AMINO ACID RACEMIZATION AGE ESTIMATES FOR PLEISTOCENE MARINE DEPOSITS
IN THE EUREKA - FIELDS LANDING AREA, HUMBOLDT COUNTY, CALIFORNIA

by

John F. Wehmler
Department of Geology
University of Delaware
Newark, Delaware 19711

George L. Kennedy
Section of Invertebrate Paleontology
Los Angeles County Museum of Natural History
Los Angeles, California 90007

Kenneth R. Lajoie
U.S. Geological Survey
345 Middlefield Road
Menlo Park, California 94025

OPEN-FILE REPORT
77-517

This report is preliminary and has not been edited or reviewed for conformity with Geological Survey standards and nomenclature.
ABSTRACT

Amino acid enantiomeric (D/L) ratios in fossil *Saxidomus* samples from four localities in the Eureka - Fields Landing area of the Humboldt Bay region, California yield age estimates of 180,000 to 280,000 years for exposed and slightly deformed bay and estuarine deposits.
INTRODUCTION

Recent interest in seismic safety standards for critical engineered structures in the Humboldt Bay area of northern California has created a need to reassess the tectonic setting of this seismically active region. In response to this need, we report here our recent findings on estimated ages of tectonically deformed bay and esturine sediments in the Eureka - Fields Landing area. These age estimates are presented for use by others more directly involved in the evaluation of the local geologic and tectonic setting. No detailed discussion of the tectonic setting of the area is presented here.

MATERIAL STUDIED

Paleontologic material used herein forms part of a systematic study of fossiliferous Pleistocene marine deposits and their associated faunas of the Pacific Northwest coast (Kennedy, 1977, written communication). Material submitted to Wehmi11er from this region for amino acid analyses will form the basis of a forthcoming paper on the age and paleoenvironmental implications of marine terrace faunas in northern California. Future data may slightly modify the preliminary conclusions presented here.

Thick-shelled aragonitic bivalve mollusks yield the most consistent amino acid racemization data. Among these, species of the venerid clam Saxidomus yield the most reproducible results (Wehmi11er, 1977, unpublished data). This is probably due to the internal shell
structure as well as to the thickness of the hinge structure and the
nymph plate, the area posterior to the hinge that supports the bivalve
ligament, used in most analyses. Two species of *Saxidomus*, *S. giganteus*
(Deshayes) and *S. sp. cf. S. nuttalli* Conrad, have been used for
analyses. Differences in the rates of racemization of several amino
acids are observed in different genera of mollusks but not among species
of a given genus (Wehmiller, 1977, unpublished data), so we consider
results for these two species as a group.

Specimens used for analysis were collected by us or were obtained
from existing university and museum collections. General sample
localities are shown in Figure 1. More precise sample localities for the
Eureka - Fields Landing area are described in Appendix I and illustrated
in Appendix II. The meanings of abbreviations used in fossil locality
identification numbers are presented in note 2 at the end of Appendix I.

STRATIGRAPHIC TERMINOLOGY

Fossil material analyzed is from gray clayey siltstone and
fine-grained sandstones exposed predominantly in road cuts in the Eureka
- Fields Landing area. The stratigraphic units, Carlotta and Hookton
formations (Ogle, 1953), are commonly used informally throughout the
Humboldt Bay area even though they were formally defined in the southern
part of the region on the south side of the Eel River basin. We believe
present knowledge does not permit precise correlation of these formally
defined units with other Pleistocene sediments exposed in the central and
northern parts of the area. Therefore, to avoid ambiguity, we do not use
any formation names in the discussion of the Humboldt Bay samples.
However, for comparative purposes we do include analyses of one sample from the Carlotta formation from the Scotia Bluffs [mapped originally as Scotia Bluffs sandstone by Ogle (1953); revised by Samuel D. Morrison (1977, written communication)]. Where appropriate we presented the formation name used by the person who collected the sample (Appendix I).

PROCEDURE

Amino acid molecules occur in two mirror-image configurations (enantiomers), designated D and L, which convert spontaneously from one to the other (racemization). In living organisms amino acids occur predominantly in the L configuration (D/L ≈ 0). In dead organisms at equilibrium the numbers of D and L molecules are equal (D/L = 1). The time necessary to reach equilibrium is inversely related to storage temperature. At ground temperatures typical of temperate latitudes equilibrium is reached in 1.0 - 1.5 my, so D/L ratios can be used as an age indicator over this period of time.

The D/L ratios of three amino acids, leucine, glutamic acid, and proline in fossil Saxidomus are reported here (Table 1). Age estimates are derived from D/L ratios of leucine (Table 2). The D/L data from proline and glutamic acid are used as a measure of sample reliability and analytical reproducibility.

All samples were analysed in the amino acid laboratory at the University of Delaware under the direction of J. F. Wehmiller. Analytical procedures follow those of Wehmiller (1977, unpublished data), and involve high-resolution capillary column gas chromatography of diastereoisomeric derivatives of the fossil amino acids. Two different
Figure 1: General location map. See Appendices I and II for precise locality information for Eureka - Fields Landing area.
capillary chromatographic columns are routinely used for these determinations. However, our results for leucine, glutamic acid, and proline were obtained from a single column only (OV225, 150' x 0.03" i.d.) and might be modified slightly (less than 2%) when more complete chromatographic analyses are available.

Our interpretations of the D/L ratios follow two approaches. First, comparison of the raw D/L ratios in samples from different localities permits the assignment of relative ages. Secondly, absolute ages are estimated by a kinetic model for the racemization of leucine alone (Wehmiller, 1977, unpublished data). Kinetic model ages have been assigned only to samples which yield internally consistent ratios among the three amino acids (Tables 1 and 2). These age estimates (Table 2) probably will not be altered significantly when more complete chromatographic data from a second capillary column are obtained.

Amino acid D/L ratios are dependent on both time and temperature. Our inadequate knowledge of a sample's thermal history is the main source of uncertainty in assigning both relative and absolute ages. Modern climatic data are used to estimate relative temperatures for long-range correlations and relative age assignments. Estimates of Pleistocene temperatures from other sources (for example, playmology, and oxygen isotopes) are used in the kinetic model to estimate absolute ages (Wehmiller, 1977, unpublished data).

For comparative purposes we include here D/L ratios for Saxidomus samples from three localities outside the immediate Humboldt Bay area (Tables 1 and 2). Trinidad Head and Crescent City lie 28 km and 104 km north of Eureka, respectively, and Point Año Nuevo lies 435 km south of
Eureka near San Francisco (Fig. 1). More complete data on the Trinidad Head and Point Ano Nuevo samples are presented elsewhere (Wehmiller, 1977, unpublished data).

RELATIVE AGES

Relative age assignments of samples from a given region can be made if it is assumed that all samples have had the same thermal history. Based on present climatic conditions, which are fairly uniform throughout the northern California coastal region, we assume that samples from the Humboldt Bay area, Trinidad Head, and Crescent City have all experienced the same thermal history. This assumption permits assignment of the following relative ages, from youngest to oldest, based on increasing D/L ratios (Table 1):

Youngest (lowest D/L ratios)

Crescent City (LACMNH loco. 3943, 3944, 3946)

Campton Road, Eureka (LACMNH loco. 3961); Near (?) Fields Landing (CAS loco. 54082)

Ridgewood Drive (HSU loc. 746); Fields Landing (HSU loc. 673 and CAS loc. 41987)

Trinidad Head (LACMNH loco. 3939)

Oldest (highest D/L ratios)

Carlotta fm, Scotia Bluffs (HSU loc. 997)
<table>
<thead>
<tr>
<th>LOCALITY AND (FIELD NO)²</th>
<th>SAMPLE NO.</th>
<th>SPECIES³</th>
<th>LEUCINE</th>
<th>GLUTAMIC ACID</th>
<th>PROLINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern California:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humboldt Bay area:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campton Road, Eureka</td>
<td>76 - 96</td>
<td>S.g.</td>
<td>.47</td>
<td>.28</td>
<td>.61</td>
</tr>
<tr>
<td>(LACMNH loc. 3961)</td>
<td>76 - 96a</td>
<td>S.g.</td>
<td>.43</td>
<td>.28</td>
<td>.60</td>
</tr>
<tr>
<td>Near (?) Fields Landing</td>
<td>77 - 24</td>
<td>S.g.</td>
<td>.43</td>
<td>.29</td>
<td>.57</td>
</tr>
<tr>
<td>(CAS loc. 50082)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ridgewood Drive</td>
<td>77 - 22</td>
<td>S.g.</td>
<td>.50</td>
<td>.35</td>
<td>.68</td>
</tr>
<tr>
<td>(HSU loc. 746)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fields Landing</td>
<td>77 - 25a</td>
<td>S.sp.</td>
<td>.52</td>
<td>.36</td>
<td>.67</td>
</tr>
<tr>
<td>(HSU loc. 673)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CAS loc. 41987)</td>
<td>77 - 16</td>
<td>S.sp.cf.S.n</td>
<td>.52</td>
<td>.36</td>
<td>.71</td>
</tr>
<tr>
<td></td>
<td>77 - 17</td>
<td>S.sp.cf.S.n</td>
<td>.48</td>
<td>.34</td>
<td>.67</td>
</tr>
<tr>
<td>Scotia Bluffs; Carlotta fm</td>
<td>77 - 23</td>
<td>S.sp.</td>
<td>.81</td>
<td>.85</td>
<td>.94</td>
</tr>
<tr>
<td>(HSU loc. 997)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crescent City; Battery fm</td>
<td>(avg. of 3)</td>
<td>S.g.</td>
<td>.358</td>
<td>.266</td>
<td>.506</td>
</tr>
<tr>
<td>(LACMNH locs. 3943, 3944, 3946)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trinidad Head</td>
<td>(avg. of 2)</td>
<td>S.g.</td>
<td>.62</td>
<td>.535</td>
<td>.72</td>
</tr>
<tr>
<td>(LACMNH loc. 3939)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central California:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point Año Nuevo</td>
<td>(avg. of 5)</td>
<td>S.g.</td>
<td>.449</td>
<td>.325</td>
<td>.564</td>
</tr>
<tr>
<td>(USGS-M loc. 1960)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

1. All analyses performed in the amino acid laboratory of the University of Delaware under the direction of J. F. Wehmiller.
2. See Appendix I and II for location and source information.
3. S.g.: *Saxidomus giganteus*
 S.sp.: *Saxidomus*, species indeterminant
 S.sp.cf.S.n.: *Saxidomus*, species indeterminant but probably *Saxidomus nuttalii*
4. Analyses of two different shell samples.
5. Similarity of D/L ratios indicate samples within each bracket are most likely the same age.
6. Same locality and possibly same fossil bed (See Appendices I and II).
7. Sample 77-23 was not well preserved. Note that the leucine ratio is lower than the glutamic ratio which is unique among all samples analysed. The leucine ratio appears to be about 15% too low, therefore no kinetic model age is assigned to this sample.
The youngest samples (lowest D/L ratios; Table 1) are from the upper Pleistocene Battery formation, the deposits on the lowest emergent marine terrace at Crescent City (Addicott, 1963). The oldest sample (highest D/L ratios, Table 1) is from the Carlotta formation [mapped originally as Scotia Bluffs sandstone (Ogle, 1953); revised by Samuel R. Morrison (1977, written communication)] in the Scotia Bluffs near Rio Dell, which is either late Pliocene or early Pleistocene in age.

The samples from the Eureka - Field Landing area fall into two groups which show a slightly greater difference in enantiomeric ratios than is observed in duplicate samples from the same outcrop (Table 1). The difference in enantiomeric ratios between the two groups of samples most likely represents a finite age difference between the deposits from which the samples were derived.

The D/L ratios of samples from Campton Road (LACMNH loco 3961) and near (?) Fields Landing (CAS loco 54082) are very similar indicating the deposits exposed at these two sites are the same age and older than the Battery formation at Crescent City. The D/L ratios of samples from Ridgewood Drive (HSU loc 746) and Fields Landing (HSU loc 673 and CAS loc. 41987) are similar indicating the deposits exposed at these two sites are the same age and older than those exposed near (?) Fields Landing (CAS loc. 54082) and Campton Road (LACMNH loc. 3961).

The D/L ratios of samples from Point Año Nuevo (USGS-M loc. 1960) in central California are similar to those of samples from Campton Road (LACMNH loc. 3961) and near (?) Fields Landing (CAS loc. 54082) which, at face value, indicate age equivalence. However, present temperatures in central California are slightly higher than those in northern California.
indicating the thermal histories of samples from the two areas were probably different. Presently the best interpretation of the D/L ratios is that the Point Ano Nuevo samples are younger than those from Campton Road (LACMNH loc. 3961) and near (?) Fields Landing (CAS loc. 54082) but older than those from the Battery formation in Crescent City (LACMNH locs. 3943, 3944, 3946).

The D/L ratios of samples from the marine sediments at Trinidad Head (LACMNH loc. 3939) north of Eureka indicates these beds are older than all those from which fossils were analysed in the Humboldt Bay area except the Carlotta formation at Scotia Bluffs (HSU loc. 997) (Table 1).

KINETIC MODEL AGE ESTIMATES

Absolute ages can be estimated by a kinetic model based on the racemization of leucine. This model is graphically shown in Figure 2 and is a plot of the variable \(\frac{(X_E - X)}{X_E} \) vs. time, where \(X \) is the value of the ratio \(D/(D + L) \) at any time \(T \) and \(X_E \) is the \(D/(D + L) \) ratio at infinite time, the time of complete racemic equilibrium. For leucine \(X_E = 0.50 \). The model curves of Figure 2 are for *Saxidomus* leucine kinetics at temperatures of \(8^\circ \), \(11^\circ \), and \(13^\circ \) C (model curves for other genera would differ slightly). These curves are calculated for various mean annual air temperatures, and are calibrated with radiometrically-dated Holocene and latest Pleistocene *Saxidomus* from uplifted marine deposits in the area of Puget Sound, Washington (Wehmiller, 1977, unpublished data). Although significant differences between air and ground temperatures are often observed, the particular method of calibration of the model curves compensates for these
Figure 2: Leucine kinetic model showing the plot of the variable \((X_E - X)/X_E\) vs. time. Results are shown for Crescent City (LACMNH loc. 3943, 3944, 3946), Campton Road (LACMNH loc. 3961), near (?) Fields Landing (CAS loc. 54082), Ridgewood Drive (HSU loc. 746), three samples from Fields Landing (HSU loc. 673 and CAS loc. 41987), and Trinidad Head (LACMNH loc. 3939). Diagonal lines (8°C, 11°C, and 13°C) are model kinetics developed for Saxidomus in other areas, (Wehmiller, 1977, unpublished data). The circles indicate the age estimate assuming 8°C kinetics. The heavy horizontal bar is the uncertainty of ±15% which is equivalent to a ±0.75°C uncertainty in the effective temperature. The light horizontal lines define the range of age estimates possible within the assumptions of either 8°C C or 11°C C kinetics. Present day mean annual air temperature at these localities is about 11.1°C.
differences and permits ages to be estimated from mean annual air temperature records, which are much more readily available. The present mean annual air temperature in the Humboldt Bay area is 11.1°C.

An estimate of the effective diagenetic temperature, the integrated thermal history to which a sample has been exposed, must be made in the assignment of ages with the kinetic model. A full discussion of the procedures for estimation of effective diagenetic temperatures is found elsewhere (Wehmiller, Hare, and Kujala, 1976; Wehmiller, 1977, unpublished data; Wehmiller and Belknap, 1977). These studies indicate that samples from the California coast should be interpreted in terms of effective diagenetic temperatures about 3°C cooler than the present mean annual air temperatures at these localities. Effective diagenetic temperatures are lower than present-day temperatures because of temperature reductions during Pleistocene glacial cycles, but effective temperature reductions are not as great as those of full-glacial periods (about -5°C) because of the exponential nature of the temperature dependence of racemization (Wehmiller and Belknap, 1977). As stated previously, we make the assumption that all samples from the Crescent City - Humboldt Bay area have experienced similar thermal histories, and therefore we interpret the data from all of these samples in terms of an effective diagenetic temperature of 8°C (about 3°C cooler than the present mean annual air temperature). Differences in the depositional environments of these samples might lead us to modify our assumptions of identical temperature histories, but probably by no more than +1°C.
The mean leucine enantiomeric ratio (in the form \(\frac{X_E - X}{X_E} \)) from each locality is plotted in Figure 2. Two age estimates from each locality are derived from Figure 2 and are summarized in Table 2. The first age is a minimum age estimate based on the assumption of constant temperature (equal to present-day temperature) throughout the history of the sample. Although this assumption is clearly erroneous, it is useful in placing uncertainty limits on our age assignments. The second age estimate is that derived from the assumed effective diagenetic temperature of \(8^\circ C \). The more probable age estimates are those derived from \(8^\circ C \) curve, and age uncertainties of \(\pm 15\% \) (equivalent to temperature uncertainties of \(\pm 0.75^\circ C \)) are given in Table 2 for these \(8^\circ C \) age estimates.

The kinetic model ages for samples from the Eureka - Fields Landing area fall into two groups as reflected in the raw D/L ratios. Samples from Campton Road (LACMNH loc. 3961) and near (?) Fields Landing (CAS loc. 54082) are approximately 180,000 \(\pm 30,000 \) years old. Samples from Ridgewood Road (HSU loc. 746) and Fields Landing (HSU Loc. 673 and CAS loc. 41987) are approximately 280,000 \(\pm 45,000 \) years old.

COMPARISON TO OTHER LOCALITIES

Results from Crescent City and Trinidad Head are also plotted in Figure 2. Age assignments of these other localities are estimated by procedures identical to those described for the Humboldt Bay samples (Table 2). Also given in Table 2 for comparative purposes are the age assignments for shells from Point Año Nuevo, in central California, (Wehmiller, 1977, unpublished data). The kinetic model ages of Crescent
TABLE 2
KINETIC MODEL AGE ESTIMATES

<table>
<thead>
<tr>
<th>LOCALITY</th>
<th>EFFECTIVE TEMPERATURE = 11°C (PRESENT-DAY TEMPERATURE)</th>
<th>EFFECTIVE TEMPERATURE = 8°C (PRESENT-DAY TEMPERATURE - 3°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern California:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humboldt Bay area:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campton Road, Eureka (LACHNH loc. 3961)</td>
<td>7 (120^3)</td>
<td>180 (\pm 30^4)</td>
</tr>
<tr>
<td>Near (?) Fields Landing (CAS loc. 54082)</td>
<td>110</td>
<td>170 (\pm 30)</td>
</tr>
<tr>
<td>Ridgewood Drive (HSU loc. 746)</td>
<td>7 (180)</td>
<td>280 (\pm 45)</td>
</tr>
<tr>
<td>Fields Landing (HSU loc. 673)</td>
<td>180</td>
<td>280 (\pm 45)</td>
</tr>
<tr>
<td>(CAS loc. 41987)</td>
<td>180</td>
<td>280 (\pm 45^5)</td>
</tr>
<tr>
<td>Scotia Bluffs: Carlotta fm (HSU loc. 997)</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Other:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crescent City (LACHNH loc. 3943, 3944, 3946)</td>
<td>50</td>
<td>80 (\pm 15)</td>
</tr>
<tr>
<td>Trinidad Head (LACHNH loc. 3939)</td>
<td>315</td>
<td>500 (\pm 75)</td>
</tr>
<tr>
<td>Central California:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point Año Nuevo (USGS-M loc. 1960)</td>
<td>90^9</td>
<td>110 (\pm 20^9)</td>
</tr>
</tbody>
</table>

NOTES:

1. See Appendices I and II for location and source information.
2. Age estimates derived from Figure 2 using leucine D/L ratios in Table 1.
3. Age estimate derived using average of data from samples 76-96 and 76-96a (Table 1).
4. + values are age uncertainties of \(\pm 15\%\) based on temperature uncertainties of \(\pm 0.75\°\) C.
5. Age estimate derived using average of data from samples 77-16 and 77-17 (Table 1).
6. No age calculated due to poor leucine data.
7. Similarity of D/L ratios and derived age estimates indicate localities within each bracket are the same age.
8. Same locality and possibly same fossil bed (see Appendices I and II).
9. Effective temperature = 13.0° - 13.7° C.
City (80,000 ± 15,000 yrs.) and Point Ano Nuevo (110,000 ± 20,000 yrs.) relate these shallow-water open-coast marine terrace deposits to recognized periods of eustatic high sea level (Bloom and others, 1974). Geologic data indicate the Trinidad Head samples, which appear to be approximately 500,000 years old, were deposited during a lowstand of sea level (T. A. Stephens, 1977, written communication). The Humboldt Bay samples are from esturine deposits which should be related directly to the eustatic record and represent sea level highstands. However, the age estimates reported here, 180,000 and 280,000 years BP (Table 2), do not correspond precisely with the ages of well documented middle to late Pleistocene high stands (roughly every 100,000 years) recorded elsewhere (Bloom and others, 1974). These apparent age discrepancies may be related to the uncertainties in the temperatures used to derive the amino acid age estimates.
ACKNOWLEDGEMENTS

Loan of fossils and permission to use them in amino acid analyses were kindly granted by Warren O. Addicott, U.S. Geological Survey, Menlo Park; Roy F. Kohl, Dept. of Geology, Humboldt State Univ., Arcata; Peter U. Rodda, Dept. of Geology, California Academy of Sciences, San Francisco; and Edward C. Wilson, Section of Invertebrate Paleontology, Los Angeles County Museum of Natural History, Los Angeles. Samuel D. Morrison, Humboldt State Univ., Arcata, provided the Saxidomus from the Carlotta formation (HSU loc. 997, sample 77-23).
REFERENCES CITED

APPENDIX I

Locality Descriptions

CAS loc. 41987:
West-facing roadcut on east side of U.S. Highway 101 north of Fields Landing, Humboldt County, California. Fields Landing 7.5' Quad. Collected by R. R. Talmadge, 1969. Carlotta fm. (Ogle, 1953). This is the same roadcut exposure as HSU loc. 673 but precise stratigraphic relationship is not known. See Appendix II for location map. Blue clay.

CAS loc. 54082:

HSU loc. 673:
West-facing roadcut on east side of U.S. Highway 101 about 0.46 km north of Fields Landing, Humboldt County, California. Fields Landing 7.5' Quad. Elevation 15-20 m. Collected by Lloyd Barker and Karen Wiancko in 1970. This is the same roadcut exposure as CAS loc. 41987 but precise stratigraphic relationships are not know. See Appendix II for location map.
HSU loc. 746: Roadcut on NE side of Ridgewood Drive 2.03 mi. (3.76 km) SE of U.S. Highway 101, south of Eureka, Humboldt County, California. Fields Landing 7.5' Quad. Elevation 70-75 m. Collected by Robert Doerkson and Roy R. Kohl in 1969. See Appendix II for location map. Gray blue silty clay.

LACMNH loc. 3939: Low seaciff exposure on northeast side of Trinidad Head, Trinidad, Humboldt County, California. Trinidad 7.5' Quad. Elevation 2-4 m. Collected by George L. Kennedy in 1973. Coarse, fossiliferous sandstone and coquina.

LACMNH loc. 3961: Roadcut on the NE side of Campton Road at street address, 4015 Campton Road, Eureka, Humboldt county, California. Elevation 15-17 m. Collected by George L. Kennedy in 1974. Gray blue silty clay.

NOTES:

1. See Appendix II for map locations of LACMNH loc 3961, CAS loc. 41987 and HSU locs. 673, 746, and 997.

2. Abbreviations:

CAS: California Academy of Sciences, San Francisco
HSU: Humboldt State University, Arcata
LACMNH: Los Angeles County Museum of Natural History, Los Angeles
APPENDIX II

Locality Maps: Eureka - Fields Landing area
IIA: Campton Road locality (LACMNH loc. 3961)
FIELDS LANDING
(HSU LOC. 673)
(CAS LOC. 41987)

LIB: Fields landing locality (HSU loc. 673; CAS loc. 41987)
CONTOUR INTERVAL 40 FEET

QUADRANGLE LOCATION

SCALE 1:24000

FIELDS LANDING QUADRANGLE
CALIFORNIA-HUMBOLDT CO.
7.5 MINUTE SERIES (TOPOGRAPHIC)

IIC: Ridgewood Drive locality (HSU loc. 746)
SCOTIA BLUFFS
CARLOTTA FM.
(HSU LOC. 997)

FORTUNA QUADRANGLE
CALIFORNIA-HUMBOLDT CO.
15 MINUTE SERIES (TOPOGRAPHIC)

IID: Scotia Bluffs, Carlotta fm. locality (HSU loc. 997)