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ABSTRACT

Local health departments play a critical role in the community that they serve

as they comprise the foundation of the U.S. public health system. Providing public

health services such as immunizations to the less affluent and advocating for state

smoking bans, local health departments rely on government resources to fund their

operations. Research indicates a positive impact of public health expenditures on the

overall health of the population. However, individuals may not be the sole beneficiaries

of public health expenditures. A healthier population may lead to efficiency gains for

surrounding health care providers.

In this research, I use efficiency analysis to explore the relationship between

public health expenditures and hospital efficiency. Specifically, I use the two-stage

semi-parametric Data Envelopment Analysis proposed by Simar and Wilson (2007) to

estimate how public health spending affects the technical efficiency of the surrounding

hospitals. The results of this research suggest that hospitals are indeed positively

affected by higher levels of public health spending that has occurred in their patient

market two years prior. Specifically, hospitals operating in an area with a high level

of per capita public health expenditures experience gains in efficiency of approximately

1.66 percentage points relative to those hospitals operating in low public health spending

areas.

x



Chapter 1

INTRODUCTION

The World Health Organization (WHO) defines public health as all organized

measures to prevent disease, promote health, and prolong life among the population as a

whole (World Health Organization, 2014). Throughout the United States, approximately

2,800 local public health departments operate with the common purpose of promoting

public health (National Association of City and County Health Organizations, 2014).

With the majority of operations being financed using government funding, local public

health departments rely on these funds to meet the health needs of the community

they serve. By providing services ranging from individual immunizations and vaccines

to advocating for state smoking bans, it is easy to assume increased funding of local

public health departments will have a positive impact on the community, however, the

magnitude is unclear.

In theory, the efficient allocation of public health funding will allow local public

health departments to solve potential problems before they occur. Without a measurable

outcome, determining a return on investment is difficult. As a consequence, policy

makers are unable to determine if spending on public health is worth the costs. In an

attempt to estimate the potential benefits of public health funding, I make an argument

that community members are not the sole beneficiaries of public health spending. If

increases in public health funding have a positive impact on the overall health of

the community, then health care providers, specifically surrounding hospitals, should

benefit as a result of a healthier population. In particular, hospitals should see efficiency

gains as a result of public health spending.

In this research, I fill a gap in the literature by exploring how previous public

health expenditures influence hospital efficiency. Specifically, using data on individual

1



hospitals from 2007-2012 and a unique dataset on local public health expenditures,

I employ the two-stage Data Envelopment Analysis (DEA) proposed by Simar and

Wilson (2007) to estimate how the level of public health spending two years prior affects

the technical efficiency of the surrounding hospital.1 In the first-stage, I define several

variables to serve as input and output proxies in the hospital production process. These

variables will be used in the first-stage to construct an estimate of technical efficiency

for each hospital in the sample. In the second-stage, I remain consistent with Simar and

Wilson (2007) by using the first-stage technical efficiency estimate as the dependent

variable in a truncated regression to analyze how public health expenditures impact

hospital efficiency.2

Recent research supports the claim that there is a positive relationship between

increased public health expenditures and overall health of the community (Brown, 2014;

Brown et al., 2014; Rivera, 2001; Glick and Menon, 2009; Bailey and Goodman-Bacon,

2015). However, what effect does an increase in public health funding have on health

care providers? If we accept the conclusion that an increase in public health spending

makes the population healthier, then over time, a healthier population would need less

medical care. In theory, this would allow hospitals to operate more efficiently. The

results of this research suggest that hospitals are indeed positively affected by the level

of public health spending that has occurred in their patient market two years prior.

Specifically, hospitals operating in an area with a high level of per capita public health

expenditures experience gains in efficiency of approximately 1.66 percentage points

relative to those hospitals operating in low public health spending areas.

1 A brief discussion on the background of technical efficiency and the Data
Envelopment Analysis is provided in Section 2.2 of Chapter 2. Refer to Chapter 5
for a detailed technical discussion of the Data Envelopment Analysis as proposed by
Simar and Wilson (2007).

2 Simar and Wilson (2007) conclude through a Monte–Carlo simulation that a
truncated regression outperforms the traditional tobit framework. See Section 5 for
further discussion.
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In the wake of the Great Recession and the implementation of the Affordable

Care Act (ACA), the United States national debt is larger than it has ever been.

According to predictions made by the Congressional Budget Office (CBO), steady

increases in the federal budget deficits will exacerbate the national debt over the next

three decades. The CBO reports the increased spending on major health programs,

such as Medicare, as one of the factors that will drive this growth (CBO, 2016).

Unfortunately, the issue of rising health care costs in the United States is not confined to

federal government medical programs. In a report on National Health Expenditures,

the Centers for Medicare and Medicaid Services (CMS) estimates that the U.S. has

spent roughly $3 trillion in total on health care in 2014, with hospitals accounting

for approximately one-third of that (CMS, 2014). The conclusions drawn from this

research will not fix America’s national debt problem nor will it immediately curb

health care expenditures. The conclusions do however, provide policy makers with

the evidence necessary to support the use of public health spending as an instrument

to influence health care expenditures. Over time, preventing health problems from

developing will make Americans healthier and potentially reduce health care expenditures

in the process.

The remainder of this dissertation is structured as follows. Chapter 2 provides

relevant background information. Chapter 3 and Chapter 4 provide a survey of the

literature and a discussion of the contribution made by this research, respectively.

Chapter 5 discusses the methods used in the empirical estimation and Chapter 6

contains a description of the data. Chapter 7 reviews the empirical findings and

Chapter 8 includes concluding remarks and relevant discussion.
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Chapter 2

BACKGROUND

This section of the proposal is structured as follows. Section 2.1 discusses the

relevant institutional background information on local health departments. Section

2.2 provides an introduction of efficiency analysis by defining technical efficiency and

briefly introduces popular estimation methods. I leave the technical details for a later

discussion of methodology in Chapter 5.

2.1 Local Health Departments

All local health departments work to promote overall health and well-being

of the communities in which they serve, but their organizational structure varies.

Adapting to the needs of their respective population, local health departments vary in

size, funding, and services provided to ensure these needs are met. Table 2.1 displays a

list of the top ten public health services that were provided by local health departments

in 2013. From inspecting restaurants to disease surveillance, local health departments

play a critical role in the provision of public health.

The majority of local health department operations are funded using government

allocated funds. Down from 72% in 2005 (National Association of City and County

Health Organizations, 2006), local health departments collected 70% of total revenue

from various levels of the government in 2010.1 Reimbursements from public insurance

programs (Medicaid and Medicare) contributed 16% of total revenue, regulatory and

patient fees accounted for 7%, while other sources such as grants from private foundations

accounted for 6% of total revenue (National Association of City and County Health

Organizations, 2011).

1 Government revenue sources - Local: 26%, State:21%, Total Federal: 23%
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Table 2.1: Top Ten Public Health Programs and Services Provided
by Local Health Departments in 2013

Rank Public Health Program/Service

1. Communicable/Infectious Disease Surveillance

2. Adult Immunization Provision

3. Child Immunization Provision

4. Tuberculosis Screening

5. Environmental Health Surveillance

6. Food Service Establishments Inspection

7. Tuberculosis Treatment

8. Food Safety Education

9. Population-Based Nutrition Services

10. Schools/Daycare Center Inspection

Note: Adapted from a figure displayed in the 2013 National Association

of City and County Health Officer Profile Study Summary, p. 36.

The revenue generated gives local health departments the ability to provide both

population-based services and individual clinical services. For the top ten services

listed in Table 2.1, individual clinical services include provision of immunizations,

such as H1N1 vaccines, and tuberculosis screening and treatment. These individual

client-based services have the potential to generate revenue as local health departments

can bill insurance companies for services rendered. Table 2.1 also lists population-based

services, such as infectious disease and environmental health surveillance, public education

on food safety and nutrition, and inspections of schools and restaurants, that are

considered public goods. These public goods are non-reimbursable, as there is no one

to bill. Because it is not feasible to bill for population-based activities, local health

departments are faced with the decision to provide these public health services and

suffer a loss or eliminate them and sacrifice overall community health.
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2.2 Efficiency Analysis

Technical Efficiency

Farrell (1957) defines technical efficiency as a measure of firm success in producing

the maximum quantity of output with a fixed level of input. In the context of this

research, hospital technical efficiency refers to how well a hospital is able to produce

medical outputs, such as admissions and surgeries, given the quantity of medical inputs,

such as beds and nurses, that has been chosen by the hospital manager.

Figure 2.1 illustrates this concept graphically, showing the typical production

possibilities frontier from production theory. Consider the simple case where one input

(x) is used to produce one output (y). Suppose points B and C represent two different

hospitals, producing at two different input/output allocations. Hospital B lies on

the boundary of the production possibilities frontier and is considered to be efficient.

Hospital C is using a greater quantity of inputs to produce the same level of output

as Hospital B. All else equal, Hospital C is able to reduce the magnitude of inputs

without sacrificing output. Therefore, this implies Hospital C is less efficient than

Hospital B.

Figure 2.1: Efficiency Frontier Estimation

Input (x)

Output (y)

Production Possibilities Frontier

A B C

δ = AB
AC

Source: Adapted from a figure displayed in Cozad and Wichmann
(2013), p. 4084.
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Estimation Methods

The theoretical concept of efficiency is straightforward with the simple case can

be illustrated by Figure 2.1. However, constructing efficiency estimates and explaining

why a firm has deviated from the optimal allocation is particularly challenging. Depending

on the assumptions the researcher is willing to make, there are the two popular methods

used throughout the literature to estimate efficiency. The Stochastic Frontier Analysis

(SFA) is a parametric approach to estimating efficiency whereas the Data Envelopment

Analysis (DEA) is a non-parametric approach. Because of the DEA’s flexibility, 67

percent of health care efficiency studies have used the DEA method since 2008 while

18 percent have employed SFA (Hollingsworth, 2008). In the discussion that follows,

I briefly introduce the SFA and the DEA methods deferring the technical details for

later consideration.

Stochasitic Frontier Analysis

First introduced by Aigner et al. (1977), the SFA is a parametric approach to

estimating efficiency and identifying causes of inefficiency. Aigner et al. (1977) propose

two explanations as to why firms may deviate from the ideal theoretical production

function. They argue deviations could be a result of inefficiency or idiosyncratic effects

that are unique to the individual firm. In a recent empirical application, Greene (2004)

uses the SFA to distinguish between heterogeneity and inefficiency of WHO health care

systems. Equation 2.1 shows the production function he defines which is consistent with

the typical form used in SFA estimations. For country i, in year t, the SFA equation

is defined to be:

yit = α + x′itβ + νit − ui (2.1)

where yit is the output, xit is a vector of inputs, νit is the stochastic variable, and ui

represents the inefficiency of country i in year t.

The SFA is a regression based approach to estimating the efficient frontier.

Typically, the SFA is estimated using corrected-OLS (Greene, 2012). The SFA requires

7



an assumption be made regarding the functional form of the production process.

Typically, production functions are assumed to follow a Cobb-Douglas form where

multiple inputs are used to produce a single output.

Data Envelopment Analysis

First introduced by Farrell (1957) and made popular by Charnes et al. (1978),

the traditional Data Envelopment Analysis (DEA) is a non-parametric approach to

estimating efficiency (Coelli et al., 2005). The DEA uses linear programming to

calculate the technical efficiency of each firm in the sample. Using the input/output

allocations from the sample, the DEA establishes a best-practice frontier by enveloping

the observed data. Once the best-practice frontier is determined, technical efficiency

estimates for each unit can be determined by calculating the linear distance from

each hospital to the most efficient peer, holding either input or output constant. In

practice, solutions to the DEA linear programming problem provide the technical

efficiency estimate for each hospital. This can be obtained using most statistical

software packages, however my analysis will be completed with a combination of

STATA and R. A major benefit of the DEA is that it performs better when multiple

outputs are specified. Additionally, because the DEA estimates efficiency by enveloping

the data, the DEA does not force an assumption regarding the functional form of the

production set as with the SFA.

The technical details of the linear programming problem are described in greater

detail in Chapter 5. Instead, I illustrate the DEA graphically by revisiting the previous

example depicted in Figure 2.1. Recall, two hospitals used one input (x) to produce (y)

output. Let δi denote the technical efficiency for hospital i defined such that δi ∈ (0, 1].

Furthermore, the efficient allocation is assigned a unitary value for technical efficiency

such that δi = 1 whereas inefficient hospitals have a technical efficiency such that

δi < 1.

8



Hospital B is considered to be the most technically efficient and is assigned a

technical efficiency score δB = 1. By operating in the interior of the best-practice

frontier, Hospital C is operating at an inefficient level. Inefficient hospitals are able to

reduce the quantity of inputs used without sacrificing output. Therefore, Hospital C

is assigned a technical efficiency score such that δC < 1. Generally, technical efficiency

estimates for hospital i can be determined by calculating the linear distance to the

efficiency frontier relative to the technically efficient hospital. In this simple example,

technical efficiency is determined by taking the ratio of the quantity of inputs used to

produce the most efficient allocation (B) to the quantity of inputs used in producing

the less efficient allocation (C) holding output constant.

A critical consequence of estimating efficiency using the DEA is that, the DEA

is not a regression analysis and therefore does not have an error term. This implies

efficiency estimates are constructed without accounting for statistical error. Relative

to the SFA, this marks a key shortcoming of the non-parametric approach. Traditional

DEA technical efficiency estimates view deviations from the efficiency frontier as pure

inefficiency. Estimates fail to distinguish between inefficiency and statistical discrepancy

which leads to an overestimation of the best-practice frontier (Simar and Wilson, 2007).

Using the bootstrapping algorithms proposed in Simar and Wilson (2007), it is possible

to correct for this overestimation. Further discussion of estimation methods is provided

in Chapter 5.

This background information on technical efficiency and the DEA estimation

clarifies the research question previously stated. In particular, I will define a production

process for hospitals consisting of relevant inputs and outputs. Solutions to the DEA

linear programming problem provide estimates of hospital technical efficiency in the

first-stage which establishes the efficient frontier like that of Figure 2.1. Following

Simar and Wilson (2007), a truncated regression is estimated in the second-stage to

explore the relationship between estimated hospital technical efficiency and per capita

public health expenditures.
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Chapter 3

LITERATURE REVIEW

This section provides a survey of relevant literature and is structured as follows.

Section 3.1 provides a discussion of the literature focusing on public health and health

care expenditures. Section 3.2 discusses the research estimating efficiency with particular

focus on studies utilizing the two-stage semi-parametric Data Envelopment Analysis

(DEA) proposed by Simar and Wilson (2007).

3.1 Public Health and Health Care Expenditures

In 2010, the Affordable Care Act (ACA) established the Public Health and

Prevention Fund which allocates $15 billion each year to the U.S. public health system

for the next ten years. Thus, the importance of public health and disease prevention

is not foreign to health policy makers. Researchers have paid a significant amount

of attention to public health expenditures (Brown, 2014; Brown et al., 2014; Duggan,

2000; Rivera, 2001; Self and Grabowski, 2003; Glick and Menon, 2009; Potrafke, 2010;

Granlund, 2010; Herwartz and Theilen, 2014; Bailey and Goodman-Bacon, 2015), non

of which explore the effect on hospital efficiency.

Brown (2014) and Brown et al. (2014) estimate the impact of public health

expenditures on the health of the population. Both studies identify positive results

using the Koyck distributed lag model. Focusing on the all-cause mortality rate, Brown

(2014) concludes that increasing per capita public health expenditures by $10 will

reduce mortality rates by 9.1 per 100,000.1 Brown et al. (2014) estimate the impact

1 The all-cause mortality rate captures all deaths occurring within the county for a
given year regardless of the cause of death. It is defined in terms of all deaths per
100,000 residents.
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of county per capita public health expenditures on reported health status from the

California Health Interview Survey. Survey participants are asked to select one of five

categories that best represents their current overall health status. From worst to best,

health status can be reported as poor, fair, good, very good, and excellent. The authors

conclude a $10 per capita increase in county public health expenditures results in a

0.065 percentage point increase in the population reporting good health status.

Duggan (2000) examines how public medical spending may differ as hospital

ownership varies. He classifies hospital ownership as one of three types: profit maximizing,

not-for-profit, and government owned. He exploits California’s attempt to extend care

to its impoverished citizens by changing the financial incentives of hospitals. He finds

not-for-profit hospitals were equally as responsive to financial incentives as for-profit

hospitals. Both not-for-profit and for-profit hospitals used new income to purchase

financial assets rather than invest in better medical care for the poor. Overall, Duggan

suggests that the significant public spending on medical care in California’s attempt

to increase care for the poor did not improve health outcomes. Duggan (2002) extends

his original analysis to explore the reason behind not-for-profit behavior. He finds

not-for-profit hospitals tend to act as profit maximizing hospitals when there is a high

concentration of private hospitals competing with them.

Research focusing on public health primarily analyzes the impact of public

health expenditures, typically on an aggregated health measure. However, little effort

has been made to examine the organizations responsible for implementing public health

programs and providing the community with public health services. In order for

the population to realize the health benefits that are associated with public health

expenditures, local health departments must allocate funding to successful programs

and productive activities. Thus, exploring how effective local health departments are at

operating in the community will help ensure funds are not wasted. To my knowledge,

Mukherjee et al. (2010) has been the only attempt to estimate the efficiency of the

local public health departments in the United States.
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Using cross-sectional data from 2005, Mukherjee et al. (2010) use the method

proposed by Simar and Wilson (2007) to conduct an exploratory analysis of local

health department efficiency. Their results suggest there are two major influences of

local health department technical efficiency. That is, variations in estimated efficiency

stems from the variety of services offered by local health departments and the source

of revenue. According to the results presented, local public health departments are

most technically efficient when providing a large assortment of public health services

as well as when the funding for these services is generated from the provision of billable

services. They argue these results support the idea that the greater is the funding from

the state or national government, the less efficient local public health departments

become.

Mukherjee et al. (2010) use their results to suggest local health departments

operate more efficiently when using lower government resources. However, their conclusions

may be misleading to policy makers as their results are subject to interpretation. Local

health departments use government funding to implement public health projects that

will meet the needs of the community. In theory, these local health departments should

choose to invest government funds in projects with the highest potential return on

public health. If funding is increased, local health departments may have the “use it or

lose it” mentality. Local health departments failing to allocate resources to a project

may result in loss of access to unused funding. This mentality causes local health

departments to explore projects with lower returns on investment. Consequently, local

health departments with higher funding may appear to be more inefficient, making the

results reported by Mukherjee et al. (2010) expected.

The Public Health and Prevention Fund that was established by the Affordable

Care Act generously provides the public health system with the resources necessary

to promote and maintain a healthy population. While it may be the case that the

local health departments capable of generating their own revenue will operate more

efficiently than those relying on government funding, the interpretation presented by

Mukherjee et al. (2010) is deceiving. That is, their results do not necessarily imply
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that the resources provided by the Public Health and Prevention Fund will be wasted

but utilized on projects with lower returns to public health.

3.2 Health Care Efficiency

The efficiency literature as a whole is vast. A subset of the efficiency literature

has concentrated on the health care industry. Hollingsworth (2008) provides a comprehensive

survey of the health care literature up until 2008. Of the 317 health care efficiency

studies analyzed, 52 percent had hospitals as the primarily focus. The DEA and SFA

are the two most popular methods used to estimate efficiency. This review will focus

on health care studies employing the DEA method with a particular emphasis the

modified version proposed by Simar and Wilson (2007) and its use in the two-stage

framework.

Original applications of the DEA method only involved a one-stage analysis

(Afonso and St. Aubyn, 2005; Hollingsworth and Wildman, 2003). Traditionally,

research was only interested in estimating the efficiency of a given production process.

As the health care literature expanded, there has been a growing interest in explaining

the determinants of inefficiency. In particular, research has expanded the analysis

to incorporate environmental variables in a second-stage regression as an attempt

to explain deviations from the efficient frontier (Brown, 2003; Pilyavsky et al., 2006;

Blank and Valdmanis, 2010; Ferrier and Trivitt, 2013; Herwartz and Strumann, 2014;

Kawaguchi et al., 2014; Cozad and Wichmann, 2013; Afonso and St. Aubyn, 2011;

Bernet et al., 2008; Deily and McKay, 2006; Nedelea and Fannin, 2013). Using the

estimated efficiency scores from the first-stage as the dependent variable, the second-stage

estimation examines the impact of environmental factors that are beyond the direct

control of the hospital manager or more generally, the decision maker.

Prior to Simar and Wilson (2007), estimation of this second-stage has traditionally

used a Tobit framework out of concern that first-stage estimates were censored. Other

studies have transformed the data using logs and employed OLS. Both approaches are

criticized by Simar and Wilson (2007). They argue that estimating the second-stage
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using these traditional methods is invalid. The presence of serial correlation in the

second-stage makes it unclear as to what is actually being estimated. The modification

of the traditional DEA procedure made by Simar and Wilson (2007) addresses concerns

of biased efficiency scores and lays the foundation for consistent estimation of the

second-stage. This approach is still relatively new and research applying this method

is still growing.

Recent efficiency research examining several European countries applies the

DEA procedure as proposed by Simar and Wilson (2007) to show that hospital efficiency

indeed depends upon the operating environment (Pilyavsky et al., 2006; Blank and

Valdmanis, 2010; Herwartz and Strumann, 2014; Ferrier and Trivitt, 2013). Pilyavsky

et al. (2006) exploit the cultural division in the Ukraine to analyze the efficiency of

hospitals. In particular, they analyzed the differences in hospital efficiency between

East and West regions of the Ukraine. Although Ukraine gained sovereignty from the

Soviet Union in 1991, ways of life remain divided. The Eastern region was resistant

to the cultural influence of the western world which the Western region embraced.

Pilyavsky et al. find that overall the operating region did not have a significant impact

on hospital efficiency but as time progressed, the disparity in efficiency between the

regions grew. They argue this is strong evidence in support the idea that independent

thinking of the West allowed hospitals to outperform Eastern hospitals over time.

Bernet et al. (2008) find similar results in their application of the modified DEA to

estimate technical efficiency of Ukrainian polyclinics.

Blank and Valdmanis (2010) use the DEA procedure as proposed by Simar and

Wilson (2007) to analyze the efficiency of hospitals located in the highly-regulated

health care industry of the Netherlands. The Dutch government controls many aspects

of the health care industry including allocation of capital resources such as number of

beds per hospital. They hypothesize that inefficient allocations based on inaccurate

government forecasting may have adverse effects on the patient. Having access to

data on input costs allowed the authors to estimate cost efficiency rather than the

technical efficiency I propose estimating in my analysis. Blank and Valdmanis find
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that hospital cost efficiency is indeed impacted by the operating environment. In

particular, they find a significant factor causing cost inefficiency are physicians that

are operating private practices within a hospital. Blank and Valdmanis have several

theories as to the source that is driving this result. One theory argues that these

physicians are acting as profit-maximizing agents who over utilize hospital resources

by prescribing unnecessary procedures.

Other studies have taken an alternative approach to estimate the second-stage

(Herwartz and Strumann, 2014; Ferrier and Trivitt, 2013; Kristensen et al., 2010).

However, these studies acknowledge that traditional DEA estimates are serially correlated

and biased. Thus, they use a bootstrapping procedure proposed in Simar and Wilson

(2007) to estimate the bias-corrected DEA scores in the first-stage. Herwartz and

Strumann (2014) estimate the impact of the 2004 German health care reform on

hospital efficiency. In 2004, Germany made an attempt to slow the rapidly growing

health care costs by introducing a new mechanism for hospital reimbursement based

on diagnosis-related groups. Although the intentions of the reform were to incentivize

hospitals to reduce length of stay and increase the patients treated, the authors argue

the reform contained other incentives which adversely affected efficiency.

Herwartz and Strumann estimate the bias-corrected technical efficiency scores

in the first-stage according to Simar and Wilson (2007). Although the authors proceed

with an alternative approach for the second-stage, they also use the second-stage

bootstrapping procedure of the Simar and Wilson approach as a robustness check

and report negligible differences. Their results show no indication of the health reform

having a positive impact on German hospitals. In fact, they find hospital efficiency

decreased over time after the reform. Herwartz and Strumann attribute the decline

in efficiency to the financial uncertainty of the reform. To eliminate bankruptcy risk,

hospitals built up financial reserves to fund investments. This uncertainty caused a

lag in the adoption of technology leading to the decline in the ability of hospitals to

deliver efficient medical care.
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Rather than use modified DEA approach for their two-stage analysis, Ferrier

and Trivitt (2013) use the traditional DEA method twice to account for how quality of

care influences the technical efficiency of U.S. hospitals. Like Herwartz and Strumann

(2014), Ferrier and Trivitt (2013) acknowledge the critique made in Simar and Wilson

(2007) regarding the bias contained in traditional DEA estimations and apply the

Simar and Wilson approach as a robustness check. They report insignificant differences

between the two alternatives and proceed with their approach. The authors dub this

approach, the “Double DEA” and first use the DEA method to construct quality indices

based on variety of process and outcome measures of quality. They then use the DEA

approach a second time to estimate the technical efficiency of each hospital while

controlling for quality using the estimates of quality from the first stage. They argue

that failing to account for quality when estimating hospital technical efficiency will

result in misleading estimates. Failing to control for quality of care will give hospitals

the incentive to lower quality while still being able to appear efficient. Alternatively,

other hospitals may appear inefficient while providing a higher quality of care.

In a macro context, a subset of the literature focuses on the health care delivery

system as a whole (Cozad and Wichmann, 2013; Afonso and St. Aubyn, 2005; Hollingsworth

and Wildman, 2003; Afonso and St. Aubyn, 2011). Using the WHO panel data for

OECD countries, Afonso and St. Aubyn (2005) and Hollingsworth and Wildman (2003)

estimate the technical efficiency of health care delivery systems for OECD countries

but do not attempt to explain the causes of inefficiency. In a later study, Afonso and

St. Aubyn (2011) extend their original analysis in 2005 by applying the modified DEA

approach to estimate the impact of environmental variables. They find that inefficiency

of health care delivery systems can be attributed to GDP per capita, education level,

obesity, and smoking level. In the short-run, these variables are viewed as beyond the

immediate control of governments thus impacting efficiency. Cozad and Wichmann

(2013) conduct a similar study by estimating the technical efficiency of health care

delivery systems in the U.S. by treating each state as a sovereign decision making unit.
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Cozad and Wichmann (2013) were motivated by the 2010 implementation of

the Affordable Care Act (ACA). Applying the DEA procedure as proposed by Simar

and Wilson (2007) to panel data from 2000-2007, Cozad and Wichmann explore the

relationship between the number of insured individuals residing within each state and

the technical efficiency of the state health care delivery system. Overall, their results

confirm the hypothesis that expanding insurance coverage at a magnitude similar to

the expected expansion from the ACA will place a strain on state health care delivery

systems, resulting in costly inefficiencies.

Cozad and Wichmann (2013) use their result to discuss the potential impact of

a fully implemented ACA. They use total health care expenditures in 2007 as a base

year to determine the cost of a hypothetical health insurance expansion. In a back

of the envelope calculation, they convert the technical efficiency loss directly resulting

from an increase in the number of insured into health care expenditures. For 2007,

their results indicate that increasing the number of insured individuals within a state

by 1 percentage point will cause technical efficiency to fall 1.3 percentage points. They

argue that a decline in the technical efficiency of this magnitude will translate into

a $50 billion increase in health care expenditures. Thus, if a hypothetical insurance

expansion in 2007 increased the number of insured in all states by 1 percentage point,

the resulting inefficiency would increase overall health care expendsures by $50 billion.

Other studies have also attempted to draw conclusions on the potential effect of

a fully implemented health care reform (Bailey and Goodman-Bacon, 2015; Garthwaite,

2012; Levine et al., 2011). Bailey and Goodman-Bacon (2015) show the health benefit

that is associated with public health funding in their recent study. They focus on

the introduction of community health centers in 1965. Complementing local health

departments, community health centers use federal funding to increase access to health

care and provide primary care services to underserved populations. Their results

imply a significant reduction in the age-adjusted mortality rate and mortality risk

among the population served. The significant long-term health benefits from the

community health center program shown in this study indicate the importance of
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efficiently allocating funding to the public health sector.

Levine et al. (2011) and Garthwaite (2012) use the introduction of the State

Children’s Health Insurance Program (SCHIP) to draw potential policy conclusions of

a fully implemented ACA. Levine et al. (2011) analyze the introduction of SCHIP from

the patient side and find it to be successful at increasing the coverage among American

children. Alternatively, Garthwaite (2012) focus on the impact of SCHIP on physician

behavior. He finds physicians act as profit maximizers and tend to maximize personal

income. After the introduction of SCHIP, his results show physicians were more likely

to see and accept new Medicaid patients. However, pediatricians were more likely to

decrease the number of hours they spend on patient care, spending less time with each

individual. Garthwaite suggests his results indicate the potential adverse effects that

future health insurance expansions may have on physician behavior and thus patient

care quality.
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Chapter 4

CONTRIBUTION

Economic research focusing on the effects of public health is limited. This may

be a result of lack of researcher interest stemming from the relatively insignificant share

of overall spending that is dedicated to public health. In 2014, approximately 2.6% of

U.S. national health expenditures can be attributed to public health activity (CMS,

2014). Several studies focusing on the efficiency of health care delivery systems have

omitted the public health sector, only taking into account the production attributed to

hospitals and general practitioners in their analysis (Afonso and St. Aubyn, 2005, 2011;

Hollingsworth and Wildman, 2003; Greene, 2004; Bhat, 2005; Spinks and Hollingsworth,

2009; Cozad and Wichmann, 2013). Thus, the primary goal of this research is to provide

a better understanding of the effects of public health and the role it plays in the U.S.

While the true reason many chose to exclude public health activity is unknown,

a likely factor is data constraints. The nature of public health makes data collection

complicated. By definition, the goal of public health is to provide the necessary

conditions to ensure individual and community health (IMO, 1988). Efficient allocation

of funds throughout the public health system should successfully prevent potential

health problems before they occur. Without a measurable outcome, estimating a cause

and effect relationship is particularly problematic. As a consequence, determining a

return on investment is difficult and when attempted is often unclear.

Although difficult, empirical economists have not ignored the issue altogether.

The existing literature reports significant health benefits associated with higher levels of

public health spending. Because public health funding is meant to make the population

as a whole healthier, researchers often calculate returns to higher levels of funding in

terms of an aggregated health outcome. For example, Brown et al. (2014) report
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that a $10 per capita increase in county public health expenditures results in a 0.065

percentage point increase in the population reporting “good” health status. While these

results are indicative of the health benefits associated with public health expenditures,

they offer policy makers little information regarding a return on allocated funds.

The first contribution that I make to the literature is to extend the economic

analysis of public health. My analysis deviates from the existing literature by moving

away from the use of an aggregated health outcome variable. In particular, I estimate

the relationship between county public health expenditures and individual hospital

production. Previous research has indicated significant health benefits associated with

increased funding of the public health system. If we accept these conclusions, health

care providers, or in this context hospitals, should be affected as a result of a healthier

or unhealthier population. To my knowledge, approaching the problem in this manner

has not been explored and will provide a new avenue to understanding public health

effects.

Efficiency analysis provides the framework needed to estimate the relationship

between public health spending and hospitals. Typical efficiency studies involve a

two-stage analysis. Estimating the efficiency of the production process in the first

stage and attempting to explain any inefficiency in the second. Researchers have found

several factors that can explain hospital inefficiency, none of which are related to public

health. Most studies exploit a unique feature that is believed to affect the ability

of hospitals to efficiently deliver medical care. For example, Pilyavsky et al. (2006)

conclude that the geographic region in the Ukraine impacts efficiency while Blank and

Valdmanis (2010) report inefficiency of the highly regulated Dutch hospitals are a result

of private physicians operating within the hospital.

A second contribution I make in this research is twofold. Making use of efficiency

analysis as an empirical strategy, I expand the limited efficiency literature focusing on

U.S. hospitals. Furthermore, the inclusion of public health activity as a non-discretionary

factor furthers our understanding of public health and the effect it has on surrounding

hospitals. To my knowledge, the use of public health expenditures to explain hospital
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efficiency has not been explored.

An unexpected result of this empirical strategy involves potential policy implications.

In 2014, approximately one-third of the $3 trillion that the U.S. has spent on health care

is be attributed to hospitals (CMS, 2014). The 2010 implementation of the Affordable

Care Act aimed to increase to the health of all Americans by providing access to

affordable health insurance, all the while reigning in on long-run health care costs.

One mechanism to reduce expenditures in hospitals involves imposing hospital cost

saving incentives. While the goal of this dissertation is not to uncover the impact of

the Affordable Care Act, the conclusions of this research may provide policy makers

with an alternative mechanism to influence United States health care costs. Specifically,

using efficiency analysis, I provide researchers and policy makers with an alternative

estimate of the return on public health funding.
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Chapter 5

METHODS

In this chapter, I discuss the empirical strategy used to estimate the relationship

between public health spending and hospital efficiency. This chapter is divided into

three main sections. Section 5.1 presents a technical overview of the traditional non-

parametric DEA approach. Section 5.2 provides a detailed description of the two-stage

semi-parametric DEA proposed by Simar and Wilson (2007). Section 5.3 defines the

variables that comprise the hospital production process as well as the environmental

variables that constrain the production process indirectly.

5.1 Non-Parametric Data Envelopment Analysis

Although research concludes that the successful allocation of public health

expenditures results in a healthier population, the effect that it has on hospitals is

unclear. Hospitals should benefit from higher public health spending. A healthier

population will demand less medical care, thus allowing hospitals to use critical resources

more effectively. Alternatively, it is plausible that higher public health spending

will adversely impact hospitals. Because hospital production is dependent upon the

existence of an individual in need of medical attention, it is safe to assume that hospitals

will not produce at maximum capacity but will operate with a normal degree of excess

capacity. Failing to account for lower demand for hospital services as a consequence

of a healthier population will result in costly excess capacity beyond this normal level.

In this research, I use efficiency analysis to answer the question: “Do higher levels of

public health expenditures have a positive or negative impact on hospital technical

efficiency?”
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Recall from a previous discussion in Chapter 2, technical efficiency is an indicator

of how well a firm is using its resources. In the context of this research, hospital

technical efficiency relies on how well hospital managers allocate inputs such as beds

and nurses to produce medical outputs such as admissions and discharges. When

technical efficiency is maximized, any reduction of inputs will subsequently cause a

reduction of output. A hospital deemed to be technically inefficient can be interpreted

as “wasteful” (Cooper et al., 2006). In other words, a technically inefficient hospital

is “wasting” inputs. To move to an efficiency maximizing input/output allocation,

an inefficient hospital can choose to either reduce inputs without sacrificing output or

expand output by using current inputs more efficiently.

It is important to distinguish that technical efficiency does not refer to how

efficiently an individual patient is treated. For example, suppose an individual with a

broken arm visits the emergency department at the nearest hospital. This patient may

receive excellent medical care. It is possible that in each step of the hospital process,

the patient is treated as efficiently as possible. It is also possible that this hospital

is considered to be technically inefficient. Hospital inefficiency is a result of the over

allocation of inputs needed in the hospital production process. For example, a hospital

may have hired more nurses or installed more beds than is necessary to provide an

excellent level of medical care.

The true value of technical efficiency is unknown and must be estimated empirically.

Initially proposed by Farrell (1957) and made popular by Charnes et al. (1978), the

non-parametric DEA approach is the dominant method for constructing measures

of efficiency (Hollingsworth, 2008). While each hospital possess its own production

possibilities frontier, the estimates of technical efficiency produced by the DEA are

dependent upon the remaining hospitals in the sample. Through mathematical programing,

the DEA uses observed pairs of inputs and outputs to establish a deterministic or

best-practice frontier (Cooper et al., 2006). The established best-practice frontier

consists of those hospitals that have maximized efficiency. Once established, the DEA

linear programming problem obtains an estimate of technical efficiency by comparing
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each hospital to its best performing peer.

For hospital i, let xi be a (p × 1) column vector of inputs and yi be a (q × 1)

column vector of outputs where xi is used to produce yi. Assuming constant returns

to scale, the input-oriented non-parametric DEA is defined by the following linear

programing problem:

δ̂i = min
δi,λ

δi s.t. Y ′λ ≥ yi (5.1)

X ′λ ≤ δixi

λ ≥ 0

where λ is a (n × 1) vector of weight variables and δ̂i ∈ (0, 1] is the estimated

input-oriented technical efficiency score for hospital i (Greene, 2012). Equation 5.1

defines X as an (n× p) input matrix and Y as a (n× q) matrix of outputs where the

ith row of X and Y are x′i and y′i respectively.

Solving Equation 5.1 yields estimates of the input-oriented technical efficiency

for each hospital in the sample. Technically efficient hospitals will be assigned a

efficiency score such that δ̂i = 1. Hospitals deemed to be inefficient will be assigned

an efficiency score such that δ̂i < 1. Figure 5.1 illustrates the simple case of Equation

5.1 where one input is used to produce one output.1 Here, two hospitals are producing

the same level of outputs which is held constant at A. Operating on the best-practice

frontier, Hospital B is considered to be the most efficient hospital and will be assigned

an efficiency score such that δ̂B = 1. A unitary technical efficiency estimate implies

that if Hospital B wishes to remain producing A, then it cannot reduce capital and

labor inputs any further. Moreover, any decision to reduce inputs by Hospital B will

force a contraction of output.

Hospital C is operating on the interior of best-practice frontier and therefore

is considered inefficient. Hospital C will be assigned an efficiency estimate such that

δ̂C < 1. In other words, Hospital C can be thought of as wasteful. Relative to Hospital

1 Figure 5.1 is the same graph used to introduce efficiency estimation in Chapter 2.
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Figure 5.1: Input-Oriented Efficiency Estimation

Input (x)

Output (y)

Best-Practice Frontier

A B C

δ = AB
AC

Source: Adapted from a figure displayed in Cozad and Wichmann
(2013), p. 4084.

B, Hospital C is utilizing a greater level of inputs to produce the same level of output.

Thus, it is possible for Hospital C to proportionally reduce its capital and labor inputs

without sacrificing output. For example, suppose it is estimated that Hospital C has

an efficiency score such that δ̂C = 0.85. Hospital C can proportionally contract its

inputs by 1 − δ̂C = 0.15 or 15% while still achieving an output level equal to A.

Graphically, a reduction of all inputs by 1 − δ̂C will horizontally project Hospital C

onto the best-practice frontier.

The solution to the DEA linear programing problem yields a set of efficiency

estimates which can be thought of as performance indicators. Hospitals using the least

amount of input necessary to produce a given level of output are considered to be the

best performing. The concept of comparing hospital efficiencies is similar to that of

modern portfolio theory in finance. In modern portfolio theory, different combinations

of risk and return are compared to one another to determine an optimal portfolio

choice. Portfolios minimizing risk exposure for a given expected return are considered

efficient. Plotting the possible combinations of risk and return yields an implied efficient

frontier. Similarly, the best-practice frontier is implied by the input/output allocations
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in the sample. That is, the best-practice frontier envelopes the data with the boundary

consisting of the set of best performing input/output allocations.

5.2 Semi-Parametric Data Envelopment Analysis

Original applications were only concerned with solving the DEA linear programing

problems to obtain an estimate of efficiency for a given production process. Over time,

researchers have developed an interest in explaining why a firm is operating away

from the efficient allocation. Thus, recent efficiency studies extend the analysis to a

two-stage estimation. The general structure of a two-stage efficiency estimation is as

follows. In the first-stage, Equation 5.1 is solved for each firm to obtain estimates

of technical efficiency δ̂i. In the second-stage, δ̂i is used as the dependent variable

in a regression analysis to identify environmental factors constraining the production

process. For hospital i, the general second-stage regression is defined such that

δ̂i = z′iβ + εi (5.2)

where δ̂i is the estimated input-oriented efficiency and zi is an (k × 1) vector of

environmental variables that constrain the production process indirectly. I purposely

define Equation 5.2 such that it remains consistent with the compact notation used

in Simar and Wilson (2007). This will facilitate a straightforward description of the

steps taken to estimate the second-stage. In a later discussion, I define a more specific

second-stage regression.

Traditionally, Equation 5.2 has been estimated using an OLS or Tobit model.

Simar and Wilson (2007) criticize studies for using the non-parametric DEA estimates

with traditional empirical approaches in the second-stage. Simar and Wilson (2007,

2014) argue that the vast majority of studies reviewed ignore two critical shortcomings

of the non-parametric DEA estimates. First, because each hospital is compared to

another in an unknown fashion, the authors argue that δ̂i is serially correlated in a

complex, ambiguous manner. Because of this, the authors argue traditional maximum

likelihood approaches to statistical testing are rendered invalid.
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Compounding the problem, the non-parametric DEA does not allow for statistical

error when constructing δ̂i. This implies any deviation from the best-practice frontier

is viewed as pure inefficiency as it cannot distinguish between inefficiency or statistical

error (Coelli et al., 2005). Because the non-parametric DEA does not allow for statistical

error, Simar and Wilson argue that all second-stage coefficient estimates will be biased.

Moreover, Simar and Wilson show mathematically that the non-parametric DEA estimate

will always overestimate efficiency for all hospitals in the sample. Failing to take these

shortcomings into consideration is particularly problematic for statistical testing as the

bias will subsequently translate into the error term during the second-stage.

The benefit of using a non-parametric approach is its ability to handle multiple

outputs and its flexibility when estimating the best-practice frontier (Cooper et al.,

2011). However, relative to the parametric counterpart, the flexibility of the DEA

is the source of several complications (Greene, 2007). To solve problems associated

with the non-parametric DEA, Simar and Wilson impose several assumptions on the

data generating process to develop a semi-parametric DEA estimator. They present

researchers with two bootstrapping algorithms to consistently estimate the coefficients

in the second-stage. Explained in detail below, both approaches provide a mechanism

for consistent estimation and valid statistical testing for the environmental variables

in the second-stage.

The algorithms proposed in Simar and Wilson (2007) require efficiency to be

estimated by an output-oriented model, a variation of the input-oriented model specified

by Equation 5.1. Mathematically, the choice of orientation is trivial as it has no impact

on estimated efficiency scores (Coelli et al., 2005). The selection of orientation should

be based on the industry of focus, paying attention to what the decision maker has more

control over. In the context of hospital production, hospitals must meet demand as

needed and possess little direct control over output levels. Thus, an input-oriented DEA

will provide a more intuitive interpretation of hospital efficiency. Although Simar and

Wilson’s algorithms are defined using output-oriented efficiency estimates, Nedelea and

Fannin (2013) make the necessary modifications to allow for the use of an input-oriented
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DEA. Thus, I estimate hospital technical efficiency using an adapted version of the

algorithms defined in Simar and Wilson (2007).

The first approach, denoted Algorithm 1, provides a mechanism for valid statistical

testing by implementing one bootstrap procedure. Algorithm 1 can be summarized in

the following steps:

Algorithm 1

1. Compute δ̂i ∀ i = 1, ..., n using Equation 5.3.

δ̂i = min
δi,λ

δi s.t. Y ′λ ≥ yi (5.3)

X ′λ ≤ δixi

λ ≥ 0

ι′λ = 1

where λ is a (n× 1) vector of weight variables, ι is a (n× 1) vector of ones, and

δ̂i ∈ (0, 1].

2. For m < n observations, use the method of maximum likelihood to obtain an
estimate β̂ of β as well as σ̂ε of σε in the truncated regression of δ̂i on zi in
Equation 5.4.

δ̂i = z′iβ + εi (5.4)

3. Loop over the next three steps L times to obtain a set of bootstrap estimates{(
β̂∗, σ̂ε

∗)
b

}L
b=1

:

3.1. For each i = 1, ...,m, draw εi from theN(0, σ̂ε
2) distribution with left-truncation

at −z′iβ̂ and right-truncation at 1− z′iβ̂.

3.2. Again, for each i = 1, ...,m, compute δ∗i = z′iβ̂ + εi

3.3. Use the maximum likelihood method to estimate the truncated regression
of δ∗i on zi, yielding estimates

(
β̂∗, σ̂ε

∗).
4. Use the bootstrap values in

{(
β̂∗, σ̂ε

∗)
b

}L
b=1

and the original estimates β̂, σ̂ε to

construct estimated confidence intervals for each independent variable.
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Algorithm 1 completes the first-stage in Step 1. Here, estimates of δ̂i are

obtained by solving the non-parametric DEA linear programing problem defined in

Equation 5.3. This equation differs from the previously discussed model in Equation

5.1 in that an additional constraint is added. Previously, I introduced the general DEA

model which assumes constant returns to scale. This assumption is only appropriate

when every hospital is at the optimal scale (Coelli et al., 2005). Adding this convexity

constraint (ι′λ = 1) allows for variable returns to scale while ensuring that all hospitals

will only be compared to hospitals similar in size (Coelli et al., 2005).

Algorithm 1 estimates the second-stage using the process defined in Steps 2-4.

For a randomly selected number (m) of hospitals such that m < n, Equation 5.4 is

estimated using δ̂i as the dependent variable in a truncated regression. Here, estimates

of β̂ and σ̂ε are stored as the baseline result. It is important to note that Algorithm

1 proceeds to the second-stage without correcting for the bias term contained in the

traditional estimates. Because δ̂i is a consistent estimator of δi, the bias will disappear

in large sample sizes, however, by construction δ̂i will remain serially correlated. In

this case, Simar and Wilson argue one bootstrap routine will be sufficient to provide

consistent statistical inference in the second-stage.

Step 3 of Algorithm 1 defines a single bootstrap procedure. For the same m < n

randomly selected hospitals, Step 3 is repeated L times without replacement to obtain L

sets of bootstrapped estimates of β̂∗ and σ̂ε
∗ (Simar and Wilson, 2000). This procedure

first draws a value of εi from the N(0, σ̂ε
2) distribution with left-truncation at −z′iβ̂ and

right-truncation at 1−z′iβ̂. Next, an implied efficiency estimate, δ∗i , is calculated using

the stored estimates of β̂ obtained from Step 2 and the random draw of εi obtained

from Step 3.1. Lastly, Step 3.3. then estimates Equation 5.2 using δ∗i in a truncated

regression to obtain bootstrapped estimates of β̂∗. Simar and Wilson (2007) argue

setting L = 2000 is sufficiently large enough to consistently estimate and test the

second-stage, however, they provide no suggestion for the size of m.

The final step is to determine the significance of each environmental variable.

For a given regressor j, Simar and Wilson (2007) accomplish this by constructing
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percentile bootstrapped confidence intervals such that:

Pr
[
aα/2 ≤ βj − β̂j ≤ b1−α/2

]
= 1− α (5.5)

where βj is the true value and α ∈ (0, 1) is the probability of making an Type I error.

Unfortunately, the distribution of βj−β̂j is unknown which makes finding critical values

problematic (Simar and Wilson, 2007). To overcome this hurdle, Simar and Wilson use

the stored bootstrap estimates of each coefficient to approximate the unknown critical

values such that:

Pr
[
a∗α/2 ≤ β̂j − β̂j

∗
≤ b∗1−α/2

]
≈ 1− α (5.6)

where, for a given α, a∗α/2 and b∗1−α/2 are selected such that 100× (1− α)% remain in

the distribution. The percentile bootstrapped confidence intervals are then determined

after substituting the approximated critical values a∗α/2, b
∗
1−α/2 back into Equation 5.5.

The resulting (1− α) percentile bootstrapped confidence interval for variable j is:

β̂j + a∗α/2, β̂j + b∗1−α/2 (5.7)

Empirical implementation of their process is straightforward. For each independent

variable, a temporary variable is created by subtracting the bootstrapped value β̂j
∗

from β̂j. Using this variable, we will find the observation such that it is α/2 percentile

and the 1− α/2 percentile. These will serve as the critical values a∗α/2 and b∗1−α/2. At

a standard significance level of 95%, if the number of bootstrap replications is set to

2000 as suggested, values of a∗α/2 correspond to the 50th observation and values of b∗1−α/2

correspond to the 1950th observation. Percentile bootstrapped confidence intervals are

then constructed by adding a∗α/2 and b∗1−α/2 to the estimates of β̂j obtained in step 2.

Simar and Wilson (2007) propose a second approach that extends Algorithm

1 to correct the coefficient estimates in the second-stage. The procedures defined

in Algorithm 2 differ from that of Algorithm 1 in that it implements an additional

bootstrapping procedure to first construct a bias-corrected estimate of efficiency
̂̂
δi that

will serve as the dependent variable in the second-stage. Algorithm 2 is summarized

using the following steps:
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Algorithm 2

1. Compute δ̂i ∀ i = 1, ..., n using Equation 5.8.

δ̂i = min
δi,λ

δi s.t. Y ′λ ≥ yi (5.8)

X ′λ ≤ δixi

λ ≥ 0

ι′λ = 1

where λ is a (n× 1) vector of weight variables, ι is a (n× 1) vector of ones, and

δ̂i ∈ [0, 1].

2. For m < n observations, use the method of maximum likelihood to obtain an
estimate β̂ of β as well as σ̂ε of σε in the truncated regression of δ̂i on zi in
Equation 5.9.

δ̂i = z′iβ + εi (5.9)

3. Loop over the next four steps L1 times to obtain a set of bootstrap estimates{
δ̂∗ib

}L1

b=1
:

3.1. For each i = 1, ..., n, draw εi from theN(0, σ̂ε
2) distribution with left-truncation

at −z′iβ̂ and right-truncation at 1− z′iβ̂.

3.2. Again, for each i = 1, ..., n, compute δ∗i = z′iβ̂ + εi

3.3. Set x∗i = xiδ̂i/δ
∗
i , y

∗
i = yi for all i = 1, . . . , n.

3.4. Compute δ̂i
∗

for each i using initial hospital inputs xi, yi and X∗ = [x∗1 . . . x
∗
n]

and Y ∗ = [y∗1 . . . y
∗
n] as the new best practice frontier reference.

4. For each i = 1, . . . , n, use δ̂i and the bootstrapped estimates in
{
δ̂∗ib

}L1

b=1
obtained

in step 3.4 to compute the bias-corrected estimator
̂̂
δi defined in Equation 5.10:

̂̂
δi = δ̂i − b̂ias(δ̂i) (5.10)

where Simar and Wilson (2000) define b̂ias(δ̂i) = L−1
1

∑L1

b=1 δ̂
∗
ib − δ̂i.

5. Use the method of maximum likelihood to estimate the truncated regression of̂̂
δi on zi, yielding estimates

(̂̂
β, ̂̂σ).

6. Loop over the next three steps L2 times to obtain a set of bootstrap estimates{
(
̂̂
β
∗
, ̂̂σε∗)b}L2

b=1
:
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6.1. For each i = 1, ..., n, draw εi from theN
(
0, ̂̂σε2)

distribution with left-truncation

at −z′iβ̂ and right-truncation at 1− z′iβ̂.

6.2. Again, for each i = 1, ..., n, compute δ∗∗i = z′i
̂̂
β + εi

6.3. Use the maximum likelihood method to estimate the truncated regression

of δ∗∗i on zi, yielding estimates
(̂̂
β
∗
, ̂̂σε∗).

7. Use the bootstrap values in
{(̂̂
β
∗
, ̂̂σε∗)b}Lb=1

and the original estimates
̂̂
β, ̂̂σε to

construct estimated confidence intervals for each independent variable.2

The majority of the steps defined in Algorithm 2 are duplicated from Algorithm

1. Step 1 and 2 of Algorithm 1 are repeated to Step 1 and 2 of Algorithm 2, respectively.

The second-stage bootstrap procedure defined in Step 3 of Algorithm 1 is the exact

bootstrap procedure defined in Step 6 of Algorithm 2. Where Algorithm 2 differs

from Algorithm 1 is in Step 3-5. In Step 3 of Algorithm 2, bootstrap procedure is

used to adjust the production frontier in order to correct for the overestimation of the

non-parametric DEA estimate. Once the bootstrapped estimates (δ̂∗i ) are obtained, a

bias-corrected estimator
̂̂
δi is constructed in Equation 5.10 by subtracting the estimated

bias from the original estimates. Algorithm 2 then follows similar steps as in Algorithm

1 to obtain the bootstrapped coefficients
̂̂
β
∗

that will be used to construct the percentile

bootstrapped confidence intervals for each environmental variable.

Algorithm 1 and Algorithm 2 differ only by which dependent variable is used

in the second-stage. Although Algorithm 1 is less of a computation burden, Simar

and Wilson cite significant advantages to using Algorithm 2. Results from their

Monte-Carlo simulation suggest that including the biased estimate will improve consistency

of statistical estimates. This is especially true when the dimension of the first-stage is

increased. However, in large sample sizes, Simar and Wilson (2007) report Algorithm

2 With the following substitutions, the process for obtaining critical values and
constructing the percentile bootstrap confidence intervals is identical steps defined for

Algorithm 1. Using Equation 5.6, substitute
̂̂
β and

̂̂
β
∗

for β̂ and β̂∗ respectively.
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1 may dominate Algorithm 2 as correcting for the overestimation may add unnecessary

noise. In this research, I estimate both Algorithm 1 and 2 for comparison.

Second-Stage Regression Equation

Finally, I expand Equation 5.2 to give a better understanding of the second-stage

specification. For hospital i, in county j, in health service area s, at time t, the

second-stage regression equation is defined to be:̂̂
δijst = α + η′ijstβ1 + γ′jtβ2 + β3pcphes,t−2 + εijst (5.11)

where γjt is a (m×1) vector consisting all county-level environmental variables thought

to influence the production process and ηijst be a (r×1) vector of individual hospital-level

control variables. These variables will account for inefficiencies arising from differences

in hospital organizational structure and county demographics.

The variable of interest, denoted pcphes,t−2, is defined as a categorical variable

indicating the level of per capita public health expenditures that has occurred in each

hospital’s relevant market two years prior. The intuition behind using the lagged

expenditures values stems from the assumption that increasing the amount of funds

spent on health today will not result in a significant increase in health tomorrow. If

higher public health spending truly has a positive impact on community health as

research suggests, the effect, if any, will not be immediate. The following discussion

describes the process by which the lagged public health expenditures are used to define

the categorical variable pcphes,t−2.

Estimating the relationship of public health spending on hospital efficiency is

problematic as the markets that hospitals and public health departments serve may

not completely coincide. Recall, each local public health department allocates funds

to increase the wellness of the individuals residing within the county it serves. Because

hospitals are not restricted to only treating and admitting local individuals, their

patient market may extend past the county in which they are located. Therefore, the

magnitude of public health spending in neighboring counties may influence hospital

efficiency and must be taken into consideration.
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To account for the public health influence of neighboring counties, I use the

Dartmouth Atlas of Health Care to construct an aggregated measure of public health

spending. For each hospital, the Dartmouth Atlas of Health Care assigns a health

service area to indicate the geographic region it serves. That is, the Dartmouth Atlas

of Health Care analyzed hospital admission records to determine the area where each

hospital is most likely to derive patients. Subsequently, per capita county public health

expenditures (2005 dollars) are aggregated within each health service area.

Once the expenditures are aggregated by hospital market, I define the categorical

variable pcphes,t−2 by grouping the health service areas into three spending levels.

Specifically, relative to the public health spending in other health service areas, each

health service area and its respective hospitals are ranked as: low-level, mid-level, or

high-level public health spending areas.3 The resulting measure will provide a superior

indication as to the level of public health spending occurring in relevant market for a

particular hospital.

5.3 Hospital Production and Environmental Variables

The DEA linear programming problem uses observed pairs of inputs xi and

outputs yi to construct an estimate of technical efficiency for hospital i. Here, hospital

managers choose an optimal amount of capital and labor inputs necessary to efficiently

meet the demand for medical services. Thus, defining the hospital production process is

a necessary step to constructing an estimate of technical efficiency. In the remainder of

this section, I briefly introduce the input and output variables used to estimate hospital

technical efficiency as well as the environmental and control variables that constrain

the production process indirectly. For a detailed description, Chapter 6 provides an

in-depth description and summary of the data.

3 Descriptive statistics for each level of pcphes,t−2 are reported in Tables 6.10 - 6.12 of
Chapter 6.
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5.3.1 Hospital Inputs/Output Variables

I define the input and output variables such that they are consistent with

previous hospital efficiency literature. Table 5.1 provides a summary of the inputs and

outputs used in this analysis. I consider three measures of labor: number of full-time

equivalent registered nurses (RNs), full-time equivalent physicians and dentists (Doctors),

and the remaining full-time equivalent hospital staff (Staff). I use number of beds

(Beds) as an input to serve as a measure of hospital capacity. Virtually every study

measuring hospital efficiency has defined some combination of the four inputs listed

here.

Table 5.1: Hospital Production Function Variables and Definitions

Variable Description

Inputs

Beds Total Number of Staffed Hospital Beds

RNs Hospital FTE Registered Nurses

Doctors Hospital FTE Physicians & Dentists

Staff Other FTE Hospital Employees

Outputs

Admissions Total Number of Admissions (thousands)

Medicare Total Number of Medicare Discharges (thousands)

Medicaid Total Number of Medicaid Discharges (thousands)

ER Total Number of Emergency Room Visits (thousands)

Surgeries Total Number of Surgical Procedures Performed (thousands)

Days Total Number of Hospital Inpatient Days (thousands)

Hospitals use these four inputs to produce several outputs: number of admissions

(Admissions), number of emergency room visits (ER), number of medicare discharges

(Medicare), number of medicaid discharges (Medicaid), total surgical operations performed

(Surgeries), and number of hospital inpatient days (Days). With the exception of

Days, all variables are defined in terms of thousands. These input/output variables

are used to find a solution to the linear programing problem in Equation 5.1. The
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solution will provide the first-stage estimate of output technical efficiency for each

hospital.

5.3.2 Environmental Variables

Table 5.2 summarizes the environmental variables considered to constrain the

hospital production process indirectly. During the hospital optimization problem,

hospital managers choose a level of medical inputs deemed necessary to efficiently meet

demand. Environmental variables fall into two groups: hospital specific characteristics

and regional health conditions of the surrounding population. Hospital-specific controls

refer the uncontrollable characteristics such as hospital organizational structure or

management type. Variables such as the percentage of individuals with insurance

refer to regional conditions where hospitals operate. While these factors can influence

efficiency, they are beyond the direct control of hospital managers. Thus, environmental

variables appear in the second-stage regression of this analysis.

Table 5.2: Second-Stage Enviromental Variables and Definitions

Variable Description

Enviromental

Rural Indicator of Operating Environment

Insured Percentage of County Pop. < 65 w/ Health Insurance

Elderly Percentage of County Pop. 65+

Poverty Percentage of County Pop. Below the Poverty Level

pcphes,t−2 Real Per Capita Public Health Expenditures Indicator

by Health Service Area

Hospital Specific Controls

Teach Hospital Medical School Affiliation

Org Hospital Organizational Structure

- Government Operated

- Church Operated

- For-Profit Operated

- Non-Profit Operated
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In addition to the previously discussed public health expenditures (pcphes,t−2)

variable, I include several county variables to control for region specific factors. I define

Rural to be a dummy variable to distinguish between rural and metropolitan areas. I

define three rate variables to account for health market conditions. Insured is defined

as the proportion of county population under 65 with health insurance. Poverty is the

proportion of county population living at or under the poverty level. Elderly represents

the proportion of the county population 65 years and older.

Each rate variable is defined in terms of per one hundred residents. That is,

each variable is calculated by dividing the total number by the total county population

and multiplying by one hundred. For example, suppose County A has a population of

one hundred thousand residents, fourteen thousand of which are considered to be living

in poverty. County A will have a poverty rate set equal to fourteen. Lastly, I include

dummy variables that serve as an indicator of ownership status (Org) and medical

school affiliation (Teach). These variables are hospital-specific control variables to

account for efficiency differences between hospitals structure. The purpose of this

section was to introduce the variables used in this analysis. The discussion in Chapter

6 provides a detailed summary the variables in Table 5.1 and Table 5.2.
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Chapter 6

DATA

Data collected from three sources has been combined to construct a custom

dataset for this research. This chapter provides a discussion of each source as well

as the steps taken to integrate the three. Section 6.1 describes the hospital-specific

data obtained from the American Hospital Association. Section 6.2 describes the

public health data provided by the National Association for City and County Health

Officers. Section 6.3 describes the county demographic data collected from the U.S.

Department of Health and Human Services. Lastly, Section 6.4 provides a summary

of the constructed dataset.

6.1 Hospital Data

Proprietary hospital-level data is provided by the American Hospital Association

(AHA). Since 1946, the AHA has conducted an annual survey on all member hospitals

(AHA, 2014). Collectively, the annual surveys form an extensive database containing

information on over 6,000 hospitals throughout the United States. (AHA, 2014). Each

annual survey collects a wide range of data on the organization structure of the hospital,

facility characteristics, services provided, utilization rates, finances, staffing levels, and

geographic indicators.1

The primary need for hospital-specific data is during the first-stage of this

analysis. Hospitals use medical inputs x to produce medical outputs y. Once determined,

these input/output pairs are then used to construct a measure of efficiency, which is

1 A copy of the questionnaire used in the 2014 AHA Annual Survey can be found using
the following link: http://www.ahadataviewer.com/Global/survey%20instruments/
2014AHAAnnualsurvey.pdf
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provided by the solution to the DEA linear programing problem defined in Equation 5.1.

The secondary need for hospital-level data comes during the second-stage. Here, I add

hospital specific control variables to control for efficiency differences between various

organizational structures. The hospital variables used in this analysis are defined in

Table 6.1.

Table 6.1: Description of Hospital Production and Characteristic Variables

Variable Description

Beds Total Number of Staffed Hospital Beds

RNs Hospital FTE Registered Nurses

Doctors Hospital FTE Physicians & Dentists

Staff Other FTE Hospital Employees

Admissions Total Number of Admissions (thousands)

Medicare Total Number of Medicare Discharges (thousands)

Medicaid Total Number of Medicaid Discharges (thousands)

ER Total Number of Emergency Room Visits (thousands)

Surgeries Total Number of Surgical Procedures Performed (thousands)

Days Total Number of Hospital Inpatient Days (thousands)

Teach Hospital Medical School Affiliation

Org Hospital Organizational Structure

- Government Operated

- Church Operated

- For-Profit Operated

- Non-Profit Operated

I consider four inputs used to produce six outputs. Of the four inputs, I consider

one capital input and three labor inputs. Serving as a proxy for hospital capacity, Beds

is defined as the total number of staffed beds. For a bed to be considered as staffed

bed, the hospital must have the labor resources necessary to service that bed in the

event it is occupied. Hospitals use three labor inputs: RNs denote registered nurses,

Doctors denote physicians and dentists, and Staff represents any remaining hospital

staff. To account for full-time and part-time employees, all labor inputs are defined in
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full-time equivalent terms (FTE). It is a straightforward calculation to transform each

labor input into FTE terms. Each full-time employee is treated as one FTE employee

whereas each part-time employee is valued as half of a FTE employee. For example, a

hospital with one full-time and three part-time registered nurses therefore employs 2.5

FTE registered nurses.

A benefit to using the non-parametric DEA is its ability to handle multiple

outputs. In this analysis, hospitals will use these four inputs to produce six outputs,

all of which are defined in thousands. Total number of adult and pediatric admissions

is represented by Admissions. I define Medicare and Medicaid as the total number

of hospital discharges billed to Medicare and Medicaid, respectively. All patient visits

to the emergency room are defined to be ER. Total number of inpatient surgical

procedures performed is defined by Surgeries. Lastly, Days denotes the total number

of hospital inpatient days. A hospital inpatient day, otherwise known as an occupied

bed day, is calculated for a given patient by subtracting date of discharge from the

date of admission. The total number of inpatient days for each facility is determined

by summing each individual patient day (AHA, 2014).

Spanning several decades, the AHA Annual Survey Database contains a wealth

of information on U.S. hospitals. Unfortunately, due to the high cost of accessing the

AHA database, the data acquired for this research is limited. To minimize costs, I

have restricted the years purchased such that they coincide with the irregularity of the

public health data. Thus, I make use of following years of AHA data: 2007, 2010, and

2012. Table 6.2 summarizes the hospital inputs and outputs by year using the raw

data provided by the AHA. Table 6.2 shows that the majority of the variables listed

have remained relatively constant over time. Over the five year period, the number

of FTE registered nurses and emergency room visits are among those with largest

deviations whereas the number of hospital Beds has remained unchanged at 174 on

average. In 2012, the average number of RNs employed increased by just over 14%

since 2007. During the same time span, the number of visits to the ER increased by

approximately 12%.
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Table 6.2: Summary Statistics of Hospital Production Variables for All American
Hospital Association Survey Respondents

Variable Mean S.D. Min Max N

2007

Beds 174.3 188.2 6 2,207 4,329

RNs 259.9 369.4 0 4,347 4,329

Doctors 18.9 81.4 0 2,067 4,329

Staff 686.6 918 13 12,655 4,329

Admissions 7.88 9.6 0.01 108.6 4,329

Medicare 3.32 3.75 0 37.5 4,329

Medicaid 19.1 23.2 0 255 4,329

ER 27.1 27 0.001 326.8 4,329

Surgeries 6.09 7.54 0.002 104.2 4,329

Days 42.3 53.9 0.011 679.9 4,329

2010

Beds 173.9 193.7 0 2,261 4,301

RNs 281.3 406.2 0 5,121 4,301

Doctors 21.7 94.6 0 2,045 4,301

Staff 685 943.7 0 167,97 4,301

Admissions 7.83 9.76 0.021 119.5 4,301

Medicare 3.38 3.92 0.002 38.5 4,301

Medicaid 18.7 23.1 0 267.8 4,301

ER 28.7 29.6 0.001 387.6 4,301

Surgeries 6.07 7.66 0.001 101.7 4,301

Days 40.9 53.3 0.2 712.4 4,301

2012

Beds 174 196.5 4 2,338 4,234

RNs 296.7 434.7 1 5,752 4,234

Doctors 24.3 100.8 0 2,236 4,234

Staff 706.1 1,016.1 11 18,887 4,234

Admissions 7.77 9.86 0.021 130.1 4,234

Medicare 3.41 3.98 0.006 39.8 4,234

Medicaid 18.4 23.2 0 271.2 4,234

ER 30.4 31.8 0.012 446.6 4,234

Surgeries 6.08 7.77 0.001 112.2 4,234

Days 40.2 53.5 0.032 670.5 4,234

Note: All labor inputs in FTE terms. All outputs quoted in thousands.
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Tables 6.3 and 6.4 summarize the last pieces of information gathered from

the AHA Annual Surveys. Table 6.3 tabulates the organizational structure (Org)

of the hospitals by year. Each hospital is placed into one of five separate categories

based on the hospital’s management structure. The five categories are as follows:

Non-Profit, For-Profit, Church, Non-Federal Government, and Federal Government.

Over time, the number of hospitals in each category has remained relatively constant.

Non-Profit hospitals comprise approximately half of the hospitals within each cross

section. Hospitals managed by the state and local government make up approximately

20% of the hospitals each year while for-profit and religious run hospitals split the

remaining 30%. Additionally, Table 6.3 shows the total number of AHA survey respondents

has remained stable over time. Relative to the 4,329 hospitals in 2007, the number of

hospitals participating in the survey decreased marginally to 4,301 in 2010 and 4,234

in 2012.

Table 6.3: Total Hospitals By Organization Structure and Year

Year Non-Profit For-Profit Church
Non-Fed. Federal

Total
Govt. Govt.

2007 2,154 684 493 981 17 4,329

2010 2,149 711 483 948 0 4,301

2012 2,125 723 474 911 1 4,234

Total 12,910 4,184 2,918 5,705 18 25,735

The purpose behind including management structure in the second-stage is to

account for any differences in hospital efficiency that are directly related to management

type. Because the incentives vary as the management structure changes, it is reasonable

to assume hospital efficiency will also vary. For example, for-profit hospitals have the

incentive to maximize profits and will therefore produce at an allocation that minimizes

costs. Conversely, the “use it or lose it” mentality of government managed hospitals

may result in inefficiencies relative to for-profits. Typically, publicly managed hospitals
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will lose the privilege to any unused government funding if not used by a particular

date. Therefore, publicly managed hospitals have the incentive to exhaust any funding

received from local, state, and federal governments. Exhausting the available funding

may result in funds being allocated to less productive projects or inefficient areas of the

hospital. For-profit hospitals should therefore appear more efficient relative to their

government counterpart as they should allocate resources more effectively.

Lastly, Table 6.4 describes the final hospital control variable Teach to account

for differences in efficiency related to training new doctors. Teach is defined to be a

dummy variable that classifies each hospital based on their affiliation with a medical

school. The AHA provides two indicators describing a given hospital’s participation in

medical education. For this research, any hospital running their own residency program

as well as any hospital affiliated with a medical school will be considered a “teaching”

hospital. Otherwise, the remaining hospitals are classified as non-academic or general

practice hospitals. Over time, the number of teaching hospitals has increased from

1,022 in 2007 to 1,112 in 2012. Furthermore, relative to non-academic hospitals, the

proportion of teaching hospitals has increased marginally from 23% in 2007 to just

under 28% in 2012.

Table 6.4: Total Hospitals By Medical School Affiliation and Year

Year Non-Academic Medical School Total

2007 3,307 1,022 4,329

2010 3,257 1,044 4,301

2012 3,121 1,113 4,234

Total 19,511 6,224 25,735

Note: The variable teach refers to the hospitals that are part of a medical

school as well as those that have an approved residency program.

The inclusion of Teach is motivated by the uncertainty of its impact on hospital

technical efficiency. Teaching hospitals could appear less efficient as they are faced with

the cost of training new, inexperienced doctors. In the context of technical efficiency,
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teaching hospitals may employ a larger number of staff in order to effectively train new

residents. Thus, teaching hospitals may appear as though they are over utilizing labor

resources. Alternatively, teaching hospitals may arguably be more efficient. In order

to provide the best training and quality of medical care, teaching hospitals typically

have the most technologically advanced equipment. Academic hospitals also employ

a vast network of highly-skilled physicians and specialists in order to attract patients

from around the world as well as gain notoriety through cutting-edge research.

6.2 Public Health Data

Data on public health expenditures is collected from the National Association

of City and County Health Officers (NACCHO). NACCHO conducts a National Profile

of local health departments on a sporadic basis. Since 1989, NACCHO has conducted

a total of seven profile studies, each gathering information on local health department

infrastructure and operations (NACCHO, 2013). Local health departments across the

U.S. are asked to report information pertaining to management, finances, staffing,

and activities as well as any relevant public health topics. After examination of the

individual profile studies, it is clear that the survey has evolved with each iteration.

Moreover, as time has progressed, many variable definitions are now derivatives of a

previous description. Fortunately, this research only uses information regarding county

public health expenditures which has not been redefined.

Table 6.5 summarizes the raw county public health expenditure data provided

by NACCHO, reporting real per capita and total real public heath expenditures in 2005

dollars. In 2005, the average county allocated $6.97 million to public health or $46.80

per capita. Total expenditures increased by 4% in 2008 to $7.2 million and continued

to rise over the next two years. In 2010, total real public health expenditures increased

by 19.8% to $8.7 million. Table 6.5 shows per capita public heath expenditures in the

average county increased to $58.30 in 2008 and subsequently decreased to $57.30 in

2012. However, the significant increase in 2008 may be driven by a reporting error.

Specifically, the maximum value for per capita public health expenditures in 2008 is
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reported to be $6,582, a value substantially larger than that of 2005 and 2010. The

data reveals a small rural county in Missouri spent over $200 million on public health to

service a population of just under 29,000 residents in 2008. Examining the remaining

sample suggests a value of per capita public health spending of this magnitude is

unlikely and as a result, Marion County, Missouri has been excluded from this analysis.2

Table 6.5: Summary Statistics for County Public Heatlh Expenditures (2005 Dollars)

Mean S.D. Min Max N

Total

2005 6,970,982 35,552,718 11,866 687,000,000 1,172

2008 7,281,562 36,309,743 6,949 619,716,736 1,261

2010 8,723,176 48,474,987 26,313 1,194,142,976 1,263

Per Capita

2005 46.80 48.60 0.78 659.60 1,172

2008 58.30 192 0.91 6,582 1,261

2010 57.3 64.20 1.72 1,476 1,263

Table 6.6 provides a summary of the public health spending by county type.

As with Table 6.5, the summary statistics listed here indicate the presence of Marion

County, Missouri discussed above. Further comparison of the two geographical region

types reveals a significant difference in the average level of resources utilized in these

areas. Each year, rural counties spend approximately $1.15 million on public health

whereas metropolitan areas spend just under $18 million on average. Although rural

counties comprise roughly two-thirds of the sample, rural counties spend, on average,

10% of what their urban counterparts spend on public health in total. When total

public health expenditures are adjusted for county population, the relationship is

2 Comparing the populations of counties with a similar level of public health spending
suggests this is likely a reporting error. In 2008, Philadelphia County, PA spent
$196 million to service 1.5 million residents. Relative to Marion County, Missouri,
Philadelphia County, PA spent approximately the same nominal amount on public
health services to serve a population 5,000 times the size.
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Table 6.6: Descriptive Statistics for County Public Health Expenditures By Year and
Rural (2005 Dollars)

Mean S.D. Min Max N

Total

Rural

2005 956,542 1,535,778 11,866 30,000,000 737

2008 1,301,328 6,782,766 6,949.3 188,636,640 789

2010 1,200,098 1,199,853 26,313 9,925,967 731

Metro

2005 17,188,747 56,974,054 246,000 687,000,000 435

2008 17,278,182 57,357,649 231,224 619,716,736 472

2010 19,060,338 73,469,408 391,034 1,194,142,976 532

Per Capita

Rural

2005 46.94 47.39 0.78 652.17 737

2008 62.61 237.74 4.13 6,582.10 789

2010 61.92 51.39 3.00 339.85 731

Metro

2005 46.73 50.88 1.11 659.63 435

2008 51.05 61.53 0.91 802.26 472

2010 50.98 78.08 1.72 1,476.10 532

reversed. Per capita, rural counties spend more on public health than urban counties on

average. In 2010, rural counties spent on average $61.92 per capita whereas metropolitan

counties allocated $50.98 per capita on public health.

While Table 6.6 shows the distribution of county types has remained relatively

constant over time, there has been significant increases in the total and per capita

public health expenditures. On average, total public health expenditures increased by

approximately 25.4% for rural counties from $956,000 in 2005 to $1.2 million in 2010.

Over the same five year period, total public health expenditures increased by only

10.8% for metropolitan counties moving from $17.1 million in 2005 to $19 million in
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2010. Adjusting for population size reveals significant differences in the growth of per

person public health spending between the two county types. Relative to 2005, per

capita public health expenditures increased 32% in 2010 in rural counties. During the

same time, metropolitan counties experienced an increase in per capita public health

expenditures of about 9%. In 2010, rural counties have increased spending by $15 per

person since 2005 whereas metropolitan counties raised public health spending by only

$4.25 per person.

6.3 Demographic Data

The remaining variables necessary for this study are gathered from the Area

Health Resource Files (AHRF). The U.S. Department of Health and Human Services

(HHS) maintains this database, releasing new data on a yearly basis. The AHRF is a

collection of national, state, and county-level socioeconomic and demographic variables

aggregated from over fifty sources (AHRF, 2013). The variables used in this analysis

are defined in Table 6.7.

Table 6.7: Description of County-Level Socioeconomic Variables

Variable Description

Rural County Type Indicator

Elderly Percentage of County Population 65+

Poverty Percentage of County Population Below the Poverty Level

Insured Percentage of County Population < 65 w/ Health Insurance

Note: Percentage variables are expressed in hundreds (e.g. If County X has a 9.3%

poverty rate, it is encoded as 9.3 in the data).

To control for the operating environment, I define Rural as a dummy variable

indicating if a given hospital is operating outside of a metropolitan statistical area

(MSA). Elderly represents the portion of the county population that is older than 65

years of age. It is safe to assume that elderly citizens typically have a higher need for

medical care. The inclusion of this variable as a control will account for differences in
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efficiency relating to treating more or less of this population demographic. The poverty

rate is defined as Poverty, which measures the percentage of the county population at

or below the poverty level. Lastly, Insured will represent the rate of insurance within

each county. That is, the percentage of the county population younger than 65 with

health insurance. The motivation behind including this variable stems from Cozad and

Wichmann (2013). The authors find the rate of insurance to be a significant factor

when explaining inefficiency of a health care delivery system at the state-level.

Table 6.8 provides the summary statistics for variables gathered from the raw

Area Health Resource File files. Brief examination reveals expected results on average.

On average, the proportion of the elderly population has increased by roughly 10%

from 15.1% in 2007 to 16.8% in 2012. The growth of Elderly is expected as more

of the baby boomer population becomes eligible for retirement. A clear consequence

of the Great Recession, the average county poverty rate has increased by 14.5% from

14.5% in 2007 to 16.6% in 2012. Lastly, the proportion of the county population under

65 with health insurance has remained relatively constant during the five year span.

Although the Affordable Care Act was passed in 2010, the health care market place

was not implemented until 2014. Thus, little to no change in the insured population

is expected, all else equal. Although the average county insurance rate has decreased

from 2007 to 2012 by 0.87%, this is likely driven by the reporting error in 2007.

One potential problem reported in Table 6.8 occurs with the Insured. In 2007,

the maximum value reported is 156. This implies that 156% of the population in St.

Bernard Parish, Louisiana has insurance which is clearly an error. Examining the

data for St. Bernard Parish reveals abnormal fluctuations in the population estimates

around 2005-2008. Given the time frame and the county’s geographic location in

Louisiana, it is safe to conclude that Hurricane Katrina is the likely cause of such

volatility and reporting errors. Consequently, this observation will be excluded in the

following analysis. Up until this point, the raw data from each of three sources has

been summarized with minimal cleaning performed. The following section provides a

discussion of the constructed dataset to be used in this research. In this section, I
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Table 6.8: County Demographic Descriptive Statistics By Year

Variable Mean S.D. Min Max N

2007

Elderly 15.3 4.15 4.04 36.4 3,109

Poverty 14.5 5.87 2.35 56 3,109

Insured 80.6 7.43 38 156 3,109

2010

Elderly 15.9 4.14 3.73 43.4 3,109

Poverty 16.2 5.83 3.15 50.3 3,109

Insured 79 6.68 40 94.8 3,109

2012

Elderly 16.8 4.27 3.61 49.3 3,109

Poverty 16.6 6.05 3.1 47.2 3,109

Insured 79.9 6.56 39.2 94.9 3,109

Note: Data is obtained from the Area Health Resource Files. Each variable

is defined as a proportion of the county population (hundreds).

discuss the assumptions made and the steps taken to merge the individual data files

into a custom dataset.

6.4 Dataset Construction

The following discussion reports the steps taken to assemble the custom dataset

that is used in this research. Merging the three data files depends on being able to

uniquely identify each county. Here, I rely on the 5-digit Federal Information Processing

Standard (FIPS) codes to do so. The goal for the final product is to correctly match

each individual hospital variable such that it is aligned with the respective county

public health and demographic variables. Because neither the AHA nor the NACCHO

dataset is all inclusive, I expect to lose several unmatched observations from both

sources.

As a starting point, I began by cleaning the hospital-level data from the AHA.

In anticipation of the merger with NACCHO’s public health data, I focus solely on the
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years that will have a two year public health lag. That is, I keep 2007, 2010, and 2012

and remove the following years from the AHA datafile: 2004, 2008, and 2013. I then

restrict the focus of this research to the continental the U.S., dropping any observations

referencing U.S. territories as well as any observations pertaining to Alaska and Hawaii.

To obtain the most general result possible, I restrict focus on general medical

and surgical hospitals. This will not only ensure the results are not subject to outliers

but will make them applicable to the general case. Table 6.9 displays the frequencies

of each hospital service category for all three cross sections. The AHA requires each

hospital to select a category that best describes the services it provides. Of the 18,588

hospitals in the sample, Table 6.9 reports 14,245, approximately 76%, as being General

Medical and Surgical hospitals. The second largest is service type belongs to the 1,382

Psychiatric hospitals, making up just over 7% of the observations in the sample. As

a close third, 1,154 Acute Long-Term Care hospitals comprise approximately 6% of

the remaining hospitals. Restricting the analysis to focus primarily on general medical

and surgical hospitals will drop 4,343 observations or approximately 23.36% of the

purchased AHA data.

Prior to merging the cleaned hospital data, I first aggregated the two county-level

datasets independently. Using county FIPS codes, I combined the raw data from the

AHRF with the public health data from NACCHO, dropping any unmatched AHRF

observations. Because the AHRF data is an exhaustive list of U.S. counties, I did not

lose any public health observations during the merge. Following the merge, I then used

hospital market identifiers to construct an aggregated measure of per capita public

health spending. Recall from the previous discussion in Chapter 5, hospitals do not

restrict treatment to those individuals residing in their county at which they operate.

Thus, hospitals may be affected by public health spending of a neighboring county as

patients migrate across state and county borders to seek treatment.
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Table 6.9: Hospital Service Category Frequencies Aggregated over 2007, 2010, & 2012

Primary Service Freq. Percent Cum.

General Medical and Surgical 14,245 76.64 76.64

Hospital Unit of an Institution 46 0.25 76.88

Hospital Unit within Mentally ill Institution 7 0.04 76.92

Surgical 123 0.66 77.58

Psychiatric 1,382 7.43 85.02

Tuberculosis and Other Respiratory 4 0.02 85.04

Cancer 37 0.20 85.24

Heart 40 0.22 85.45

Obstetrics and Gynecology 34 0.18 85.64

Eye, Ear, Nose, and Throat 14 0.08 85.71

Rehabilitation 717 3.86 89.57

Orthopedic 64 0.34 89.91

Chronic Disease 13 0.07 89.98

Other Specialty 149 0.80 90.78

Children’s General 167 0.90 91.68

Children’s Psychiatric 129 0.69 92.38

Children’s Rehabilitation 33 0.18 92.55

Children’s Orthopedic 41 0.22 92.77

Children’s Chronic Disease 6 0.03 92.81

Children’s Other Speciality 45 0.24 93.05

Institution for Mental Retardation 21 0.11 93.16

Acute Long-Term Care 1,154 6.21 99.37

Alcoholism and Other Chemical Dependency 109 0.59 99.96

Children’s Acute Long-Term 8 0.04 100.00

Total 18,588 100.00

To account for the public health spending likely experienced by each hospital, I

use the identifiers provided by The Dartmouth Atlas of Health Care to group counties

into health service areas and construct an aggregated measure of per capita public

health spending. I then use the resulting aggregated measure to define the variable of

interest, pcphes,t−2, as a categorical variable indicating the level of per capita public

health expenditures in each health service area. Specifically, each health service area is
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defined to be Low, Medium, or High. That is, for a given year, low-level public health

spending areas fall in the bottom third of the distribution or below the 33 percentile,

mid-level public health spending areas fall in the middle third, and high-level public

health spending areas fall above the 66 percentile.

I then proceeded to integrate the cleaned files with the AHA data to form

a single working data file. During the file merge, I lost approximately 200 public

health observations per cross-section. These observations were not matched with a

corresponding hospital. From the hospital perspective, there were about 1,400 hospitals

per year that are without public health expenditure data. In total, 4,589 unmatched

observations are dropped. Each hospital has now been placed into a health service area

with a corresponding indicator of public health spending level.

Tables 6.10, 6.11, and 6.12 provide summary statistics for the hospitals operating

in 2007, 2010, and 2012 respectively. The resulting cleaned cross-sections contain

between 2,092 and 2,334 observations each. Upon review of the descriptive statistics

for each year, a surprising and problematic theme emerges over time. Logic dictates

that medical doctors play a critical role in the operation of a typical hospital, however,

roughly 25% of hospitals in each year report having zero Doctors on staff. If correct,

this implies 25% of hospitals are admitting patients and providing them with emergency

services and surgical procedures without staffing a doctor.

To investigate the problem, I took a random sample of hospitals that have

reported a zero value forDoctors. The appearance of several large, well-known hospitals

within this subset suggests staffing zero Doctors is not only highly unlikely but clearly

impossible in several cases. Notable hospitals belonging to this subset include Johns

Hopkins Hospital in Maryland and Duke University Hospital in North Carolina. While

both hospitals operate using a vast number of doctors throughout their facility, these

doctors may not be directly employed by the hospital. That is, contract employees may

be one possible explanation for 25% of hospitals reporting a zero value for Doctors.

Moreover, hospitals may hire a physician group or hire contract doctors in order to

staff their facility as needed.
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Table 6.10: Summary Statistics for Constructed Dataset - Year: 2007

Variable Mean S.D. Min Max N

Hospital Production Variables

Beds 186 192 6 2,157 2,102

RNs 281 381 5.5 3,441 2,102

Doctors 17.6 74.8 0† 1,696 2,102

Staff 715 928 19.5 12,655 2,102

Admissions 8.51 9.71 0.019 109 2,102

Medicare 3.56 3.79 0.001 37.5 2,102

Medicaid 20.4 23.1 0.001 223 2,102

ER 28 27.1 0.005 327 2,102

Surgeries 6.42 7.31 0.014 100 2,102

Days 45.3 54.7 0.046 603 2,102

County Variables

pcphes,t−2 46.39 61.07 0.57 674.99 2102

- Low 12.91 6.50 0.57 23.85 699

- Medium 32.71 5.47 23.89 43.14 694

- High 92.70 86.89 43.16 674.99 709

Elderly 13.8 4.08 4.13 36.4 2,102

Poverty 12.7 4.65 2.97 36.7 2,102

Insured 81.8 6.38 50.3 94.1 2,102

† 628 observations report having zero Doctors (FTE) staffed

Including an observation with a zero value for a given input is particularly

problematic for estimating efficiency. Specifically, observations with zero inputs violate

the “No Free Lunch” assumption imposed by Simar and Wilson (2007). Recall,

DEA develops an estimate of technical efficiency by comparing each hospital to its

best practicing peer. If a significant number of hospitals are producing a positive

levels of output with a zero value for a given input, then these hospitals will be

automatically more technically efficient. For example, suppose Hospital A is producing

10,000 surgeries with zero doctors and Hospital B producing 10,000 surgeries with one

hundred doctors. Hospital A will be interpreted as operating more efficiently as it is
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able to produce the same output with less inputs.

Hospitals with zero values for Doctors is an empirical dilemma. While Doctors

are critical in the production of medical care, the DEA will interpret observations

with zero Doctors as producing something from nothing. Thus, zero values for input

variables should not be included in the first-stage estimation of δi. Rather than

dropping any observation reporting a zero value for Doctors, I modify the inputs

used to solve the DEA linear programing problem. Specifically, I estimate hospital

technical efficiency in the first-stage with one less labor input. By eliminating the

Doctors variable as a hospital labor input, I am able to avoid dropping 25% of the

sample observations.

Relative to hospitals in 2007, Table 6.11 reports hospitals hired on average seven

additionalRNs, expanding their nursing staff by about 3% in 2010. Hospitals operating

in 2010 reduced both their average supply of Beds by 4% and other FTE Staff by 5%

since 2007. Subsequently, as expected hospitals experienced a decline in all but one

output variable in 2010. The number of visits to the hospital ER increased by about

800 since 2007, however, this increase is small considering the average hospital treats

roughly 28,000 ER patients per year. Among the outputs with the largest decreases,

hospital Days fell the most with a 7% decrease. Average hospital Admissions fell from

by 4.2% from 8,510 in 2007 to 8,150 in 2010.

While hospitals were experienced contractions in most inputs and outputs from

2007 to 2010, Table 6.11 cites significantly higher values of lagged public health spending

in 2010 than that of Table 6.10. In 2010, hospitals in every health service area spending

category experienced an increase in per capita public health from two years prior.

Between 2005 and 2008, real per capita public health expenditures in the low-level

health service area increased by 19% from $12.91 per capita in 2005 to $15.33 per

capita in 2008. Similarly, hospitals belonging to a mid-level public health spending

area witnessed an average increase of 14% per capita. Relative to the lower spending

areas, the largest increase in real per capita public health expenditures was realized

by hospitals operating within a high-level health service area. From $92.7 in 2005 to
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Table 6.11: Summary Statistics for Constructed Dataset - Year: 2010

Variable Mean S.D. Min Max N

Hospital Production Variables

Beds 179 190 6 2,083 2,091

RNs 289 402 4 5,121 2,091

Doctors 18.4 83.8 0† 1,967 2,091

Staff 679 910 26.5 16,797 2,091

Admissions 8.15 9.55 0.039 119 2,091

Medicare 3.52 3.84 0.002 38.5 2,091

Medicaid 19.2 22.2 0.005 212 2,091

ER 28.8 28.7 0.001 388 2,091

Surgeries 6.17 7.29 0.002 80.7 2,091

Days 42.1 51.7 0.219 569 2,091

County Variables

pcphes,t−2 55.95 157.5 0.87 683.3 2091

- Low 15.33 6.82 0.87 26.10 697

- Medium 37.20 6.55 26.1 49.10 696

- High 115.20 262.20 49.20 683.30 698

Elderly 14.6 4.17 5.63 43.4 2,091

Poverty 14.9 4.82 3.69 35.6 2,091

Insured 80.3 5.73 54 91.7 2,091

† 571 observations report having zero Doctors (FTE) staffed

$115.2 in 2008, the magnitude of per capita public health expenditures experienced by

hospitals increased by approximately 24% in high spending areas.

As expected, hospital production expanded post Great Recession. Comparing

Table 6.11 and 6.12, hospital inputs and subsequently outputs have clearly increased

from 2010 to 2012. The average hospital added roughly 19 Beds to their existing capital

stock between 2010 and 2012. Hospitals also expanded their labor inputs between 2010

and 2012. Adding an average of 60 RNs to the facility, hospitals expanded the nursing

department by 21% in 2012. Additionally, hospitals added about 17% of other Staff ,

increasing the average number of other hospital Staff from 679 in 2010 to 797 in 2012.
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Table 6.12: Summary Statistics for Constructed Dataset - Year: 2012

Variable Mean S.D. Min Max N

Hospital Production Variables

Beds 198 205 4 2,338 2,334

RNs 349 466 6 5,752 2,334

Doctors 25.7 104 0† 2,236 2,334

Staff 797 1,062 19.5 18,887 2,334

Admissions 9.17 10.3 0.021 130 2,334

Medicare 3.97 4.11 0.006 39.8 2,334

Medicaid 21.1 23.6 0.006 214 2,334

ER 33.9 33.3 0.012 447 2,334

Surgeries 6.95 8.01 0.001 112 2,334

Days 46 55.1 0.032 622 2,334

County Variables

pcphes,t−2 53.86 100.6 0.38 1483 2334

- Low 14.18 7.08 0.38 25.3 771

- Medium 35.14 6.67 25.4 47.9 779

- High 111.5 157.6 48.1 1483 784

Elderly 14.7 4.09 6.25 49.3 2,334

Poverty 15.8 4.97 4.44 38.5 2,334

Insured 80.6 5.6 0.581 93.7 2,334

† 681 observations report having zero doctors FTE staffed

Although increasing nurses and beds gives hospitals the ability to treat more

individuals, the expansion of capital and labor inputs in 2012 may not be justified by

significantly higher output. Hospitals may be responding to the uncertainty surrounding

the implementation of the Affordable Care Act. Hospitals may have been speculating

the magnitude of resources needed to meet demand in 2014 when Affordable Care Act

officially took effect. Thus, the expansion of inputs in 2012 may cause inefficiencies

from costly excess capacity.

Table 6.12 shows the increased inputs enabled hospitals to see a higher number

of patients which indeed increased output in 2012. The largest expansion in hospital
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output being an 18% increase in patient visits to the the emergency department. In

2012, the average hospital treated 33,908 ER patients, a increase from 2010 of about

5,145. Relative to 2010, hospitals were able to increase Admissions and Surgeries by

just under 13% as well as treat 10-12% more Medicare & Medicaid patients in 2012.

Relative to 2010, Table 6.12 shows hospitals in 2012 were subjected to decreases

in per capita public health expenditures in each health service area group. Hospitals

in the high-level public health spending areas saw the largest nominal decline of $3.70

per capita, moving from $115.2 per capita in 2008 to $111.5 per capita in 2010 whereas

hospitals operating in health service areas with low-level public health spending only

experienced a $1.15 nominal reduction. Adjusting for the magnitude of spending

occurring within each health service area suggests the low-level health service areas

will be impacted the most by the decreases in public health spending. Relative to

2010, hospitals in low-level health service areas will experience a 7.5% drop in public

health spending whereas mid-level and high-level areas will experience reductions of

5.54% and 3.21% respectively.
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Chapter 7

RESULTS

The goal of this dissertation is to bridge the knowledge gap between public

health and a hospital’s ability to efficiently deliver medical services. In a two-stage

analysis, I estimate the relationship between real per capita public health expenditures

and hospital technical efficiency. This chapter presents the empirical results of this

two-stage estimation and is structured as follows. Section 7.1 presents the calculated

technical efficiency scores obtained in the first-stage. Section 7.2 provides the empirical

results from the second-stage. Here, I apply the semi-parametric Data Envelopment

Analysis (DEA) proposed by Simar and Wilson (2007) in a pooled cross-section regression

to identify several factors that are beyond the hospital managers control and therefore

constrain the hospital production process indirectly. Lastly, Section 7.3 compares Simar

and Wilson’s double bootstrap approach to the conventional econometric techniques

used in previous efficiency studies.

7.1 Stage 1: Estimating Hospital Technical Efficiency

The objective of the first-stage is to construct a measure of technical efficiency to

be used as the dependent variable in the second-stage regression. I obtain estimates of

efficiency for each hospital in the sample using the DEA approach described in Chapter

5. By definition, the DEA is a non-parametric approach for estimating efficiency. More

specifically, the DEA uses mathematical programing techniques to construct a measure

of hospital efficiency δ̂i without accounting for random error. As a result, any deviation

from the efficient allocation is viewed as pure inefficiency as δ̂i is unable to distinguish

between statistical error and inefficiency. Consequently, the non-parametric estimate

for δ̂i is a biased estimator and will always overshoot the true value of δi (Simar and

58



Wilson, 2000). Failing to address the problems associated with the non-parametric

DEA can be problematic for the second-stage. Any bias in δ̂i will transfer to the

error term in the second-stage regression. Therefore, conventional maximum-likelihood

estimations will produce biased coefficients and invalid statistical tests (Simar and

Wilson, 2007).

To adjust for the shortcomings of non-parametric DEA, Simar and Wilson

(2007) provide two algorithms to consistently estimate the second-stage. Algorithm 1

implements a single bootstrap routine to improve statistical testing without correcting

δ̂i for any overestimation. Algorithm 2 extends Algorithm 1 using an additional

bootstrapping procedure to construct a bias-corrected efficiency measure
̂̂
δi prior to

the second-stage. Although Simar and Wilson (2007) suggest Algorithm 2 will produce

superior estimates of technical efficiency, I report both δ̂i and
̂̂
δi for comparison.

Table 7.1 provides a yearly summary of the input-oriented technical efficiency

estimates. Panel A reports the non-parametric efficiency estimates of δ̂i obtained from

Step 1 of Algorithm 1. Panel B reports the bias-corrected estimates of
̂̂
δi obtained after

completing Steps 1-4 of Algorithm 2. Each panel is broken down to summarize hospital

efficiency by management type, academic affiliation, and geographic area of operation.

The interpretation of the estimates in Table 7.1 remains the same regardless of which

panel is being considered. Technically efficient hospitals are assigned a unitary value

for δi. Inefficient hospitals are able to reduce inputs without sacrificing output which is

indicated by an efficiency value such that δi < 1. Mathematically, inefficient hospitals

can simultaneously produce the same level of output and achieve the best-practice

allocation by proportionally reducing inputs by 100× (1− δi)%.

On average, several expected relationships emerge in both Panel A and Panel

B of Table 7.1. Hospitals operating within a metropolitan statistical area are 15%

to 20% more technically efficient than hospitals operating in rural areas. Panel A

indicates the average efficiency estimate for all rural hospitals to be 8.7 percentage

points lower than their metropolitan counterparts at δ̂i = 0.55. Although adjusting for

the bias in δ̂i reduces the overall technical efficiency estimate, the relative relationship
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Table 7.1: Pooled Summary Statistics for Traditional and Bias-Corrected Technical
Efficiency Estimates - By Year

2007 2010 2012 Total
Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Panel A: Traditional Non-Parametric Estimates
(
δ̂i
)

Rural 0.581 (0.17) 0.546 (0.16) 0.521 (0.17) 0.550 (0.17)

Metro 0.653 (0.17) 0.635 (0.15) 0.623 (0.16) 0.637 (0.16)

Teach 0.689 (0.16) 0.662 (0.15) 0.661 (0.16) 0.670 (0.16)

Non-Academic 0.615 (0.17) 0.593 (0.16) 0.571 (0.16) 0.593 (0.17)

Non-Profit 0.644 (0.17) 0.620 (0.16) 0.603 (0.17) 0.622 (0.17)

For-Profit 0.630 (0.17) 0.630 (0.16) 0.612 (0.17) 0.623 (0.17)

Church 0.652 (0.16) 0.619 (0.15) 0.608 (0.15) 0.626 (0.15)

Govt (Non-Fed) 0.590 (0.18) 0.557 (0.16) 0.553 (0.17) 0.567 (0.17)

Total 0.632 (0.17) 0.608 (0.16) 0.596 (0.17) 0.612 (0.17)

Panel B: Bias-Corrected Semi-Parametric Estimates
(̂̂
δi
)

Rural 0.467 (0.13) 0.443 (0.13) 0.423 (0.13) 0.444 (0.13)

Metro 0.548 (0.13) 0.533 (0.12) 0.523 (0.13) 0.534 (0.13)

Teach 0.578 (0.12) 0.557 (0.12) 0.554 (0.13) 0.562 (0.12)

Non-Academic 0.508 (0.14) 0.491 (0.13) 0.473 (0.13) 0.491 (0.13)

Non-Profit 0.537 (0.13) 0.516 (0.13) 0.502 (0.13) 0.518 (0.13)

For-Profit 0.528 (0.14) 0.529 (0.12) 0.515 (0.14) 0.524 (0.14)

Church 0.544 (0.12) 0.522 (0.12) 0.509 (0.12) 0.525 (0.12)

Govt (Non-Fed) 0.474 (0.14) 0.455 (0.13) 0.451 (0.14) 0.460 (0.14)

Total 0.523 (0.14) 0.506 (0.13) 0.496 (0.14) 0.508 (0.14)

Observations 1,884 1,928 1,946 5,758

between rural and urban hospitals remains unchanged with regard to
̂̂
δi. For the entire

sample, Panel B reports the average efficiency estimate for metropolitan hospitals as
̂̂
δi

= 0.534 whereas rural hospitals now
̂̂
δi = 0.444. The bias-corrected estimate widens the

difference in average efficiency. That is, the bias-corrected efficiency estimates for rural

hospitals are now 9.9 percentage points lower than metropolitan hospitals in Panel B.

Hospitals affiliated with a medical school have an estimated technical efficiency

of δ̂i = 0.67 in Panel A and a bias-corrected estimate of
̂̂
δi = 0.562 in Panel B.

Non-academic hospitals have an estimated efficiency of δ̂i = 0.593 and
̂̂
δi = 0.491

in Panel A and Panel B respectively. Both estimates of efficiency indicate that teaching

hospitals are, on average, more technically efficiency than their non-academic counterparts.
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For the entire sample, Panel A reports academic hospitals operate on average 7.7

percentage points higher than non-academic hospitals whereas Panel B reports a slightly

smaller difference of 7.1 percentage points. Although the average efficiency estimate for

all hospitals fell between 2007 and 2012, efficiency loses were greater for non-academic

hospitals. Average efficiency fell by 2.8 percentage points for teaching hospitals from

δ̂i = 0.689 in 2007 to δ̂i = 0.661 in 2012. Non-teaching hospitals suffered an average

efficiency drop of 4.4 percentage points from δ̂i = 0.615 in 2007 to δ̂i = 0.571 in 2012

Lastly, Table 7.1 summarizes each efficiency estimate by hospital management

type. Of the four hospital management structures considered, publicly managed hospitals

perform at the lowest level. Government managed hospitals, on average, operate 6

percentage points lower than all other management types, making public hospitals the

least technically efficient. For the pooled sample, Panel A reports government managed

hospitals having an average estimated efficiency of δ̂i = 0.567 whereas Panel B reports

government efficiency estimates at
̂̂
δi = 0.46. Estimating the bias-corrected efficiency

estimate decreases the average efficiency estimate for government run hospitals by

approximately 19%.

With the exception of government managed hospitals, it is not apparent that

there are any differences in efficiency among the remaining management types. Panel

A reports non-profit, for-profit, and hospitals managed by religious organizations have

efficiency estimates ranging from δ̂i = 0.622, δ̂i = 0.623, and δ̂i = 0.626 respectively.

Although the bias-corrected estimates
̂̂
δi in Panel B are on average lower for all

management types, the differences in efficiency among non-profit, for-profit, and hospitals

managed religious organizations remain small. Panel B shows the difference between

the lowest and the highest estimate being less than one percentage point. That is,

the lowest of the three is non-profit hospitals with an efficiency estimate of
̂̂
δi = 0.518

and the best performing as church managed hospitals
̂̂
δi = 0.525, a difference of 0.007.

Furthermore, this implies hospitals managed by religious organizations will operate

with an efficiency level that is 0.70 percentage points greater than non-profit hospitals

or approximately 1.35% more efficient.
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The relative differences between the panels of Table 7.1 reaffirm Simar and

Wilson’s assertion that the traditional non-parametric DEA estimates will always

overstate efficiency. For the entire hospital sample, the bias correction decreased

average efficiency by 10.4 percentage points, moving average efficiency estimate from

δ̂i = 0.612 in Panel A to
̂̂
δi = 0.508 in Panel B. Figure 7.1 illustrates the magnitude of

the overestimation graphically.

Figure 7.1: Mean Comparison of Traditional and Bias-Corrected Technical Efficiency
Estimates By Hospital Charasteristic
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Figure 7.1 uses the pooled efficiency estimates in Table 7.1 to summarize the

differences between the non-parametric δ̂i estimates in Panel A and the bias-corrected

estimates
̂̂
δi in Panel B. Figure 7.1 shows that correcting for the bias in the non-parametric

estimates decreased average efficiency in every subset. For-profit hospitals experienced

the smallest change with a decrease in average efficiency of 0.0995 percentage points

whereas teaching hospitals experienced the largest decline in average efficiency of 0.1076

percentage points. Additionally, Figure 7.1 reveals a decline in both estimates of

hospital efficiency over time. The non-parametric technical efficiency estimates of δ̂i

decreased from δ̂i = 0.632 in 2007 to δ̂i = 0.596 in 2012. During the same five year

period, the bias-corrected efficiency estimates
̂̂
δi decreased from

̂̂
δi = 0.523 in 2007 tô̂

δi = 0.496 in 2012.

Figure 7.2 plots the kernel density of the traditional biased estimates δ̂i (left)

and Simar and Wilson’s bias-corrected efficiency estimates
̂̂
δi (right). Although the

difference is not as clear as shown in Figure 7.1, correcting δ̂i shifts the entire distribution

toward zero, reducing the mass occurring at the upper bound. Thus, both Figure 7.1

and Figure 7.2 support the argument that the lack of error term in the non-parametric

DEA estimation of δ̂i will result in an inflated measure of hospital technical efficiency,

making hospitals appear more efficient.

Figure 7.2: Kernel Density of the Traditional and Bias-Corrected Efficiency Estimates
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7.2 Stage 2: Estimating the Environmental Impact

The primary objective of the second-stage is to identify and understand how

uncontrollable environmental factors influence hospital technical efficiency. Typically,

this is achieved by regressing the estimated efficiency score obtained in the first-stage

on variables considered to constrain the production process indirectly. Described in

detail in Chapter 5, I follow the bootstrapping routines defined in Simar and Wilson

(2007) to avoid complications plaguing conventional estimations. In a later section, I

compare Simar and Wilson’s bootstrapped results to the estimates produced by Tobit

and OLS regressions.

Algorithm 1 is designed by Simar and Wilson (2007) to improve conventional

estimation approaches without correcting for the bias in the non-parametric DEA

estimate. For hospital i, in county j, in health service area s, at time t, the second-stage

regression is defined such that:

δ̂ijst = α + η′ijstβ1 + γ′jtβ2 + β3pcphes,t−2 + εijst (7.1)

where δ̂ijst ∈ (0, 1] is the biased estimator of technical efficiency produced by the

traditional non-parametric DEA, ηijst is a (r × 1) vector of individual hospital-level

controls, γjt is a (m × 1) vector of county health and region variables, and pcphes,t−2

is a categorical variable indicating the level of public health spending experienced by

each hospital two years prior.

Algorithm 1 estimates the second-stage using the traditional non-parametric

estimate δ̂i as the dependent variable. Because δ̂i is a consistent estimator of δi,

the bias in δ̂i will disappear as n → ∞. Simar and Wilson suggest that the single

bootstrap routine in Algorithm 1 may be sufficient to correct for the serial correlation

of the non-parametric DEA efficiency estimates. Unfortunately, the convergence of the

non-parametric DEA is slow and the bias in δ̂i will not disappear in finite samples

(Simar and Wilson, 2007). As an alternative, Simar and Wilson extend Algorithm 1

with Algorithm 2 to address this problem.
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Algorithm 2 uses a second bootstrapping procedure to construct a bias-corrected

estimate
̂̂
δi of hospital efficiency prior to the second-stage. The dependent variable in

Equation 7.1 is replaced with an the bias-corrected estimate. Hence, the second-stage

estimation equation is now specified such that:

̂̂
δijst = α + η′ijstβ1 + γ′jtβ2 + β3pcphes,t−2 + εijst (7.2)

where
̂̂
δijst ∈ (0, 1] is the bias-corrected estimator of technical efficiency and ηijst, γjt,

and pcphes,t−2 are defined exactly as they were in Equation 7.1. The dependent variable

is the sole difference between Equation 7.1 and Equation 7.2.

Table 7.2 reports the truncated regression coefficients of three models each

estimated by Algorithm 1 and Algorithm 2. Significance levels are determined by

the constructed percentile bootstrapped confidence intervals defined in the respective

algorithm. Model 1 presents the specification defined in Chapter 5. Because public

Table 7.2: Second-Stage Semi-Parametric DEA Results

(1) (2) (3) (4) (5) (6)
Model 1 Model 2 Model 3

A1 A2 A1 A2 A1 A2

δ̂i
̂̂
δi δ̂i

̂̂
δi δ̂i

̂̂
δi

Teach 0.0632∗∗∗ 0.0584∗∗∗ 0.0772∗∗∗ 0.071∗∗∗ 0.0648∗∗∗ 0.0647∗∗∗

For-Profit 0.0143∗ 0.00855∗ 0.0211∗∗∗ 0.0149∗∗∗ 0.00745 0.00432

Church 0.00745 0.00527 0.00965 0.00714 -0.00212 0.00332

Govt (Non-Fed) -0.0256∗∗∗ -0.0372∗∗∗ -0.0429∗∗∗ -0.0521∗∗∗ -0.0204∗∗ -0.0407∗∗∗

2010 -0.0171∗∗∗ -0.0164∗∗∗ -0.0137∗ -0.013∗∗∗ -0.0154∗ -0.0139∗∗∗

2012 -0.0342∗∗∗ -0.0316∗∗∗ -0.0278∗∗∗ -0.0241∗∗∗ -0.0285∗∗∗ -0.0286∗∗∗

pcphes,t−2 (Mid) 0.00905 0.00636 0.0106 0.00902∗∗ 0.00682 0.00634

pcphes,t−2 (High) 0.025∗∗∗ 0.0166∗∗∗ 0.0261∗∗∗ 0.0168∗∗∗ 0.026∗∗∗ 0.021∗∗∗

Rural -0.0822∗∗∗ -0.0892∗∗∗

Insured -0.000448 -0.000886∗∗∗ -0.000935 -0.00148∗∗∗ -0.000749 -0.00103∗∗

Poverty -0.00193∗∗∗ -0.00174∗∗∗ -0.00291∗∗∗ -0.00305∗∗∗ -0.001 -0.000985∗

Elderly 0.00259∗∗∗ 0.00235∗∗∗ -0.000691 -0.000915∗∗ 0.00105 0.00173∗∗∗

Constant 0.651∗∗∗ 0.595∗∗∗ 0.723∗∗∗ 0.679∗∗∗ 0.685∗∗∗ 0.599∗∗∗

σ 0.146∗∗∗ 0.125∗∗∗ 0.150∗∗∗ 0.129∗∗∗ 0.144∗∗∗ 0.125∗∗∗

Observations 2730 5758 2730 5758 1943 4100

Note: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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health expenditures are much lower in rural counties, I estimate Model 2 and 3 for

robustness. Model 2 omits the rural dummy variable whereas Model 3 removes all

rural hospitals from the estimation sample to focus on metropolitan hospitals.

The variable of interest, pcphes,t−2, captures the effect of public health spending

on hospital technical efficiency. Recall from a previous discussion, pcphes,t−2 groups

each hospital into one of three levels based on how much their respective health service

area has spent on public health two years prior. The magnitude of spending varies by

group. For example, in 2010, low-level health service areas spent, on average, $16.19

per capita on public health. Public health spending for mid-level health services areas

averaged $36.13 per capita in 2010, ranging from $26 per capita to $48.44 per capita.

During the same year, health service areas operating at the top of the distribution

spent, on average, $101.97 per capita on public health activities.

The results in Table 7.2 suggest that hospitals are indeed impacted by public

health expenditures. Specifically, hospitals operating in health service areas with a

high-level of public health spending per capita experience gains in efficiency relative

to those hospitals operating in the omitted low-level group. Reported in Columns 1

and 2, Model 1 reports the mid-level public health coefficient to be β̂ = 0.00905 for

Algorithm 1 and
̂̂
β = 0.00636 for Algorithm 2. The constructed percentile bootstrapped

confidence intervals of both algorithms do not show any statistical significance for the

mid-level public health spending category. Although hospitals operating in mid-level

public health spending areas do not experience significant gains in efficiency over those

in low-level areas, hospitals operating in a high-level public health areas do.

For Model 1, Algorithm 1 estimates the high-level public health coefficient to be

β̂ = 0.025 with 99% confidence, whereas, Algorithm 2 reports an estimate of
̂̂
β = 0.0166

for high-level areas. Although the coefficient estimate decreased by approximately 33%

with the bias-corrected efficiency estimate
̂̂
δi, explanatory power remains the same at

99%. According to Algorithm 2 hospitals operating in a health service area with a

public health spending that is roughly $50 per capita or more will experience gains in

efficiency of 1.66 percentage points relative to those in low-level areas.
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For robustness, the public health estimates of Model 1 are verified by Model

2 and 3. All models in Table 7.2 report estimates for high-level public health areas

that are similar in magnitude and statistical significance. When the Rural indicator

is omitted, Model 2 estimates the high-level coefficient to be β̂ = 0.0261 for Algorithm

1 and
̂̂
β = 0.0168 for Algorithm 2 with 99% confidence. Similarly, Model 3 estimates

the coefficient to be β̂ = 0.026 and
̂̂
β = 0.021 for Algorithm 1 and Algorithm 2

respectively with 99% confidence. Although there are significant differences in public

health spending in rural and urban areas, hospitals operating in a high-level health

service area experience gains in efficiency relative to the low spending areas in both

urban and rural areas.

Table 7.2 suggests hospitals have experienced significant decreases in technical

efficiency since 2007. Model 1 reports the Algorithm 1 coefficient estimates for 2010 and

2012 as β̂ = −0.0171 and β̂ = −0.0342, respectively. Similar estimates are reported

by Algorithm 2 in Column 2. For years 2010 and 2012, the Algorithm 2 estimates arê̂
β = −0.0164 and

̂̂
β = −0.0316 respectively. With 99% confidence, the coefficients of

both algorithms show hospitals operating in 2010 and 2012 are less efficient then they

were in 2007. Relative to 2007, Algorithm 2 indicates hospital technical efficiency has

declined by 1.64 percentage points in 2010 and 3.16 percentage points in 2012. This

result is likely a product of the downturn in the economy during this time as well asthe

passing of the Affordable Care Act.

Model 1 suggests teaching hospitals unequivocally perform better than their

non-academic peers. With 99% confidence, the coefficients for Teach are β̂ = 0.0632

for Algorithm 1 and
̂̂
β = 0.0584 for Algorithm 2. This implies a hospital affiliated with

a medical school will operate at an efficiency level that is roughly 6 percentage points

higher than a general hospital with no academic ties. Gains in efficiency with teaching

hospitals are not surprising. Teaching hospitals have a wealth of resources giving them

access to state of the art equipment and medical technology. Academic hospitals also

employ a highly skilled labor force that is likely to be well versed on the latest medical

developments.
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As anticipated, government managed hospitals remain the poorest performing

hospital management type. Algorithm 1 estimates the coefficient for Govt. as β̂ =

−0.0256 indicating government hospitals perform 2.56 percentage points lower than

non-profit hospitals. Algorithm 2 calculates the double bootstrapped estimate of Govt.

to be
̂̂
β = −0.0372. Using the bias-corrected estimate of efficiency

̂̂
δi as the dependent

variable decreases the coefficient estimate for Govt. by 45%1. Moreover, Algorithm 2

suggests government managed hospitals will perform 3.72 percentage points lower than

non-profits.

While the efficiency loses of government managed hospitals are expected, the

relationship between the remaining hospital management types is unclear. Model 1

shows hospitals managed by religious organizations are no more or less efficient than

non-profit hospitals. Model 1 also provides weak evidence supporting the conclusion

that for-profit hospitals may experience efficiency gains over their non-profit counter-parts.

Algorithm 1 estimates the coefficient for For-Profit to be β̂ = 0.0143, however, it is only

statistically significant at the 90% level. Column 2 reports the Algorithm 2 estimate

as
̂̂
β = 0.00855. Although the coefficient on for-profit hospitals declined about 40%2

in Algorithm 2, the explanatory power remains the same.

Until this point, the discussion of Models 2 and 3 has been limited as the

coefficient estimates have been relatively consistent with that of Model 1. In the

case of for-profit hospitals, Models 2 and 3 report unstable results. Recall, Model 2

modifies Model 1 by estimating the second-stage without the rural dummy whereas

Model 3 restricts the sample size to only those hospitals operating in a metropolitan

statistical area. When Rural is omitted, both algorithms report inflated coefficient

estimates of For-Proft relative to Model 1. That is, Model 2 reports estimates for

1 Relative to the Algorithm 1 coefficient estimate of β̂ = −0.0256, the Algorithm 2

coefficient estimate
̂̂
β = −0.0372 has changed by −0.0372−(−0.0256)

−0.0256
= −0.453 or -45%.

2 The percentage change in the coefficient estimate of For-Profit is calculating using
the same calculation as in 1. Relative to the Algorithm 1 the Algorithm 2 coefficient
estimate has changed by 0.00855−0.0143

0.0143
= −0.402 or -40%.
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For-Profit that are approximately 50%-75%3 larger in magnitude relative to Model 1.

Moreover, the explanatory power of Rural transfers to For-Proft, becoming statistically

significant with 99% confidence in Model 2. Conversely, when the sample is restricted to

only metropolitan hospitals, Model 3 shows no statistical difference between for-profit

and non-profit hospitals in metropolitan areas. Relative to Model 1, the coefficient

estimates of For-Profit shrinks by over 50%4 for both algorithms in Model 3. This

result suggests that for-profit hospitals do not experience significant gains in efficiency

relative to non-profit hospitals in urban areas.

The inconsistency between the models makes it unclear whether for-profit hospitals

operate with significant efficiency gains over non-profits hospitals. Although the lack of

distinction between the two hospital types may appear counterintuitive, it is consistent

with the research examining the behavior of non-profit hospitals. Several studies

examining the behavior of non-profit hospitals have shown them to behave no differently

than for-profit hospitals (Sloan, 2000; Duggan, 2000, 2002). That is, non-profit hospitals

make decisions similar to that of for-profits who aim to minimize costs rather then

maximizing patient welfare.

Lastly, at the county-level, population demographics have varying effects on

hospital efficiency. Model 1 shows hospital efficiency is adversely affected by increases

in the county indigent population share. With a coefficient estimate on Poverty equal

to β̂ = −0.00193, a one percent increase in the county poverty rate will translate

into a 0.193 percentage point decrease in hospital efficiency. The coefficient estimate

for poverty rate falls slightly in Algorithm 2 to
̂̂
β = −0.00174, however, it remains

statistically significant with 99% confidence.

The percentage of the county population under 65 with health insurance is

3 Comparing the estimates of For-Profit between Model 1 and Model 2 yields a
percentage change of 0.0211−0.0143

0.0143
= 0.4755 or 48% for Algorithm 1 and a percentage

change of 0.0149−0.00855
0.00855

−0.743 or 74% for Algorithm 2.

4 Performing the same comparison of the estimates for For-Profit using Model 1 and
Model 3 yields a percentage change of 0.00745−0.0143

0.0143
= −0.479 or -48% for Algorithm 1

and a percentage change of 0.00432−0.00855
0.00855

= −0.495 or -50% for Algorithm 2.
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represented by Insured. According to previous research, increases in the share of the

population with health insurance negatively impacts the technical efficiency of state

health care delivery systems (Cozad and Wichmann, 2013). Because hospitals play a

critical role in the delivery of medical care, I expect to find similar results. Column 1

reports a coefficient estimate on Insured as β̂ = −0.000448, however, it is statistically

insignificant. Additionally, Algorithm 1 reports insignificant coefficient estimates for

Insured in both Model 2 and Model 3.

Although Algorithm 1 failed to identify the county insurance rate as a significant

determinant of hospital efficiency, Algorithm 2 provides a conclusion similar to that

found in previous research. After constructing the bias-corrected efficiency measure
̂̂
δi,

Algorithm 2 shows Insured has a significant influence on hospital efficiency. Column

2 reports the bias-corrected estimate of Insured to be
̂̂
β = −0.000886 with 99%

confidence. Moreover, a one percent increase in county insurance rate will result in

an efficiency loss for hospitals of approximately 0.09 percentage points.

The results in Table 7.2 are unclear regarding the effect that the elderly population

size has on hospital efficiency. In Column 1, Algorithm 1 estimates the coefficient of

Elderly to be β̂ = 0.00259 with 99% confidence. Similarly in Column 2, Algorithm 2

reports a 99% statistically significant estimate of Elderly as
̂̂
β = 0.00235. This implies

that a one percent increase in the county elderly population share will result in an

increase in hospital efficiency by approximately 0.259 and 0.235 percentage points for

Algorithm 1 and Algorithm 2 respectively.

Model 1 suggests hospitals will clearly operate more efficiently as the county

population gets older. However, extending the discussion to Model 2 and 3 reduces

clarity. Model 2 produces the opposite results when the rural indicator is omitted.

Column 4 reports a coefficient estimate for Elderly equal to
̂̂
β = −0.000915 with 95%

confidence. Alternatively, the results of Model 1 are confirmed by Model 3 when the

sample is restricted to only metropolitan hospitals. Column 6 reports the Algorithm

2 estimate of Elderly to be
̂̂
β = 0.00173 with 99% significance. Previous research

supports both claims. Pilyavsky et al. (2006) argue that older populations fill up beds
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more often resulting in better capital efficiency while the results of Bernet et al. (2008)

show otherwise.

7.3 Conventional Empirical Estimation Comparison

Simar and Wilson (2007, 2014) cite the vast majority of two-stage efficiency

studies estimate the second-stage using δ̂i as the dependent variable in an OLS or Tobit

framework. They criticize these studies for ignoring the statistical properties of the

non-parametric DEA estimates, arguing it is unclear what is actually being estimated.

The authors present two algorithms to consistently estimate the second-stage, however,

implementing these algorithms comes with a significant computational burden over

conventional econometric approaches. The focus of this section is to compare Simar

and Wilson’s bootstrapping approaches to traditional econometric methods to see if

undertaking the computational burden results in significant differences.

Table 7.3 compares the second-stage results produced by estimating Model 1

by OLS and Tobit with the bootstrapped results of Algorithm 1 and Algorithm 2.

Column 1 and 2 report the OLS and Tobit results, respectively. Here, I ignore the

statistical properties of the non-parametric DEA efficiency estimate δ̂i and proceed to

the second-stage using δ̂i as the dependent variable over the entire sample.

Column 3 reports the truncated regression estimates produced by Algorithm

1. Recall from a previous discussion, Algorithm 1 is designed to improve statistical

inference of the second-stage without accounting for the bias of the non-parametric

DEA estimates (Simar and Wilson, 2007). Thus, using δ̂i as the dependent variable,

Algorithm 1 consistently estimates the second-stage using a single bootstrapping algorithm

on a randomly selected number of observations.5 Lastly, Column 4 lists the previously

5 For consistent estimation of the best-practice frontier, the bootstrapping routine
must be completed using the same number of m randomly selected observations (Simar
and Wilson, 2000, 2007, 2014). Simar and Wilson (2007, 2014) argue that estimating
the best-practice frontier using the typical bootstrap process, which specifies resampling
with replacement, is inconsistent due to the unknown boundary of the production
function.
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Table 7.3: Comparison of Model 1 Results When Estimated by OLS, Tobit, and the
Truncated Regressions of Algorithm 2

(1) (2) (3) (4)

OLS Tobit A1 A2

δ̂i δ̂i δ̂i
̂̂
δi

Teach 0.0644∗∗∗ 0.0658∗∗∗ 0.0632∗∗∗ 0.0584∗∗∗

For-Profit 0.00612 0.00635 0.0143∗ 0.00855∗

Church 0.00192 0.00153 0.00745 0.00527

Govt (Non-Fed) -0.0341∗∗∗ -0.0346∗∗∗ -0.0256∗∗∗ -0.0372∗∗∗

2010 -0.0229∗∗∗ -0.0234∗∗∗ -0.0171∗∗∗ -0.0164∗∗∗

2012 -0.0409∗∗∗ -0.0414∗∗∗ -0.0342∗∗∗ -0.0316∗∗∗

pcphes,t−2 (Mid) 0.00458 0.00465 0.00905 0.00636

pcphes,t−2 (High) 0.0150∗∗∗ 0.0153∗∗∗ 0.0250∗∗∗ 0.0166∗∗∗

Rural -0.0765∗∗∗ -0.0775∗∗∗ -0.0822∗∗∗ -0.0892∗∗∗

Insured -0.000989∗∗ -0.00101∗∗ -0.000448 -0.000886∗∗∗

Poverty -0.00207∗∗∗ -0.00213∗∗∗ -0.00193∗∗∗ -0.00174∗∗∗

Elderly 0.00341∗∗∗ 0.00355∗∗∗ 0.00259∗∗∗ 0.00235∗∗∗

Constant 0.699∗∗∗ 0.702∗∗∗ 0.651∗∗∗ 0.595∗∗∗

σ 0.162∗∗∗ 0.146∗∗∗ 0.125∗∗∗

Observations 5758 5758 2730 5758

Note: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

discussed double bootstrapped estimates of Algorithm 2. Algorithm 2 differs from

Algorithm 1 by using a bias-corrected efficiency estimate
̂̂
δi as the dependent variable

in a truncated regression over the entire sample.

Overall, the various empirical approaches listed in Table 7.3 produce similar

results. With minor differences, each specification produces similar conclusions regarding

how each environmental factor affects hospital technical efficiency. However, there

is disagreement regarding the magnitude that each environmental variable has on

efficiency. In particular, the major differences regarding the size of coefficient estimates

occur between the conventional econometric and bootstrapping approaches.
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Comparing the results in Column 1 and 2 show little differences between the

respective OLS and Tobit estimates. Both traditional econometric approaches produce

nearly identical estimates of each coefficient with identical statistical significance. The

largest discrepancy between the two conventional methods is with the estimated magnitude

for the coefficient of Church. Although both OLS and Tobit do not find any statistical

significance with Church, Column 2 reports the Tobit coefficient for Church as

β̂ = 0.00153, approximately 20% smaller than what is estimated by OLS.

Table 7.3 shows Algorithm 1 offers little to no advantage over the OLS and Tobit

estimations. In all but two cases, Algorithm 1 identifies the same factors impacting

hospital efficiency. However, many of the coefficients produced by Algorithm 1 differ

in magnitude relative to OLS and Tobit estimates. Algorithm 1 identifies For-Profit

as a significant determinant of hospital efficiency, marking the sole improvement over

the OLS and Tobit estimations. With 90% confidence, Algorithm 1 estimates the

coefficient on For-Profit to be β̂ = 0.0143, approximately double that of the OLS and

Tobit estimates.

Algorithm 1 makes an unfavorable adjustment with the county insurance rate

relative to the OLS and Tobit estimations in Table 7.3. That is, Algorithm 1 failed

to identify Insured as a significant factor affecting hospital efficiency. Column 1 and

2 report estimates for Insured equal to β̂ = −0.00098 for OLS and β̂ = −0.00101 for

Tobit both with 95% confidence. Column 3 shows the Algorithm 1 estimate of Insured

to be β̂ = −0.00048, approximately 50% smaller than the OLS and Tobit estimates.

Moreover, Insured is no longer a significant factor influencing hospital efficiency in the

Algorithm 1 estimation.

Table 7.4 reports the coefficients and 95% confidence intervals produced by OLS,

Algorithm 1, and Algorithm 2 estimations.6 In every case, the percentile bootstrapped

confidence intervals reported by Algorithm 1 are wider than the 95% confidence intervals

produced by OLS. The inability of Algorithm 1 to improve inferencing of the second-stage

6 The estimates in Table 7.4 are identical to those of Table 7.3. I omit the Tobit results
due to the similarity to the OLS estimates.
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Table 7.4: Comparison of the OLS Confidence Intervals to the Percentile
Bootstrapped Confidence Intervals Produced by Algorithm 1 & Algorithm 2

(1) (2) (3)

OLS A1 A2

δ̂i 95% CI δ̂i 95% CI
̂̂
δi 95% CI

Teach 0.0644∗∗∗ (0.0544, 0.0744) 0.0632∗∗∗ (0.0497, 0.0762) 0.0584∗∗∗ (0.0506, 0.0664)

For-Profit 0.00612 (-0.00612, 0.0184) 0.0143∗ (-0.00262, 0.0307) 0.00855∗ (-0.00173, 0.0185)

Church 0.00192 (-0.0108, 0.0147) 0.00745 (-0.00948, 0.0236) 0.00527 (-0.00521, 0.0156)

Govt (Non-Fed) -0.0341∗∗∗ (-0.0453, -0.0230) -0.0256∗∗∗ (-0.0409, -0.0103) -0.0372∗∗∗ (-0.0462, -0.0285)

2010 -0.0229∗∗∗ (-0.0332, -0.0126) -0.0171∗∗∗ (-0.0310, -0.00381) -0.0164∗∗∗ (-0.0244, -0.00841)

2012 -0.0409∗∗∗ (-0.0514, -0.0304) -0.0342∗∗∗ (-0.0480, -0.0201) -0.0316∗∗∗ (-0.0401, -0.0235)

pcphes,t−2 (Mid) 0.00458 (-0.00562, 0.0148) 0.00905 (-0.00474, 0.0224) 0.00636 (-0.00188, 0.0145)

pcphes,t−2 (High) 0.0150∗∗∗ (0.00480, 0.0252) 0.0250∗∗∗ (0.0115, 0.0397) 0.0166∗∗∗ (0.00848, 0.0248)

Rural -0.0765∗∗∗ (-0.0872, -0.0659) -0.0822∗∗∗ (-0.0957, -0.0686) -0.0892∗∗∗ (-0.0980, -0.0807)

Insured -0.000989∗∗ (-0.00185, -0.000128) -0.000448 (-0.00162, 0.000723) -0.000886∗∗∗ (-0.00157, -0.000276)

Poverty -0.00207∗∗∗ (-0.00310, -0.00105) -0.00193∗∗∗ (-0.00332, -0.000516) -0.00174∗∗∗ (-0.00260, -0.000958)

Elderly 0.00341∗∗∗ (0.00230, 0.00452) 0.00259∗∗∗ (0.00111, 0.00414) 0.00235∗∗∗ (0.00152, 0.00326)

Constant 0.699∗∗∗ (0.619, 0.779) 0.651∗∗∗ (0.543, 0.759) 0.595∗∗∗ (0.536, 0.657)

σ 0.146∗∗∗ (0.142, 0.151) 0.125∗∗∗ (0.123, 0.128)

Observations 5758 2730 5758

Note: The estimates in Table 7.4 are identical to that of Table 7.3. I omit the Tobit results due to the similarity to the OLS estimates. Significance for

Algorithms 1 and 2 are determined by the respective percentile bootstrapped confidence intervals.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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coefficients is similar to the results of the Monte Carlo simulation performed by Simar

and Wilson (2007). The authors refer to the problem plaguing Algorithm 1 as “the

curse of dimensionality” which refers to the number of inputs and outputs used to

estimate technical efficiency in the first-stage. Simar and Wilson (2007) show that

Algorithm 1 begins to perform worse than conventional approaches when there is more

than one input and one output specified in the first-stage. They argue that increasing

the number of inputs and outputs in the first-stage produces less precise estimates δ̂i,

making it difficult to provide an accurate estimate.

Although the goal of Algorithm 1 is to provide better inferencing of the second-stage

variables, in practice, Algorithm 1 fails to do so. Specifically, situations arise where

more than one input is used to produce more than one output, making Algorithm 1 an

inferior approach relative to conventional estimations. In this research, the overall

conclusions of Algorithm 1 align with OLS and Tobit estimations. However, the

higher first-stage dimensions7 specified in this research resulted in wider Algorithm

1 confidence intervals relative to those produced by OLS and Tobit frameworks.

Traditional econometric approaches such as OLS and Tobit rely on the fact that

the non-parametric DEA estimate for δ̂i is a consistent estimator of δi. However, in

finite samples, the bias value in δ̂i is slow to disappear.Thus, ignoring the statistical

properties of δ̂i may lead to erroneous second-stage conclusions even with large sample

sizes (Simar and Wilson, 2000). To get around this problem, Simar and Wilson (2007)

suggest removing the bias prior to the second-stage. The authors define Algorithm 2

as an extension of Algorithm 1 to include a second bootstrapping routine. Here, the

first bootstrap procedure constructs a bias-corrected estimate of efficiency
̂̂
δi prior to

the second-stage by estimating the bias of δ̂i. Removing the bias value from δ̂i should

provide improved estimates of β in the second-stage.

7 The dimensionality of the first-stage in this research is 8. That is, hospital efficiency
estimates δ̂i are obtained in the first-stage using three inputs to produce five outputs.
See the discussion in Chapter 5 for a detailed description of the first-stage specification.
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Overall, the double bootstrap routine specified by Algorithm 2 improves the

second-stage estimation of the independent variables. In particular, constructing the

bias-corrected estimate
̂̂
δi removes the bias term from the non-parametric DEA estimates

and eliminates the noise arising from higher dimensions of the first-stage. Using
̂̂
δi as

the dependent variable, Algorithm 2 reports coefficient estimates similar to that of the

conventional estimates in Column 1 and 2 with increased precision.

Similar to Algorithm 1, Algorithm 2 identifies For-Profit hospitals as experiencing

efficiency gains over Non-Profit hospitals, reporting a For-Profit coefficient equal tô̂
β = 0.00855 with 90% confidence. Compared to Algorithm 1, Algorithm 2 reports a

less inflated coefficient on For-Profit, similar to what is reported by the OLS and Tobit

models. Algorithm 2 reports an estimate of the coefficient for county insurance rate

similar in magnitude to that of OLS and Tobit with increased significance. With 99%

confidence, Algorithm 2 reports the coefficient for Insured equal to
̂̂
β = −0.000886,

marking a significant improvement over Algorithm 1 and conventional approaches.

The method proposed by Simar and Wilson (2007) to conduct a two-stage

efficiency analysis appears to be superior to conventional econometric approaches,

however, the improvement is marginal. Specifically, Algorithm 2 provides similar

coefficient estimates with superior inferencing relative to the OLS and Tobit specifications.

For every variable listed in Table 7.4, the percentile bootstrapped confidence intervals

produced by Algorithm 2 are much smaller relative to the confidence intervals produced

by the OLS and Tobit specifications.

Unfortunately, obtaining the increased precision does not come without a cost.

Implementing the double bootstrap procedure specified in Algorithm 2 involves the

undertaking of a significantly greater computational burden relative to conventional

econometric approaches. In the case of this research, the benefits associated with

Algorithm 2’s increased precision is marginal. Specifically, the only advantage Algorithm

2 reports over OLS is with the coefficient estimate of For-Profit. The increased

precision gained with the double bootstrap routine allowed Algorithm 2 to identify

For-Profit as a significant factor influencing hospital technical efficiency. Algorithm 2
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clearly provided more precise confidence intervals for every independent variable in the

second-stage. However, with the exception of For-Profit, the conclusions produced by

OLS are virtually identical to that of Algorithm 2 without the computational burden.
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Chapter 8

CONCLUSION

Growing concern surrounding rising health care costs has pushed the United

States health care system onto the forefront of the debate stage. According to the

Centers for Medicare and Medicaid Services (CMS), the United States spent approximately

17.42% of GDP on health care in 2014. Of the $3 trillion health care related expenditures

in 2014, approximately one-third can be attributed to hospitals (CMS, 2014). The 2010

implementation of the Affordable Care Act aimed to provide affordable health insurance

for all Americans and while doing so, reign in on these unsustainable health care costs.

Architects of the ACA understood the easiest method to reduce health care costs is to

help all Americans become more healthy. In theory, healthier individuals will demand

less medical care and visit the emergency room less frequently. As a result, health care

providers can reduce expenditures by allocating their costly medical resources more

efficiently.

Without omnipotent power, making all Americans healthier at once is not

feasible. As a consequence, policy makers must debate how to solve America’s health

care expenditure problem which will not occur over night. Recent research concludes

that increasing the level of funds dedicated to public health will indeed result in a

healthier population (Brown, 2014; Brown et al., 2014; Bailey and Goodman-Bacon,

2015). Moreover, the successful provision of public health focuses on preventing health

problems from developing which will certainly make Americans healthier and potentially

reduce health care expenditures in the process. Stressing public health, this research

makes an attempt to identify an avenue that policy makers could exploit to reduce

long-run health care expenditures, particularly those expenditures attributed to hospitals.
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The primary goal of this dissertation has been to expand the understanding of

the role public health plays in the U.S. health care system, particularly in affecting

hospital costs. The question posed in this research asked if increases in public health

funding would impact the surrounding health care providers, particularly hospitals.

To answer this question I exploited the advances in efficiency analysis put forth by

Simar and Wilson (2007). Specifically, I used the two-stage semi-parametric Data

Envelopment Analysis (DEA) to estimate the impact of public health expenditures

on the technical efficiency of U.S. hospitals. Following the bootstrapping algorithms

proposed in Simar and Wilson (2007), I constructed an estimate of technical efficiency

for each hospital in the first-stage. Then, using the first-stage estimate of hospital

efficiency as the dependent variable in a second-stage regression, I identify several key

environmental factors that might influence hospital efficiency but which are not under

the control of hospitals.

There are two key findings that have come out of this research. The first key

result presented here was that hospitals are indeed positively impacted by higher levels

of public health spending. Relative to hospitals operating in health service areas with

a low-level of per capita public health spending, hospitals operating in health service

areas with a high-level of spending experience significant gains in efficiency. This

suggests that increases in per capita public health will not only result in a healthier

population as previous research concludes, but will increase hospital productivity and

therefore lower expenditures (Ali et al., 2016).

The second key result presented in this dissertation arises from a comparison of

traditional econometric estimations with the strategy proposed by Simar and Wilson

(2007). Because of the problems associated with estimating the the second-stage using

the traditional non-parametric DEA estimates, I used the bootstrapping algorithms

proposed by Simar and Wilson (2007) to estimate the relationship between public

health expenditures and hospital efficiency. For the dependent variable in the second-stage,

Algorithm 2 constructs a bias-corrected estimate of hospital efficiency whereas Algorithm

1 uses the traditional non-parametric DEA estimate.
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As expected by Simar and Wilson (2007), Algorithm 2 provided superior results

of the two bootstrapping routines. However, the implementation of the double bootstrap

routine specified in Algorithm 2 required a significantly greater computational burden

over traditional econometric approaches. Therefore, I compared the bias-corrected

results of Algorithm 2 to the OLS results when using the non-parametric DEA estimate

as the dependent variable in an effort to understand if undertaking the computation

burden results in significant differences. When the coefficient estimates of Algorithm

2 are compared to the respective estimates produced by OLS, Algorithm 2 performed

marginally better. Comparing the respective confidence intervals of the two specifications

supports Simar and Wilson’s claim that Algorithm 2 provides more precise estimates.

Nevertheless, the conclusions provided by OLS were virtually identical to Algorithm 2

without the computational burden.

There are several limitations to this research that must be considered. The first

limitation to this study is the patient spillover. Using the health service area identifiers

provided by the Dartmouth Atlas of Health Care, I have attempted to control for the

hospital’s patient market. However, it is possible that hospitals have admitted patients

that reside in a neighboring health service area. Patients traveling outside of their

health service area will bring any public health benefit or lack thereof with them which

is not captured in this study.

The second limitation is that, this study does not account for the effectiveness of

the organizations that provide public health activities and services to the community.

Health departments use the funding they receive to fund public health activities that

best fits the needs of the population at which they serve. Because the public health

activities typically do not have an immediate measurable outcome, it is difficult to

determine if the public health funds were used efficiently. Moreover, ineffective health

departments may be allocating funds to unproductive services that yield little to no

health benefit. Thus, simply increasing the amount of public health funding available to

these inefficient health departments and public health organizations would be wasteful.

Hospitals would not realize the expected gains in efficiency gains.
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More research is needed to fully understand the true value that public health

programs and services provide to the population. Implementing a standardized method

of public health data collection is the first step in facilitating future public health

research. Although the National Association of County and City Health Officers

(NACCHO) collects data from local health departments, the survey is conducted on

an irregular basis and has evolved over time.
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