113 p lo t ( t , chemo , ’ Linewidth ’ , lw )

114 y l a b e l ( ’Chemo ’ )

115 a x i s ( [ 0 Tr 0 1 . 1 ] )

116

117 subplot ( 8 , 1 , 8 )

118 p lo t ( t , ganc , ’ Linewidth ’ , lw )

119 x l a b e l ( ’Time ( days ) ’ )

120 y l a b e l ( ’GCV’ )

121 a x i s ( [ 0 Tr 0 1 . 1 ] )

122 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

123

124 % D i f f e r n t i a l Equation Functions

125 f unc t i on ddt = go ( t , y )

126 g l o b a l LL s s CGGG CCCC CCC GGG h Tmax seq r e K deathX n C I

lambda deathY b s a deathZ G t0 t1 t2 t3 q j bb Beta p L k

f u w GG CCi CCn Cn Ci t4 t5 t i i n t e r v a l

127 X = ( y (1) ) ;

128 Y = ( y (2) ) ;

129 Z = ( y (3 ) ) ;

130 V = ( y (4) ) ;

131

132 % Floor Functions

133 i f X < . 9

134 r = 0 ;

135 e l s e i f X > . 9
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136 r = q ;

137 end

138 end

139

140 i f Y < 1 .5

141 lambda = 0 ;

142 e l s e i f Y > 1 .5

143 lambda = f ;

144 end

145 end

146

147 i f Z < . 9

148 s = 0 ;

149 e l s e i f Z > . 9

150 s = j ;

151 end

152 end

153

154 i f str2num ( seq ( c e i l ( t / i n t e r v a l ) ) ) == 1

155 CC = C;

156 CCn = Cn;

157 CCi = Ci ;

158 GG = 0 ;

159 bb = 0 ;

160 end

161

162 i f str2num ( seq ( c e i l ( t / i n t e r v a l ) ) ) == 0

163 CC = 0 ;

164 CCn = 0 ;
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165 CCi = 0 ;

166 GG = G;

167 bb = b ;

168 end

169

170 % D i f f e r e n t i a l Equations

171 ddt = [ r∗X∗(1−CC) ∗(1 − (X + Y + Z) /K) − X∗( deathX + Beta∗V +

GG∗bb∗(Z/(X+Y+Z) ) )

172 Y∗(1−CCn)∗ lambda ∗(1 − (X + Y + Z) /K) − Y∗( deathY + GG∗bb∗(

Z/(X+Y+Z) ) )

173 Beta∗X∗V + Z∗(1−CCi)∗ s ∗(1 − (X + Y + Z) /K) − Z∗( deathZ +

GG + a )

174 k∗a∗Z − p∗V ] ;
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