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ABSTRACT 

 

Coastal ocean salinity is a basic oceanographic property that is not 

routinely estimated by satellites. Efforts to measure ocean salinity from space are 

designed for large scale open ocean environments, not coastal regions. In the Mid-

Atlantic coastal ocean, salinity is critical for understanding circulation patterns, river 

plumes, and transport, which in turn impact the status of the ecosystem. However, the 

spatial and temporal coverage of in situ salinity measurements in this region are sparse 

and do not synoptically capture salinity in the coastal ocean. I compiled ~2 million 

salinity records from four regional research vessels between the years 2003-2008 and 

found ~9 thousand salinity records that could be adequately matched to MODIS-Aqua 

data. I show that the spectral shape of water-leaving radiance and sea surface 

temperature are most correlated with in situ salinity. Four neural network models 

designed to predict salinity were developed for the Mid-Atlantic coastal region and 

three of its major estuaries (Hudson, Delaware, and Chesapeake). These models 

predict salinity with RMS errors between 1.40 psu and 2.29 psu, which are much less 

than the null model ranges (4.87-10.08 psu) and the natural range of the system (0-32 

psu). Seasonal climatologies for the Chesapeake, Delaware, and Mid-Atlantic regions 

based on these models are fresher than the existing NODC climatologies. I also found 

significant freshening trends in the Mid-Atlantic over a 6 year period.
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Chapter 1 

INTRODUCTION 

 

Sea surface salinity is the key tracer of freshwater input to coastal oceans and 

directly contributes to seawater density and circulation patterns. Estuaries are highly 

productive ecosystems that experience large salinity changes daily and seasonally. 

Many organisms within estuaries, such as larval and juvenile fishes, have different 

tolerances to salinity and are only found within certain ranges (Brooks, 2005; Kinne, 

1983). For example, salinity zones of Chesapeake and Delaware Bays can be inferred 

from their local fauna (Bulger et al., 1993). Changes in salinity and temperature 

patterns also indicate where terrestrial and marine systems mix. This mixing 

distributes nutrients which impacts the production of the coastal ecosystem (Fisher et 

al., 1988; Johnson et al., 2003; Malone et al., 1988; Moline et al., 2008; Smith and 

Demaster, 1996). In the Mid-Atlantic region, modelers have adopted satellite-based 

sea surface temperature (SST) data to initialize circulation models that estimate the 

biogeochemical exchange between terrestrial and marine systems (Fennel et al., 2006; 

Wilkin et al., 2005). Providing satellite-based surface salinity information on the same 

spatial scale as SST could improve model predictions of coastal ocean currents and 

transport along and across the continental shelf  (Wilkin et al., 2005, Lagerloef et al., 

1995). Measuring sea surface salinity from a satellite in space has been seriously 

discussed in the past (Swift and Mcintosh, 1983) and more recent efforts are up and 

running such as NASA’s Aquarius mission to improve the community’s ability to map 
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global ocean salinity (Lagerloef, 2008). Aquarius uses a microwave radiometer at 1.4 

GHz ot measure salinity at an accuracy of 0.2 psu. Despite the great potential of 

Aquarius in the open ocean, the resolution of the satellite is on the order of 150 km 

and is too coarse to capture salinity structures that are typical of coastal and estuarine 

systems. Therefore, alternatives are needed to bring this critical observation into the 

coastal zone to advance the understanding of mixing and biogeochemical exchange 

between terrestrial and marine systems.  

Many studies have found that detritus and colored dissolved organic material 

(CDOM) concentrations are good tracers of salinity (Coble et al., 2004; Del Vecchio 

and Blough, 2004; Vodacek et al., 1997). In the coastal ocean, a large portion of 

CDOM is terrestrial in origin and is therefore associated with fresh water (Opsahl and 

Benner, 1997). As high CDOM-low salinity water mixes with low CDOM-high 

salinity water, one would expect salinity to have an inverse relationship with CDOM 

concentration. CDOM also primarily absorbs light in the ultraviolet and blue portions 

of the spectrum making it an important control on the transfer of solar radiation 

through the water column and detectable by optical sensors (Siegel and Michaels, 

1996; Siegel et al., 1995). Therefore, optical signals (absorption or reflectance) of 

coastal waters in the blue portions of the visible spectrum could be used as salinity 

proxies. For example, CDOM has been related to salinity through in situ ultraviolet 

optical measurements in waters off the west coast of Ireland (Monahan and Pybus, 

1978). Additionally, an inverse relationship between salinity and CDOM exists in the 

Clyde Sea on the west coast of Scotland (Bowers et al., 2000). A similar linear 

relationship between ocean color and CDOM has been used to estimate salinity in the 

Clyde Sea (Binding and Bowers, 2003). Like the Mid-Atlantic Bight, the Clyde Sea is 
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a broad shelf sea with large inputs of fresh water, but unlike the Mid-Atlantic, it is 

semi-enclosed. Due to the distinct optical signal of CDOM, I expect that remotely 

sensed ocean color at high resolution (1km) could be interpreted in terms of salinity. 

Other studies have used simple linear and multiple linear algorithms to relate ocean 

color data from MODIS-Aqua to salinity (Ahn, 2008; Palacios et al., 2009). The 

relationships in these studies relate inherent optical properties such as absorption 

coefficients to salinity by assuming conservative mixing. However, CDOM can be 

created and destroyed in estuarine and coastal waters, so the relationship between 

CDOM optical properties and salinity is variable in space and time (Chen, 1999; Del 

Vecchio and Blough, 2004). I believe that salinity can be estimated from an apparent 

optical property such as reflectance rather than first deriving an inherant optical 

property such as CDOM absorption. 

The purpose of this study is to estimate salinity from ocean color data at 1 

km resolution in the coastal Mid-Atlantic region including the Chesapeake, Delaware, 

and Hudson Estuaries. To accomplish this, I paired in situ salinity values with 

MODIS-Aqua satellite data along with other environmental variables such as tides, 

bathymetry, SST, chlorophyll-a, stream flow, and year day. Neural network fitting 

routines that account for space and time variation were used to generate a relationship 

between these environmental variables, ocean color, and salinity. The strength of this 

approach is that there is no need to assume CDOM is a conservative tracer, which is 

not always true (Chen and Gardner, 2004). Also, unlike other approaches that first 

derive an inherent optical property for salinity prediction (Ahn, 2008; Palacios et al., 

2009), my approach is to use apparent optical properties to predict salinity. This thesis 

describes the development and validation of a neural network approach for estimating 
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salinity in the Mid-Atlantic shelf. The resulting regional maps of surface salinity are 

used to discuss spatial and temporal variability as well as trends in salinity. I present a 

new perspective on the relationship between salinity and remotely sensed ocean color 

in the Mid-Atlantic. Seasonal climatologies based on the models were then compared 

to existing climatologies from the National Oceanographic Data Center (NODC). 

While my climatologies are significantly fresher than the NODC climatologies, my in 

situ training data are also significantly fresher which explains the bias in my models 

and shows the need for more highly resolved salinity climatologies in coastal regions. 
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Chapter 2 

METHODOLOGY 

2.1. In situ Environmental Data  

I collected in situ data from a variety of different sources and compiled them 

into a single dataset. Salinity data were collected from four research vessels over a 

period of six years (2003-2008). The research vessels were the R/V Cape Henlopen, 

R/V Hugh R. Sharp, R/V Cape Hatteras and the R/V Oceanus. Each of these research 

vessels had an onboard surface mapping system (SMS) that regularly collected data 

from the sea surface while the ship was underway. The SMS data included salinity 

(psu), SST (°C), time (GMT), and position. I was not able to control for the variability 

in SMS sensor depths on the hull (~1-2 m depth) or the hull specific mixing effects on 

the ocean surface. This is an unknown source of error in this analysis. The data 

collected over the six-year period span the Chesapeake, Delaware, and Hudson 

Estuaries as well as the surrounding coastal ocean of the Mid-Atlantic (Figure 2.1A). 

Bathymetry data with a cell size of 6 seconds (~145 m E/W, 185 m N/S) were 

obtained from the National Geophysical Data Center’s US coastal relief model 

(http://www.ngdc.noaa.gov/mgg/gdas/gd_designagrid.html). I matched the bathymetry 

grid with in situ salinity data by calculating the great circle distance between them 

(average distance ~90 m). Tide data were retrieved from the Lewes, DE tide station 

(38° 46.9’ N, 75° 07.2’ W) via NOAA’s Tides Online data archive 

(http://tidesonline.nos.noaa.gov/). Data were obtained for the years 2003-2008 and 
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contained mean lower low water height (m) and time (GMT). Tide data was matched 

to salinity data by nearest time. This was done for the Delaware Bay model only. 

River outflow data were acquired from the USGS National Water Information System 

(http://waterdata.usgs.gov/nwis/rt). River outflow data included daily mean discharge 

(ft3/s) for six stream gauges from 2002-2009. The stream gauges were located in the 

Mohawk River at Cohoes, NY (01357500), the Hudson River at Fort Edwards, NY 

(01327750), the Delaware River at Trenton, NJ (01463500), the Schuylkill River at 

Philadelphia, PA (01474500), the Susquehanna River at Conowingo, MD (01578310), 

and the Potomac River near Washington DC (01646500). These gauges were chosen 

because they were the closest to their respective bays and beyond the effect of tides. I 

used the stream gauge data for two purposes. The first was to test stream flow as a 

potential predictor of salinity in my neural network models. For this I matched stream 

flow with in situ salinity by nearest time. The second was to compare the predictions 

of one of my salinity models with stream flow to see if there were any general changes 

in salinity in response to stream flow. For this I averaged the salinity output of the 

Chesapeake regional model in an area of the bay that spans the mouth of the Potomac 

River (38.1° N to 37.9° N and 76.3° W to 76.2° W, roughly 22 x 9 km) and compared 

it to stream flow data from the Potomac River stream gauge.  

2.2. Satellite Data 

Ocean color data from the MODIS-Aqua satellite were downloaded from 

NASA’s Ocean Color website (http://oceancolor.gsfc.nasa.gov/, reprocessing 1.1). 

Daytime data were collected from mid-2002 to 2009 and processed using the 

SeaWiFS Data Analysis System (SeaDAS). Data were downloaded as level-2 
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standard-suite products. Using standard SeaDAS routines, level-2 data were spatially 

binned to an equal-area grid at 1km and transformed into geophysical standard 

mapped images (SMIs).  These data included position, chlorophyll-a (mg m-³), 

normalized water-leaving radiance (W m-² sr-1), daytime sea surface temperature (°C) 

and the time of the satellite pass (GMT). The normalized water-leaving radiance was 

for six wavelengths; nLw412, nLw443, nLw488, nLw531, nLw551, and nLw667 nm. I also 

computed three band ratios (nLw412/nLw551, nLw443/nLw551, and nLw488/nLw551) that 

acted as proxies for the spectral shape of the normalized water-leaving radiance. These 

ratios capture the changes in spectral shape in the blue-green portion of the spectrum, 

which is where the most changes in reflectance are expected from CDOM-heavy 

freshwater input. Band ratios have been successfully used before in other remote 

sensing applications (Ahn, 2008; O'Reilly et al., 1998). 

2.3. Satellite Matches 

I matched in situ salinity data to MODIS-Aqua over flights within a 2 km 

radius and 12 hour window (6 hours before and after, or within a tidal cycle). This 

maximized matched satellite data coverage while keeping the satellite data close to the 

in situ measurement. Satellite data that fell within the 2 km radius were averaged so 

that there was one unique set of values for each salinity measurement. Due to the high 

temporal frequency of in situ salinity data (roughly every 10 seconds), multiple in situ 

salinity measurements that matched the same satellite data were averaged to give one 

unique salinity measurement per satellite-matched pixel. The Mid-Atlantic was then 

subdivided into three sub-regions: the Chesapeake, Delaware and Hudson Estuaries. 

Figure 2.1B shows the location of the satellite-matched salinity records as well as the 
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subset regions. The temporal distribution of the satellite-matched salinity data peaked 

in late winter/early spring and late summer/early fall (Figure 2.2).  

2.4. Neural Network Construction 

A neural network is a non-linear fitting routine that uses logical switches 

(nodes) rather than smooth equations to relate two or more variables. I used the nnet 

function (Venables, 2002) in the statistical program R (R Development Core Team, 

2009). The goal was to find a relationship between salinity and an unknown 

combination of 17 predictors for each of the four regions (Mid-Atlantic, Chesapeake, 

Delaware, and Hudson). The predictors were longitude, latitude, chlorophyll-a, SST, 

year day, depth, stream flow, tides, normalized water-leaving radiance (6 

wavelengths), and normalized water-leaving radiance ratios (3 ratios). Each neural 

network requires a training set of data on which the neurons “learn” how the salinity at 

the surface relates to the other environmental parameters and ocean color. The 

networks were trained on a random 50% of the data and analyzed for how well they 

could predict the other 50% based on the RMS error. With 17 predictors, there are 

131,071 unique combinations possible (217-1). Initial tests showed that any fewer than 

7 initializing parameters produced unfavorable RMS errors (>4 psu). Therefore, to 

reduce the number of possible neural networks to construct, I used principle 

component analyses (PCA) on the four regions to determine which in situ or satellite 

data were most correlated and least correlated with salinity in each region. The top 

seven PCA correlates of salinity in each region were used to initiate the neural 

network model construction while the five least correlated were eliminated from 

model consideration. The PCA was also used to minimize the cross correlation 

between predictor variables, however, some cross correlation still existed between 
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bands close in wavelength. Then, I systematically combined the top seven PCA 

correlates of salinity with every combination of the remaining five environmental 

predictors that were moderately correlated with salinity from our PCA analysis. 

Networks were tested with 25, 30, 35, and 40 nodes and allowed for multiple layers of 

nodes. This reduced the number of model permutations to 124 for each region. The 

basic form of the implemented neural network was a single layer model with inputs 

(normalized satellite and in situ data) going into one or more layers of neurons then to 

the output (salinity). From this, I determined which combination yielded the lowest 

RMS error with the least number of parameters. 

2.5. Climatological Data 

 Seasonal quarter-degree resolution salinity climatologies were acquired 

from the National Oceanographic Data Center’s (NODC) World Ocean Atlas Select 

tool (http://www.nodc.noaa.gov/OC5/SELECT/woaselect/woaselect.html). Using the 

optimized Mid-Atlantic model, I computed seasonal climatologies by averaging 

predicted salinity from 32-day rolling average satellite data for each season from 

2003-2008. Following the NODC climatologies, seasons were defined by dividing the 

year evenly into four three-month periods; winter is from Jan-Mar, spring is from Apr-

Jun, summer is from Jul-Sept, and fall is from Oct-Dec. When averaging the predicted 

salinity fields to create climatologies for my grid, only those grid points that had 

satellite coverage >50% for the full 6 years were included. By using rolling 32-day 

average satellite data for computing climatologies, weekly variability was removed, 

but coverage greatly increased. Climatologies were matched with the NODC quarter-

degree climatologies by calculating the great circle distance between grid points. I 

also used my seasonal climatologies to compute the range in salinity and analyze 
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interannual trends. Trends were determined by calculating linear regressions over each 

grid point over the 6 years. 
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Figure 2.1:  Spatial extent of in situ salinity data before (A) and after (B) satellite 
match-up. Boxes indicate sub-regions (from North to South: 
Hudson, Delaware, Chesapeake). Also shown are the locations of the 
Potomac River stream gauge (open circle) and the Lewes, DE tide 
station (open triangle). The matched dataset contains less than 1% 
of the original dataset. 
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Figure 2.2:  Temporal distribution of satellite-matched in situ salinity data. Data 
in the Delaware and Chesapeake sub-regions are collected mostly in 
the late winter/early spring and late summer/early fall. Data for the 
Hudson sub-region only span April, May and June. 
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Chapter 3 

RESULTS 

3.1. Spectral Analysis 

Matching in situ salinity data to satellite data resulted in 8,957, 1,917, 1,676, 

and 1,093 matches for the Mid-Atlantic, Chesapeake, Delaware and Hudson regions 

respectively. This provided adequate data to test and train models while still using 

relatively strict time and space matching criteria. An analysis of the water-leaving 

radiance and salinity in the matched dataset revealed that fresh water had lower 

reflectance of blue wavelengths, most likely related to the absorption of blue 

wavelengths by CDOM. Figure 3.1 is the spectral shape of the MODIS-Aqua 

reflectance spectra (spectra normalized to maximum reflectance) colored by salinity 

for each of the study regions. A change in spectral shape is more likely to capture the 

effects of CDOM than total reflectance. Maximum reflectance for low salinity water is 

near 500-550 nm (green reflectance) while maximum reflectance for high salinity 

water is 400-450 nm (blue reflectance). This can also be interpreted as the 

proportionally higher absorption of blue wavelengths in fresher waters. This 

relationship exists for every region of this dataset, but varies slightly due to potential 

differences between estuaries. It is not known if this variability is estuary specific or a 

sampling artifact due to cloud cover and estuary size. For example, the Chesapeake is 

much larger than the Hudson or Delaware Estuaries; therefore I was more likely to get 

satellite matches with fresh water in the Chesapeake Estuary.  
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  Variation in spectral shape between sub-regions is probably due to 

inconsistent data coverage in space and time. For example, the Chesapeake sub-region 

contained the most freshwater, satellite-matched in situ salinity measurements (Table 

3.1) and therefore has more examples of reflectance spectra that are strongly 

influenced by blue light absorbing constituents (Figure 3.1B). In contrast, the 

Delaware and Hudson sub-regions did not have as many fresh water matches due to 

poor satellite coverage in the fresh portions of the Delaware and Hudson sub-regions 

(Figures 3.1C, 3.1D). Although the optical properties of the in-water constituents most 

likely differ between estuaries the general trend of fresher water reflecting less blue 

light is evident in each sub-region. 

3.2. Neural Network Predictions 

Empirical testing of neural network salinity predictions showed that only 

ocean color data, SST, and position were necessary for salinity predictions. Depth, 

tides, river flow, and year day did not increase the predictive power of the neural 

networks based on the negligible changes in RMS error between model trainings and 

visual inspection of salinity maps as a “reality check.” The input variables of the four 

models with the lowest RMS and most accurate prediction of salinity are in Table 3.2. 

The RMS errors recorded for each model are: Mid-Atlantic = 2.29 psu, Chesapeake = 

1.72 psu, Delaware = 1.97 psu, Hudson = 1.40 psu. By comparison, the RMS errors of 

a random null model (i.e. ability of randomized satellite-matched in situ salinity data 

to predict itself) were much larger: Mid-Atlantic = 10.08 psu, Chesapeake = 8.70 psu, 

Delaware = 6.09 psu, Hudson = 4.87 psu. I also performed sensitivity analyses on 

each model by adding random noise (± 5%) to each predictor in the models. These 

analyses revealed that all models were most sensitive to the position (especially 
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longitudinal), while changing other parameters negligibly changed the RMS. The 

Delaware and Hudson model used 30 nodes, the Mid-Atlantic model used 35, and the 

Chesapeake used 40. Model II regression analyses of predicted salinity versus 

satellite-matched in situ salinity show the salinity models generally over-predict 

salinity in fresher areas (Figure 3.2). The Chesapeake model had the most consistent 

prediction of salinity compared to available in situ data (R2=0.9, p<0.01). As an 

additional check, I compared salinity predictions from the Chesapeake Bay model 

with stream flow data collected from the stream gauge in the Potomac River near 

Washington DC (01646500) to confirm that my model predictions were showing the 

same general patterns as large stream flow events (Figure 3.3). Because of frequent 

cloud cover in the Chesapeake, I used a 32-day rolling average of satellite predicted 

salinity and compared it with a 32-day rolling average of stream flow near the 

Potomac River. This comparison showed there is a general response in my salinity 

model to freshwater influx events, however the correlation between stream flow and 

predicted salinity was weak (R2=0.2, p<0.01). What is not considered here is the 

episodic nature of stream flow, and the unknown time lag between the stream gauge 

and the area of the Chesapeake analyzed. Figure 3.3 shows that time lag is not the 

reason for a low correlation. Rather, the low correlation seems to be related to a time 

between 2003 and 2005 when stream flow was high, but there was not a large 

corresponding drop in salinity.  

3.3. Climatological Analyses 

I used my models to create seasonal climatologies for the Chesapeake, 

Delaware and Mid-Atlantic regions based on MODIS-Aqua satellite images. Since the 

satellite-matched in situ data in the Hudson sub-region was temporally skewed to the 
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spring, I excluded making climatologies for that region (Figure 2.2). Climatologies 

were broken up into 4 seasons (Jan-Mar, Apr-Jun, July-Sep, and Oct-Dec). The four 

seasonal climatologies for the Mid-Atlantic region are in Figure 3.4 and emphasize the 

change between 25-30 psu. The vast majority of the training data were nearshore, so I 

limited salinity predictions to within 50 km of the coast. The satellite-based 

climatologies show that winter and fall have larger areas of fresh water than spring 

and summer. Comparing these Mid-Atlantic satellite-based climatologies to the 

NODC climatologies using model II regression revealed that my seasonal 

climatologies were significantly fresher than the NODC climatologies for all seasons 

(Figure 3.5). There were 57, 58, 57, and 55 matches between our satellite-based 

climatologies and NODC climatology grid points for comparison for the winter, 

spring, summer and fall seasons respectively. Within the Delaware and Chesapeake 

bays, there were only 7 matches for winter, spring, and fall and 8 matches for summer. 

This is because the NODC salinity climatology is a quarter degree grid, and has few 

points inside the Delaware and Chesapeake bays.  Maximum differences between 

matches within the estuaries were as high as 9 psu for winter, 5 psu for spring, 8 psu 

for summer and 9 psu for fall. In all seasons and regions except the spring in 

Chesapeake Bay, my satellite-based climatology was fresher than the NODC 

climatology. This is likely because the in situ data that my models were trained on is 

also significantly fresher than the NODC climatologies.  RMS errors between my 

climatologies and the NODC climatologies were between 1.89 and 3.91 psu and mean 

differences were between -3.02 and 0.16 (Table 3.3).  

Using the satellite-based seasonal climatologies, I calculated the range in 

salinity for each season by taking the maximum value for each grid point and 
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subtracting the minimum value over the 6 years. Figure 3.6 shows which areas of the 

continental shelf were similar from season to season and which areas were different. 

There are relatively high differences in salinity between winters throughout the Mid-

Atlantic. Between spring seasons there are high differences localized to regions 

influenced by river plumes. Between summers and falls there are few differences in 

salinity across the region except for the Chesapeake Bay during the fall indicating that 

between season differences are smallest in the summer. 

 In the same manner, seasonal trends in salinity from 2003-2008 were 

calculated using linear regression models between grid points over all 6 years. 

Significant trends in salinity are defined as those grid points that had slopes with p < 

0.05 for the 6 years analyzed. Most grid points show no significant trends in salinity, 

however there were significant trends in each season overall (Figure 3.7). Winter 

shows a decreasing trend in salinity off the coast of southern New Jersey and Long 

Island. The spring shows the same decreasing trend off Long Island, but also a slight 

increase near the mouth of the Chesapeake Bay. Summer shows very small areas of 

increasing salinity off the coast of Long Island and in the Chesapeake Bay as well as a 

decrease in salinity along the Delaware, Maryland and Virginia coast. Fall has mostly 

increasing salinity trends in the Chesapeake Bay and other small areas off the coast of 

Long Island. 
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Figure 3.1:  Spectral shape of water-leaving for the six wavelengths from 
MODIS-Aqua for the (A) Mid-Atlantic, (B) Chesapeake, (C) 
Delaware, and (D), Hudson sub-regions. The shapes of the spectra 
are colored by satellite-matched in situ salinity values where red is 
high salinity and blue is low salinity. Low salinity spectra have peak 
reflectance in the green wavelengths, while high salinity spectra 
have peak reflectance in blue wavelengths. 
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Table 3.1: Range and mean of satellite-matched in situ salinity data. 

Region Minimum Maximum Mean 
Mid-Atlantic 0.077 34.872 26.769 
Chesapeake 0.077 32.764 15.783 
Delaware 7.501 32.305 27.452 
Hudson 15.666 32.202 26.069 
 
 
 

Table 3.2: Input parameters of optamized neural networks. The columns 
represent latitude, longitude, sea surface temperature (°C), and 
normalized water-leaving radiance wavelengths and wavelength ratios 
at specified magnitudes in (nm). The rows indicate which model they 
are in.  

 Parameter 
Model Lat Lon SST 412 443 488 531 551 667 412† 443† 488† 

Mid-Atlantic  X X X   X X X X X X 
Chesapeake X X X X X     X X X 
Delaware X X X X  X X X X X X X 
Hudson X X X     X X X X X 
† Wavelength ratios (the wavelength specified divided by nLw551). 
 
 
 

Table 3.3: RMS and mean difference between NODC climatology and satellite-
based Mid-Atlantic climatology. 

Season RMS Mean Difference 
Winter 3.91 -2.93 
Spring 1.89  0.16 
Summer 2.69 -1.33 
Fall 3.87 -3.02 
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Figure 3.2:  Model II regression of satellite-matched in situ salinity vs. model 
predicted salinity in the (A) Mid-Atlantic, (B) Chesapeake, (C) 
Delaware, and (D), Hudson sub-regions. All of the regressions are 
significant (p < 0.01). All of the models over predict salinity. The 
RMS errors for each are as follows: Mid-Atlantic = 2.29 psu, 
Chesapeake = 1.72 psu, Delaware = 1.97 psu, Hudson = 1.40 psu. 
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Figure 3.3:  Time series of rolling 32-day averaged stream flow in the Potomac 
River near Washington DC (gauge 01646500) and 32-day averaged 
salinity at the mouth of the Potomac River (22 x 8.75 km box). 
There is a significant inverse pattern between stream flow and 
salinity, however the correlation between them is low (R2 = 0.2, p < 
0.01). 
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Figure 3.4:  Seasonal salinity climatologies for (A) winter, (B) spring, (C) 
summer, and (D) fall for the Mid-Atlantic model up to 50km 
offshore. All seasons show characteristic coastally trapped river 
plumes. Winter and fall are generally fresher. Climatologies are 
mapped between 25 and 30 psu to emphasize differences between 
seasons. 
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Figure 3.5:  Model II regression between the Mid-Atlantic model climatologies 
and the NODC quarter-degree resolution climatologies for (A) 
winter, (B) spring, (C) summer, and (D) fall. Our satellite-based 
salinity models are significantly fresher than the existing 
climatologies. RMS errors for each are as follows: winter = 3.91 psu, 
spring = 1.89 psu, summer = 2.69 psu, fall = 3.87 psu. 
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Figure 3.6:  Between-season salinity ranges for (A) winter, (B) spring, (C) 
summer, and (D) fall calculated from the Mid-Atlantic model 
climatologies. Ranges were calculated by subtracting the minimum 
salinity value from the maximum salinity value for each grid point 
for the 6 years analyzed (2003-2008). Winter (A) has the largest 
salinity difference of the four seasons throughout the Mid-Atlantic 
while summer (C) has the least. 
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Figure 3.7:  Annualized rate of salinity change for (A) winter, (B) spring, (C) 
summer, and (D) fall calculated from the Mid-Atlantic model 
climatologies. Annualized rates of change were calculated using 
linear regression models on each grid point for the 6 years analyzed 
(2003-2008). Only significant slopes (p<0.05) at each grid point were 
colored. Positive slopes are red and negative slopes are blue. 
Insignificant slopes are black to show the model domain. Trends in 
salinity range from -1 to 1 psu. 
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Chapter 4 

DISCUSSION 

 

In this study, I present a novel approach for predicting coastal salinity from 

ocean color data measured by the MODIS-Aqua satellite. Neural networks are used to 

create a statistical relationship between ocean color, SST, position and salinity without 

depending on the derivation of an inherent optical property. With this approach, there 

is no need to assume that CDOM mixing (or other optically active tracers of salinity 

such as detritus) is conservative such as in models proposed by Ahn, 2008 and 

Palacios et al., 2009. Spectral analyses of satellite-matched salinity data showed that 

there is a distinct relationship between in situ salinity and ocean color measured by 

MODIS-Aqua in the Mid-Atlantic coastal ocean. In general, fresh water 

proportionally reflects more light toward the red end of the visible spectrum, while 

high salinity water reflects proportionally more light toward the blue end of the visible 

spectrum. This is most likely due to the presence of CDOM and the optical properties 

of other in-water constituents originating from land that absorb light strongly in the 

blue portion of the spectrum. This relationship allows for the direct use of ocean color 

in the Mid-Atlantic and its estuaries to predict nearshore salinity.  

 SST is also an important salinity predictor in my models. In the summer, 

estuaries warm faster than the coastal ocean. The comparatively warm waters of the 

estuaries are a signal for fresh water. In the winter, estuaries cool faster than the 

coastal ocean, making the comparatively cool water a low salinity signal. Some river 
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plumes also contain thermal signatures of their own, which could relate back to 

salinity. 

Finally, my models show that position is important for predicting salinity. This 

is likely because of the east-west salinity gradient observed off the Mid-Atlantic coast 

from coastally trapped river plumes and the western freshwater sources (Chant et al., 

2008) and north-south salinity gradients observed within estuaries, especially the 

Chesapeake and Delaware (Bulger et al., 1993). The need for position constrains the 

application of these models to the Mid-Atlantic region, making these specific models 

non-applicable to other areas. However, the inclusion of position as strong predictors 

of salinity suggest that location specific processes in the Mid-Atlantic are important 

for relating remotely sensed variables with salinity. These processes may include local 

mixing, local creation and destruction of CDOM and proximity to specific types of 

land cover such as salt marshes or agriculture. 

 Overall, my models perform well with RMS errors much less than the null 

models and the natural range of the system they were predicting. However, the Model 

II slopes in Figure 3.2 indicate these models are slightly over-predicting salinity in 

comparison to in situ salinity data. I also withheld a year of data in the training of the 

models to see how well the models perform predicting a year’s worth of unseen data. 

Overall, the models did not perform as well. This indicates that the satellite-matched 

in situ salinity data does not yet capture the full variability of salinity in this region. 

More satellite-matched in situ salinity is needed to improve these model predictions. 

Comparing the Chesapeake Bay model with stream flow from the Potomac 

River revealed that there is a consistent pattern between salinity and stream flow in the 

bay, but it cannot be used as a predictive pattern. This may be why stream flow was 



 28 

statistically eliminated as an input for model development . Factors for this could 

include the size of the watershed considered, evaporation, and the local distribution of 

precipitation (Austin, 2002). Precipitation falling downstream of the gauge or even 

over the bay could contribute to any disconnection observed between salinity and the 

stream flow observed at any given stream gauge. 

 My seasonal salinity climatologies followed some known features of the Mid-

Atlantic coastal ocean. The first noticeable similarity between the climatologies is the 

east-west salinity gradient, especially at the mouths of the estuaries in the winter and 

fall (Figure 3.4). Other similarities include the coastally trapped river plumes and the 

freshwater bulge out of the Hudson Estuary (Chant et al., 2008). In the Mid-Atlantic 

Bight, the effect of coastally trapped river plumes can be seen along New Jersey and 

Long Island. Freshwater from the Hudson gets trapped along New Jersey during 

downwelling winds and it turns toward Long Island during upwelling winds (Chant et 

al., 2008). Some major differences between my climatologies are that winter and fall 

have larger areas of fresh water than summer and spring and that fall has the freshest 

water around the Hudson Estuary. 

 A significant correlation exists between the NODC climatologies and my 

models (Figure 3.5), however my models significantly under-predict salinity 

compared to the NODC climatologies. After comparing the satellite-matched in situ 

data to the NODC climatology, I found that the in situ data was also significantly 

fresher. This explains why my climatologies were fresher since they are based on the 

satellite-matched in situ training data. In the spring, the comparison between my 

climatology and the NODC climatology is much better, but still an under-prediction. 

Besides not having many freshwater points to compare, the NODC climatologies also 
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have fewer points overall and do not estimate salinity over the same range as my 

models. This analysis shows there is a need for better nearshore climatologies of 

salinity at higher resolution.  

 Historically, the interannual variability in salinity in the Mid-Atlantic Bight 

near the Gulf of Maine has been largely associated with variability in river runoff and 

local precipitation (Manning, 1991) (Mountain and Manning, 1994). In the coastal 

ocean, upwelling and downwelling winds either trap these plumes nearshore, or 

disperse the low salinity water over the continental shelf, adding to the interannual 

variability of salinity in the Mid-Atlantic Bight (Castelao et al., 2010; Ryan et al., 

1999; Yankovsky and Garvine, 1998). Salinity ranges calculated from my seasonal 

climatologies over the 6 years also suggest that coastally trapped plumes contribute to 

interannual salinity variability in the coastal ocean (Figure 3.6). Variability in coastal 

salinity impacts the development of seasonal stratification and mixing, which 

influences phytoplankton productivity in the coastal zone.  

 Significant trends in salinity existed in all four seasons for the 6 years 

analyzed (Figure 3.7). The largest areas of salinity change off the coast of Long Island 

and New Jersey show decreasing salinity for every season except the fall. A previous 

study in the Mid-Atlantic Bight found that salinity in the 1990s was 0.25 psu fresher 

than in the 1980s (Mountain, 2003). Other studies on trends in salinity show weak, but 

significant correlations between the North Atlantic Oscillation Index (NAOI) and 

Long Island Sound salinity as well as high correlations among Mid-Atlantic Bight 

rivers, salinities at different shelf sections, and salinities at Long Island Sound stations 

(Whitney, 2010). During positive intervals of the NAO, there is a tendency for high 

discharge and low Long Island Sound salinity. The time of our analysis between 2003 
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and 2008 had more positive NAO intervals than negative, which may suggest that my 

calculated trends of coastal salinity freshening are linked to a larger natural climate 

cycle. As longer time series of ocean salinity become available, cycles and trends in 

coastal salinity may be linked to large-scale climate forces. 
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Chapter 5 

CONCLUSION 

 

In this study I found that remotely sensed ocean color is a strong predictor 

of salinity in the Mid-Atlantic coastal ocean. I have shown that it is possible to 

estimate salinity from an apparant optical property such as reflectance. The approach I 

used can be transported to other regions of the world with similar coastal processes. I 

would not reccommend using this approach in open ocean environments as the 

processes controlling CDOM production are different. The models I have produced 

have a strong positional dependency and are restricted to the Mid-Atlantic region. As 

expected, the largest salinity ranges in the Mid-Atlantic are in areas around estuaries. 

My analyses also shows large regions of freshening in the Mid-Atlantic Bight in the 

winter, spring, and summer, although the mechanism for this freshening is unknown. 

Compared with the NODC salinity climatologies, both my in situ salinity data and my 

climatologies are fresher, indicating that robust nearshore salinity climatologies are 

needed. Future directions for this research include real-time salinity output for the 

Mid-Atlantic coastal ocean and incorporation and comparisons with other modeling 

efforts. It is likely that improvements in the temporal and spatial coverage of synoptic 

ocean color measurements and greater in situ salinity sampling efforts would enhance 

this approach. The greatest need for  in situ salinity data is during the winter and in the 

shallow tributaries of the estuaries. These efforts would be a good opportunity to 

utilize AUVs. These sampling efforts must also coincide with cloud-free days to 
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maximize matches with satellite data. The use of a geostationary ocean color satellite 

in theis region would improve our ability to match in situ salinity data to satellite data. 

I would suggest the re-training of this type of model be done every 3-5 years as new 

data for matching becomes available. I view this study as a support to the overall 

NASA Aquarius salinity mission by providing satellite-based nearshore salinity 

climatologies that are rooted in in situ observations. My seasonal salinity 

climatologies are available for download here: 

http://modata.ceoe.udel.edu/dev/egeiger/salinity_climatologies/ 
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Chapter 6 

APPLICATION 

Since the completion of this project the NASA ocean color website has 

undergone a re-processing of the MODIS data. I used this method again to create a 

new Chesapeake Bay algorithm with similar results using remote sensing reflectance 

instead of normalized water-leaving radience. The Chesapeake Bay algorithm I 

created was implemented into NOAA’s Coastwatch program for monitoring 

Chesapeake Bay salinity. They are producing daily salinity maps based on the current 

MODIS-Aqua passes as well as seven day composites. The Chesapeake Bay algorithm 

in use can be found here: http://coastwatch.chesapeakebay.noaa.gov/cb_salinity.html. 

I’ve included an example map from NOAA’s website on a cloud-free day in figure 

6.1. The R code and instructions for training and applying this Chesapeake Bay 

algorithm can be found here: http://modata.ceoe.udel.edu/dev/egeiger/NOAA_OCR-

SSS/ 
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Figure 6.1: Salinity estimated from the Chesapeke Bay algorithm as seen on 
NOAA’s coastwatch website. This image was produced on 
November 2nd, 2011. Salinity is in units of PSU. Red values are high 
salinity and blue values are low. 
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